

# HAZARDOUS AIR POLLUTANTS

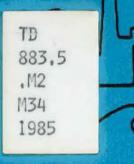
## In Maine:

## **Emissions Inventory**

## **Ranking System**

AND

Prepared by:


## Bureau of Air Quality Control

**Division of Technical Services** 

## **Bureau of Health**

Environmental Health Unit

Environmental Toxicology Program



## **MARCH 1985**

mar S

### TABLE OF CONTENTS

## Hazardous Air Pollutants In Maine

| SECTION                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LETTER OF TRANSMITTAL                                                                                                                                                                                                                                    |
| EXECUTIVE SUMMARYi                                                                                                                                                                                                                                       |
| I. EMISSIONS INVENTORY 1. INTRODUCTION 2. PROCEDURE 2. 2 3. AREA SOURCES 4. FINDINGS 5. DISCUSSION OF FINDINGS 5. DISCUSSION OF FINDINGS 7 6. RECOMMENDATIONS TABLES: 1. AREA SOURCE CATEGORIES 5. 2. TOP 25 HAZARDOUS AIR POLLUTANTS EMITTED IN MAINE 6 |
| <pre>II. RANKING HAZARDOUS AIR POLLUTANTS FOR FORMAL EVALUATION 1. INTRODUCTION</pre>                                                                                                                                                                    |
| <ul> <li>III. APPENDICES</li> <li>A. HAZARDOUS AIR POLLUTANT CODES</li></ul>                                                                                                                                                                             |



Department of Environmental Protection

MAIN OFFICE: RAY BUILDING, HOSPITAL STREET, AUGUSTA MAIL ADDRESS: State House Station 17, Augusta, 04333

JOSEPH E. BRENNAN GOVERNOR

March 25, 1985

COMMISSIONER -

Senator Ronald E. Usher, Senate Chair Representative Michael H. Michaud, House Chair Joint Standing Committee on Energy and Natural Resources State House, Station 2 Augusta, Maine Ø4333

Dear Senator Usher and Representative Michaud:

The Bureau of Air Quality Control of the Maine Department of Environmental Protection has completed the toxic air pollution inventory mandated in Chapter 835 of the Public Laws of 1984. With this report we respectfully submit the results of the inventory to the Committee on Energy and Natural Resources.

The report explains the process we followed in gathering data, what the collected information tells us and suggestions as to how the State of Maine should proceed to better control existing and future toxic emissions into the air. It is broken into three sections; the inventory, the air toxics ranking system and an appendix.

Throughout the inventory process the Maine Bureau of Health has been very helpful. In particular I want to thank Dr. Terry Shahata and Norman Anderson. In addition, credit should be given to David Dixon of the Bureau of Air Quality who organized and managed the inventory and data resolution processes. Finally, special thanks goes to the hundreds of businesses and industries that completed the questionnaires that form the basis of the data from which the inventory is drawn. Without their wholehearted help nothing could have been done.

In closing, as you use this report, questions and comments should be directed to Mr. Dixon. He will be most able and happy to help you. He can be reached at 289-2437.

Sincerely,

Henry E. Warren Commissioner

HEW/JLB/glk

cc: Richard Davies, Governor's Office

Portland •

#### EXECUTIVE SUMMARY

This report has been compiled by the Bureau of Air Quality Control and the Bureau of Health's Environmental Toxicology Program. Its purpose is to determine whether or not emissions of Hazardous Air Pollutants in Maine presents a serious environmental concern. The evaluation was carried out simultaneously with the Air Bureau collecting information on types and quantities of emissions while the Bureau of Health studied the relative toxicity or potential health hazard.

The report is divided into two sections: (1) the emission inventory and (2) the priority ranking system. Both sections are interdependent and must be evaluated collectively in order to determine the extent of environmental problems created by hazardous air pollutants. The hazard created is dependent on both factors, the toxicity or potency of the substance and the exposure.

The emissions inventory section includes a description of the procedures used to estimate emissions from point and area sources and discusses the findings. Based upon a list of 199 potential hazardous air pollutants selected to be inventoried and selected cutoffs for reporting, emissions of 6,143 tons per year were identified.

Of the 199 potentially hazardous air pollutants 58 were found to be emitted in Maine.

The Bureau of Health's toxicity ranking score is based upon four considerations: mutagenicity, carcinogenicity, reproductive effects and acute toxicity. The score in each of the four categories is a function of the evidence for each effect reported in the literature.

The toxicity score is combined with the exposure score to provide a numerical ranking of the inventoried hazardous air pollutants. The priority ranking system will be used by both Bureaus as a guide to systematically continue work on the hazardous air pollutant program.

The hazardous air pollutants which have been determined to undergo initial review are TOLUENE (present in gasoline and used as a solvent in paints and coatings), TETRACHLOROETHYLENE (used as a solvent principally for cleaning and extraction processes), FORMALDEHYDE (used in the manufacture of resins; as a perservative and hardening and reducing agent; in embalming fluids; as a corrosion inhibitor and sterilizing agent), BENZENE (present in gasoline and used as a raw material for organic chemicals), EPOXYPROPANE (used as a fumigant, and in the manufacture of urethane foams, surfactants and detergents, and synthetic lubricants), and CHLORINE (used as a bleaching and oxidizing agent).

Based upon the findings of the report, the following recommendations were developed. The recommendations presume that no single source of hazardous air pollutants is of such great public health concern that immediate pollutant abatement action is needed. The quantities emitted and potential health consequences of exposure to high concentrations or repeated exposures to lower concentrations, however, clearly demand continuing attention to sources emitting these potentially hazardous air pollutants. The entire process is systematic and procedures established by both Bureaus represent an appropriate level of effort.

The following recommendations are made based on the above conclusions:

Authorize the Commissioner to take immediate action when he finds imminent public health risk attributable to existing emissions of hazardous air pollutants.

Provide the Board of Environmental Protection the clear authority to require proper control of hazardous air pollutant emissions from any new source or new process of an existing source whenever the proposed emissions may pose an unacceptable health risk.

Require that existing air emission licensed sources undergo licensing review for hazardous air pollutants.

Authorize the Commissioner to collect additional source information for hazardous air pollutants.

#### SECTION 1. EMISSIONS INVENTORY

#### 1. INTRODUCTION

Chapter 835 of Public Laws of 1984 required that the Department of Environmental Protection carry out and maintain an inventory of sources in the State emitting any substance that may be a potential hazardous air pollutant. The inventory was specifically required to include the following:

- (1) the number of sources;
  - (2) the location of each source or category of source;
  - (3) the quantity emitted by each source or category of source;
- (4) the total emissions; and

(5) the percentage of total emissions generated by sources with existing air licenses.

This section of the report describes the process utilized for data collection, emission calculations and quality assurance. Then it presents the findings of the inventory and our recommendations to the Committee.

#### 2. PROCEDURE

The Department developed a comprehensive questionnaire based upon EPA guidelines and examples of data collected in other states. We solicited and received input from the Air Quality Research Coalition. The coalition is a paper tanneries, group representing industries, electronics pulp & manufacturers and other industries which showed a common interest in an air toxics program. As a result of discussions, we concluded that the short term objective of the inventory should be to develop a prioritization scheme for addressing specific air toxics. Based on that objective we developed a general questionnaire which asked only for the total use of a substance and total plant wide emissions, rather than production line by production line data. The scope of the inventory was further limited:

1. By establishing a list of 199 substances which were considered to be potential hazardous air pollutants by the Bureau of Air Quality Control and the Bureau of Health of the Department of Human Services, and;

2. By establishing a minimum use rate of 2000 pounds per year, below which no reporting was required.

-1-

The inventory questionnaire was designed to obtain information from 4 categories of sources:

(1) process sources

(2) incineration sources

(3) storage facilities

(4) loading, unloading, transfer operations.

In late July questionnaires were sent to approximately 700 sources based upon three factors:

(1) facilities with existing air emission licenses,

(2) Standard Industrial Classification (SIC) and employment level, using the Maine Marketing Guide,

(3) hazardous waste manifest data of the Bureau of Oil and Hazardous Materials.

Questionnaries were due back October 31, 1985. At that time the response rate was between 60-65 percent. In looking through the early response data it was clear that 7 categories in the original sample would have little if any impact on the inventory. Because they would have such little impact we removed them from the sample. They were:

(1) schools

(2) hospitals

(3) veterinarians

- (4) hotels
- (5) nursing homes
- (6) oil distribution companies
- (7) sewage treatment plants

Eliminating these categories resulted in a 75 percent response rate. All the remaining sources which had not reported were contacted individually via telephone during the first two weeks of November. Each was reminded of the inventory and its importance.

During the first week in November, all questionnaires were preliminarily reviewed. Based upon this evaluation 3 categories of sources were selected for on-site follow-up, as a verifying technique to assure that the data was accurate. The categories selected were:

(1) Sources that reported significant emissions. Several were selected for an on-site inspection for quality assurance purposes and to verify methods used to calculate emissions,

(2) Sources who responded and reported no emissions. We selected several for on-site inspections based upon their SIC code and employment level or similarity with sources that reported emissions,

(3) Sources who did not respond at all. We went to all those whom we expected may be significant sources based upon their SIC code and level of employment or similarity with sources that reported emissions.

During December and early January 1985, a total of 54 sources received on-site follow-up inspections to verify data. This represents a quality control check of 29 percent. Significant additional emissions were found during this process. By this point the inventory response rate was 518 out of 619 or 84 percent. Based upon the follow-up inspections, we believe that the sources inventoried in this report include the majority of significant emitters in Maine.

In order to deal with the volume of data reported during the inventory we developed an on-line computer data handling system. This system utilized the Department's Honeywell Level 6 mini-computer. Simply put, data could be entered directly to the computer and reports written using a generalized information retrieval system. Inherent in the design of the system was a method to maintain the confidentiality of the information reported to us.

The quality of the responses to the questionnaire varied significantly. In some cases, it was evident that a great deal of time and effort had gone into the preparation of the reports. Documentation of calculations, detailed process descriptions, and control/emission assumptions were provided. The majority of submittals, however, simply reported only the amounts of chemicals used and left estimates of the emissions to the Department. In those cases, staff relied on talking with the particular plant operator, comparing between similar industrial sources and making the best estimate based on the chemical and its use. Because of the nature of this estimation process, we purposely made our assumptions conservative which means that the emissions may be somewhat overestimated.

More uncertainty is probably introduced by the methods used to calculate emissions. It was recognized that stack tests or engineering studies should not be required for collecting emission estimates for the purpose of this inventory. Two methods were commonly employed; emission factors and material balance calculations. Emission factors are a typical emission rate that would The factor is then multiplied by the be expected from a type of source. process rate to estimate emissions. Material balance calculations use the amount of product purchased minus what is sent out as a waste and what is tied up in the product. The quantity unaccounted for is assumed to be lost to the Much may initially be lost to the sewer system but even that will air. eventually evaporate. This method may, therefore, overestimate emissions at the source but is quite accurate for accounting for all that eventually reaches the ambient air.

It needs to be pointed out that time did not permit a thorough review of all questionnaires so in many cases estimates are based upon the source's

-3-

response. Those that were checked during on-site visits indicate the data are very reliable. Nevertheless, there were instances of misunderstanding and cases of unreasonable assumptions, so it is conceivable that reported values may in some cases inaccurately represent real emission rates.

On the other hand the minimum cut-off exclusion and the select nature of the list tend to make the process underestimate the total statewide emissions of hazardous air pollutants. The use of emission factors, and material balance calculations with conservative assumptions probably overstates emissions in many instances. The estimates therefore should be treated as estimates, not as absolute values. The data is valid for drawing comparisons and developing a prioritization ranking scheme which was the major goal of the project.

The inventory does not address two other situations which may be of concern. It neither provides qualitative and quantitative estimates of reaction products resulting from emissions of individual precursors, nor estimates hazardous air emissions from trace constituents of oil or coal burning. The latter would increase the total reported emissions of hazardous air pollutants so that more attention may be directed at the program; the regulatory significance is not great because control is, and should be, dictated by emissions of the major constituents.

The data collected is not intended to be used to assess local ambient air impacts because it did not include flow rates, densities, elevations and other similar characteristics of the emission that are necessary to quantify impact.

#### 3. AREA SOURCES

Area source emission estimates are included for several categories of sources whose emissions are too small to catalogue individually but whose collective emissions are significant. Area sources are reported by category with a geographical breakdown by county and major urban areas. In most cases, the distribution is based upon population distributions or data on vehicle miles traveled in an area. Emissions for the area sources are based exclusively on emission factors. The source of the data used, emission factors and assumptions are all listed for each catagory in Appendix 3.

Table 1 contains each of the categories of sources included in the area source inventory:

#### AREA SOURCE CATEGORIES

Dry Cleaners Degreasers Open Burning Dumps Agricultural Open Burning Forest fires Architectural Surface Coating - (Painting) Highway Markings Printing Residential Wood Burning Waste Oil Burning Automotive Emissions - (Lead) Gasoline Stations Operation - (filling underground tanks, vehicular refueling and spillage)

Gasoline Terminals

#### 4. FINDINGS

1. The study found 57 of the 199 inventoried hazardous air pollutants were emitted in Maine. Since this inventory was limited to sources using in excess of 2,000 pounds per year, it is not all inclusive. Some sources may use less than 2,000 pounds of a pollutant which the inventory would not detect.

2. The study indicated 187 sources of the reporting 619 had some reportable emissions. Given enough time and resources to follow-up on all inventoried sources, there is little doubt more emissions would have been found.

3. Of the 178 sources which reported emissions of potential hazardous air pollutants, 78 sources or approximately 44 percent have existing air emission licenses.

4. Area sources were found to be a significant source of hazardous air pollutants in a few cases. They are dry cleaners, gasoline marketing, residential wood burning, and waste oil burning.

5. Table 2 presents a statewide summary of the top 25 hazardous air pollutants for both point and area sources.

6. The total emissions of hazardous air pollutants reported is 6,143 tons (12,286,000 Lb.). Compared to a total emissions inventory of 106,000 tons (212,000,000 Lb.) of sulfur dioxide, the generic category of hazardous air

. . .

.

### TOP 25 HAZARDOUS AIR POLLUTANTS EMITTED IN MAINE

.

| DOLLUTANT                   |              | EMISSIONS (POUNDS) | TOTAL            |
|-----------------------------|--------------|--------------------|------------------|
| POLLUTANT                   | POINT SOURCE | AREA SOURCE        | TOTAL            |
| 1. Toluene                  | 2,459,231    | 52,360             | 2,511,591        |
| 2. 1,1,1, Trichloroethane   | 1,496,539    | 0,                 | 1,496,539        |
| 3. Chlorine                 | 1,337,003    | 0                  | 1,337,003        |
| 4. Xylene                   | 1,091,274    | 0                  | 1,091,274        |
| 5. Acetone                  | 804,521      | 0                  | 804,521          |
| 6. Tetrachlorethylene       | 144,450      | 563,600            | 708,050          |
| 7. Methyl Cellosolve        | 632,248      | 0                  | 632,248          |
| 8. Methyl Ethyl Ketone      | 512,611      | 0                  | 512 <b>,</b> 611 |
| 9. Methyi Mercaptan         | 428,940      | 0                  | 428,940          |
| 10. Chlorine Dioxide        | 296,787      | · 0                | 296,787          |
| 11. Methylene Chloride      | 288,569      | 0                  | 288,569          |
| 12. Ethylene Glycol Ethyl E | ther 277,118 | 0                  | 277,118          |
| 13. Hydrogen Sulfide        | 269,912      | 0                  | 269,912          |
| 14. N-Butyl Acetate         | 253,563      | 0                  | 253,563          |
| 15. Lead                    | 630          | 202,800            | 203,430          |
| 16. Methyl Metharcylate     | 184,550      | 0                  | 184,550          |
| 17. Butanol                 | 149,490      | 0                  | 149,490          |
| 18. Diphenylmethane 4,4-di- |              |                    |                  |
| isocyanate                  | 146,000      | 0                  | 146,000          |
| 19. Hydrogen Chloride       | 44,731       | 96,000             | 140,731          |
| 20. 1,2 – Epoxypropane      | 124,600      | 0                  | 124,600          |
| 21. Trichloroethylene       | 110,600      | 0                  | 110,600          |
| 22. Formaldehyde            | 79,401       | 0                  | 79,401           |
| 23. Turpentine              | 77,130       | 0                  | 77,130           |
| 24. Ethyl Acetate           | 66,537       | 0                  | 66,537           |
| 25. Benzene                 | 0            | 52,392             | 52,392           |

-6-

pollutants is quite small. However, this is not a fair comparison due to the varying public health risk which hazardous air pollutants pose. This comparison is made to put the volume of hazardous air pollutants in perspective with a more familiar criteria air pollutant.

7. Of the 6,143 tons of inventoried hazardous air pollutants only 167 tons (2.7%) would have sufficient evidence to be classified as carcinogenic. This is not to suggest that carcinogens should receive special treatment but rather to confirm that most of what were identified as hazardous air pollutants were not carcinogenic.

#### 5. DISCUSSION OF FINDINGS

The problem with a discussion of the results of the inventory is the age old one of comparing apples and oranges. The list of hazardous air pollutants is composed of chemicals with such varying public health risks that they should not be compared to each other. It is the role of the Bureau of Health and the Scientific Advisory Committee to perform this risk assessment.

The findings represent broad generalizations of the data reported. In many cases it is not the generalizations that are very useful but rather the specific data. That data is reported in a series of appendices:

1. Appendix 1 is the List of Hazardous Air Pollutants for which the Department inventoried. This list should be referred to in the following appendices as it identifies a six letter code for each pollutant. The code was used as part of the computer data handling system.

2. Appendix 2 reports the total process emissions for all inventoried point sources.

3. Appendix 3 reports the individual area source documentation sheets. The initial sheet describes the category, data collection, data assumptions, emission factor(s), emission factor source, calculation method, and annual emissions summary. The second sheet details the emissions by county and for a few major cities.

4. Appendix 4 reports a breakdown of hazardous air pollutants by county.

5. Appendix 5 reports a breakdown of hazardous air pollutants by Standard Industrial Classification (SIC).

#### 6. RECOMMENDATIONS

following recommendations legislation are made with the The for understanding that while significant quantities of hazardous air pollutants are emitted into the air at present there is no single hazardous air pollutant or source that represents a clear threat to public health from these emissions. Nevertheless, it is prudent to limit or possibly regulate future sources of hazardous air pollutants that may pose a direct threat to public health and require the same level of control generally required for the criteria air pollutants. At the same time the Department should be authorized to gather the source specific information necessary to conduct ambient air quality impact assessments.

With this in mind, the Department's recommendations are:

#### A. LEGISLATIVE

#### 1. Emergency Provision to Protect Public Health

The Commissioner should be given the clear authority to take immediate action to stop emissions of hazardous air pollutants when they pose an imminent threat to public health. The language should be similar to the existing emergency provisions found in Hazardous Waste Management law, Title 38, Section 1310.

#### 2. New Emission Sources

Legislation is needed to clarify and improve the capacity of the Board of Environmental Protection to regulate hazardous air pollutant emissions from any new source or new process or operation at an existing source when it finds that the proposed emissions pose an unacceptable public health risk.

#### 3. Existing Emission Sources

Existing law should be clarified to clearly indicate that hazardous air pollutants are treated similar to the criteria pollutants in the licensing of any existing air emission source. This may require existing sources of hazardous air pollutants to use Best Practical Treatment.

#### 4. Source Information

The Commissioner should be given the authority to solicit additional source information such as:

a. process schedules and design specifications;

b. stack or discharge vent operating parameters;c. control equipment specifications and design operating conditions; d. emission testing either periodically or using continuous emissions monitors.

#### B. DEPARTMENTAL

#### 1. Emissions Inventory

The emissions inventory should be upgraded to include source specific emission data. Testing and documentation of emission estimates should be expanded to cover sources emitting less than 2000 lbs/year.

SECTION II. RANKING HAZARDOUS AIR POLLUTANTS FOR FORMAL EVALUATION

#### 1. INTRODUCTION

Section 585-C of 38 M.R.S.A. mandated the Maine Department of Environmental Protection (DEP) to establish an air emissions inventory for hazardous air pollutants. With the assistance of the Maine Bureau of Health and other state agencies, the DEP developed an initial list of two hundred air pollutants to be classified as "hazardous." It is the responsibility of the Bureau of Health (22 M.R.S.A. Section 1696) to assess the public health risk associated with these hazardous air pollutants. In conducting its assessments, the Bureau relies on the advice and constructive criticism of its Scientific Advisory Panel. This Panel, established concurrently with the hazardous air pollutant legislation, consists of expert health professionals from academia, industry, consulting firms, and private practice.

#### 2. APPROACH

In order to know the sequence in which pollutants will be assessed, it is first necessary to develop a ranking system based on a preliminary evaluation of each pollutant's toxicity and the quantity that is emitted into the ambient Two components are assessed in the ranking system: toxicity and air. exposure. Combining these two components is necessary for a balanced perception of actual public health risk. The ranking measures all the pollutants against a standardized set of criteria, and assigns numerical scores based on these criteria. This method has inherent problems as it does not consider the particular toxicologicial or emission characteristics of a chemical. On the other hand, consideration of specific characteristics may undermine the purpose of the ranking system. Since it is only a scheme for setting priorities, its effectiveness can be diluted by introducing criteria which are not easily comparable among a wide variety of pollutants. Yet, while not directly translatable into a measure of public health risk, this ranking system should provide a relative index of the pollutants' potential health threats.

#### 3. TOXICITY COMPONENT

The toxicity component of the ranking system provides a preliminary score based on the studies cited in the National Institute for Occupational Safety and Health's <u>Registry of Toxic Effects of Chemical Substances</u> (RTECS). The effects categories are based on the following health criteria: carcinogenicity, mutagenicity, reproductive effects, and acute effects. Values for each category range from zero, except acute toxicity, which ranges from one to four. The toxicity factor for a pollutant is determined first by adding the individual category scores, and then adding to this sum the standard deviation of the four values. The reason for adding the standard deviation will be explained below.

The mechanism by which the health effects are scored is outlined in Table 1. Though each category is evaluated by different parameters, the basic ordering reflects a hierarchy of concern regarding a pollutant's human health risk. A pollutant is scored as a carcinogen, mutagen, or a reproductive toxin according to its likelihood of acting as such in human beings. The acute toxicity category is scored according to potency criteria, since any substance can be toxic to human beings if administered in large enough doses. With the exception of the acute toxicity category, no consideration is placed on route of exposure.

<u>Carcinogenicity</u> For carcinogenicity assessment, RTECS reflects the weight of evidence criteria used by the International Agency for Research on Cancer (IARC) and the National Toxicology Program. The evidence is considered with regard to whether it represents the results of human or animal studies, and whether the resulting associatons are positive, suspected, indefinite, negative, or lacking data. Using the assumption that the compounds with the closest associations with human carcinogenesis warrant the most immediate attention, the following scoring scheme was developed.

| Human: Positive/Suspected   | 4 |
|-----------------------------|---|
| Animal Positive             | 3 |
| Animal Suspected            | 2 |
| All Other Non-negative data | 1 |
| Adequate Negative data      | 0 |

<u>Mutagenicity</u> Though actual guidelines still need to be developed for interpreting mutagenicity data, there is the general recognition that those tests which more closely reflect human physiological responses to the suspected mutagen also provide the greatest weight of evidence. The following scheme was thus developed for interpreting RTECS mutagenicity data in light of this general premise.

| In vitro or in vivo human, in vivo mammalian | 4 |
|----------------------------------------------|---|
| In vitro mammalian                           | 3 |
| Non-mammalian                                | 2 |
| No Data                                      | 1 |
| Adequate Negative data                       | 0 |

The study (or studies) which have the highest ranking determine the pollutant's score for this health effect.

<u>Reproductive Effects</u> Scoring for reproductive effects follows basically the weight of evidence ranking used by IARC in its evaluation of potential carcinogens. This approach differs from IARC's in that the triggering studies have not necessarily been peer reviewed. Because of the generally limited data base for this category, however, less demanding criteria have been employed.

| Human data, or                      | 4 |
|-------------------------------------|---|
| 2 species and 2 routes in 1 species |   |
| 2 species or 2 routes in 1 species  | 3 |
| 1 species tests                     | 2 |
| No data                             | 1 |
| Adequate Negative data              | 0 |

<u>Acute Toxicity</u> As shown in the Table 2, numerous regulatory agencies categorize acute toxicity into roughly four levels. This categorization forms the basis of the scoring assignments for this effect. To reflect the importance of actual human data, pollutant scoring gives priority to any human lethal dose studies cited. For those pollutants which lack human data, priority is given to the LC50\* (4-hour exposure period) in any animal species, since this is a measure of toxicity via inhalation. Pollutants with neither human lethal dose data nor lethal dose animal inhalation data are scored according to the LD50. For the sake of consistency, the rat has been used as the reference species for the LD50. When rat data are not available for a pollutant, toxicity data from any rodent is used.

> Level 4 LC (human) or LC50 (animal): less than 0.2 mg/liter, less than 200 ppm; or LD (human) or LD50 (animal): less than 50 mg/kg

4

3

2

1

- Level 3 LC (human) or LC50 (animal): 0.2 - 2.0 mg/liter, 200 - 2000 ppm; or LD (human) or LD50 (animal) 50 - 500 mg/kg
- Level 2 LC (human) or LC50 (animal): 2 - 20 mg/liter, 2000 - 20,000 ppm; or LD (human) or LD50 (animal): 500 - 5000 mg/kg
- Level 1 LC (human) or LC50 (animal): greater than 20 mg/liter, greater than 20,000 ppm; or LD (human) or LD50 (animal): greater than 5,000 mg/kg; or No Data

Deviation. There are several difficulties involved with the derivation of a general toxicity value for a wide variety of pollutants. In this scheme,

there is the concern that pollutants with wide deviations in their health effect scores (particularly in the carcinogenicity, mutagenicity, and reproductive effects scores) may be underestimated in their rankings because of inadequate data. To compensate for this, the standard deviation of the four health effects scores was added to the sum.

#### 4. EXPOSURE COMPONENT

Emissions estimates for all hazardous air pollutants have been provided by the Department of Environmental Protection's Bureau of Air Quality Control. These estimates are in the form of statewide summations in pounds per year from industrial, commercial, residential, and mobile sources.

\* For explanation of terms, see GLOSSARY

#### 5. RANKING ALGORITHM

The DEP inventory, because of the wide range in the emissions estimates, is not easily comparable to the toxicity scale. A variety of methods can be used, each given varying degrees of weight to each component. It is unknown at this time how different modifications of the exposure component affect its weight in the final scoring. Given the uncertainties involved with the weighting process, a non-parametric approach is used. In this approach, the toxicity and exposure components for each pollutant are ranked in order of decreasing toxicity an decreasing emissions. The toxicity and exposure ranks are then added to produce the total score. Pollutants decrease in priority, therefore as their total scores increase. The results of this algorithm are presented in Table 3.

#### 6. DISCUSSION

Despite the efforts of the National Institute for Occupational Safety and Health to list all journal sources, it is entirely possible that some important studies have not been included. Also, with the exception of carcinogenicity, the health effects scoring is drawn from sources that have not been peer reviewed. Finally, "negative data" cannot be distinguished in RTECS from "no data." A provision has been made in the ranking system to score a health category as zero if findings of a negative effect have been demonstrated.

The health effects categories were given equivalent scoring ranges to minimize the biases involved in weighing the different health effects. This procedure, however, does not eliminate the biases inherent in the criteria themselves. Both carcinogenicity and reproductive toxicity are highly correlated with In other words, a compound having a high score for either mutagenicity. carcinogenicity or reproductive effects most likely has a high score for mutagenicity as well. Ranking, therefore, may be disproportionately weighted against pollutants which may be very toxic, but not mutagenic. On the other hand, this unequal emphasis may also more closely reflect the public health Compounds present in sufficient concentrations to produce acute threat. effects are generally more easily detected and controlled than compounds which can produce effects through long-term, low level exposures. Nevertheless. this concern can of unequal weighting be mitigated to a certain extent by prior consideration of "supertoxics," or compounds whose acute toxicity doses are less than the most toxic dose levels described in Table 2. These compounds are listed in Table 4. Before the formal risk assessments are conducted, assessments will be done on these pollutants to determine whether a potential public health problem exists due to acute exposures.

Important facets of a compound's potential toxicity, such as chronic toxicity and synergistic effects, have not been explicitly considered in this process. People are rarely exposed in the ambient environment to only one pollutant. There are several examples to illustrate the possibility that exposures to mixtures of pollutants can create unforeseen effects. There are also many ways in which pollutants can promote disease development through interactions with lifestyle or genetic factors. This shortcoming may be alleviated to a certain extent through the unequal weighting. As a class, mutagenic compounds may be more likely to produce interactive effects than non-mutagenic compounds. By generally scoring mutagenic compounds higher than non-mutagenic compounds, this system may indirectly consider these effects. Unfortunately, there is currently no systematic method to assess these concerns. They will be assessed in the formal risk assessments, however, and attempts will be made to include these criteria in future ranking systems.

In many instances, the basis for a pollutant's statewide emissions estimate has questionable credibility. Actual emissions test for hazardous air pollutants have rarely been done in Maine. Much information has been obtained through emission factors, material balances, or purchase records. Estimates of hazardous air pollutants emitted from combustion processes are, for the most part, unavailable. Pollutant exposures resulting from consumer or small commercial usage are also difficult to estimate. These limitations, however, have been recognized at the outset. Also recognized was the fact that the hazardous air pollutant program could not wait for these limitations to be overcome. Rather, the intention is to more rigorously address exposure criteria as the public health concerns related to hazardous air pollutants become more clearly understood.

For all of these reasons, the ranking system should be kept flexible so that it can easily respond to additional information or more critical review of the literature. It would be counterproductive for the Bureau of Health to verify the data used in the system, since the purpose of the ranking process is to order pollutants without becoming involved in specifics. On the other hand, assistance from outside sources is appreciated and is encouraged during this and all ensuing steps of the pollutant assessment process.

-14.

### GLOSSARY

- LC: lethal concentration
- LD: lethal dose
- LC50: lethal concentration for 50% of the animals in the study
- LD50: lethal dose for 50% of the animals in the study
- mg/liter: milligrams of compound per liter of air
- ppm: parts per million (volume)
- mg/kg: milligrams of compound administered per kilogram body weight

## TOXICITY RANKING SYSTEM

|          |                                                                                                                                                                          | Score                 |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|          | A. Carcinogenicity (C)                                                                                                                                                   |                       |
|          | Human: Positive/Suspected<br>Animal Positive<br>Animal Suspected<br>All Other Non-negative data<br>Adequate Negative data                                                | 4<br>3<br>2<br>1<br>0 |
|          | B. Mutagenicity (M)                                                                                                                                                      |                       |
|          | In vitro or in vivo human, in vivo mammalian<br>In vitro mammalian<br>Non-mammalian<br>No Data<br>Adequate Negative data                                                 | 4<br>3<br>2<br>1<br>0 |
|          | C. Reproductive Effects (R)                                                                                                                                              |                       |
|          | Human data, or 2 species and 2 routes in 1 species<br>2 species or 2 tests in 1 species<br>1 species<br>No data<br>Adequate Negative data                                | 4<br>3<br>2<br>1<br>0 |
|          | D. Acute Toxicity (A)                                                                                                                                                    |                       |
|          | Level 4 LC (human) or LC50 (animal):<br>less than 0.2 mg/liter, less than 200 ppm; or<br>LD (human) or LD50 (animal):<br>less than 50 mg/kg                              | 4                     |
|          | Level 3 LC (human) or LC50 (animal):<br>0.2 - 2.0 mg/liter, 200 - 2000 ppm; or<br>LD (human) or LD50 (animal)<br>50 - 500 mg/kg                                          | 3                     |
|          | Level 2 LC (human) or LC50 (animal):<br>2 - 20 mg/liter, 2000 - 20,000 ppm; or<br>LD (human) or LD50 (anmial):<br>500 - 5000 mg/kg                                       | 2                     |
|          | Level 1 LC (human) or LC50 (anima1):<br>greater than 20 mg/liter,<br>greater than 20,000 ppm; or<br>LD (human) or LD50 (anima1):<br>greater than 5,000 mg/kg; or No Data | 1                     |
| Toxicity | Sum = Sum of Individual Health Effects Scores<br>S = Standard Deviation of a pollutant's effects scores<br>Score = Sum + S<br>-16-                                       |                       |

## ACUTE TOXICITY TESTS FOR SELECTED FEDERAL REGULATORY PROGRAMS

| CATEGORY                                     | A: Mists, Dusts, and Fumes                                                                                                                                                                                                          |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OSHA                                         | Highly Toxic Toxic                                                                                                                                                                                                                  |
| HMTA                                         | Poison A or B                                                                                                                                                                                                                       |
| FHSA                                         | Highly Toxic Toxic                                                                                                                                                                                                                  |
| FIFRA                                        | I II III IV                                                                                                                                                                                                                         |
| RCRA                                         | Acutely Hazardous                                                                                                                                                                                                                   |
|                                              | .02 .2 2 20 200 LC <sub>50</sub> (mg/L)                                                                                                                                                                                             |
| CATEGORY                                     |                                                                                                                                                                                                                                     |
| un zoonn                                     |                                                                                                                                                                                                                                     |
| OSHA                                         | Highly<br>ToxicToxic                                                                                                                                                                                                                |
| FHSA                                         | Highly<br>Toxic Toxic                                                                                                                                                                                                               |
| CWA                                          | Hazardous                                                                                                                                                                                                                           |
| CATEGORY                                     | 20 200 2000 20,000 200,000 LC <sub>50</sub> (ppm)<br>C: Oral Toxicity                                                                                                                                                               |
|                                              |                                                                                                                                                                                                                                     |
| OSHA                                         | Highly<br>ToxicToxic                                                                                                                                                                                                                |
| HMTA                                         | Poison<br>A or B                                                                                                                                                                                                                    |
| FIFRA                                        | I II III IV                                                                                                                                                                                                                         |
| CWA                                          | Hazardous                                                                                                                                                                                                                           |
| RCRA                                         | Acutely<br>Hazardous                                                                                                                                                                                                                |
|                                              | 5 50 500 5000 50,000 LD <sub>50</sub> (mg/kg)                                                                                                                                                                                       |
| OSHA<br>HMTA<br>FHSA<br>FIFRA<br>CWA<br>RCRA | Occupational Safety and Health Act<br>Hazardous Materials Transportation Act<br>Federal Hazardous Sustances Act<br>Federal Insecticide, Fungicide, and Rodenticide Act<br>Clean Water Act<br>Resource Conservation and Recovery Act |
| Source:                                      | U.S. Environmental Protection Agency, <u>Chemical Substances</u><br><u>Designation, Vol. I:</u> <u>Overview and Analysis</u> , Washington, D.C., 1981.<br>-17-                                                                      |

-17-

.

.

.

## RANKINGS FOR HAZARDOUS AIR POLLUTANTS

~

| Pollutant                                                                                                                                                                                                                                                               | Toxicity<br>Score                                                                                                           | Emissions<br>(1bs/yr)                                                                                                                | Toxicity<br>Rank                                                                         | Emissions<br>Rank                                                                                                                                                                                                                 | Total                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Toluene<br>Tetrachloroethylene<br>Formaldehyde<br>Benzene<br>Epoxypropane<br>Chlorine<br>Methylene Chloride<br>1,1,1-Trichloroethane<br>Lead<br>Styrene<br>Trichloroethylene<br>Benzo-a-Pyrene<br>Xylene<br>Methyl Mercaptan<br>1,2 Dichloroethane<br>Methyl Cellosolve | 12.5<br>13.2<br>15.5<br>15.5<br>13.5<br>11.7<br>12.5<br>11.0<br>12.5<br>15.5<br>13.2<br>14.6<br>10.3<br>10.5<br>13.2<br>9.4 | 2,511,623708,05079,40152,392124,6001,433,003288,5691,496,539178,63013,001110,86515,1801,091,274428,94032,400632,248                  | 18<br>15<br>2<br>2<br>10<br>27<br>18<br>30<br>18<br>2<br>15<br>7<br>34<br>31<br>15<br>36 | $     \begin{array}{r}       1 \\       6 \\       21 \\       24 \\       19 \\       3 \\       13 \\       2 \\       16 \\       32 \\       20 \\       30 \\       4 \\       9 \\       28 \\       7 \\     \end{array} $ | 19<br>21<br>23<br>26<br>29<br>30<br>31<br>32<br>34<br>34<br>34<br>35<br>37<br>38<br>40<br>43<br>43 |
| Methyl Methacrylate<br>Hydrogen Chloride<br>Bis 2-ethylhexyl phthalate<br>Chlorine Dioxide<br>Ethylene Glycol Ethyl Ether<br>Napthalene<br>Acetone<br>Methyl Ethyl Ketone<br>Arsenic<br>Hydrogen Sulfide<br>Hydrazine<br>Ethylene Oxide<br>Formic Acid                  | 11.3<br>12.5<br>13.4<br>9.4<br>9.4<br>12.5<br>7.5<br>8.0<br>16.0<br>8.5<br>14.6<br>13.4<br>10.5<br>15.5                     | 184,550<br>44,731<br>10,190<br>296,787<br>277,118<br>11,799<br>804,521<br>512,611<br>430<br>269,912<br>740<br>1,535<br>50,433<br>184 | 28<br>18<br>11<br>36<br>36<br>18<br>46<br>43<br>1<br>41<br>7<br>11<br>31<br>2            | 15<br>26<br>34<br>10<br>11<br>33<br>5<br>8<br>50<br>12<br>49<br>45<br>25<br>54                                                                                                                                                    | 43<br>44<br>45<br>46<br>47<br>51<br>51<br>51<br>51<br>53<br>56<br>56<br>56<br>56                   |
| Chromium<br>Methyl Chloride<br>Zinc<br>Cadmium<br>Epichlorhydrin<br>Phenol<br>n-Butyl Acetate<br>Diethyl Sulfate<br>Butanol<br>Copper<br>Diphenyl Methyl 4,4-Diisocyanate<br>Manganese<br>Turpentine<br>Nitric Acid<br>Ethyl Acetate                                    | 11.3<br>13.4<br>14.6<br>15.5<br>12.3<br>6.6<br>12.0<br>6.6<br>13.4<br>5.5<br>.10.0<br>5.5<br>7.0<br>5.5                     | 16,800<br>946<br>238<br>12<br>5,180<br>253,563<br>5,424<br>149,490<br>107<br>146,000<br>9,320<br>77,130<br>41,450<br>66,537          | 28<br>11<br>7<br>2<br>24<br>49<br>26<br>49<br>11<br>51<br>35<br>51<br>47<br>51           | 29<br>47<br>52<br>58<br>37<br>14<br>38<br>17<br>55<br>18<br>35<br>22<br>27<br>23                                                                                                                                                  | 57<br>58<br>59<br>60<br>61<br>63<br>64<br>66<br>66<br>69<br>70<br>73<br>74<br>74                   |

## RANKING FOR HAZARDOUS AIR POLLUTANTS (

(cont.)

| Pollutant              | Toxicity<br>Score | Emissions<br>(lbs/yr) | Toxicity<br>Rank | Emissions<br>Rank | Tota     |
|------------------------|-------------------|-----------------------|------------------|-------------------|----------|
| Ethyl Benzene          | 12.5              | 80                    | 18               | 56                | 74<br>76 |
| Furfural               | 9.2               | 7,110                 | 40               | 36                | 80       |
| Barium                 | 9.4               | 2,156                 | 36               | 44                |          |
| Mercury                | 12.3              | 16                    | 24               | 57                | 81       |
| Bipheny1               | 8.0               | 4,510                 | 43               | · 40              | 83       |
| Cyanide                | 8.5               | 2,955                 | 41               | 42                | 83       |
| p-Nitrophenol          | 10.5              | 228                   | 31               | 53                | 84       |
| Methyl Isobutyl Ketone |                   | 14,045                | 57               | 31                | 88       |
| Ethanolamine           | 5.5               | 3,318                 | 51               | 41                | 92       |
| 1,2 Dichlorobenzene    | 5.5               | 2,400                 | 51               | 43                | 94       |
| Tetrahydrofuran        | 8.0               | 400                   | 43               | 51                | 94       |
| Oxalic Acid            | 7.0               | 868                   | 47               | 48                | 95       |
| Titanium Oxide         | 4.0               | 5,240                 | 57               | 39                | 96       |
| Acetic Anhydride       | 5.5               | 1,403                 | 51               | 46                | 97       |

## SUPERTOXICS

Acrolein Beryllium Arsine Benzotrichloride Aldicarb Cadmium Bis (chloromethyl) ether Arsenic Trioxide Cyanide Hydrogen Cyanide Dioxin Methyl Isocyanate Nitrogen Mustard Phosphorus Tetrachlordibenzofuran Thallium \*\* APPENDICES A \*\*

• '

\$

•

.

-

APPENDIX A HAZARDOUS AIR POLLUTANT CODES

| MNEUMONIC        | SUBSTANCE                               | CAS #            |
|------------------|-----------------------------------------|------------------|
| ACETAL           | Acetaldehyde                            | 75 <b>-</b> Ø7-Ø |
| ACETAM           | Acetamide                               | 60-35-5          |
| ACETIC           | Acetic anhydride                        | 108-24-7         |
| ACETON           | Acetone                                 | 67-64-1          |
| ACETYL           | 2-Acetylaminofluorene                   | 53-96-3          |
| ACROLE           | Acrolein                                | 107-02-8         |
| ACRYLA           | Acrylamide                              | 79-06-1          |
| ACACID           | Acrylic acid                            | 79-10-7          |
| AETHYL           | Acrylic acid, Ethyl ester               | 140-88-5         |
| ACRYLO           | Acrylonitrile                           | 107-13-1         |
| ALDICA           | Aldicarb                                | 116-06-3         |
| ALLYLC           | Allyl chloride                          | 107-05-1         |
| ALPHAB           | Alpha benzene hexachloride              | 319-84-6         |
| AMINOD           | p-Aminodiphenyl                         | 92-67-1          |
| ANILIN           | Aniline and salts                       | 62-53-3          |
| ANISID           | p-Anisidine                             | 104-94-9         |
| ANTIMO           | Antimony (dust and salts) as Sb         | 7440-36-0        |
| ARSINE           | Arsine                                  | 7784-42-1        |
| ARSINE           | Arsenic (dust and salts) as As          | 7440-38-2        |
| ASBEST           | Asbestos                                | 1332-21-4        |
| AURAMI           | Auramine (technical grade)              | 2465-27-2        |
| BARIUM           | Barium (dust and salts) as Ba           | 7440-39-3        |
| BENZEN           | Benzene                                 | 71-43-2          |
| BENZID           | Benzidine                               | 92-87-5          |
| BENZOA           | Benzo(a) pyrene                         | 50-32-8          |
| BENZOT           | Benzotrichloride                        | 98-07-07         |
| BENZYL           | Benzyl chloride                         | 100-44-7         |
| BERYLL           | Beryllium (dust and salts) as Be        | 7440-41-7        |
| BETAPR           | Beta-Propiolactone                      | 57-57-8          |
| BIPHEN           | Biphenyl                                | 92-52-4          |
| BETHER           | Bis(chloromethyl) ether                 | 542-88-1         |
| BPHTHA           | Bis(2-ethylhexyl) phthalate             | 117-81-7         |
| BROMIN           | Bromine                                 | 7726-95-6        |
| BUTADI           | 1,3,-Butadiene                          | 106-99-0         |
| BUTANE           | Butanethiol                             | 109-79-5         |
| BUTANO           | Butanol (n-Butyl Alcohol)               | 71-36-3          |
| BACETA           | n-Butyl acetate                         | 123-86-4         |
| BACEIA<br>BAMINE | n-Butylamine                            | 109-73-9         |
| CADMIU           | Cadmium (dust and salts) as Cd          | 7440-43-9        |
| CTETRA           | Carbon Tetrachloride                    | 56-23-5          |
| CDISUL           | Carbon disulfide                        | 75 <b>-</b> 15-Ø |
| CHLORI           | Chlorine                                | 7782-50-5        |
| CDIOXI           | Chlorine dioxide                        | 10049-04-4       |
| CACETO           | 2-Chloroacetophenone (Phenacylchloride) | 532-27-4         |
| CANILI           | p-Chloroaniline                         | 106-47-8         |
| CHFORM           | Chloroform                              | 67-66-3          |
| CMETHY           | Chloromethyl methyl ether               | 107-30-2         |
| CNITRO           | p-Chloronitrobenzene                    | 100-00-5         |
| CPRENE           | Chloroprene                             | 126-99-8         |
| CHROMI           | Chromium (VI) insoluble compounds       | 7440-47-3        |
| CHRYSE           | Chrysene                                | 218-01-9         |
| COBALT           | Cobalt (dust and salts) as Co           | 7440-48-4        |
| COPPER           | Copper (fumes, dusts & mists) as Cu     | 7440-50-8        |
| CRESOL           | Cresol (all isomers)                    | 1319-77-3        |
| CYANIM           | Cyanimide                               | 420-04-2         |
| CTURTLI          | CT CLITITITAC                           | -120 01-2        |

.

| CYANIK   | Cyanic acid (K salt)                   | 59Ø-28-3   |
|----------|----------------------------------------|------------|
| CYANIN   | Cyanic acid (Na salt)                  | 917-61-3   |
| CYANID   | Cyanides (as Cn)                       | 57-12-5    |
| CYANOA   | Cyanoacetamide                         | 107-91-5   |
|          |                                        | 460-19-5   |
| CYANOG   | Cyanogen                               |            |
| CYCLOH   | Cyclohexane                            | 110-82-7   |
| DIAMIN   | 2,5-Diaminotoluene                     | 95-70-5    |
| DIAZOM   | Diazomethane                           | 334-88-3   |
| DETHAN   | 1,2-Dichlorethane                      | 107-06-2   |
| DBENZE   | 1,2-Dichlorobenzene                    | 95-50-1    |
|          | 1,2-Dichloropropane                    | 78-87-5    |
| DPROPA   |                                        | 91-94-1    |
| - DBENZI | 3,3-Dichlorobenzidine                  |            |
| DPHTHA   | Diethyl phthalate                      | 84-66-2    |
| DSULFA   | Diethyl sulfate                        | 64–67–5    |
| DIISOC   | Diisoctyl phthalate                    | 27554-26-3 |
| DIISOD   | Diisodecyl phthalate                   | 26761-40-0 |
| DBENDI   | 3,3-Dimethoxybenzidine (o-dianisidine) | 119-90-4   |
| DIMHYD   | 1,1-Dimethyl hydrazine                 | 57-14-7    |
|          |                                        | 77-78-1    |
| DSULFT   | Dimethyl sulfate                       |            |
| DAMINO   | Dimethylaminoazobenzene                | 60-11-7    |
| DCARBA   | Dimethylcarbamyl chloride              | - 79–44–7  |
| DINITR   | m-Dinitrobenzene                       | 99-65-Ø    |
| DIOXAN   | 1,4-Dioxane                            | 123-91-1   |
| TDIOXI   | Total Dioxins                          | 1746-01-6  |
| DIPHYD   | Diphenylhydrazine                      | 122-66-7   |
| DMETHA   | Diphenylmethane 4,4-di-isocyanate(MDI) | 101-68-8   |
|          | Epichlorohydrin                        | 106-89-8   |
| EPICHL   |                                        | 75-56-9    |
| EPOXYP   | Epoxypropane (Propylene oxide)         |            |
| ETHANE   | Ethanethiol                            | 75-08-1    |
| ETHANO   | Ethanolamine                           | 141-43-5   |
| EACETA   | Ethyl acetate                          | 141-78-6   |
| EBENZE   | Ethyl benzene                          | 100-41-4   |
| ECHLOR   | Ethyl chloride                         | 75-00-3    |
| EETHER   | Ethyl ether                            | 6Ø-29-7    |
| ETHYLE   | Ethylene                               | 74-85-1    |
|          | Ethylene glycol ethyl ether            | 110-80-5   |
| EGLYCO   | Ethylene oxide                         | 75-21-8    |
| EOXIDE   |                                        | 151-56-4   |
| EIMINE   | Ethyleneimine (Aziridine)              |            |
| FLUORI   | Fluorine                               | 7782-41-4  |
| FORMAL   | Formaldehyde (gas)                     | 5Ø-ØØ-Ø    |
| FORMAM   | Formamide                              | 75-12-7    |
| FORMIC   | Formic acid                            | 64-18-6    |
| FURFUR   | Furfural                               | 98-Ø1-1    |
| FALCOH   | Furfuryl alcohol                       | 98-ØØ-Ø    |
| GLYCID   | Glycidaldehyde                         | 765-34-4   |
|          | Hexachlorobutadiene                    | 87-68-3    |
| HBUTAD   |                                        | 77-47-4    |
| HPENTA   | Hexachlorocyclopentadiene              |            |
| HNAPHT   | Hexachloronaphthalene                  | 1335-87-1  |
| HPHOSP   | Hexamethylphosphoramide                | 68Ø-31-9   |
| HYDRAZ   | Hydrazine (and acid salts)             | 302-01-2   |
| HBROMI   | Hydrogen bromide                       | 10035-10-6 |
| HCHLOR   | Hydrogen chloride                      | 7647-01-0  |
| HCYANI   | Hydrogen cyanide                       | 74-90-8    |
| HSULFI   | Hydrogen sulfide                       | 7783-06-4  |
|          |                                        | 123-31-9   |
| HYDROQ   | Hydroquinone (dihydroxy benzene)       | 111-42-2   |
| IMINOD   | 2,2-Iminodiethanol                     |            |
| IODINE   | Iodine                                 | 7553-56-2  |
| IACETA   | Isoamyl acetate                        | 123-92-2   |
| IALCOH   | Isoamyl alcohol                        | 123-51-3   |
|          |                                        |            |

|                  | · . |                                   |                             |
|------------------|-----|-----------------------------------|-----------------------------|
| ISOPHO           |     | Isophorone                        | 78-59-1                     |
| ISOPRO           |     | Isopropylamine                    | 75-31-Ø                     |
| KETENE           |     | Ketene (unsaturated ketone)       | 463-51-4                    |
| LEADPB           | •   | Lead (dust and salts) as Pb       | 7439-92-1                   |
|                  |     |                                   | 108-31-6                    |
| MALEIC           |     | Maleic anhydride                  |                             |
| MANGAN           |     | Manganese                         | 7439-96-5                   |
| MELAMI           |     | Melamine                          | 108-78-1                    |
| MERCUR           |     | Mercury (metal and salts) as Hg   | 7439-97-6                   |
| MCELLO           |     | Methyl cellosolve                 | 109-86-4                    |
| MCHLOR           |     | Methyl chloride                   | 74-87-3                     |
| MEKETO           |     | Methyl ethyl ketone (MEK)         | 78-93-3                     |
| MIODIN           |     | Methyl iodine                     | 74-88-4                     |
| MISOCY           |     | Methyl isocyanate                 | 624-83-9                    |
|                  |     | Methyl mercaptan                  | 74-93-1                     |
| MMERCA           |     |                                   | 80-62-6                     |
| MMETHA           |     | Methyl methacrylate               |                             |
| MISOBU           |     | Methyl-iso-butylketone            | 108-10-1                    |
| MMETHY           |     | Methylchloromethylether           | 107-30-2                    |
| MECHLO           |     | Methylene Chloride                | 75-09-2                     |
| MEDIAN           |     | 4,4-Methylene-dianiline           | 101-77-9                    |
| MHYDRA           |     | Methylhydrazine                   | 60-34-4                     |
| MONOCH           |     | Monochlorobenzene (chlorobenzene) | 108-90-7                    |
| NNAPHT           |     | n-phenyl-beta-naphthylamine       | 135-88-6                    |
| NALINE           |     | Napthalene                        | 91-20-3                     |
|                  |     | Napthylamine(alpha)               | 134-32-7                    |
| NAMINA           |     |                                   | 91-59-8                     |
| NAMINB           |     | Napthylamine (beta)               | 744Ø-Ø2-Ø                   |
| NICKEL           |     | Nickel (dust and salts) as Ni     |                             |
| NITRIC           |     | Nitric acid                       | 7697-37-2                   |
| NITROA           |     | p-Nitroaniline                    | 100-01-6                    |
| NBENZE           |     | Nitrobenzene                      | 98-95-3                     |
| NBIPHE           |     | 4-Nitrobiphenyl                   | 92-93-3                     |
| NMUSTA           |     | Nitrogen mustard                  | 51-75-2                     |
| NGLYCE           |     | Nitroglycerine                    | 55-63-Ø                     |
| NPHENO           |     | p-Nitrophenol                     | 100-02-7                    |
| NPROPA           |     | 1-Nitropropane                    | 108-03-2                    |
| NSOMET           |     | Nitroso-n-methylurea              | 684-93-5                    |
|                  |     |                                   | 62-75-9                     |
| NSODIM           |     | n-Nitrosodimethylamine            |                             |
| NSOMOR           |     | n-Nitrosomorpholine               | 59-89-2                     |
| NSOPHE           |     | p-Nitrosophenol                   | 104-91-6                    |
| NTOLUM           | •   | m-Nitrotoluene                    | 99-08-1                     |
| NTOLUP           |     | p-Nitrotoluene                    | 99-99-ø                     |
| OCTACH           |     | Octachloronaphthalene             | 2234-13-1                   |
| OXALIC           |     | Oxalic acid                       | 144-62-7                    |
| PCPHEN           |     | Pentachlorophenol (PCP)           | 87-86-5                     |
| PHENOL           |     | Phenol                            | 108-95-2                    |
| PDIAMI           |     | p-Phenylenediamine                | 106-50-3                    |
|                  |     | Phenylhydrazine                   | 100-63-0                    |
| PHYDRA           |     |                                   | 75-44-5                     |
| PHOSGE           |     | Phosgene                          | 7723 <b>-</b> 14 <b>-</b> Ø |
| PHOSPH           |     | Phosphorus                        |                             |
| PICRIC           |     | Picric acid                       | 88-89-1                     |
| PCBIPH           |     | Polychlorinated byphenyls (PCBs)  | 11097-69-1                  |
| PROPAN           |     | 1,3-Propane sultone               | 1120-71-4                   |
| PROPYL           |     | Propyleneimine                    | 75-55-8                     |
| PYRIDI           |     | Pyridine                          | 110-86-1                    |
| QUINOL           |     | Quinoline                         | 91-22-5                     |
| QUINON           |     | Quinone                           | 106-51-4                    |
| RESORC           |     | Resorcinol                        | 108-46-3                    |
|                  |     | Rotenone                          | 83-79-4                     |
| ROTENO           |     | Selenium (dust and salts) as Se   | 7782-49-2                   |
| SELENI<br>SOXIDE |     |                                   | 96-Ø9-3                     |
|                  |     | Styrene oxide                     | ラローロラーン                     |

| STYREN<br>TEREPH<br>TETHYL<br>TDIBEN<br>TETHAN<br>TFURAN<br>TFURAN<br>THALLI<br>TITANI<br>TOLUEN<br>TDIAMI<br>TDIISO<br>TOLUID<br>TBENZE<br>TETHA1<br>TETHA2<br>TRICHL<br>TURPEN<br>URETHA<br>VBROMI<br>VCHLOR<br>VCYCLO<br>VFLUOR<br>VIDENE<br>XYLENE<br>XYLIDI<br>ZINCZN | Styrene, monomer<br>Terephthalic acid<br>Tetrachlorethylene (perchlorethylene)<br>2,3,7,8-Tetrachlorodibenzofuran<br>1,1,2,2-Tetrachloroethane<br>Tetrahydrofuran<br>Thallium (dust and salts) as Tl<br>Titanium oxide<br>Toluene<br>2,4-Toluene-diamine<br>2,4-Toluene-di-isocyanate<br>o-Toluidine<br>1,2,4-Trichlorobenzene<br>1,1,1-Trichloroethane, methyl chloroform<br>1,1,2-Trichloroethane<br>Trichloroethylene<br>Turpentine<br>Urethane<br>Vinyl Bromide<br>Vinyl Bromide<br>Vinyl chloride<br>Vinyl chloride<br>Vinyl fluoride<br>Vinyl fluoride<br>Vinyl fluoride (1-1-Dichloroethene)<br>Xylene (all isomers)<br>Xylidine<br>Zinc (dust and salts) as Zn | 100-42-5<br>100-21-0<br>127-18-4<br>51207-31-9<br>79-34-5<br>109-99-9<br>7440-28-0<br>13463-67-7<br>108-88-3<br>95-80-7<br>584-84-9<br>95-53-4<br>120-82-1<br>71-55-6<br>79-00-5<br>79-01-6<br>8006-64-2<br>51-79-6<br>593-60-2<br>75-01-4<br>106-87-6<br>75-02-5<br>75-35-4<br>1330-20-7<br>1300-73-8<br>7440-66-6 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

.·

\*\* APPENDIX B \*\*

•

•

.

•

## APPENDIX B

## SUMMARY OF HAZARDOUS AIR POLLUTANTS EMITTED IN MAINE

|                                |                  | EMISSIONS (POUNDS | S)               |
|--------------------------------|------------------|-------------------|------------------|
| POLLUTANT                      | POINT SOURCE     | AREA SOURCE       | TOTAL            |
| 1 Toleran                      | 0 450 071        | F0 760            | 0 511 501        |
| 1. Toluene                     | 2,459,231        | 52,360            | 2,511,591        |
| 2. 1,1,1, Trichloroethane      | 1,496,539        | 0                 | 1,496,539        |
| 3. Chlorine                    | 1,337,003        | 0                 | 1,337,003        |
| 4. Xylene                      | 1,091,274        | 0                 | 1,091,274        |
| 5. Acetone                     | 804,521          | 0                 | 804,521          |
| 6. Tetrachlorethylene          | 144,450          | 563,600           | 708,050          |
| 7. Methyl Cellosolve           | 632,248          | 0                 | 632,248          |
| 8. Methyl Ethyl Ketone         | 512,611          | 0                 | 512,611          |
| 9. Methyl Mercaptan            | 428,940          | 0                 | 428,940          |
| 10. Chlorine Dioxide           | 296 <b>,</b> 787 | 0                 | 296 <b>,</b> 787 |
| 11. Methylene Chloride         | 288,569          | 0                 | 288,569          |
| 12. Ethylene Glycol Ethyl Ethe | er 277,118       | 0                 | 277,118          |
| 13. Hydrogen Sulfide           | 269,912          | 0                 | 269,912          |
| 14. N-Butyl Acetate            | 253,563          | 0                 | 253,563          |
| 15. Lead                       | 630              | 202,800           | 203,430          |
| 16. Methyl Metharcylate        | 184,550          | 0                 | 184,550          |
| 17. Butanol                    | 149,490          | 0                 | 149,490          |
| 18. Diphenyl methane 4,4-di-   | •                |                   |                  |
| isocyanate                     | 146,000          | 0                 | 146,000          |
| 19. Hydrogen Chloride          | 44,731           | 96,000            | 1,40,731         |
| 20. 1,2 - Epoxypropane         | 124,600          | 0                 | 124,600          |
| 21. Trichloroethylene          | 110,600          | Ō                 | 110,600          |
| 22. Formaldehyde               | 79,401           | 0                 | 79,401           |
| 23. Turpentine                 | 77,130           | Õ                 | 77,130           |
| 24. Ethyl Acetate              | 66,537           | Õ                 | 66,537           |
| 25. Benzene                    | 0                | 52, 392           | 52,392           |
| 26. Formic Acid                | 50,433           | 0                 | 50,433           |
| 27. Nitric Acid                | 41,450           | Õ                 | 41,450           |
| 28. 1, 2 - Dichloroethane      | 32,400           | Õ                 | 32,400           |
| 29. Methyl Chloride            | 16,800           | 0                 | 16,800           |
| 30. Benzo (a) Pyrene           | 0                | 15,000            | 15,000           |
| Jo. Denzo (a) ryrene           | v                | 12,000            | 19,000           |

## APPENDIX B (CONTINUED)

•

### SUMMARY OF HAZARDOUS AIR POLLUTANTS EMITTED IN MAINE

|                                     |                  | EMISSIONS (POUNDS) |        |
|-------------------------------------|------------------|--------------------|--------|
| POLLUTANT                           | POINT SOURCE     | AREA SOURCE        | TOTAL  |
| 31 Mathyl Isabutyl Katana           | 14 045           | 0                  | 14 045 |
| 31. Methyl Isobutyl Ketone          | 14,045<br>13,001 | 0                  | 14,045 |
| 32. Styrene                         | 11,799           |                    | 13,001 |
| 33. Napthalene<br>34. Bis Phthalate |                  | 0                  | 11,799 |
|                                     | 10,190           | 0                  | 10,190 |
| 35. Manganese                       | 9,320            | 0                  | 9,320  |
| 36. Furfural                        | 7,110            | 0                  | 7,110  |
| 37. Phenol                          | 5,810            | 0                  | 5,810  |
| 38. Diethyl Sulfate                 | 5,424            | 0                  | 5,424  |
| 39. Titanium Oxide                  | 5,240            | 0                  | 5,240  |
| 40. Biphenyl                        | 4,510            | 0                  | 4,510  |
| 41. Ethanol Amine                   | 3,318            | 0                  | 3,318  |
| 42. Cyanimide                       | 2,955            | 0                  | 2,955  |
| 43. 1,2 Dichlorobenzene             | 2,400            | 0                  | 2,400  |
| 44. Barium                          | 2,156            | 0                  | 2,156  |
| 45. Ethylene Oxide                  | 1,535            | 0                  | 1,535  |
| 46. Acetic Anhydride                | 1,403            | 0                  | 1,403  |
| 47. Chromium                        | 184              | 820                | 1,004  |
| 48. Zinc                            | 946              | 0                  | 946    |
| 49. Oxalic Acid                     | 868              | 0                  | 868    |
| 50. Hydrazine                       | 740              | 0                  | 740    |
| 51. Tetrahydrofuran                 | 400              | 0                  | 400    |
| 52. P-nitrophenol                   | 228              | 0                  | 228    |
| 53. Cadmium                         | 0                | 200                | 200    |
| 54. Copper                          | 107              | 0                  | 107    |
| 55. Ethyl Benzene                   | 80               | 0                  | 80     |
| 56. Mercury                         | 16               | · 0                | 16     |
| 57. Epichlorohydrin                 | 12               | 0                  | 12     |

-26-

\*\* APPENDIX C \*\*

APPENDIX C

#### AREA SOURCE EMISSIONS DATA

CATEGORY: DRY CLEANERS

| DATA COLLECTION:<br>Maine DEP statewide emissions inventory survey of dry cleaning<br>establishments.<br>72% of respondents used a cleaning solvent of which 82% was perc.     | CALCULATIONS:                    |                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------|
| 16.9% was stoddard, and .5% was freon 113. Each respondent on the avg. used 423.7 gal of perc., 86.5 gal of stoddard, and .5 gal freon 113.                                    | Estimated use<br>Perc. and stod. | <pre>#non-resp. x 72.6% x avg.use of responds</pre> |
|                                                                                                                                                                                | Emissions VOC                    | #gal x wt/gal /2000 x<br>EMF                        |
| DATA ASSUMPTIONS:                                                                                                                                                              |                                  |                                                     |
| 1. Respondents and non-respondents of survey total 100% of ME dry                                                                                                              |                                  |                                                     |
| cleaners.                                                                                                                                                                      |                                  |                                                     |
| <ol> <li>Amount of solvent purchased equals amount of solvent consumed.</li> <li>Amounts used by units not responding corresponds to state avg of responding units.</li> </ol> |                                  |                                                     |
| <ol> <li>Perchlorethylene weighs 13.6 lb/gal; stoddard ~6.1 lb/gal.</li> </ol>                                                                                                 |                                  | ·                                                   |

5. Use of freon 113 assumed to be normal.

#### EMISSION FACTOR(S):

Perchloroethylene----Stoddard solvent-----

2000 lb/ton consumed 2000 lb/ton consumed

| TOTAL EMISSIONS:           |            |
|----------------------------|------------|
|                            |            |
| Perchloroethylene<br>VOC's | 281.8 tons |
| Stoddard solvent<br>VOC's  | 25.84 tons |

momar murcerous.

#### EMISSION FACTOR SOURCE:

NEDS Source Classification Codes and Emission Factor Listing, EPA, Dec. 1984.

| COUNTY       | USE OF R<br>UNITS<br>PERC. | ESPONDING<br>(GALS)<br>STOD.            | EMISSIC<br>RESPOND<br>VOC<br>PERC. | DENTS<br>(TONS) | #UNITS IN<br>COUNTY NOT<br>RESPONDING<br>OR UNKNOWN | ESTIMATA<br>USE OF N<br>RESPONDS<br>PERC. | ON-    | EMISSIC<br>NON-RES<br>VOC<br>PERC. |      |        | TOTAL<br>STOD.VOC<br>EMITTED<br>(TONS |
|--------------|----------------------------|-----------------------------------------|------------------------------------|-----------------|-----------------------------------------------------|-------------------------------------------|--------|------------------------------------|------|--------|---------------------------------------|
| ANDROSCÓGGIN | 1189                       | 100 ing dia 200 ing dia 200 ing dia 200 | 8.0                                |                 | 7                                                   | 2153.3                                    |        | 14.6                               |      | . 22.7 |                                       |
| AROOSTOOK    | 1525                       |                                         | 10.3                               |                 |                                                     | ø                                         | 440.7  | .ø                                 | 1.3  | 10.3   | 1.3                                   |
| CUMBERLAND   | 8007                       | 1760                                    | 54.4                               | 5.3             | 11                                                  | 3383.8                                    | .0     | 23.0                               | .0   | 77.4   | 5.3                                   |
| FRANKLIN     | 1976                       |                                         | 13.4                               |                 |                                                     | ø                                         | 692.6  | .ø                                 | 2.1  | 13.4   | 2.1                                   |
| HANCOCK      | 585                        | 702                                     | 3.9                                | 2.1             | 3                                                   | 922.8                                     | .Ø     | 6.2                                | .0   | 10.2   | 2.1                                   |
| KENNEBEC     | 2453                       |                                         | 16.6                               |                 | 8                                                   | 2461.0                                    | 188.8  | 16.7                               | ۰5   |        | .5                                    |
|              |                            |                                         |                                    | ×               | _                                                   |                                           | 503.7  |                                    | 1.5  |        | 1.5                                   |
| KNOX         | 450                        |                                         | 3.0                                |                 | 4                                                   | 1230.5                                    | 251.8  | 8.3                                | .7   | 11.4   | .7                                    |
| LINCOLN      |                            |                                         | .0                                 |                 | 1                                                   | 307.6                                     | 62.9   |                                    | .1   |        | .1                                    |
| OXFORD       | 8Ø5                        | 972                                     | 5.4                                | 2.9             | 1                                                   | 307.6                                     | 62.9   | 2.0                                | .1   | 7.5    | 3.1                                   |
| PENOBSCOT    | 2063                       | 1325                                    | 14.0                               | 4.0             | 7                                                   | 2153.3                                    | 440.7  | 14.6                               | 1.3  | 28.6   | 5.3                                   |
| PISQUATAQUIS | 245                        |                                         | 1.6                                |                 | 1                                                   | 307.6                                     | 62.9   | 2.0                                | .1   | 3.7    |                                       |
| SAGADAHOC    |                            |                                         | .ø                                 | •               | . 2                                                 | 615.2                                     | 125.9  | 4.1                                | .3   | 4.1    |                                       |
| SOMERSET     | 600                        |                                         | 4.0                                |                 | 2                                                   | 615.2                                     |        | 4.1                                |      | 8.2    |                                       |
| WALDO        | 600                        |                                         | 4.0                                |                 |                                                     | ø                                         | 125.9  | .ø                                 | .3   | 4.0    |                                       |
| WASHINGTON   | 650                        |                                         | 4.4                                |                 | 3                                                   | 922.8                                     | .0     | 6.2                                |      | 10.6   |                                       |
| YORK         | 2157                       |                                         | 14.6                               |                 | 9                                                   | 2768.6                                    | 188.8  | 18.8                               | •2   | 33.4   | •5<br>,                               |
|              |                            |                                         |                                    |                 |                                                     |                                           | 566.6  |                                    | 1.7  |        | 1.7                                   |
| TOTALS       | 233Ø5                      | 4759                                    | 158.4                              | 14.5            | 59.0                                                | 18149.9                                   | 3714.8 | 123.4                              | 11.3 | 281.8  | 25.8                                  |

··...

AREA SOURCE EMISSIONS DATA

DRY CLEANERS

-23-.

#### AREA SOURCE EMISSIONS DATA

#### CATEGORY:

Degreasers - Area source

#### DATA COLLECTION:

Population data obtained from the Maine Dept. of Human Services bulletin: "Population projections of Main counties and minor civil divisions for total population - July 1 (1982-1991)."

#### DATA ASSUMPTIONS:

29

Population projections for 1983 are representative of 1984.
 All area source degreasers are of the cold cleaning variety.

Note: A major source of cold cleaning degreasing chemicals in ME is the Safety Kleen Corp. who supplies and recycles these chemicals,of which petroleum naptha represents nearly 100%. Rich Baker of the Oil and Hazardous Waste Materials Bureau, confirms this information.

#### EMISSION FACTOR(S):

| All VOC emissions          | 4 lb/cap-yr |
|----------------------------|-------------|
| All reactive VOC emissions | 3 lb/cap-vr |

#### CALCULATIONS

| POLLUTANT                       | FÖRMULA                                |  |  |  |  |
|---------------------------------|----------------------------------------|--|--|--|--|
| Total VOC<br>Total reactive VOC | Pop. x emf / 2000<br>Pop. x emf / 2000 |  |  |  |  |

١

#### TOTAL EMISSIONS

. . . . . .

1. A. 1. A. A. 1.

| VOC emissions       | 2297.4 tons |
|---------------------|-------------|
| Reactive VOC emiss. | 1723.0 tons |

#### EMISSION FACTOR SOURCE:

EPA-450/2-77-028, Sec.4.3.2.2, Cold Cleaning Degreasing

AREA SOURCE EMISSIONS

DEGREASERS

| COUNTIES AND<br>SELECTED CITIES | POPULATION | VOC    | REACTIVE<br>VOC |    |    |    |    |    |    |    |
|---------------------------------|------------|--------|-----------------|----|----|----|----|----|----|----|
|                                 |            | tons   | tons            |    |    |    |    |    |    |    |
| NDROSCOGGIN                     | 100900     | 201.8  | 151.3           |    |    |    |    |    |    |    |
| Auburn                          | 22300      | 44.6   | 33.4            |    |    |    |    |    |    |    |
| Lewiston                        | 40650      | 81.3   | 60.9            |    |    |    |    |    |    |    |
| AROOSTOOK                       | 90400      | 180.8  | 135.6           |    |    |    |    |    |    |    |
| Presque Isle                    | 1Ø85Ø      | 21.7   | 16.2            |    |    |    |    |    |    |    |
| UMBERLAND                       | 220100     | 440.2  | 330.1           |    |    |    |    |    |    |    |
| Brunswick                       | 1755Ø      | 35.1   | 26.3            |    |    |    |    |    |    |    |
| Portland                        | 61100      | 122.2  | 91.6            |    |    |    |    |    |    |    |
| S.Portland                      | 23000      | 46.0   | 34.5            |    |    |    |    |    |    |    |
| Westbrook                       | 1525Ø      | 30.5   | 22.8            |    |    |    |    |    |    |    |
| FRANKLIN                        | 28500      | 57.0   | 42.7            |    |    |    |    |    |    |    |
| IANCOCK                         | 42700      | 85.4   | 64.0            | ·  |    |    |    |    |    |    |
| (ENNEBEC                        | 11285Ø     | 225.7  | 169.2           |    |    |    |    |    |    |    |
| Augusta                         | 22050      | 44.1   | 33.0            |    |    |    |    |    |    |    |
| Waterville                      | 17050      | 34.1   | 25.5            |    |    |    |    |    |    |    |
| NOX                             | 34050      | 68.1   | 51.0            |    |    |    |    |    |    |    |
| LINCOLN                         | 26150      | 52.3   | 39.2            |    |    |    |    |    |    |    |
| DXFORD                          | 48800      | 97.6   | 73.2            |    |    |    |    |    |    |    |
| PENOBSCOT                       | 141150     | 282.3  | 211.7           |    |    |    |    |    |    |    |
| Bangor                          | 33350      | 66.7   | 50.0            |    |    |    |    | ,  |    |    |
| Brewer                          | 8600       | 17.2   | 12.9            |    |    |    |    |    |    |    |
| PISQUATAQUIS                    | 1785Ø      | 35.7   | 26.7            |    |    |    |    |    |    |    |
| SAGADAHOC                       | 28050      | 56.1   | 42.0            |    |    |    |    |    |    |    |
| Bath                            | 995ø       | 19.9   | 14.9            |    |    |    |    |    |    |    |
| SOMERSET                        | 47050      | 94.1   | 70.5            |    |    |    |    |    |    |    |
| VALDO                           | 28500      | 57.0   | 42.7            |    |    |    |    |    |    |    |
| WASHINGTON                      | 3355Ø      | 67.1   | 50.3            |    |    |    |    |    |    |    |
| YORK                            | 148100     | 296.2  | 222.1           |    |    |    |    |    |    |    |
| Biddeford                       | 20400      | 40.8   | 30.6            |    |    |    |    |    |    |    |
| Saco                            | 1265Ø      | 25.3   | 18.9            |    |    |    |    |    |    |    |
| Sanford                         | 19450      | 38.9   | 29.1            |    |    |    |    |    |    |    |
| TOTALS                          | 1148700    | 2297.4 | 1723.0          | .ø |

. . . . .

#### AREA SOURCE EMISSIONS DATA

#### CATEGORY:

Residential Open Burning (Dumps)

#### DATA COLLECTION:

1

Data concerning which towns employ open burning of solid waste and and the town's population obtaine from the Maine Dept. of Envt'l-Protection's Bureau of Land Quality Control (based on 1984 inspection reports on all Maine dumps).

| <br> | <br> |   |      |
|------|------|---|------|
| <br> | <br> | - | <br> |
|      |      |   |      |
|      |      |   |      |

CALCULATIONS

|            | متبالة مشال جيسد بالثان فبلب بجيب ملتك فيشد جيجه نشلك وونك جويه فيجه إلجه ويجه بالحد فيده ويحد ويده |
|------------|-----------------------------------------------------------------------------------------------------|
| Pollutants | Pop. x 6.66t/1000 per wk<br>x 52 wk/yr x 60% x EMF<br>ton/20001b                                    |
| B(a)P      | Amt. Part. x .00012                                                                                 |

#### DATA ASSUMPTIONS:

1 -31 -

- 1. Assumed solid waste disposal of 6.66 tons/thous people per week.
- 2. Assumed 60% burning of solid waste disposed.

- 3. Assumed brush burning is insignificant at Maine dumps.
- 4. Assumed 1984 dump conditions are representative for 1983.

#### EMISSION FACTOR(S):

| Particulates    | 16     | lb/ton |
|-----------------|--------|--------|
| Sulfur oxides   | 1      | lb/ton |
| Carbon monoxide | 85     | lb/ton |
| VOC methane     | 13     | lb/ton |
| VOC non-methane | 3Ø     | lb/ton |
| Nitrogen oxides | 6      | lb/ton |
| Benzo(a)pyrene  | .00012 | lb/ton |

#### TOTAL EMISSIONS

| Particulates    | 210.2  | tons |
|-----------------|--------|------|
| Sulfur oxides   | 13.1   | tons |
| Carbon monoxide | 1117.0 | tons |
| VOC methane     | 170.8  | tons |
| VOC non-methane | 394.2  | tons |
| Nitrogen oxides | 78.8   | tons |
| Benzo(a)pyrene  | .0252  | tons |
|                 |        |      |

#### EMISSION FACTOR SOURCE:

AP-42, Sec.2.4: Open Burning, Table 2.4-1. Maine DEP, Bureau of Land Quality Control and conversation with DHS toxicologist Norm Anderson Jan.30, 1985.

AREA SOURCE EMISSIONS

RESIDENTIAL OPEN BURNING

(DUMPS)

| COUNTIES AND<br>SELECTED CITIES |         | POP. AREAS<br>OPEN BURN<br>SOL. WASTE | PARTICULAT<br>tons | SULFUR<br>OXIDES<br>tons | CARBON<br>MONOXIDE<br>tons | VOC<br>METHANE<br>tons | VOC<br>NON-METHAN<br>tons | NITROGEN<br>OXIDES<br>tons | B(a)P<br>tons | tons |
|---------------------------------|---------|---------------------------------------|--------------------|--------------------------|----------------------------|------------------------|---------------------------|----------------------------|---------------|------|
| ANDROSCOGGIN                    | 100900  |                                       | 12.3               | .77                      | 65.5                       | 10.0                   |                           | 4.6                        | .0014         |      |
| Auburn                          | 22300   |                                       | .ø                 | -00                      | .0                         | .ø                     |                           | .0                         | .0000         |      |
| Lewiston                        | 40650   |                                       | .ø                 | .00                      | .0                         | .0                     |                           | .0                         | .0000         |      |
| AROOSTOOK                       | 90400   |                                       |                    | 1.42                     |                            | 18.5                   |                           | 8.5                        | .0027         |      |
| Presque Isle                    | 10850   |                                       | .ø                 | .00                      | .ø                         | .ø                     |                           | .0                         | .0000         |      |
| CUMBERLAND                      | 220100  |                                       | 8.2                | .51                      |                            | 6.7                    |                           | 3.0                        | .0009         |      |
| Brunswick                       | 17550   |                                       | .ø                 | .00                      | .0                         | .0                     |                           | .0                         | .0000         |      |
| Portland                        | 61100   |                                       | .0                 | .00                      |                            | .0                     |                           | -0                         | .0000         |      |
| S.Portland                      | 23000   |                                       | .ø                 | .00                      | .ø                         | .ø                     |                           | .0                         | .0000         |      |
| Westbrook                       | 15250   |                                       | .ø                 | .00                      |                            | .0                     |                           | .Ø~                        |               |      |
| FRANKLIN                        | 28500   |                                       |                    | .63                      |                            | 8.2                    |                           | 3.8                        | .0012         |      |
| HANCOCK                         | 42700   |                                       |                    | .62                      |                            | 8.0                    |                           | 3.7                        | .0011         |      |
| KENNEBEC                        | 112850  |                                       | 9.2                | <b>.</b> 57              |                            | 7.4                    |                           | 3.4                        | .0011         |      |
| Augusta                         | 22050   |                                       | .ø                 | .00                      |                            | .0                     |                           | .0                         | .0000         |      |
| Waterville                      | 17050   |                                       | .Ø                 | .00                      | .ø                         | .ø                     |                           | .0                         | .0000         |      |
| KNOX                            | 34050   |                                       |                    | .10                      |                            | 1.3                    |                           | 6                          | .0001         |      |
| LINCOLN                         | 26150   |                                       |                    | .63                      |                            |                        |                           | 3.7                        | .0012         |      |
| OXFORD                          | 48800   | 15560                                 | 25.8               | 1.61                     | 137.4                      | 21.0                   | 48.4                      | 9.6                        | .0031         |      |
| PENOBSCOT                       | 141150  | 19155                                 | 31.8               | 1.99                     | 169.1                      | 25.8                   | 59.7                      | 11.9                       | .0038         |      |
| Bangor                          | 33350   |                                       | .ø                 | .00                      | .ø                         | .0                     | .0                        | .0                         | .0000         |      |
| Brewer                          | 8600    |                                       | .Ø                 | .00                      | .ø                         | .Ø                     | .0                        | .0                         | .0000         |      |
| PISQUATAQUIS                    | 17850   | 9324                                  | 15.4               | .96                      | 82.3                       | 12.5                   | 29.0                      | 5.8                        | .0018         |      |
| SAGADAHOC                       | 28050   | 735                                   | 1.2                | .07                      | 6.4                        | .9                     | 2.2                       | .4                         | .0001         |      |
| Bath                            | 9950    |                                       | .ø                 | .00                      | .0                         | .0                     | .0                        | .0                         | .0000         |      |
| SOMERSET                        | 47050   | 8399                                  | 13.9               | .87                      | 74.1                       | 11.3                   | 26.1                      | 5.2                        | .0016         |      |
| WALDO                           | 28500   | 7787                                  | 12.9               | .80                      | . 68.7                     | 10.5                   | 24.2                      | 4.8                        | .0015         |      |
| WASHINGTON                      | 33550   | 5434                                  | 9.0                | - 56                     | 47.9                       | 7.3                    | 16.9                      | 3.3                        | .0010         |      |
| YORK                            | 148100  | 9213                                  | 15.3               | .95                      | 81.3                       | 12.4                   | 28.7                      | 5.7                        | .0018         |      |
| Biddeford                       | 20400   |                                       | .0                 | .00                      | .0                         | .0                     | .ø                        | .ø                         | .0000         |      |
| Saco                            | 12650   |                                       | .ø                 | .00                      | .ø                         | .0                     | .0                        | .Ø                         | .0000         |      |
| Sanford                         | 19450   |                                       | .0                 | .00                      | .0                         | .0                     | 0                         | .0                         | .0000         |      |
| TOTALS                          | 1148700 | 126487.0                              | 210.2              | 13.14                    | 1117.0                     | 170.8                  | 394.2                     | 78.84                      | .0252         | .ø   |
|                                 |         | available.                            |                    |                          |                            | Total VOC              | 565.0                     |                            |               |      |

.

1991 (M. 197

#### AREA SOURCE EMISSIONS DATA

#### CATEGORY:

-33-

Agricultural burning - Blueberries

#### DATA COLLECTION:

.

Contact was made with Ed McLaughlin and David Yarborough, both asst. scientists with the University of Maine Plant and Soil Dept.

#### DATA ASSUMPTIONS:

 It was determined that the only significant agricultural field burning in Maine during 1983 occurred from blueberry field prep.
 Assumed that in any year 1/2 of the blueberry acreage is burned. The USAGE column represents this 1/2.

3. Assumed that of Washington County's burnable acreage, 25% was pruned.

4. The ratio of BaP/particulates of woodsmoke emissions is .00012.

#### CALCULATIONS

|            | ······································ |
|------------|----------------------------------------|
| Pollutants | Ac x flf x emf / 2000                  |
| B(a)P      | Part.emiss. x .00012                   |

#### EMISSION FACTOR(S):

.

| 1110101(0) | -               |
|------------|-----------------|
| ]          | Particulates    |
| (          | Carbon monoxide |
| 7          | VOC methane     |
| 7          | VOC non-methane |
| 1          | Benzo(a)pyrene  |
|            | ing Factor      |

#### 21 lb/ton 117 lb/ton 5.4 lb/ton 18 lb/ton .00012 x part. emiss. 2 tons/acre

### TOTAL EMISSIONS

1. Sec. 2. Sec. 1. Sec

| Particulates    | 523.9 tor  | าร |
|-----------------|------------|----|
| Carbon monoxide | 2919.Ø tor | ıs |
| VOC methane     | 134.7 tor  | າຣ |
| VOC non-methane | 449.Ø tor  | າຣ |
| Benzo(a)pyrene  | .0628 tor  | าร |

#### EMISSION FACTOR SOURCE:

AP-42: Open Burning of Agricultural materials: field crops unspecified (Sec.2.4) and conservation with DHS toxicologist Norm Anderson Jan.30, 1985. Acres of land in blueberry production supplied by David Yarborough. AREA SOURCE EMISSIONS

-34-

AGRICULTURAL BURNING -BLUEBERRY

| COUNTIES AND<br>SELECTED CITIES | POPULATION    | USAGE<br>1/2 tot ac<br>burned/yr | PARTICULAT<br>tons | CARBON<br>MONOXIDE<br>tons | VOC<br>METHANE<br>tons | VOC<br>NON-METHAN<br>tons | B(a)P<br>tons |    |    |    |
|---------------------------------|---------------|----------------------------------|--------------------|----------------------------|------------------------|---------------------------|---------------|----|----|----|
| ANDROSCOGGIN                    | 100900        | N/A                              |                    |                            |                        |                           |               |    |    |    |
| Auburn                          | 22300         |                                  |                    |                            |                        |                           | •             |    |    |    |
| Lewiston                        | 40650         |                                  |                    |                            |                        |                           |               | ,  |    |    |
| AROOSTOOK                       | 90400         |                                  | .33                | 1.87                       | .Ø8                    | .28                       | .00004        |    |    |    |
| Presque Isle                    | 10850         |                                  |                    |                            |                        |                           |               |    |    |    |
| CUMBERLAND                      | 220100        |                                  | 10.12              | 56.39                      | 2.60                   | 8.67                      | .00121        |    |    |    |
| Brunswick                       | 17550         |                                  |                    |                            |                        |                           |               |    |    |    |
| Portland                        | 61100         |                                  |                    |                            | •                      |                           |               |    |    |    |
| S.Portland                      | 23000         | 11                               |                    |                            |                        |                           |               |    |    |    |
| Westbrook                       | 15250         |                                  |                    |                            |                        | •                         |               |    |    |    |
| FRANKLIN                        | 28500         | 11                               |                    |                            |                        |                           |               |    |    |    |
| HANCOCK                         | 42700         | 5021                             | 105.44             | 587.45                     | 27.11                  | 90.37                     | .01265        |    |    |    |
| KENNEBEC                        | 112850        | 180                              | 3.78               | 21.06                      | .97                    | 3.24                      | .00045        |    |    |    |
| Augusta                         | 22050         | · N/A                            |                    |                            |                        |                           |               |    |    |    |
| Waterville                      | 17050         |                                  |                    |                            |                        |                           |               |    |    |    |
| KNOX                            | 34050         |                                  | 53.65              | 298.93                     | 13.79                  | 45.99                     | .00643        |    |    |    |
| LINCOLN                         | 26150         |                                  |                    | 64.81                      | 2,99                   |                           | .00139        |    |    |    |
| OXFORD                          | 48800         |                                  |                    |                            |                        |                           |               |    |    |    |
| PENOBSCOT                       | 141150        |                                  | 1.36               | 7.60                       | .35                    | 1,17                      | .00016        |    |    |    |
| Bangor                          | 33350         |                                  | 1.50               |                            |                        |                           |               |    |    |    |
| Brewer                          | 8600          |                                  |                    |                            |                        |                           |               |    |    |    |
| PISQUATAQUIS                    | 17850         |                                  |                    |                            |                        |                           |               |    |    |    |
| SAGADAHOC                       | 28050         |                                  |                    |                            |                        |                           |               |    |    |    |
| Bath                            | 20050<br>995Ø |                                  |                    |                            | •                      |                           |               |    |    | •  |
| SOMERSET                        | 47050         |                                  |                    |                            |                        |                           |               |    |    |    |
| WALDO                           | 28500         |                                  | 39.75              | 221.48                     | 10.22                  | 34.07                     | .00477        |    |    |    |
| WASHINGTON                      | 33550         |                                  |                    | 1645.37                    | 75.94                  |                           | .03543        |    |    |    |
| YORK                            | 148100        |                                  |                    | 14.04                      | .64                    |                           |               |    |    |    |
| Biddeford                       |               | -                                | 2.52               | 14.04                      | .04                    | 2.10                      | .00030        |    |    |    |
|                                 | 20400         | ,                                |                    |                            |                        |                           |               |    |    |    |
| Saco                            | 12650         |                                  |                    |                            |                        |                           |               |    |    |    |
| Sanford                         | 19450         |                                  |                    |                            |                        |                           |               |    |    |    |
| TOTALS                          | 1148700       | 24949.0                          | .523.9             | 2919.0                     | 134.7                  | 449.0                     | .ø628         | .ø | .ø | .ø |
| Individual city                 |               |                                  |                    |                            | Total VOC              | 583.8                     |               |    |    |    |

. . .

#### AREA SOURCE EMISSIONS DATA

#### CATEGORY:

#### Forest Wildfire

#### DATA COLLECTION:

.

Forest acres burned by county in 1983 obtained from Maine Forest Service (Dept. of Conservation).

#### CALCULATIONS

| POLLUTANT         | FORMULA                 |  |  |  |  |  |
|-------------------|-------------------------|--|--|--|--|--|
| Particulates      | Use x llt/ac x EMF/2000 |  |  |  |  |  |
| Carbon monoxide   | Use x llt/ac x EMF/2000 |  |  |  |  |  |
| Total hydrocarbon | Use x llt/ac x EMF/2000 |  |  |  |  |  |
| Nitrogen oxides   | Use x llt/ac x EMF/2000 |  |  |  |  |  |
| Benzo (a) pyrene  | Amt part x EMF          |  |  |  |  |  |

#### DATA ASSUMPTIONS:

မ္မ်

1

Fuel loading assumed to be 11 tons/acre (source: AP-42 sec.11.1). The ratio of BaP/part. of wood smoke emissions is .00012. This figure x the amt of particulates from forest wildfire emissions = the amt of BaP.

#### EMISSION FACTOR(S):

Particulates------Carbon monoxide------Total hydrocarbons----Nitrogen oxides------Benzo (a) pyrene----- 17 lbs/ton 140 lbs/ton 24 lbs/ton 4 lbs/ton .00012 x amt of part. lbs/ton

#### TOTAL EMISSIONS

والمعتر والمتعارية المتعالم والمعارية

| Particulates       | 83.4 tons  |
|--------------------|------------|
| Carbon monoxide    | 687.4 tons |
| Total hydrocarbons | 117.8 tons |
| Nitrogen oxides    | 19.6 tons  |
| Benzo (a) pyrene   | .Øl tons   |

#### EMISSION FACTOR SOURCE: -

AP-42 Forest Wildfires (Sec.11.1) and conversation with DHS toxicologist Norm Anderson, Jan.30, 1985, (for BaP).

| COUNTIES AND<br>SELECTED CITIES                  | POPULATION                        | USAGE<br>(1983 acre<br>burned) | PARTICULAT | CARBON<br>MONOXIDE<br>tons | TOTAL<br>HYDROCARB.<br>tons | NITROGEN<br>OXIDES<br>tons | B(a)P<br>tons  |       |       |                               |   |  |
|--------------------------------------------------|-----------------------------------|--------------------------------|------------|----------------------------|-----------------------------|----------------------------|----------------|-------|-------|-------------------------------|---|--|
| NDROSCOGGIN<br>Auburn                            | 100900<br>22300                   | 21.5                           | 2.0        | 16.5                       | 2.8                         | .47                        | .0002          |       |       | وی ہیں ہیں جب ختا بنا ہیں ہے۔ |   |  |
| Lewiston<br>ROOSTOOK<br>Presque Isle             | 40650<br>90400<br>10850           | 79.2                           | 7.4        | 60.9                       | 10.4                        | 1.74                       | .0008          |       |       |                               |   |  |
| UMBERLAND<br>Brunswick<br>Portland<br>S.Portland | 220100<br>17550<br>61100<br>23000 | 34.6                           | 3.2        | 26.6                       | <b>4.</b> 5                 | .76                        | .0003          |       |       |                               |   |  |
| Westbrook                                        | 1525Ø<br>285ØØ                    | 9.9                            | ٩          | 7.6                        | 1.3                         | .21                        | .0001          |       |       |                               | • |  |
| FRANKLIN<br>HANCOCK                              | 42700                             | 53.2                           |            | 40.9                       |                             | 1.17                       | .0005          |       |       |                               |   |  |
| ENNEBEC                                          | 42700<br>112850                   | 28.9                           |            | 40.9                       |                             | .63                        | .0003          |       | •     |                               |   |  |
| Augusta<br>Waterville                            | 22050<br>17050                    | 20.9                           | 21         |                            | 2.0                         | -05                        | •0000          |       |       |                               |   |  |
| NOX                                              | 34050                             | 69.1                           | 6.4        | 53.2                       | 9.1                         | 1.52                       | .0007          |       |       |                               |   |  |
| LINCOLN                                          | 26150                             | 21.0                           |            | 16.1                       |                             | .46                        | .0002          |       |       |                               |   |  |
| DXFORD                                           | 48800                             | 28.1                           |            | 21.6                       |                             | .61                        | .0003          |       |       |                               |   |  |
| PENOBSCOT<br>Bangor<br>Brewer                    | 14115Ø<br>3335Ø<br>86ØØ           | 108.9                          | 10.1       | 83.8                       | 14.3                        | 2.39                       | .0012          |       |       |                               |   |  |
| PISQUATAQUIS<br>SAGADAHOC<br>Bath                | 1785Ø<br>28Ø5Ø<br>995Ø            | 32.4<br>22.8                   |            | 24.9<br>17.5               |                             | .71<br>.50                 | .0003<br>.0002 |       |       |                               |   |  |
| SOMERSET                                         | 47050                             | 28.1                           | 2.6        | 21.6                       | 3.7                         | .61                        | .0003          |       |       | ,                             |   |  |
| VALDO                                            | 28500                             | 16.6                           |            | 12.7                       | 2.1                         | .36                        | .0001          |       |       |                               |   |  |
| VASHINGTON                                       | 3355Ø                             | 290.0                          |            | 223.3                      | 38.2                        | 6.38                       | .0032          |       |       |                               |   |  |
| ORK<br>Biddeford                                 | 148100<br>20400                   | 48.5                           | 4.5        | 37.3                       | 6.4                         | 1.06                       | .0005          |       |       |                               |   |  |
| Saco                                             | 12650                             |                                |            |                            |                             |                            |                |       |       |                               |   |  |
| Sanford                                          | 19450                             |                                |            |                            |                             |                            |                |       |       |                               |   |  |
| TOTALS                                           | 1148700                           | 892.8                          | 83.4       | 687.4                      | 117.8                       | <br>19.64                  | .0100          | <br>Ø | <br>Ø |                               | I |  |

جري والمحر والمحر والمحر والمحر

.

FOREST WILDFIRE

Individual city data not available.

•

AREA SOURCE EMISSIONS

-36-

#### AREA SOURCE EMISSIONS DATA

### CATEGORY:

Architectural Surface Coating

#### DATA COLLECTION:

Population figures obtained from "Population projection of Maine counties and minor civil divisions for total populations, 1982-1991" by the ME Dept. of Human Services.

| Total VOC's | Population x EMF/2000 |
|-------------|-----------------------|

#### DATA ASSUMPTIONS:

37-

1. Population projections for 1983 were representative for the year 1983.

2. Usage of architectural surface coatings is proportional to the population.

#### EMISSION FACTOR(S):

VOC's-----

4.6 lb/cap-yr

#### TOTAL EMISSIONS:

CALCULATIONS:

| Total VOC's | 2642.01 tons |
|-------------|--------------|

EMISSION FACTOR SOURCE:

### AP-42, 4.2.1 Nonindustrial surface coating.

### AREA SOURCE EMISSIONS DATA

| COUNTY       | POPULATION | VOC<br>EMISSIONS<br>(TONS/YR) |
|--------------|------------|-------------------------------|
| ANDROSCOGGIN | 100900     | 232.0                         |
| AROOSTOOK    | 90400      | 207.9                         |
| CUMBERLAND   | 220100     | 506.2                         |
| FRANKLIN     | 28500      | 65.5                          |
| HANCOCK      | 42700      | 98.2                          |
| KENNEBEC     | 112850     | 259.5                         |
| KNOX         | 34050      | 78.3                          |
| LINCOLN      | 26150      | 60.1                          |
| OXFORD       | 48800      | 112.2                         |
| PENOBSCOT    | 141150     | 324.6                         |
| PISQUATAQUIS | 17850      | 41.0                          |
| SAGADAHOC    | 28Ø5Ø      | 64.5                          |
| SOMERSET     | 47050      | 108.2                         |
| WALDO        | 28500      | 65.5                          |
| WASHINGTON   | 3355Ø      | 77.1                          |
| YORK         | 148100     | 340.6                         |

TOTALS 1148700 2642.0

-38-

## AREA SOURCE EMISSIONS

DATA

#### CATEGORY:

Highway line and bridge painting

#### DATA COLLECTION:

All data obtained from the Maine Dept. of Transportation by personal communication. Line paint data was obtained from Dick Weeks of Division of Traffic Engineering, Jan.30,1985. Data for bridge painting obtained from John Butts and Ron Cyr of the Design Division and Bridge Maintenance Division respectively, Jan.31, 1985.

#### CALCULATIONS

| POLLUTANT | FORMULA            |
|-----------|--------------------|
|           |                    |
| VOC       | Usage x 5.6 / 2000 |

#### DATA ASSUMPTIONS:

One gallon of solvent-based paint contains 5.6 lbs of VOC.
 100% of the solvent applied to the highway or bridge surface is emitted.

Note: Highway paint solvent primarily consist of <u>toluene</u> with small amounts of methylene chloride, xylene, hexane, vm+p naphtha, and 1,1 1,trichloroethane. Bridge paint primarily utilizes mineral spirits.

#### EMISSION FACTOR(S):

Total VOC

5.6 lb/gal

#### TOTAL EMISSIONS

| VOCroad paint   | 422.3 tons |  |
|-----------------|------------|--|
| VOCbridge paint | 38.3 tons  |  |
| Total VOC       | 460.8 tons |  |

EMISSION FACTOR SOURCE:

EPA--NEDS Source Classification Codes and Emission Factor Listing--Surface Coating Operations, p96-97.

| REA SOURCE E        | MISSIONS        |                             |                           | HIGHWAY LIN                 | E AND BRIDG               | E PAINTING           |    |    |    |        |
|---------------------|-----------------|-----------------------------|---------------------------|-----------------------------|---------------------------|----------------------|----|----|----|--------|
| COUNTIES            | POPULATION      | LINE PAINT<br>USAGE<br>gals | LINE PAINT<br>VOC<br>tons | BRIDGE PNT<br>USAGE<br>gals | BRIDGE PNT<br>VOC<br>tons | TOTAL<br>VOC<br>tons |    |    |    |        |
| NDROSCOGGIN         | 100900          | 4570                        | 12.7                      | 16                          | .04                       | 12.8                 |    |    |    |        |
| ROOSTOOK            | 90400           | 19806                       | 55.4                      |                             | .00                       | 55.4                 |    |    |    |        |
| UMBERLAND           | 220100          | 10665                       | 29.8                      | 836Ø                        | 23.40                     | 53.2                 |    |    |    |        |
|                     |                 |                             | ·                         |                             |                           |                      |    |    |    |        |
| RANKLIN             | 28500           |                             |                           |                             | .00                       | 25.5                 |    |    |    |        |
| IANCOCK<br>IENNEBEC | 42700<br>112850 |                             | 34.1<br>25.5              |                             | .00<br>14.11              | 34.1<br>39.7         |    |    |    |        |
|                     |                 |                             |                           |                             |                           |                      |    |    |    |        |
| NOX                 | 34050           | 4570                        | 12.7                      |                             | .00                       | 12.7                 |    |    |    |        |
| INCOLN              | 26150           |                             |                           |                             | .00                       | 17.0                 |    |    |    |        |
| XEORD               | 48800           |                             |                           |                             | .00                       | 34.1                 |    |    |    |        |
| ENOBSCOT            | 141150          | 15236                       | 42.6                      | 24Ø                         | .67                       | 43.3                 |    |    |    |        |
| ISQUATAQUIS         | 17850           |                             |                           |                             | .06                       | 12.8                 |    |    |    |        |
| AGADAHOC            | 28050           | 3047                        | 8.5                       |                             | .00                       | 8.5                  |    |    |    |        |
| OMERSET             | 47050           | 12188                       | 34.1                      |                             | .00                       | 34.1                 |    |    |    |        |
| ALDO                | 28500           |                             |                           |                             | .00                       | 17.1                 |    |    |    |        |
| ASHINGTON           | 33550           |                             |                           |                             | .00                       | 29.9                 |    |    |    |        |
| ORK                 | 148100          | 10665                       | 29.8                      |                             | .00                       | 29.9                 |    |    |    |        |
| COUNTY OF USE       | <b>_</b> ,      |                             |                           | 2965                        | 8.30                      | .ø                   |    |    |    |        |
|                     | - '             |                             |                           | 2905                        | 0.10                      | • 10                 |    |    |    |        |
| TOTALS              | 1148700         | 150828.0                    | 422.3                     | 13680.0                     | 38.3                      | <br>460.8            | .ø | .ø | .ø | <br>.ø |

. ...

U

Ò

Individual city data not available. \*County breakdown of bridge paint used for maintenance is not available.

#### AREA SOURCE EMISSIONS DATA

CATEGORY: Printing Industry

### DATA COLLECTION:

Population data obtained from the Maine Dept. of Human Services Bulletin, "Population projections of Maine counties and minor civil division for total population - July (1982-1991)."

#### CALCULATIONS

| POLLUTANT       | FORMULA          |  |  |  |  |  |
|-----------------|------------------|--|--|--|--|--|
|                 |                  |  |  |  |  |  |
| VOC non-methane | EMF * Population |  |  |  |  |  |

DATA ASSUMPTIONS:

-41-

1. Population projections for 1983 were representative for the year 1983.

EMISSION FACTOR(S):

Non-Methane VOC -----

.8 lb/yr/capita

#### TOTAL EMISSIONS

VOC non-methane 918960 lb/yr

EMISSION FACTOR SOURCE: AP-42, Sec. 4.9, table 4.9-2

### AREA SOURCE EMISSIONS DATA

PRINTING INDUSTRY

.

| COUNTIES AND<br>SELECTED CITIES | POPULATION | FACTOR<br>lb/yr/cap | TOTAL VOC<br>non-meth.<br>lbs |       | POLL  | UTANTS |       |   |       |                    |
|---------------------------------|------------|---------------------|-------------------------------|-------|-------|--------|-------|---|-------|--------------------|
| ANDROSCOGGIN                    | 100900     | .8                  | 80720                         |       |       |        |       |   |       | Na hay tan tan ang |
| Auburh                          | 22300      | .8                  |                               |       |       |        |       |   |       |                    |
| Lewiston                        | 40650      | .8                  |                               |       |       |        |       |   |       |                    |
| AROOSTOOK                       | 90400      | .8                  |                               |       |       |        |       |   |       |                    |
| Presque Isle                    | 10850      | .8                  |                               |       |       |        |       |   |       |                    |
| CUMBERLAND                      | 220100     | .8                  | 176080                        |       |       |        |       |   |       |                    |
| Brunswick                       | 17550      | .8                  | 14040                         |       |       |        |       |   |       |                    |
| Portland                        | 61100      | .8                  | <b>4888</b> Ø                 |       |       |        |       |   |       |                    |
| S.Portland                      | 23000      | .8                  |                               |       |       |        |       |   |       |                    |
| Westbrook                       | 15250      | 8                   | 12200                         |       |       |        |       |   |       |                    |
| RANKLIN                         | 28500      | .8                  |                               |       |       |        |       |   |       |                    |
| HANCOCK                         | 42700      | .8                  | 34160                         |       |       |        |       |   |       |                    |
| KENNEBEC                        | 112850     | .8                  | 90280                         |       |       |        |       |   |       |                    |
| Augusta                         | 22050      | .8                  | 1764Ø                         |       |       |        |       |   |       |                    |
| Waterville                      | 17050      | .8                  | 1364Ø                         |       |       |        |       |   |       |                    |
| KNOX                            | 34050      | .8                  | 27240                         |       |       |        |       |   |       |                    |
| LINCOLN                         | 26150      | -8                  | 20920                         |       |       |        |       |   |       |                    |
| OXFORD .                        | 48800      | -8                  | 39040                         |       |       |        |       |   |       |                    |
| PENOBSCOT                       | 141150     | .8                  | 112920                        |       |       |        |       |   |       |                    |
| Bangor                          | 3335Ø      | .8                  | 26680                         |       |       |        |       |   |       |                    |
| Brewer                          | 8600       | .8                  |                               |       |       |        |       |   |       |                    |
| PISQUATAQUIS                    | 1785Ø      | -8                  | 14280                         |       |       | ,      |       |   |       |                    |
| SAGADAHOC                       | 28050      | -8                  | 22440                         |       |       |        |       | · |       |                    |
| Bath                            | 995Ø       | .8                  | 7960                          |       |       | ,      |       |   |       |                    |
| SOMERSET                        | 47050      | .8                  |                               |       |       |        |       |   |       |                    |
| WALDO                           | 28500      | .8                  |                               |       |       |        |       |   |       |                    |
| WASHINGTON                      | 33550      | -8                  |                               |       | •     |        |       |   |       | •                  |
| YORK                            | 148100     | .8                  | 118480                        |       |       |        |       |   |       | •                  |
| Biddeford                       | 20400      | .8                  |                               |       |       |        |       |   |       |                    |
| Saco                            | 12650      | .8                  |                               |       |       |        |       |   |       |                    |
| Sanford                         | 19450      | •8                  | 15560                         |       |       |        |       |   |       |                    |
| TOTALS                          |            |                     | 918960                        | <br>Ø | <br>Ø |        | <br>Ø | ø | <br>Ø | <br>Ø              |

-42-

#### AREA SOURCE EMISSIONS DATA

#### CATEGORY:

Residential Wood Combustion

#### DATA COLLECTION:

State consumption of wood for Maine for 1982 was obtained from the Maine Office of Energy Resources 'Comprehensive Energy Plan (1983).' Population figures obtained from "Population Projections of Maine counties and minor civil divisions for total population, 1982-1991," by the Maine Dept. of Human Services.

#### DATA ASSUMPTIONS:

-43-

- 1. 2.5 tons/cord of wood.
- 2. State consumption of wood apportioned to the county level on the basis of county population as a % of the state population total.
- 3. 1982 wood usage data is representative of 1983 wood usage.
- 4. All wood burned in wood stoves.

#### EMISSION FACTOR(S):

| • |                 |       | · · ·  |  |
|---|-----------------|-------|--------|--|
|   | Particulates    | 42    | lb/ton |  |
|   | SOx             | -4    | lb/ton |  |
|   | NOx             | 2.8   | lb/ton |  |
|   | C0              | 260   | lb/ton |  |
|   | P.O.M           | .3    | gm/kg  |  |
|   | B(a)P           | .0025 | gm∕kg  |  |
|   | VOC methane     | 1     | lb/ton |  |
|   | VOC non-methane | 100   | lb/ton |  |

# TOTAL EMISSIONS

| Particulates | 62632.4      | tons |
|--------------|--------------|------|
| SOx ·        | 596.4        | tons |
| NOx          | 4175.4       | tons |
| CO .         | 387724.9     | tons |
| P.O.M.       | 894.7        | tons |
| B(a)P        | 7.4          | tons |
| VOC methane  | 1491.2       | tons |
| VOC non-meth | ane 149124.9 | tons |

### EMISSION FACTOR SOURCE:

AP-42, Particulates, SOx, NOx, CO, VOC: meth. & non-meth (res.wood stoves) J.A.Cooper, JAPCA, Avg'80 "Environmental impact of Res. Wood Combustion and its implications- POM and BaP, Res. Wood Stoves.

المرجورة المحسم مرجات

### CALCULATIONS

| Usage =       |                         |
|---------------|-------------------------|
| State Usage * | 1193000 cds             |
| Tons per Cord | 2.5 ton/cd              |
| Pollutants    |                         |
| (In lbs)      | Usage * EMF / 2000 lb/t |
| (In kg)       | Usage * EMF / 1000 g/kg |
|               |                         |

AREA SOURCE EMISSIONS

-44-

RESIDENTIA L WOOD COMBUSTION

4

| •                               |            |           |            |       |        |          |        |                   |                |                  |
|---------------------------------|------------|-----------|------------|-------|--------|----------|--------|-------------------|----------------|------------------|
| COUNTIES AND<br>SELECTED CITIES | POPULATION | USAGE     | PARTICULAT | SOx   | NOx    | C0       | P.O.M. | B(a) P            | VOC<br>methane | VOC<br>non-meth. |
|                                 |            | tons      | tons       | tons  | tons   | tons     | tons   | tons              | tons           | tons             |
| ANDROSCOGGIN                    | 100900     | 261978.1  | 5501.5     | 52.3  | 366.7  | 34057.1  | 78.5   | .65               | 130.9          | 13098.9          |
| Auburn                          | 22300      | 57900.0   |            | 11.5  | 81.0   | 7527.0   | 17.3   | .14               | 28.9           | 2895.0           |
| Lewiston                        | 40650      | 105544.2  | 2216.4     | 21.1  | 147.7  | 13720.7  | 31.6   | .26               | 52.7           | 5277.2           |
| AROOSTOOK                       | 90400      | 234715.7  | 4929.0     | 46.9  | 328.6  | 30513.0  | 70.4   | .58               | 117.3          | 11735.7          |
| Presque Isle                    | 10850.     | 28171.0   |            | 5.6   | 39.4   | 3662.2   | 8.4    | .07               | 14.0           | 1408.5           |
| CUMBERLAND                      | 220100     | 571470.5  | 12000.8    | 114.2 | 800.0  | 74291.1  | 171.4  | 1.42              | 285.7          | 28573.5          |
| Brunswick                       | 17550      | 45567.0   |            | 9.1   | 63.7   | 5923.7   | 13.6   | .11               | 22.7           | 2278.3           |
| Portland                        | 61100      | 158640.8  | 3331.4     | 31.7  | 222.0  | 20623.3  | 47.5   | .39               | 79.3           | 7932.0           |
| S.Portland                      | 23000      | 59717.5   | 1254.0     | 11.9  | 83.6   | 7763.2   | 17.9   | .14               | 29.8           | 2985.8           |
| Westbrook                       | 15250      | 39595.3   |            | 7.9   | 55.4   | 5147.3   |        | .09               | 19.7           | 1979.7           |
| FRANKLIN                        | 28500      | 73997.7   | 1553.9     | 14.7  | 103.5  | 9619.7   | 22.1   | .18               | 36.9           | 3699.8           |
| HANCOCK                         | 42700      | 110866.8  | 2328.2     | 22.1  | 155.2  | 14412.6  | 33.2   | .27               | 55.4           | 5543.3           |
| KENNEBEC                        | 112850     | 293005.2  | 6153.1     | 58.6  | 410.2  | 38090.6  | 87.9   | .73               | 146.5          | 14650.2          |
| Augusta                         | 22050      | 57250.9   |            | 11.4  | 80.1   | 7442.6   | 17.1   | .14               | 28.6           | 2862.5           |
| Waterville                      | 17050      | 44268.8   | 929.6      | 8.8   | 61.9   | 5754.9   | 13.2   | .11               | 22.1           | 2213.4           |
| KNOX                            | 34050      | 88407.8   |            | 17.6  | 123.7  | 11493.0  | 26,5   | .22               | 44.2           | 4420.3           |
| LINCOLN                         | 26150      | 67896.2   | 1425.8     | 13.5  | 95.0   | 8826.5   | 20.3   | .16               | 33.9           | 3394.8           |
| OXFORD                          | 48800      | 126704.9  |            | 25.3  | 177.3  | 16471.6  | 38.0   | .31               | 63.3           | 6335.2           |
| PENOBSCOT                       | 141150     | 366483.7  |            | 73.2  | 513.0  | 47642.8  | 109.9  | .91               | 183.2          | 18324.1          |
| Bangor                          | 33350      | 86590.3   |            | 17.3  | 121.2  | 11256.7  | 25.9   | .21               | 43.2           | 4329.5           |
| Brewer                          | 8600       | 22329.1   |            | 4.4   | 31.2   | 2902.7   | 6.6    | .05               | 11.1           | 1116.4           |
| PISOUATAOUIS                    | 17850      | 46345.9   |            | 9.2   | 64.8   | 6024.9   | 13.9   | .11               | 23.1           | 2317.2           |
| SAGADAHOC                       | 28050      | 72829.3   |            | 14.5  | 101.9  | 9467.8   | 21.8   | .18               | 36.4           | 3641.4           |
| Bath                            | 9950       | 25834.3   |            | 5.1   | 36.1   | 3358.4   | 7.7    | .06               | 12.9           | 1291.7           |
| SOMERSET                        | 47050      | 122161.2  |            | 24.4  | 171.0  | 15880.9  | 36.6   | .30               | 61.0           | 6108.0           |
| WALDO                           | 28500      | 73997.7   |            | 14.7  | 103.5  | 9619.7   | 22.1   | .18               | 36.9           | 3699.8           |
| WASHINGTON                      | 33550      | 87109.6   |            | 17.4  | 121.9  | 11324.2  | 26.1   | .21               | 43.5           | 4355.4           |
| YORK                            | 148100     | 384528.8  |            | 76.9  | 538.3  | 49988.7  | 115.3  | .96               |                | 19226.4          |
| Biddeford                       | 20400      | 52966.8   |            | 10.5  | 74.1   | 6885.6   | 15.8   | .13               | 26.4           | 2648.3           |
| Saco                            | 12650      | 32844.6   |            | 6.5   | 45.9   | 4269.8   | 9.8    | .08               | 16.4           |                  |
| Sanford                         | . 19450    | 50500.2   |            | 10.1  | 70.7   | 6565.0   | 15.1   | .12               |                |                  |
| TOTALS                          | 1148700    | 2401086.2 | 62632.4    | 596.4 | 4175.4 | 387724.9 | 894.7  | <br>7 <b>.</b> 45 | 1491.2         | 149124.9         |

#### AREA SOURCE EMISSIONS DATA

CATEGORY: Waste oil

### DATA COLLECTION:

#### CALCULATIONS:

TOTAL EMISSIONS:

Chlorine

Note: PCB 5-7 ppm in fuel resulted in no detectable

Tot.pop/cty.pop x use x 8 x EMF x .01/2000

All other pollutants Tot.pop/cty.pop x use x 8 x EMF / 2000

DATA ASSUMPTIONS: 1. Assume waste oil weighs 81b/gal. 2. Assume even distribution by population.

#### EMISSION FACTOR(S):

| _ |          |         |         |     |          |       |      |
|---|----------|---------|---------|-----|----------|-------|------|
|   | Lead     | .001000 | % Waste | oil |          | ····  |      |
|   | Chlorine | .004000 | % Waste | oil | Lead     | 11.99 | tons |
|   | Arsenic  | .000018 | % Waste | oil | Chlorine | 47.99 | tons |
|   | Cadmium  | .000010 | % Waste | oil | Arsenic  | .21   | tons |
|   | Chromium | .000035 | % Waste | oil | Cadimium | .11   | tons |
|   |          |         |         |     | Chromium | .41   | tons |
|   |          |         |         |     |          |       |      |

EMISSION FACTOR SOURCE: A.D.Little, Waste Oil Combustion at a Bituminous Concrete Batching Plant, August 1984.

| COUNTY       | POPULATION | USAGE<br>gal | LEAD<br>tons | CHLORINE<br>tons | ARSENIC | CADMIUM<br>tons | CHROMIUM<br>tons |
|--------------|------------|--------------|--------------|------------------|---------|-----------------|------------------|
| ANDROSCOGGIN | 100900     | 263515.2     | 1.05         | 4.21             | .Ø18    | .010            | .Ø36             |
| AROOSTOOK    | 90400      | 236092.9     | .94          | 3.77             | .016    | .009            | .Ø33             |
| CUMBERLAND   | 220100     | 574823.7     | 2.29         | 9.19             | .041    | .022            | .080             |
| FRANKLIN     | 28500      | 74431.9      | . 29         | 1.19             | .005    | .002            | .010             |
| HANCOCK      | 42700      | 111517.3     | .44          | 1.78             | .008    | .004            | .015             |
| KENNEBDC     | 112850     | 294724.4     | 1.17         | 4.71             | .021    | .011            | .041             |
| KNOX         | , 34050    | 88925.6      | .35          | 1.42             | .006    | .003            | .012             |
| LINCOLN      | 26150      | 68294.5      | .27          | 1.09             | .004    | .002            | .009             |
| OXFORD       | 48800      | 127448.4     | .50          | 2.03             | .009    | .005            | .017             |
| PENOBSCOT    | 141150     | 368634.1     | 1.47         | 5.89             | .026    | .014            | .051             |
| PISQUATAQUIS | 17850      | 46617.9      | .18          | .74              | .003    | .001            | .006             |
| SAGADAHOC    | 28050      | 73256.7      | .29          | 1.17             | .005    | .002            | .010             |
| SOMERSET     | 47050      | 122878.0     | .49          | 1.96             | .008    | .004            | .017             |
| WALDO        | 28500      | 74431.9      | .29          | 1.19             | .005    | .002            | .010             |
| WASHINGTON   | 33550      | 87620.7      | .35          | 1.40             | .006    | .003            | .Ø12             |
| YORK         | 148100     | 386785.0     | 1.54         | 6.18             | .027    | .015            | .054             |
| TOTALS       | 1148700    | 3000000      | 11.99        | 47.99            | .215    | .119            | .419             |

WASTE OIL

AREA SOURCE EMISSIONS DATA

-46-

#### AREA SOURCE EMISSIONS DATA

CATEGORY:

Automotive lead emissions

DATA COLLECTION:

Lead emissions by country from Maine State Implementation Plan data Table 2.5.1 (3) "Area source automotive lead emissions by counties."

### 

. .

### .

CALCULATIONS:

#### DATA ASSUMPTIONS:

### EMISSION FACTOR(S):

TOTAL EMISSIONS:

----

Lead emissions

89.4 tons

EMISSION FACTOR SOURCE:

### AUTOMOTIVE LEAD EMISSIONS

### AREA SOURCE EMISSIONS DATA

| COUNTY       | POPULATION     | LEAD<br>EMISSIONS<br>(tons/yr) |
|--------------|----------------|--------------------------------|
| ANDROSCOGGIN | · 100900       | 6.5                            |
| AROOSTOOK    | 90400          | 6.4                            |
| CUMBERLAND   | 220100         | 18.3                           |
| FRANKLIN     | 28500          | 2.1                            |
| HANCOCK      | 42700          | 4.4                            |
| KENNEBEC     | <b>1</b> 1285Ø | 8.6                            |
| KNOX         | 34050          | 2.2                            |
| LINCOLN      | 26150          | 2.4                            |
| OXFORD       | 48800          | 3.6                            |
| PENOBSCOT    | 141150         | 10.6                           |
| PISQUATAQUIS | 178 <b>5</b> Ø | 1.3                            |
| SAGADAHOC    | 28050          | 2.3                            |
| SOMERSET     | 47050          | 4.3                            |
| WALDO        | 285ØØ          | 2.3                            |
| WASHINGTON   | 3355ø          | 2.8                            |
| YORK         | 148100         | 11.3                           |

TOTALS 1148700

89.4

. .

#### AREA SOURCE EMISSIONS DATA

#### CATEGORY:

Gasoline Service Station Operations

#### DATA COLLECTION:

Gasoline usage obtained from Maine gasoline sales information, provided by the Maine Office of Energy Resources. Total gas sold was apportioned to the county level by % vehicle miles traveled (VMT). VMT data was obtained from the Maine Dept. of Transportation.

#### DATA ASSUMPTIONS:

1. VMT is proportional to amount of gasoline used.

2. 1982 VMT data is representative of 1983 conditions.

3. Gasoline applies only to leaded, unleaded, and regular gasoline.

4. All service stations operations utilize no emission controls.

5. % benzene and toluene emissions from fuel tanks similar to all other gasoline station operations.

#### EMISSION FACTOR(S):

-49-

| Splash filling<br>Underground tank | 11.5 lb/thous gal |
|------------------------------------|-------------------|
| breathing + emptying               | 1.0 lb/thous gal  |
| Refueling loss                     | 9.0 lb/thous gal  |
| Spillage                           | .7 lb/thous gal   |
| Benzene                            | .004 x VOC(tons)  |
| Toluene                            | .004 x VOC(tons)  |

#### EMISSION FACTOR SOURCE:

AP-42, (Table 4.4-4): Hydrocarbons and Vapor Phase Organic Pollutants Table 2-6, page 13, "Benzene and toluene emissions from gas tanks," Jackson and Everett.

#### CALCULATIONS:

ے جب ہے جب سے بی پر این ان ان جب ہی جارتے ہے اور ان کے اور ہے ۔ این کا کا ان جب اور جب ہے اور اور اور ان کا ان

#### TOTAL EMISSIONS:

| VOC                                  | 5955.63 tons |
|--------------------------------------|--------------|
| Benzene                              | 23.82 tons   |
| Toluene                              | 23.82 tons   |
| Underground tanks<br>Splash filling* | 3109.80 tons |
| Breathing +<br>emptying*             | 270.41 tons  |
| Refueling loss*                      | 2433.76 tons |
| Spillage*                            | 189.29 tons  |

#### \*All pollutants

### AREA SOURCE EMISSIONS

.

-50-

#### GASOLINE SERVICE STATION OPERATIONS

. . . ..

ł

|              |          | POLLUTANTS<br>EMITTED | SPLASH<br>FILLING | UND TANKS<br>BREATHING<br>+EMPYTING<br>tons | REFUELING<br>LOSS<br>tons |       | TOTAL<br>VOC<br>tons | TOTAL<br>BENZENE<br>tons |      |
|--------------|----------|-----------------------|-------------------|---------------------------------------------|---------------------------|-------|----------------------|--------------------------|------|
| ANDROSCOGGIN | 41667.0  | VOC                   | 239.58            | 20.83                                       | 187.50                    | 14.58 | 462.50               |                          |      |
|              |          | Benzene               | .95               | .08                                         | .75                       |       |                      | 1.85                     |      |
|              |          | Toluene               | .95               | . Ø8                                        | .75                       | .05   |                      |                          | 1.85 |
| AROOSTOOK    | 41096.2  | VOC                   | 236.30            | 20.54                                       | 184.93                    | 14.38 | 456.16               |                          |      |
|              |          | Benzene               | .94               | .08                                         | .73                       | .05   |                      | 1.82                     |      |
|              |          | Toluene               | .94               | .08                                         | .73                       |       |                      |                          | 1.82 |
| CUMBERLAND   | 114727.0 | VOC                   |                   |                                             | 516.27                    |       | 1273.46              |                          |      |
|              |          | Benzene               | 2.63              |                                             |                           |       |                      | 5.09                     |      |
|              |          | Toluene               |                   | .22                                         |                           |       |                      |                          | 5.09 |
| FRANKLIN     | 14840.0  |                       | 85.33             |                                             |                           |       | 164.72               |                          |      |
|              |          | Benzene               |                   | .02                                         |                           |       |                      | .65                      |      |
|              |          | Toluene               |                   | .02                                         |                           |       |                      |                          | •65  |
| HANCOCK      | 28539.0  | VOC                   |                   |                                             |                           |       | 316.78               |                          |      |
|              |          | Benzene               | •65               |                                             |                           |       |                      | 1.26                     |      |
|              |          | Toluene               | •65               |                                             | .51                       |       |                      |                          | 1.26 |
| KENNEBEC     | 55365.8  | VOC                   |                   | 27.68                                       | 249.14                    |       | 614.56               |                          |      |
|              |          | Benzene               | 1.27              | _                                           | 99                        | .07   |                      | 2.45                     |      |
|              |          | Toluene               | 1.27              |                                             |                           |       |                      |                          | 2.45 |
| KNOX         | 14269.5  |                       | 82.04             | 7.13                                        | 64.21                     | 4.99  | 158.39               |                          |      |
|              |          | Benzene               | .32               |                                             | •25                       |       |                      | .63                      |      |
|              |          | Toluene               | .32               |                                             |                           | .01   |                      |                          | .63  |
| LINCOLN      | 15411.0  |                       | 88.61             |                                             |                           |       | 171.06               |                          |      |
|              |          | Benzene               | •35               |                                             |                           |       |                      | .68                      |      |
|              |          | Toluene               |                   | .03                                         |                           |       |                      |                          | •68  |
| OXFORD       | 23402.0  |                       | 134.56            |                                             |                           |       | 259.76               |                          |      |
|              |          | Benzene               | •53               |                                             |                           |       |                      | 1.03                     |      |
|              |          | Toluene               | •53               |                                             | .42                       |       |                      |                          | 1.03 |
| PENOBSCOT    | 34246.9  |                       |                   | 17.12                                       |                           | 11.98 | 380.14               |                          |      |
|              |          | Benzene               | .78               |                                             |                           |       |                      | 1.52                     |      |
|              |          | Toluene               | .78               | .06                                         | .61                       | .04   |                      |                          | 1.52 |

TOTALS ON NEXT PAGE

### AREA SOURCE EMISSIONS (CONT.)

### GASOLINE SERVICE STATION OPERATIONS

• •••

1999 - Albert A.

|              | USAGE<br>THRU-PUT<br>THOUS GALS | POLLUTANTS<br>EMITTED | UNDERGRO<br>SPLASH<br>FILLING<br>tons | UND TANKS<br>BREATHING<br>+EMPYTING<br>tons | REFUELING<br>LOSS<br>tons | SPILLAGE | TOTAL<br>VOC<br>tons                    | TOTAL<br>BENZENE<br>tons | TOTAL<br>TOLUENE<br>tons |
|--------------|---------------------------------|-----------------------|---------------------------------------|---------------------------------------------|---------------------------|----------|-----------------------------------------|--------------------------|--------------------------|
| PISQUATAQUIS | 8561.7                          | VOC                   | 49.22                                 | 4.28                                        | 38.52                     | 2.99     | 95.03                                   |                          |                          |
|              |                                 | Benzene               | .19                                   | .01                                         | .15                       | .01      |                                         | .38                      |                          |
|              |                                 | Toluene               | .19                                   | .01                                         | .15                       | .01      |                                         |                          | 38                       |
| SAGADAHOC    | 13698.7                         | VOC                   | 78.76                                 |                                             |                           | 4.79     | 152.05                                  | •                        |                          |
|              |                                 | Benzene               | .31                                   |                                             |                           | .01      |                                         | .60                      |                          |
|              |                                 | Toluene               | .31                                   |                                             |                           | .01      |                                         |                          | .60                      |
| SOMERSET     | 25695.1                         | VOC                   | 147.74                                |                                             |                           | 8.99     | 285.21                                  |                          |                          |
|              |                                 | Benzene               | •59                                   |                                             |                           | .03      |                                         | 1.14                     |                          |
|              |                                 | Toluene               | .59                                   |                                             |                           | .03      |                                         |                          | 1.14                     |
| WALDO        | 15411.1                         | VOC                   | 88.61                                 |                                             |                           | 5.39     | 171.06                                  |                          |                          |
|              |                                 | Benzene               | .35                                   |                                             |                           | .02      |                                         | .68                      |                          |
|              |                                 | Toluene               | .35                                   |                                             |                           | .02      |                                         |                          | .68                      |
| WASHINGTON   | 18265.0                         |                       | 105.02                                |                                             |                           | 6.39     | 202.74                                  |                          |                          |
|              |                                 | Benzene               | .42                                   |                                             |                           | .02      |                                         | .81                      |                          |
|              |                                 | Toluene               | .42                                   |                                             |                           | .02      |                                         |                          | .81                      |
| YORK         | 71347.6                         |                       | 410.24                                |                                             |                           | 24.97    | 791.95                                  |                          |                          |
| 1014         | /101/00                         | Benzene               | 1.64                                  |                                             |                           | .09      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 3.16                     |                          |
|              |                                 | Toluene               | 1.64                                  |                                             |                           | .09      |                                         | 5010                     | 3.16                     |
| TOTALS       | 536543.6                        |                       | 3109.8                                | 270.4                                       | 2433.7                    | 189.2    | 5955.63                                 | 23.82                    | 23.82                    |

. • · · ·

|                 | BENEZENE    | TOLENE      | VOC       |
|-----------------|-------------|-------------|-----------|
| Техасо          | .Ø4 Tons    | .04 Tons    | 10.6 Tons |
| Gulf            | .15         | .15         | 38.7      |
| Mobil           | •23         | .23         | 57.5      |
| Chevron         | .23         | .23         | 57.1      |
| Koch            | .004        | .004        | 1.0       |
| Getty           | • Ø9        | .Ø9         | 22.4      |
| B.P.            | . 29        | .29         | 71.3      |
| Exxon           | .09         | .09         | 21.9      |
| Mobil (Bangor)  | <b>.</b> 6Ø | <b>.</b> 6Ø | 150.3     |
| Texaco (Bangor) | •65         | .65         | 161.9     |
| Mobil (Hall)    | .002        | .002        | .38       |
| TOTAL           | 2.376       | 2.376       | 630.7     |

### AREA SOURCE EMISSIONS FROM GASOLINE TERMINAL

.

\*\* APPENDIX D \*\*

## APPENDIX D

COUNTY CODES

CODE COUNTY Øl ANDROSCOGGIN ØЗ AROOSTOCK Ø5 CUMBERLAND Ø7 FRANKLIN Ø9 HANCOCK 11 KENNEBEC 13 KNOX 15 LINCOLN 17 OXFORD 19 PENOBSCOT 21 PISCATAQUIS SAGADAHOC 23 25 SOMERSET 27 WALDO 29 WASHINGTON 31 YORK

PAGE NO. 1

### MAR 11, 1985 DEPARTMENT OF ENVIRONMENTAL PROTECTION HAZARDOUS AIR POLLUTANT SYSTEM PROCESS EMISSIONS BY COUNTY (HAP114)

|                                        | POLLUTANT | AMOUNT USED | EMISSIONS  |
|----------------------------------------|-----------|-------------|------------|
| COUNTY                                 | IDENT.    | TONS/YEAR   | L8S.7YEAR  |
| 01                                     | ACETON    | 645.1       | 206,310.0  |
|                                        | ACRYLO    | 57.5        | 0.0        |
|                                        | BACETA    | 6.3         | 4,930.0    |
|                                        | BUTANO    | 2.2         | 0.0        |
|                                        | CHLORI    | 75.1        | 100.0      |
|                                        | COPPER    | 125.0       | 100.0      |
|                                        | CRESOL    | 2.5         | 0.0        |
|                                        | DBENZE    | 2.5         | 0.0        |
|                                        | DMETHA    | 440.5       | 56,000.0   |
|                                        | EACETA    | 12.5        | 22,231.0   |
|                                        | EOXIDE    | 3.6         | 966.0      |
|                                        | EPICHL    | 31.0        | 12.0       |
| ······································ | ETHANO    | 21.4        | 0.0        |
|                                        | FALCOH    | 2.0         | 0.0        |
|                                        | FORMAL    | 3,375.0     | 25,003.0   |
|                                        | FORMIC    | 7.5         | 1.0        |
|                                        | HCHLOR    | 89.3        | 512.0      |
|                                        | HSULFI    | 0.0         | 0.0        |
|                                        | IMINOD    | 8.5         | Ů.O        |
|                                        | LEADPB    | 2.0         | 0.0        |
|                                        | MALEIC    | 143.0       |            |
|                                        | MCELLO    | 10.5        | 0.0        |
|                                        | MECHLO    | 218.6       | 190,145.0  |
|                                        | MEKETO    | 265.0       | 103,174.8  |
|                                        | MELAMI    | 2,321.0     | 0.0        |
|                                        | NITRIC    | 52.1        | 2,500,0    |
|                                        | OXALIC    | 6.0         | 0.0        |
|                                        | PHENOL    | 3,524.0     | 3,247.0    |
|                                        | STYREN    | 86.0        | 21.0       |
|                                        | TDIOXI    | 1.6         | 0.0        |
| ······································ | TETHAI    | 878.9       | 655,298.0  |
|                                        | TETHYL    | 218.7       | 19.0       |
| ,,,                                    | TITANI    | 48.7        | 0.0        |
|                                        | TOLUEN    | 159.3       | 75,301.0   |
|                                        | TRICHL    | 8.8         | 0.0        |
|                                        | VCHLOR    | 501.4       | 0.0        |
|                                        | XYLENE    | 284.9       | 22,378.8   |
| 03                                     | ACETIC    | 77.5        | 1,402.6    |
|                                        | COIOXI    | 6.0         | 0.0        |
|                                        | CHLORI    | 59.1        | 22,800.0   |
|                                        | EACETA    | 1.3         | 2,600.0    |
|                                        | EPOXYP    | 401.0       | 124,600.0  |
|                                        |           | 36.5        | 600.0      |
|                                        | MEKETO    | 4.3         | 3,200.0    |
|                                        | PCBIPH    | 42.8        | 0.0        |
|                                        | TETHA1    | 7.3         | . 14,600.0 |
| ······································ | TETHYL    | 9.5         | 14,860.0   |
| · ·                                    | XYLENE    | 58.9        | 117,800.0  |
| 05                                     | ACETON    | . 144.9     | 125,311.0  |
|                                        | ANTIMU    | 6.7         | 0.0        |
|                                        |           |             |            |

-

•

## MAR 11, 1985 DEPARTMENT OF ENVIRONMENTAL PROTECTION PAGE NO. 2 HAZARDOUS AIR POLLUTANT SYSTEM PROCESS EMISSIONS BY COUNTY (HAP114)

.

• ~

| 2011154 | POLLUTANT        | AMOUNT USED  | EMISSIONS<br>LBS./YEAR                |
|---------|------------------|--------------|---------------------------------------|
| SOUNTY  | IDENT.           | TONS/YEAR    | LBS./TEAR                             |
| ·····   | ASBEST           | 5.6          | 0.0                                   |
|         | BACETA           | 21.9         | 34,203.0                              |
|         | BARIUM           | 41.7         | 374.0                                 |
|         | BUTANO           | 84.8         | 116,340.0                             |
|         | CDIOXI           | 370.0        | 4,000.0                               |
| <u></u> | CHLORI           | 17,810.0     | 85,000.0                              |
|         | CHROMI           | 1.2          | 0.0                                   |
|         | COPPER           | 2.7          | 6.6                                   |
|         | DBENZE           | 2.5          | 0.0                                   |
|         | DETHAN           | 68.1         | 32,400.0                              |
|         | EACETA           | 3.1          | 6,208.0                               |
|         | EGLYCO           | 32.0         | 7,461.0                               |
|         | EOXIDE           | 0.5          | 569.0                                 |
|         | FORMAL           | 20.6         | 41,000.0                              |
|         | FORMIC           | 166.9        | 4,892.0                               |
|         | HCHLOR           | 82.5         | 6,160.0                               |
|         | HSULFI           | 14.8         | 22,000.0                              |
|         | LEADPB           | 20.2         | 550.0                                 |
|         | MANGAN           | 6.2          | 9,320.0                               |
| ·       | MCELLO           | 52.9         | 7,708.0                               |
|         | MCHLOR           | 1.8          | 3,600.0                               |
|         | MECHLO<br>MEKETO | 63.9<br>44.7 | 41,081.0<br>13,167.9                  |
|         | MELAMI           | 50.0         | 0.0                                   |
|         | MISOBU           | 1.0          | 0.0                                   |
|         | MMERCA           | 34.9         | 30,700.0                              |
|         | NITRIC           | 107.8        | 1,620.0                               |
|         | OXALIC           | 1.3          | 0.0                                   |
|         | PCBIPH           | 40.5         | 0.0                                   |
|         | PHENOL           | 2.6          | 0.7                                   |
|         | STYREN           | 47.4         | 6,775.0                               |
|         | TETHA1           | 194.1        | 168,290.0                             |
|         | TETHYL           | 16.8         | 9,060.0                               |
|         | TFURAN           | 0.2          | 400.0                                 |
|         | TITANI           | 2,669.2      | 1,800.0                               |
|         | TOLUEN           | 2,656.9      | 606,635.0                             |
|         | TRICHL           | 104.4        | 53,977.0                              |
|         | TURPEN           | 186.0        | 12,000.0                              |
|         | XYLENE           | 171.9        | 36,854.7                              |
|         | ZINCZN           | 92.0         | 946.0                                 |
| 07      | ACETON           | 24.6         | 42,363.0                              |
| ·       | BACETA           | 1.2          | 2,400.0                               |
|         |                  | 3,364.0      | 34,000.0                              |
|         | CHLORI           | 19,406.5     | 300,000.0                             |
| •       | EACETA<br>FORMIC | 1.8          | 3,600.0                               |
|         | HSULFI           | 530.0        | 100,000.0                             |
|         | MECHLO           | 9.8          | 16,265.0                              |
|         | MEKETO           | 40.7         | 76,958.0                              |
|         | MERCA            | 374.0        | 180,000.0                             |
|         |                  |              |                                       |
|         |                  |              |                                       |
|         |                  |              | · · · · · · · · · · · · · · · · · · · |

PAGE NO. 3

\_\_\_\_\_

------

- ·····

#### MAR 11, 1985 DEPARTMENT OF ENVIRONMENTAL PROTECTION HAZARDOUS AIR POLLUTANT SYSTEM PROCESS EMISSIONS BY COUNTY (HAP114)

.

•

|                                        | POLLUTANT | AMOUNT USED<br>TONS/YEAR | EMISSIUNS<br>LBS./YEAR |
|----------------------------------------|-----------|--------------------------|------------------------|
|                                        | IDENT.    | TUNSZTEAR                | LOGATIEAR              |
|                                        | NITRIC    | 4.5                      | 9,000.0                |
|                                        | TITANI    | 1,000.0                  | 0.0                    |
|                                        | TOLUEN    | 23.0                     | 43,676.0               |
|                                        | TRICHL    | 1.2                      | 2,420.0                |
|                                        | TURPEN    | 9,000.0                  | 30,000.0               |
| 09                                     | ACETON    | 11.7                     | 4,000.0                |
|                                        | CHLORI    | 53.0                     | 0.0                    |
|                                        | ETHANO    | 3.7                      | 734.0                  |
|                                        | MECHLO    | 1.0                      | 2,000.0                |
|                                        | MEKETO    | 1.0                      | 40.0                   |
|                                        | STYREN    | 35.0                     | 3,500.0                |
|                                        | TITANI    | 243.0                    | 0.0                    |
| 11                                     | ACETON    | 13.5                     | 15,000.0               |
|                                        | ASBEST    | 28.7                     | 0.0                    |
|                                        | BACETA    | 0.1                      | 200.0                  |
|                                        | CDIOXI    | 10.0                     | 50.0                   |
|                                        | CHFORM    | 0.0                      | 0.0                    |
|                                        | CHLORI    | 2,831.1                  | 66,163.5               |
|                                        | CHROMI    | 1.2                      | 48.0                   |
|                                        | EACETA    | 0.8                      | 1,600.0                |
|                                        | EGLYCO    | 2.5                      | 4,964.0                |
|                                        | ETHANO    | 24.6                     | 340.0                  |
|                                        | FORMAL    | 92.7                     | 4,118.0                |
|                                        | FORMIC    | 27.9                     | 27,744.0               |
|                                        | HCHLOR    | 46.5                     | 26,464.0               |
|                                        | MECHLO    | 3.0                      | 0.0                    |
|                                        | MEKETO    | 6.9                      | 13,850.0               |
|                                        | OXALIC    | 14.0                     | 560.0<br>252,675.0     |
|                                        |           | 90.0                     | 168,540.0              |
| 13                                     | ACETON    | 12.4                     | 24,750.0               |
|                                        | FORMIC    | 41.2                     | 1,648.0                |
|                                        | HCHLOR    | 3.5                      | 140.0                  |
|                                        | MEKETO    | 0.8                      | 1,608.0                |
|                                        | NITRIC    | 3.5                      | 350.0                  |
|                                        | TETHA1    | 1.8                      | 36.0                   |
|                                        | TETHYL    | 4.0                      | 7,000.0                |
|                                        | TOLUEN    | 24.0                     | 48,000.0               |
|                                        | XYLENE    | 5.5                      | 8,316.0                |
| 15                                     | ACETON    | 0.5                      | 150.0                  |
|                                        | HYDRAZ    | 3.5                      | 140.0                  |
| •                                      | MECHLO    | 1.5                      | 360.0                  |
|                                        | MMETHA    | 11.6                     | 650.0                  |
|                                        | PCBIPH    | 55.0                     | 0.0                    |
| ······································ | STYREN    | 10.3                     | 205.0                  |
|                                        | TETHAL    | . 3.9                    | 4,257.0                |
| 17                                     | ACETON    | 5.4                      | 6,733.0                |
|                                        | BACETA    | 32.0                     | 64,054.0               |
|                                        | BARIUM    | 3.7                      | 0.0                    |
|                                        | BUTANO    | 5.0                      | 9,947.0                |
|                                        |           | •                        |                        |

-56-

\_\_\_\_\_

-

PAGE NO. 4

### MAR 11, 1985 DEPARTMENT OF ENVIRONMENTAL PROTECTION HAZARDOUS AIR POLLUTANT SYSTEM PROCESS EMISSIONS BY COUNTY (HAP114)

•

-

|                                       | POLLUTANT        | AMOUNT USED      | EMISSIONS   |
|---------------------------------------|------------------|------------------|-------------|
| YTVUCC                                | IDENT.           | TONS/YEAR        | LBS./YEAR   |
|                                       | COLONI           | 7 190 0          | 67,895.0    |
|                                       | CDIOXI<br>CHFORM | 3,280.0          | 0.0         |
|                                       |                  |                  | 250,000.0   |
| ·····                                 | CHLORI<br>DMETHA | 14,676.0<br>45.0 | 90,000.0    |
|                                       |                  | 43.0             | 9,354.0     |
|                                       | EACETA           | 9.6              | 19,094.0    |
|                                       | EGLYCO           | 41.2             | 1,648.0     |
|                                       | FORMIC           | 1.9              | 72.0        |
|                                       | RUHLOR           | 220.0            | 41,000.0    |
|                                       | HSULFI           |                  | 0.0         |
|                                       | LEADPB           | 0.6              | 42,092.0    |
|                                       | MCELLO           | 21.0             |             |
|                                       | MECHLO           | 44.0             | 4,400.0     |
|                                       | MEKETO           | 15.4             | 30.578.0    |
|                                       | MMERCA           | 150.0            | 70,000.0    |
|                                       | VALINE           | 4.8              | 9,555.0     |
|                                       | NITRIC           | 23.1             | 920.0       |
|                                       | VPHENO           | 3.0              | 120.0       |
|                                       | OXALIC           | 8.1              | 0.0         |
|                                       | TETHA1           | 28.0             | 56,000.0    |
|                                       | TITANI           | 1,217.0          | 0.515       |
|                                       | TOLUEN           | 28.9             | 57,602.0    |
|                                       | TURPEN           | 4,000.0          | 12,000.0    |
|                                       | XYLENE           | 115.6            | 231,232.0   |
| 19                                    | ACETON           | 140.7            | 224,700.8   |
|                                       | BACETA           | 1.2              | 0.0         |
|                                       | BARIUM           | 2.5              | 1,782.0     |
|                                       | 3IPHEN           | 0.05             | 800.0       |
|                                       | COIOXI           | 2,800.0          | 87,900.0    |
|                                       | CHFORM           | 0.0              | 0.0         |
|                                       | CHLORI           | 76,502.0         | 300,200.0   |
|                                       | CTETRA           | 2.5              | 0.0         |
|                                       | CYANID           | 1.3              | 2,600.0     |
| <u></u>                               | DJENZE           | 60.0             | 2,400.0     |
|                                       | EACETA           | 1.2              | 2,064.0     |
|                                       | ETHANO           | 6.4              | 0.0         |
| · · · · · · · · · · · · · · · · · · · | FORMIC           | 83.9             | 6,952.0     |
|                                       | HCHLOR           | 9,641.6          | 1,282.6     |
|                                       | HSULFI           | 377,394.8        | 45,110.0    |
|                                       | MECHLO           | 16.6             | 25,772.6    |
|                                       | MEKETO           | 87.1             | 143,730.6   |
|                                       | MERCUR           | 8.9              | 16.4        |
| <u></u>                               | MMERCA           | 377,320.2        | 49,440.0    |
|                                       | VALINE           | 0.4              | 800.0       |
|                                       | NITRIC           | 35.3             | 0.005       |
|                                       | STYREN           | 25.0             | 2,500.0     |
|                                       | TETHA1           | 88.7             | 101,256.3   |
|                                       | TETHYL           | 3.1              | 6,200.0     |
|                                       | TITANI           | 726.0            | 1,780.0     |
|                                       | TOLUEN           | 734.4            | 1,433,143.2 |
|                                       | TRICHL           | 7.8              | 3,000.0     |

• -

### MAR 11, 1985 DEPARTMENT OF ENVIRONMENTAL PROTECTION PAGE NO. 5 HAZARDOUS AIR POLLUTANT SYSTEM PROCESS EMISSIONS BY COUNTY (HAP114)

.

| · · ·                                 | POLLUTANT | AMOUNT USED | EMISSIONS                              |
|---------------------------------------|-----------|-------------|----------------------------------------|
| COUNTY                                | IDENT.    | TONS/YEAR   | LBS./YEAR                              |
|                                       | TURPEN    | 5,000.0     | 17,000.0                               |
|                                       | XYLENE    | 112.3       | 209,900.0                              |
| 21                                    | ACETON    | 28.0        | 56,000.0                               |
|                                       | JACETA    | 3.4         | 4,635.5                                |
| <u></u>                               | BIPHEN    | 3.7         | 3.710.0                                |
|                                       | BUTANO    | 0.1         | 76.0                                   |
| ·                                     | EACETA    | 0.1         | 224.0                                  |
|                                       | EGLYCO    | 0.1         | 48.0                                   |
|                                       | ETHANO    | 0.1         | 244.0                                  |
|                                       | MCHLOR    | 3.4         | 6,800.0                                |
| <u></u>                               | MEKETO    | 13.8        | 27,280.0                               |
|                                       | MISOBU    | 1.8         | 3,609.6                                |
|                                       | NALINE    | 0.2         | 444.0                                  |
|                                       | TETHAL    | 7.6         | 15,262.0                               |
|                                       | TOLUEN    | 29.8        | 59,662.8                               |
|                                       | XYLENE    | 15.7        | 21,378.1                               |
| 23                                    | ACETON    | 5.0         | 10,000.0                               |
|                                       | BACETA    | 2.0         | 0.085                                  |
|                                       | BUTANO    | 9.0         | 11,020.0                               |
|                                       | EACETA    | 10.5        | 17,056.0                               |
|                                       | EBENZE    | 0.5         | 80.0                                   |
|                                       | EGLYCO    | 15.9        | 2,451.0                                |
|                                       | LEADPB    | 160.0       | 0.0                                    |
|                                       | MCELLO    | - 4 . 7     | 5,608.0                                |
|                                       | MEKETO    | 13.0        | 26,000.0                               |
|                                       | MISOBU    | 5.5         | 2,816.0                                |
|                                       | TETHAI    | 3.5         | 5,960.0                                |
|                                       | TOLUEN    | 6.2         | 11,780.0                               |
|                                       | XYLENE    | 57.3        | 71,688.0                               |
| 25                                    | ACETON    | 98.9        | 64,806.0                               |
|                                       | BACETA    | 70.3        | 140,600.0                              |
|                                       | ЗРНТНА    | 1.5         | 3,000.0                                |
| · · · · · · · · · · · · · · · · · · · | BUTANO    | 2.7         | 5,400.0                                |
|                                       | CDIOXI    | 4,520.0     | 16,800.0                               |
|                                       | CHLORI    | 13,141.0    | 16,400.0                               |
|                                       | EACETA    | 0.8         | 1,600.0                                |
| •                                     | EGLYCU    | 12.8        | 25,600.0                               |
|                                       | ETHANO    | 1.0         | 2,000.0                                |
|                                       | FORMAL    | 1.4         | 0.0                                    |
|                                       | FORMIC    | 58.1        | 2,320.0                                |
|                                       | HCHLOR    | 84.7        | 3,300.0                                |
|                                       | HSULFI    | 93.9        | 4,802.0                                |
|                                       | LEADPB    | 2.0         | 80.0                                   |
|                                       | MCELLO    | 51.6        | 103,200.0                              |
|                                       | MCHLOR    | 3.2         | 6,400.0                                |
| · · ·                                 | MECHLO    | 1.4         | 2,713.0                                |
| · · · · · · · · · · · · · · · · · · · | MEKETO    | 14.8        | 29,600.0                               |
|                                       | MISOBU    | 1.6         | 2,739.0                                |
| ê                                     | MMERCA    | 236.0       | 1,800.0                                |
|                                       | NALINE    | 0.5         | 1,000.0                                |
|                                       |           |             |                                        |
|                                       |           |             |                                        |
| · · · · · · · · · · · · · · · · · · · |           |             |                                        |
|                                       | ·         | 58-         | ······································ |
|                                       |           |             |                                        |

### MAR 11, 1985 DEPARTMENT OF ENVIRONMENTAL PROTECTION PAGE NO. 6 HAZARDOUS AIR PULLUTANT SYSTEM PROCESS EMISSIONS BY COUNTY (HAP114)

~

| DENT.<br>PHENO<br>XALIC<br>HENOL<br>ETHA1<br>ITANI<br>OLUEN<br>URPEN<br>YLENE<br>SCETON<br>ACETA<br>URFUR<br>IEKETO<br>NISOBU<br>OLUEN<br>YLENE<br>ACETA<br>DIOXI<br>HLORI<br>ORMAL<br>ICHLOR<br>ISULFI<br>MERCA<br>ITRIC<br>PHENOL<br>ITANI                   | $\begin{array}{r} \hline \text{TONS/YEAR} \\ \hline 2.7 \\ 4.8 \\ \hline 2.8 \\ 16.8 \\ \hline 2.617.8 \\ \hline 36.8 \\ 1.262.0 \\ \hline 71.0 \\ \hline 3.5 \\ 1.7 \\ \hline 7.3 \\ \hline 2.6 \\ \hline 6.1 \\ 14.2 \\ \hline 11.2 \\ \hline 22.5 \\ \hline 2.589.0 \\ \hline 13.900.0 \\ \hline 4.6 \\ \hline 17.4 \\ \hline 300.0 \\ \hline 200.0 \\ \hline 28.8 \\ \hline 1.2 \\ \hline 1.0 \\ \hline 650.0 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LBS./YEAR<br>108.0<br>192.0<br>112.0<br>31,109.0<br>1,448.0<br>71,423.0<br>4,130.0<br>1,423.0<br>4,130.0<br>1,423.0<br>1,423.0<br>4,130.0<br>2,800.0<br>1,360.0<br>2,080.0<br>4,880.0<br>11,360.0<br>8,960.0<br>900.0<br>85,142.0<br>9,280.0<br>700.0<br>57,000.0<br>97,000.0<br>2,450.0<br>2,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| XALIC<br>HENOL<br>ETHA1<br>ITANI<br>OLUEN<br>URPEN<br>YLENE<br>CETON<br>ACETA<br>URFUR<br>IEKETO<br>IISOBU<br>OLUEN<br>YLENE<br>ACETA<br>DIOXI<br>CHLOR<br>ISOBU<br>OLUEN<br>YLENE<br>ACETA<br>DIOXI<br>CHLOR<br>ISULFI<br>MERCA<br>IITRIC<br>PHENOL<br>YETHA1 | $ \begin{array}{r} 4.8\\ 2.8\\ 16.8\\ 2.617.8\\ 36.8\\ 1.262.0\\ 71.0\\ 3.5\\ 1.7\\ 7.3\\ 2.6\\ 6.1\\ 14.2\\ 11.2\\ 22.5\\ 2.589.0\\ 13.900.0\\ 4.6\\ 17.4\\ 300.0\\ 200.0\\ 28.8\\ 1.2\\ 1.0\end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 192.0     112.0     112.0     112.0     112.0     1.448.0     1.448.0     71.423.0     4.130.0     142.000.0     2.800.0     1.360.0     5.840.0     2.080.0     4.880.0     11.360.0     8.960.0     900.0     86.142.0     287.139.0     9.280.0     700.0     57.000.0     1.200.0     2.450.0     2.000.0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| XALIC<br>HENOL<br>ETHA1<br>ITANI<br>OLUEN<br>URPEN<br>YLENE<br>CETON<br>ACETA<br>URFUR<br>IEKETO<br>IISOBU<br>OLUEN<br>YLENE<br>ACETA<br>DIOXI<br>CHLOR<br>ISOBU<br>OLUEN<br>YLENE<br>ACETA<br>DIOXI<br>CHLOR<br>ISULFI<br>MERCA<br>IITRIC<br>PHENOL<br>YETHA1 | $ \begin{array}{r} 4.8\\ 2.8\\ 16.8\\ 2.617.8\\ 36.8\\ 1.262.0\\ 71.0\\ 3.5\\ 1.7\\ 7.3\\ 2.6\\ 6.1\\ 14.2\\ 11.2\\ 22.5\\ 2.589.0\\ 13.900.0\\ 4.6\\ 17.4\\ 300.0\\ 200.0\\ 28.8\\ 1.2\\ 1.0\end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 192.0     112.0     112.0     112.0     112.0     1.448.0     1.448.0     71.423.0     4.130.0     142.000.0     2.800.0     1.360.0     5.840.0     2.080.0     4.880.0     11.360.0     8.960.0     900.0     86.142.0     287.139.0     9.280.0     700.0     57.000.0     1.200.0     2.450.0     2.000.0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| HENOL<br>ETHA1<br>ITANI<br>OLUEN<br>URPEN<br>VIENE<br>CETON<br>ACETA<br>URFUR<br>IEKETO<br>IISOBU<br>OLUEN<br>VYLENE<br>ACETA<br>DIOXI<br>CHLOR<br>ISULFI<br>MERCA<br>IITRIC<br>PHENOL<br>IETHA1                                                               | $\begin{array}{r} 2.8 \\ 16.8 \\ 2.617.8 \\ 36.8 \\ 1.262.0 \\ 71.0 \\ 3.5 \\ 1.7 \\ 7.3 \\ 2.6 \\ 6.1 \\ 14.2 \\ 11.2 \\ 22.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5$ | $ \begin{array}{r} 112.0\\ 31,109.0\\ 1,448.0\\ 71,423.0\\ 4,130.0\\ 142.000.0\\ 2,800.0\\ 142.000.0\\ 2,800.0\\ 1,360.0\\ 5,840.0\\ 2,080.0\\ 4,880.0\\ 11,360.0\\ 8,960.0\\ 900.0\\ 85,142.0\\ 287.139.0\\ 9,280.0\\ 700.0\\ 57,000.0\\ 97,000.0\\ 2,450.0\\ 2,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0\\ 0,000.0$                                                                                                                                                                                                                          |
| ETHA1<br>ITANI<br>OLUEN<br>URPEN<br>YLENE<br>CETON<br>ACETA<br>URFUR<br>IEKETO<br>IISOBU<br>OLUEN<br>YLENE<br>BACETA<br>DIOXI<br>CHLOR<br>ISULFI<br>MERCA<br>IITRIC<br>PHENOL<br>YETHA1                                                                        | $     \begin{array}{r}       16.8 \\       2.617.8 \\       36.8 \\       1.262.0 \\       71.0 \\       3.5 \\       1.7 \\       7.3 \\       2.6 \\       6.1 \\       14.2 \\       11.2 \\       22.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\     $                                                                                                                                                                          | $ \begin{array}{c} 1,448.0\\ 71,423.0\\ 4,130.0\\ 4,130.0\\ 142,000.0\\ 2,800.0\\ 1,360.0\\ 5,840.0\\ 2,080.0\\ 4,880.0\\ 11,360.0\\ 8,960.0\\ 900.0\\ 86.142.0\\ 287.139.0\\ 9,280.0\\ 700.0\\ 57,000.0\\ 97,000.0\\ 2,450.0\\ 2,000.0\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ITANI<br>OLUEN<br>URPEN<br>VLENE<br>CETON<br>ACETA<br>URFUR<br>IEKETO<br>IISOBU<br>OLUEN<br>VLENE<br>DACETA<br>DIOXI<br>HLORI<br>ORMAL<br>ICHLOR<br>ISULFI<br>MERCA<br>VITRIC<br>PHENOL<br>IETHAI                                                              | 2.617.8 $36.8$ $1.262.0$ $71.0$ $3.5$ $1.7$ $7.3$ $2.6$ $6.1$ $14.2$ $11.2$ $22.5$ $2.589.0$ $13.900.0$ $4.6$ $17.4$ $300.0$ $200.0$ $28.8$ $1.2$ $1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 71,423.0<br>4,130.0<br>142.000.0<br>2,800.0<br>1,360.0<br>5,840.0<br>2,080.0<br>4,880.0<br>11,360.0<br>8,960.0<br>900.0<br>86.142.0<br>287.139.0<br>9,280.0<br>700.0<br>57,000.0<br>97,000.0<br>2,450.0<br>2,000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| URPEN<br>YLENE<br>CETON<br>ACETA<br>URFUR<br>IEKETO<br>IISOBU<br>OLUEN<br>YLENE<br>ACETA<br>DIOXI<br>HLORI<br>ORMAL<br>ICHLOR<br>ISULFI<br>MERCA<br>IITRIC<br>PHENOL<br>IETHAI                                                                                 | $   \begin{array}{r}     1,262.0 \\     71.0 \\     3.5 \\     1.7 \\     7.3 \\     2.6 \\     6.1 \\     14.2 \\     11.2 \\     22.5 \\     2,589.0 \\     13,900.0 \\     4.6 \\     17.4 \\     300.0 \\     200.0 \\     28.8 \\     1.2 \\     1.0 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 4,130.0\\ 142,000.0\\ 2,800.0\\ 2,800.0\\ 1,360.0\\ 5,840.0\\ 2,080.0\\ 2,080.0\\ 4,880.0\\ 11,360.0\\ 8,960.0\\ 900.0\\ 85,142.0\\ 287.139.0\\ 9,280.0\\ 700.0\\ 57,000.0\\ 97,000.0\\ 1,200.0\\ 2,450.0\\ 2,000.0\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| YLENE<br>CETON<br>ACETA<br>URFUR<br>IEKETO<br>IISOBU<br>OLUEN<br>YLENE<br>ACETA<br>DIOXI<br>CHLORI<br>ISULFI<br>MERCA<br>IITRIC<br>PHENOL<br>IETHAI                                                                                                            | 71.0 $3.5$ $1.7$ $7.3$ $2.6$ $6.1$ $14.2$ $11.2$ $22.5$ $2,589.0$ $13,900.0$ $4.6$ $17.4$ $300.0$ $200.0$ $28.8$ $1.2$ $1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{c} 142,000.0\\ 2,800.0\\ 1,360.0\\ 5,840.0\\ 2,080.0\\ 4,880.0\\ 11,360.0\\ 8,960.0\\ 900.0\\ 8,960.0\\ 900.0\\ 85,142.0\\ 287.139.0\\ 9,280.0\\ 700.0\\ 57,000.0\\ 97,000.0\\ 2,450.0\\ 2,000.0\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ACETON<br>ACETA<br>URFUR<br>IEKETO<br>IISOBU<br>OLUEN<br>YLENE<br>ACETA<br>DIOXI<br>CHLOR<br>ISULFI<br>MERCA<br>IITRIC<br>PHENOL<br>IETHAI                                                                                                                     | 3.5 $1.7$ $7.3$ $2.6$ $6.1$ $14.2$ $11.2$ $22.5$ $2,589.0$ $13,900.0$ $4.6$ $17.4$ $300.0$ $200.0$ $28.8$ $1.2$ $1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,800.0 $1,360.0$ $5,840.0$ $2,080.0$ $4,880.0$ $11,360.0$ $8,960.0$ $900.0$ $85,142.0$ $287,139.0$ $9,280.0$ $700.0$ $57,000.0$ $1,200.0$ $2,450.0$ $2,000.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ACETA<br>URFUR<br>IEKETO<br>IISOBU<br>OLUEN<br>CYLENE<br>DACETA<br>DIOXI<br>CHLOR<br>ISULFI<br>IMERCA<br>IITRIC<br>PHENOL<br>IETHAI                                                                                                                            | $     \begin{array}{r}       1.7 \\       7.3 \\       2.6 \\       6.1 \\       14.2 \\       11.2 \\       22.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\       2.5 \\    $                                                                                                                                                                         | $ \begin{array}{c} 1,360.0\\ 5,840.0\\ 2,080.0\\ 4,880.0\\ 11,360.0\\ 8,960.0\\ 900.0\\ 86,142.0\\ 287,139.0\\ 9,280.0\\ 700.0\\ 57,060.0\\ 97,000.0\\ 1,200.0\\ 2,450.0\\ 2,000.0\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| URFUR<br>IEKETO<br>IISOBU<br>OLUEN<br>KYLENE<br>BACETA<br>DIOXI<br>CHLOR<br>ISULFI<br>MERCA<br>IITRIC<br>PHENOL<br>IETHAI                                                                                                                                      | 7.3 $2.6$ $6.1$ $14.2$ $11.2$ $22.5$ $2.589.0$ $13,900.0$ $4.6$ $17.4$ $300.0$ $200.0$ $28.8$ $1.2$ $1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5,840.0<br>2,080.0<br>4,880.0<br>11,360.0<br>8,960.0<br>900.0<br>86,142.0<br>287,139.0<br>9,280.0<br>700.0<br>57,000.0<br>97,000.0<br>1,200.0<br>2,450.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| IEKETO<br>IISOBU<br>OLUEN<br>KYLENE<br>BACETA<br>DIOXI<br>CHLOR<br>ISULFI<br>MERCA<br>IITRIC<br>PHENOL<br>IETHAI                                                                                                                                               | 2.6 $6.1$ $14.2$ $11.2$ $22.5$ $2,589.0$ $13,900.0$ $4.6$ $17.4$ $300.0$ $200.0$ $28.8$ $1.2$ $1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,080.0 $4,880.0$ $11,360.0$ $8,960.0$ $900.0$ $85,142.0$ $287,139.0$ $9,280.0$ $700.0$ $57,000.0$ $97,000.0$ $1,200.0$ $2,450.0$ $2,000.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ISOBU<br>OLUEN<br>VLENE<br>DACETA<br>DIOXI<br>CHLORI<br>ISULFI<br>MERCA<br>VITRIC<br>PHENOL<br>IETHAI                                                                                                                                                          | $ \begin{array}{r} 6.1\\ 14.2\\ 11.2\\ 22.5\\ 2,589.0\\ 13,900.0\\ 4.6\\ 17.4\\ 300.0\\ 200.0\\ 200.0\\ 28.8\\ 1.2\\ 1.0\end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4,880.0<br>11,360.0<br>8,960.0<br>900.0<br>86,142.0<br>287,139.0<br>9,280.0<br>700.0<br>57,000.0<br>97,000.0<br>2,450.0<br>2,000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| OLUEN<br>YLENE<br>DACETA<br>DIOXI<br>HLORI<br>ORMAL<br>ICHLOR<br>ISULFI<br>MERCA<br>VITRIC<br>PHENOL<br>IETHAI                                                                                                                                                 | 14.2<br>11.2<br>22.5<br>2,589.0<br>13,900.0<br>4.6<br>17.4<br>300.0<br>200.0<br>28.8<br>1.2<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11,360.0<br>8,960.0<br>900.0<br>85,142.0<br>287,139.0<br>9,280.0<br>700.0<br>57,000.0<br>97,000.0<br>1,200.0<br>2,450.0<br>2,000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ACETA<br>DACETA<br>DIOXI<br>CHLORI<br>CORMAL<br>ICHLOR<br>ISULFI<br>IMERCA<br>NITRIC<br>PHENOL<br>IETHAI                                                                                                                                                       | 11.2<br>22.5<br>2,589.0<br>13,900.0<br>4.6<br>17.4<br>300.0<br>200.0<br>28.8<br>1.2<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8,960.0<br>900.0<br>85,142.0<br>287,139.0<br>9,280.0<br>700.0<br>57,000.0<br>97,000.0<br>1,200.0<br>2,450.0<br>2,000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DACETA<br>DIOXI<br>CHLORI<br>ICHLOR<br>ISULFI<br>IMERCA<br>VITRIC<br>PHENOL<br>IETHAI                                                                                                                                                                          | 22.5<br>2,589.0<br>13,900.0<br>4.6<br>17.4<br>300.0<br>200.0<br>28.8<br>1.2<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 900.0<br>86.142.0<br>287.139.0<br>9.280.0<br>700.0<br>57.000.0<br>97.000.0<br>1.200.0<br>2.450.0<br>2.000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EDIOXI<br>CHLORI<br>FORMAL<br>ICHLOR<br>ISULFI<br>MERCA<br>VITRIC<br>PHENOL<br>FETHAI                                                                                                                                                                          | 2,589.0<br>13,900.0<br>4.6<br>17.4<br>300.0<br>200.0<br>28.8<br>1.2<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 86.142.0<br>287.139.0<br>9,280.0<br>700.0<br>57.000.0<br>97,000.0<br>1,200.0<br>2,450.0<br>2,000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CHLORI<br>ORMAL<br>ICHLOR<br>ISULFI<br>MERCA<br>IITRIC<br>PHENOL<br>IETHAI                                                                                                                                                                                     | $ \begin{array}{r} 13,900.0\\ 4.6\\ 17.4\\ 300.0\\ 200.0\\ 28.8\\ 1.2\\ 1.0\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 287,139.0<br>9,280.0<br>700.0<br>57,000.0<br>97,000.0<br>1,200.0<br>2,450.0<br>2,000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ORMAL<br>ICHLOR<br>ISULFI<br>MERCA<br>IITRIC<br>PHENOL<br>IETHAI                                                                                                                                                                                               | 4.6<br>17.4<br>300.0<br>200.0<br>28.8<br>1.2<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9,280.0<br>700.0<br>57,000.0<br>97,000.0<br>1,200.0<br>2,450.0<br>2,000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ICHLOR<br>ISULFI<br>IMERCA<br>IITRIC<br>PHENOL<br>IETHAI                                                                                                                                                                                                       | 17.4<br>300.0<br>200.0<br>28.8<br>1.2<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 700.0<br>57,000.0<br>97,000.0<br>1,200.0<br>2,450.0<br>2,000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ISULFI<br>IMERCA<br>IITRIC<br>PHENOL<br>IETHAI                                                                                                                                                                                                                 | 300.0<br>200.0<br>28.8<br>1.2<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 57,000.0<br>97,000.0<br>1,200.0<br>2,450.0<br>2,000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MERCA<br>NITRIC<br>PHENOL<br>TETHA1                                                                                                                                                                                                                            | 200.0<br>28.8<br>1.2<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 97,000.0<br>1,200.0<br>2,450.0<br>2,000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| HENOL<br>MENOL<br>METHA1                                                                                                                                                                                                                                       | 28.8<br>1.2<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,200.0<br>2,450.0<br>2,000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PHENOL<br>TETHA1                                                                                                                                                                                                                                               | 1.2<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,450.0<br>2,000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TETHA1                                                                                                                                                                                                                                                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V • V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TURPEN                                                                                                                                                                                                                                                         | 5,000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CETON                                                                                                                                                                                                                                                          | 12.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21,597.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| NTIMO                                                                                                                                                                                                                                                          | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BACETA                                                                                                                                                                                                                                                         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ú.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3PHTHA                                                                                                                                                                                                                                                         | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7,190.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| BUTANO                                                                                                                                                                                                                                                         | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6,707.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CHLORI                                                                                                                                                                                                                                                         | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9,200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CHROMI                                                                                                                                                                                                                                                         | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 136.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CYANID                                                                                                                                                                                                                                                         | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 355.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5,424.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 217,500.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,656.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ······································                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 600.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 473,640.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5,832.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41,344.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| and a second                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 183,900.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25,660.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 116.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 189,796.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                | SULFA<br>ACETA<br>GLYCO<br>ORMIC<br>URFUR<br>CHLOR<br>YDRAZ<br>CELLO<br>ECHLO<br>ECHLO<br>EKETO<br>METHA<br>ITRIC<br>XALIC<br>CBIPH<br>ETHA1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SULFA       135.6         ACETA       0.1         GLYCO       108.8         ORMIC       116.4         URFUR       3.2         CHLOR       13.5         YDRAZ       0.3         CELLO       236.9         ECHLO       4.2         EKETU       32.3         METHA       25.896.0         ITRIC       130.9         XALIC       2.9         CBIPH       6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

......

### MAR 11, 1985 DEPARTMENT OF ENVIRONMENTAL PROTECTION PAGE NO. 7 HAZARDOUS AIR POLLUTANT SYSTEM PROCESS EMISSIONS BY COUNTY (HAP114)

.

۰. ....

|            | POLLUTANT                              | AMOUNT USED                           | EMISSIONS                             |
|------------|----------------------------------------|---------------------------------------|---------------------------------------|
| YTVUGC     | IDENT.                                 | TONS/YEAR                             | LBS./YEAR                             |
| •          | TETHYL                                 | 84.0                                  | 107,311.0                             |
|            | TITANI                                 | 2.0                                   | 0.0                                   |
|            | TOLUEN                                 | 27.3                                  | 40,648.0                              |
|            | TRICHL<br>XYLENE                       | 117.5<br>28.1                         | 51,468.0<br>52,226.0                  |
|            | ATEENE                                 |                                       |                                       |
|            |                                        |                                       | · · · · · · · · · · · · · · · · · · · |
|            | ·                                      |                                       |                                       |
|            |                                        |                                       |                                       |
|            |                                        |                                       |                                       |
|            |                                        |                                       |                                       |
|            |                                        |                                       |                                       |
|            |                                        |                                       |                                       |
|            |                                        |                                       | ·                                     |
|            |                                        |                                       |                                       |
|            |                                        |                                       |                                       |
|            | ······································ |                                       |                                       |
|            |                                        |                                       |                                       |
|            |                                        |                                       |                                       |
| ·          | •                                      |                                       |                                       |
|            |                                        | · · · · · · · · · · · · · · · · · · · |                                       |
|            |                                        |                                       |                                       |
| ·          | · · · · · · · · · · · · · · · · · · ·  |                                       |                                       |
|            |                                        |                                       |                                       |
|            |                                        |                                       |                                       |
|            |                                        |                                       |                                       |
|            |                                        |                                       |                                       |
|            |                                        |                                       |                                       |
| •          | · · · · · · · · · · · · · · · · · · ·  |                                       |                                       |
|            |                                        |                                       |                                       |
|            |                                        |                                       |                                       |
|            |                                        |                                       |                                       |
|            |                                        |                                       |                                       |
|            |                                        |                                       |                                       |
|            |                                        |                                       |                                       |
|            |                                        |                                       |                                       |
| •          |                                        |                                       |                                       |
| · <u> </u> |                                        |                                       |                                       |
|            |                                        |                                       |                                       |
|            |                                        |                                       |                                       |
|            |                                        |                                       |                                       |
|            |                                        |                                       |                                       |
|            |                                        | · · · · · · · · · · · · · · · · · · · |                                       |
|            |                                        |                                       |                                       |
|            |                                        | -60-                                  |                                       |
|            |                                        |                                       | · · · · · · · · · · · · · · · · · · · |
|            |                                        |                                       |                                       |

# \*\* APPENDIX E \*\*

.

.

•

# APPENDIX E

•

.

### STANDARD INDUSTRIAL CLASSIFICATION

| DIVISION                                                                      | MAJOR GROUP                            | INDUSTRY                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MANUFACTURING                                                                 | 2Ø<br>22<br>24<br>25<br>26<br>28<br>29 | FOOD AND KINDRED PRODUCTS<br>TEXTILE MILL PRODUCTS<br>LUMBER AND WOOD PRODUCTS<br>WOOD FURNITURE AND FIXTURES<br>PAPER AND ALLIED PRODUCTS<br>CHEMICALS AND ALLIED PRODUCTS<br>PETROLEUM REFINING AND RELATED INDUSTRIES           |
|                                                                               | 3Ø<br>31<br>32<br>33<br>34<br>35       | RUBBER AND MISCELLANEOUS PLASTICS<br>LEATHER AND LEATHER PRODUCTS<br>STONE, CLAY, GLASS, AND CONCRETE PRODUCTS<br>PRIMARY METAL PRODUCTS<br>FABRICATED METAL PRODUCTS<br>MACHINERY                                                 |
|                                                                               | 36<br>37<br>38<br>39                   | ELECTRICAL AND ELECTRONIC MACHINERY<br>TRANSPORTATION EQUIPMENT<br>MEASURING, ANALYZING, AND CONTROLLING<br>INSTRUMENTS; PHOTOGRAPHIC, MEDICAL, AND<br>OPTICAL GOODS; WATCHES AND CLOCKS<br>MISCELLANEOUS MANUFACTURING INDUSTRIES |
| TRANSPORTATION,<br>COMMUNICATIONS,<br>ELECTRIC, GAS, AND<br>SANITARY SERVICES |                                        |                                                                                                                                                                                                                                    |
|                                                                               | 40<br>42<br>49                         | RAILROAD TRANSPORTATION<br>MOTOR FREIGHT TRANSPORTATION AND<br>WAREHOUSING<br>ELECTRIC, GAS, AND SANITARY SERVICES                                                                                                                 |
| WHOLESALE TRADE                                                               | 51                                     | WHOLESALE TRADE- NONDURABLE GOODS                                                                                                                                                                                                  |
| SERVICES                                                                      | 72<br>73<br>75<br>8Ø                   | PERSONAL SERVICES<br>BUSINESS SERVICES<br>AUTOMOTIVE REPAIR, SERVICE, AND GARAGES<br>HEATLTH SERVICES                                                                                                                              |
| PUBLIC<br>ADMINISTRATION                                                      | 97                                     | NATIONAL SECURITY AND INTERNATIONAL<br>AFFAIRS                                                                                                                                                                                     |

# MAR 11, 1985DEPARTMENT OF ENVIRONMENTAL PROTECTIONPAGE NO. 1\_\_\_\_\_HAZARDOUS AIR POLLUTANT SYSTEMSTATENIDE SUMMARY OF PROCESS EMISSIONS BY INDUSTRIAL CLASSIFICATION (HAP112)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 ()     1.T   1.T | AMOUNT USED | EMISSIONS                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|----------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | POLLUTANT          | TONS/YEAR   | LUS./YEAR                                                                                                      |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ACETIC             | 77.5        | 1,402.6                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BACETA             | 22.5        | 900.0                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CDIOXI             | 6.0         | 0.0                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHLORI             | 19.9        | 2,400.0                                                                                                        |
| ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPOXYP             | 401.0       | 124,600.0                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HCHLOR             | · 36.5      | 600.0                                                                                                          |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ANTIMO             | 4.0         | 0.0                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BIPHEN             | 23.7        | 4,510.0                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHLORI             | 1.3         | 0.0                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHROMI             | 1.2         | 48.0                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DBENZE             | 60.0        | 2,400.0                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DSULFA             | 135.6       | 5,424.0                                                                                                        |
| . <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EGLYCO             | 2.1         | 4,140.0                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FORMIC             | 72.4        | 22,296.0                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MEKETO             | 15.4        | 13,664.0                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OXALIC             | 22.1        | 560.0                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TETHAI             | 143.8       | 287,673.3                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TOLJEN             | 10.8        | 11,521.0                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XYLENE             | 174.6       | 337,390.0                                                                                                      |
| 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BACETA             | 5.2         | 6,366.0                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BUTANO             | 0.7         | 1,238.0                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DMETHA             | 45.0        | 90,000.0                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EACETA             | 1.8         | 3,695.0                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EGLYCO             | 0.1         | 48.0                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ETHANO             | 0.1         | 244.0                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FORMAL             | 4.6         | 9,280.0                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MECHLO             | 44.0        | 4,400.0                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MEKETO             | 5.8         | 11,466.0                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NALINE             | 5.0         | 9,999.0                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PHENOL             | 1.2         | 2,450.0                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TETHAL             | 23.5        | 47,000.0                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TOLUEN             | 30.9        | 61,802.0                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XYLENE             | 14.4        | . 28,799.0                                                                                                     |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BACETA             | 10.3        | 16,351.5                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EACETA             | 1.9         | 3,754.0                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FURFUR             | 7.3         | 5,840.0                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MEKETO             | 2.8         | 2,160.0                                                                                                        |
| · , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | MISDBU             | 7.9         | 8,489.6                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TOLJEN             | 32.1        | 47,050.8                                                                                                       |
| ٦،                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | XYLENE             | 44.6        | 65,863.1                                                                                                       |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ACETON             | 95.1        | 51,506.0                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | 83.8        | <u>116,300.0</u><br>296,787.0                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CDIDXI<br>Chform   | 16,933.0    | and a second |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHLORI             | 87,058.6    | 0.0<br>1,304,902.5                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DETHAN             | 68.1        | 32,400.0                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EGLYCO             | 3.8         | 1,200.0                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EGLIJE             | 3.6         | 966.0                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ETHANO             | 29.7        | 1,074.0                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FORMAL             | 113.3       | 45,118.0                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |             |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |             |                                                                                                                |

-62-

-----

#### MAR 11, 1985 DEPARTMENT OF ENVIRONMENTAL PROTECTION PAGE NO. 2 HAZARDOUS AIR POLLUTANT SYSTEM STATENIDE SUMMARY OF PROCESS EMISSIONS BY INDUSTRIAL CLASSIFICATION (HAP112)

|           |           | •           |             |
|-----------|-----------|-------------|-------------|
|           | · · ·     | AMOUNT USED | EMISSIONS   |
| · · · · · | POLLUTANT | TUNS/YEAR   | LBS./YEAR   |
|           |           |             |             |
|           | FORMIC    | 55.9        | 13,200.0    |
|           | HCHLOR    | 186.4       | 31,766.0    |
|           | HSULFI    | 378,553.5   | 269,912.0   |
|           | MCELLO    | 17.9        | 6,700.0     |
|           | MECHLO    | 17.2        | 15,900.0    |
|           | MEKETO    | 12.6        | 21,700.0    |
|           | MMERCA    | 378,315.1   | 428,940.0   |
|           | NITRIC    | 61.8        | 11,320.0    |
|           | TETHA1    | 17.4        | 24,700.0    |
|           | TETHYL    | 8.6         | 14,700.0    |
|           | TITANI    | 9,039.6     | 3,580.0     |
|           | TOLUEN    | 3,278.3     | 1,930,000.0 |
|           | TRICHL    | 75.2        | 36,300.0    |
|           | TURPEN    | 24,448.0    | 77,130.0    |
|           | XYLENE    | 190.2       | 348,900.0   |
|           | ZINCZN    | 89.7        | 900.0       |
| 23        | ACETON    | 88.2        | 4,804.0     |
|           | ANTIMO    | 6.7         | 0.0         |
|           | BACETA    | 3.8         | 0.0         |
|           | BARIUM    | 2.0         | 0.0         |
|           | BUTANO    | 3.2         | 40.0        |
|           | CHLORI    | 58,671.1    | 0.0         |
|           | CHROMI    | 1.2         | 0.0         |
|           | CTETRA    | <u> </u>    | 0.0         |
|           | EGLYCO    | 8.0         | 320.0       |
|           | ETHANO    | 26.4        | 0.0         |
|           | FALCOH    | 20.4        | 0.0         |
|           | FURFUR    | 3.2         | 1.270.0     |
|           |           | 9,607.0     | 52.6        |
| ····      | HCHLOR    |             |             |
|           |           | 8.5         | 0.0         |
|           | MCELLO    | 10.5        | 0.0         |
|           | MECHLO    | 126.5       | 5,065.0     |
| ·····     | MEKETO    | 176.8       | 134.8       |
|           | MERCUR    | 8.9         | 16.4        |
|           | MMETHA    | 25,896.0    | 183,900.0   |
|           | NITRIC    | 2.1         | 0.0         |
|           | PCBIPH    | 0.5         | 0.0         |
|           | TETHA1    | 444.4       | 2,751.0     |
|           | TETAYL    | 222.7       | 179.0       |
|           | TITANI    | 39.2        | 0.0         |
|           | TOLUEN    | 119.5       | 593.0       |
|           | TRICHL    | 8.8         | 0.0         |
|           | XYLENE    | 327.2       | 2,243.8     |
| 29        | MECHLO    | 1.5         | 275.0       |
| 30        | ACETON    | 535.0       | 143,920.0   |
|           | BACETA    | 0.1         | 0.0         |
|           | BUTANO    | 0.1         | 0.0         |
|           | OMETHA    | 412.5       | 0.0         |
|           | EACETA    | 1.0         | 1,860.0     |
|           | EPICHL    | 31.0        | 12.0        |

-63-

------

------

\_\_\_\_\_

#### MAR 11, 1985 DEPARTMENT OF ENVIRONMENTAL PROTECTION PAGE NO. 3 HAZARDOUS AIR POLLUTANT SYSTEM STATENIDE SUMMARY OF PROCESS EMISSIONS BY INDUSTRIAL CLASSIFICATION (HAP112)

• •

|                           | AMOUNT USED | EMISSIONS |
|---------------------------|-------------|-----------|
| POLLUTANT                 | TONS/YEAR   | L8S./YEAR |
| FORMAL                    | 3,375.0     | 25,003.0  |
| FORMIC                    | 7.5         | 1.0       |
| MALEIC                    | 143.0       | 0.0       |
| MCELLO                    | 0.1         | 0.0       |
| MECHLO                    | 20.9        | 35,740.0  |
| MEKETO                    | 63.9        | 62,031.0  |
| MELAMI                    | 2,321.0     | 0.0       |
| ММЕТНА                    | 11.6        | 650.0     |
| PHENOL                    | 3,524.0     | 3,247.0   |
| STYREN                    | 96.3        | 226.0     |
| TETHA1                    | 366.1       | 592,710.0 |
| TOLJEN                    | 17.8        | 31,725.0  |
| TRICHL                    | 1.2         | 2,420.0   |
| XYLENE:                   | 1.4         | 2,200.0   |
| ACETON                    | 250.3       | 471,927.8 |
| BACETA                    | 97.6        | 195,262.0 |
| BPHTHA                    | 5.1         | 10,190.0  |
| BUTANO                    | 10.5        | 20,892.0  |
| CHLORI                    | 4.6         | 9,200.0   |
| DMETHA                    | 28.0        | 56,000.0  |
| EACETA                    | 25.4        | 45,529.0  |
| EGLYCO                    | 110.1       | 220,054.0 |
| ETHAND                    | 1.0         | 2,000.0   |
| FORMAL                    | 1.4         | 0.0       |
| FORMIC                    | 251.1       | 10,044.0  |
| HCHLOR                    | 3.5         | 140.0     |
| HSULFI                    | 0.0         | 0.Ü       |
| LEADPA                    | 5.0         | 80.0      |
| MCELLO                    | 309.4       | 618,932.0 |
| MCHLOR                    | 6.6         | 13,200.0  |
| MECHLO                    | 13.3        | 26,582.6  |
| MEKETO                    | 194.3       | 353,229.0 |
| NALINE                    | 0.9         | 1,800.0   |
| NPHENO                    | 5.7         | 228.0     |
| OXALIC                    | 1.7         | 308.0     |
| PHENOL                    | 2.8         | 112.0     |
| TETHA1                    | 6.3         | 10,200.0  |
| TETHYL                    | 33.4        | 66,750.0  |
| TITANI                    | 93.0        | 1,660.0   |
| TOLUEN                    | 146.2       | 287,836.0 |
| XYLENE                    | 79.4        | 158.847.0 |
| 2 <u>ACRYLO</u><br>MELAMI | <u> </u>    | 0.0       |
| TDIOXI                    |             | 0.0       |
| VCHLOR                    | 501.4       | 0.0       |
| 3TETHA1                   | 23.1        | 28,665.0  |
| 4 CYANID                  | 1.6         | 355.0     |
| EACETA                    | 1.8         | 2,808.0   |
| EGLYCO                    | 2.5         | 4,964.0   |
| MCELLO                    | 0.5         | 1,008.0   |
|                           |             |           |
|                           | -64-        |           |
|                           |             |           |

#### MAR 11, 1985 DEPARTMENT OF ENVIRONMENTAL PROTECTION PAGE NO. 4 HAZARDOUS AIR POLLUTANT SYSTEM STATEWIDE SUMMARY OF PROCESS EMISSIONS BY INDUSTRIAL CLASSIFICATION (HAP112)

|            |           | AMOUNT USED | EMISSIONS            |
|------------|-----------|-------------|----------------------|
|            | POLLUTANT | TONS/YEAR   | LBS./YEAR            |
|            | MECHLO    | 1.8         | 1,032.0              |
|            | MEKETO    | 9.0         | 18,045.9             |
|            | NITRIC    | 4.7         | 4,700.0              |
|            | PCBIPH    | 6.2         | 0.0                  |
|            |           | 25.8        | 34,558.0             |
|            | TETHA1    |             |                      |
|            | TOLUEN .  | 7.6         | 11,882.0<br>47,520.0 |
|            | TRICHL    | 39.6        | 17,876.7             |
|            | XYLENE    | 12.9        |                      |
| -          | ZINCZN    | 2.3         | 46.0                 |
| <u>5</u> . | BARIUM    | 2.5         | 1,782.0              |
|            | CYANID    | 1.3         | 2,600.0              |
|            | EACETA    | 0.1         | 35.0                 |
|            | FORMIC    | 122.3       | 4,892.0              |
|            | MECHLO    | 1.4         | 2,713.0              |
|            | MEKETO    | 0.6         | 1,182.6              |
|            | TETHA1    | 68.2        | 101,303.0            |
|            | TOLUEN    | 26.6        | 53,203.2             |
|            | TRICHL    | 3.1         | 1,677.0              |
| 5          | ACETON    | 32.6        | 39,899.0             |
|            | BACETA    | 20.7        | 34,203.0             |
|            | BARIUM    | 43.4        | 374.0                |
|            | CHLORI    | 48.0        | 100.0                |
|            | C OP > ER | 127.7       | 106.6                |
|            | EACETA    | 2.5         | 5,000.0              |
|            | EGLYCO    | 5.9         | 5,941.0              |
|            | HCHLOR    | 170.5       | 6,672.0              |
|            | HSULFI    | 0.0         | 0.0                  |
|            | LEADP8    | 8.22        | 550.0                |
|            | MECHLO    | 104.3       | 190,571.0            |
|            | NITRIC    | 108.5       | 4,470.0              |
|            | OXALIC    | 6.0         | 0.0                  |
|            | PHENOL    | 2.6         | 0.7                  |
|            | TETHA1    | 221.0       | 178,089.0            |
|            | TETHYL    | 4.0         | 7,000.0              |
|            | TITANI    | 1.9         | 0.0                  |
|            | TRICHL    | 82.9        | 5,948.0              |
|            | XYLENE    | 57.5        | 19,469.0             |
| 1.         | ACETON    | 51.8        | 59,974.0             |
|            | BACETA    | 0.2         | 280.0                |
|            | BUTAND    | 9.0         | 11,020.0             |
|            | CHLORI    | 2.0         | 0.0                  |
|            | CHROMI    | 1.7         | 136.0                |
|            | EACETA    | 1.0         | 256.0                |
|            | EBENZE    | 0.5         | 80.0                 |
|            | EGLYCO    | 34.9        | 40,451.0             |
|            | HCHLOR    | 13.5        | 5,500.0              |
|            | HYDRAZ    | 0.3         | 600.0                |
|            | LEADPB    | 160.0       | 0.0                  |
|            | MCELLO    | 4.7         | 5,608.0              |
|            | MECHLO    | 7.8         | 6,290.0              |
|            |           | , • •       |                      |
|            |           |             |                      |

-65-

•

#### MAR 11, 1985 DEPARTMENT OF ENVIRONMENTAL PROTECTION PAGE NO. 5 HAZARDOUS AIR POLLUTANT SYSTEM STATENIDE SUMMARY OF PROCESS EMISSIONS BY INDUSTRIAL CLASSIFICATION (HAP112)

• -

|            |           |           | and a second |
|------------|-----------|-----------|----------------------------------------------------------------------------------------------------------------|
|            | POLLUTANT | TONS/YEAR | LBS./YEAR                                                                                                      |
|            | MEKETO    | 11.3      | 19,790.0                                                                                                       |
|            | MISOBU    | 2.2       | 2,816.0                                                                                                        |
|            |           |           | 20,960.0                                                                                                       |
| - <u>.</u> | NITRIC    | 122.7     | 12,775.0                                                                                                       |
|            | STYREN    | 107.4     | 150,581.0                                                                                                      |
|            | TETHA1    | 85.9      |                                                                                                                |
| ·          | TETHYL    | 50.6      | 40,561.0                                                                                                       |
|            | TOLUEN    | 0,9       |                                                                                                                |
|            | TRICHL    | 0.5       | 1,000.0                                                                                                        |
|            | XYLENE    | 70.4      | 99,096.0                                                                                                       |
| 33         | MISOBU    | 1.6       | 2,739.0                                                                                                        |
|            | TETHA1    | 18.0      | 32,709.0                                                                                                       |
|            | TOLJEN    | 8.2       | 14,223.0                                                                                                       |
| 39         | ACETON    | 16.3      | 32,490.0                                                                                                       |
|            | MEKETO    | 0.8       | 1,608.0                                                                                                        |
|            | TOLUEN    | 2.9       | 5,915.0                                                                                                        |
|            | XYLENE    | 1.2       | 2,353.0                                                                                                        |
| 40         | BACETA    | 0.1       | 200.0                                                                                                          |
|            | EACETA    | 0.8       | 1,600.0                                                                                                        |
| 42         | EACETA    | 1.0       | 2,000.0                                                                                                        |
|            | TRICHL    | 8.0       | 16.000.0                                                                                                       |
| 49         | ASBEST    | 34.3      | 0.0                                                                                                            |
|            | CHLORI    | 12,000.0  | 0.0                                                                                                            |
|            | HYDRAZ    | 3.5       | 140.0                                                                                                          |
|            | MANGAN    | 6.2       | 9,320.0                                                                                                        |
|            | PCBIPH    | 95.5      | 0.0                                                                                                            |
| 51         | ACETON    | 75.3      | 0.0                                                                                                            |
|            | BACETA    | 2.4       | 0.0                                                                                                            |
|            | CHLORI    | 644.7     | 0.0                                                                                                            |
| ····       | DBENZE    | 2.5       | 0.0                                                                                                            |
|            | EGLYCO    | 7.7       | 0.0                                                                                                            |
|            | FORMIC    | 48.2      | 0.0                                                                                                            |
|            | MCELLO    | 34.5      | 0.0                                                                                                            |
|            | MECHLO    | 8.22      | 0.0                                                                                                            |
|            | MEKETO    | 42.6      | 0.0                                                                                                            |
|            | MISOBU    | 1.0       | 0.0                                                                                                            |
|            | NITRIC    | 86.2      | 0.0                                                                                                            |
|            | OXALIC    | 1.3       | 0.0                                                                                                            |
|            | TETHAI    | 62.3      | 0.0                                                                                                            |
|            | TETHYL    | 7.1       | 0.Ŭ                                                                                                            |
|            | TOLJEN    | 56.4      | 0.0                                                                                                            |
|            | TRICHL    | 20.4      | 0.0                                                                                                            |
|            | XYLENE    | 42.6      | 0.0                                                                                                            |
| 7.2        | TETHYL    | 0.0       | 0.0                                                                                                            |
| 73         | CRESOL    | 2.5       | 0.0                                                                                                            |
| <u> </u>   | DBENZE    | 2.5       | 0.0                                                                                                            |
|            | MECHLO    | 2.5       | 0.0                                                                                                            |
| 75         | EGLYCO    | 6.6       | 0.0                                                                                                            |
|            | TOLJEN    | 1.5       | 0.0                                                                                                            |
| 75         | XYLENE    | 4.1       | 8,236.0                                                                                                        |
| 30         | EOXIDE    | 2.0       | 569.0                                                                                                          |

<u>-66-</u>

. منه و المحمول ا \_\_\_\_\_

#### MAR 11, 1985 DEPARTMENT OF ENVIRONMENTAL PROTECTION PAGE NO. 6 HAZARDOUS AIR POLLUTANT SYSTEM STATEWIDE SUMMARY OF PROCESS EMISSIONS BY INDUSTRIAL CLASSIFICATION (HAP112)

|         |                                       | AMOUNT USED                                              | EMISSIONS                              |
|---------|---------------------------------------|----------------------------------------------------------|----------------------------------------|
|         | POLLUTANT                             | TONS/YEAR                                                | LBS./YEAR                              |
|         | XYLENE                                | 1.9                                                      | 0.0                                    |
| 97      | CHLORI                                | 10.2                                                     | 20,400.0                               |
|         | MCHLOR                                | 1.8                                                      | 3,600.0                                |
|         | MEKETO                                | 6.5                                                      | 7,600.0                                |
|         | MEKETO<br>PCBIPH                      | 42.8                                                     | 0.0                                    |
|         | · TETHA1                              | . 2.8                                                    | 5,600.0                                |
| <u></u> | TETHYL                                | 9.7                                                      | 15,260.0                               |
|         | TETHYL:<br>TFURAN<br>TOLUEN           | . 0.2<br>1.1                                             | 400.0<br>2,200.0                       |
|         |                                       |                                                          |                                        |
|         |                                       |                                                          |                                        |
|         |                                       |                                                          |                                        |
|         |                                       |                                                          |                                        |
|         |                                       |                                                          | ·                                      |
|         |                                       |                                                          |                                        |
|         |                                       |                                                          |                                        |
|         |                                       |                                                          |                                        |
|         |                                       |                                                          |                                        |
|         |                                       |                                                          |                                        |
|         |                                       |                                                          |                                        |
|         |                                       |                                                          |                                        |
|         |                                       |                                                          |                                        |
|         |                                       |                                                          |                                        |
|         | ·                                     |                                                          |                                        |
|         |                                       |                                                          | ······································ |
| ·····   | •                                     |                                                          |                                        |
|         |                                       |                                                          |                                        |
|         |                                       |                                                          |                                        |
|         | ·                                     |                                                          |                                        |
|         |                                       |                                                          |                                        |
|         | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · ·                    |                                        |
|         |                                       |                                                          |                                        |
|         |                                       |                                                          |                                        |
|         |                                       |                                                          |                                        |
|         |                                       | a tingan menerata ang ang ang ang ang ang ang ang ang an |                                        |
|         |                                       |                                                          |                                        |
| ······  |                                       | ·                                                        | •                                      |
|         |                                       |                                                          |                                        |
|         |                                       |                                                          | · · · · · · · · · · · · · · · · · · ·  |
|         |                                       |                                                          |                                        |
|         |                                       |                                                          |                                        |
|         |                                       |                                                          |                                        |
|         |                                       | · ·                                                      |                                        |
|         |                                       |                                                          |                                        |
|         |                                       |                                                          |                                        |
|         |                                       |                                                          |                                        |
|         |                                       |                                                          |                                        |
|         |                                       |                                                          |                                        |
|         |                                       |                                                          | ,                                      |
|         |                                       |                                                          |                                        |
| •       |                                       |                                                          |                                        |
| •       |                                       | -67-                                                     |                                        |

\*\* APPENDIX F \*\*

.

.

## APPENDIX F

### TOXICITY SCORING SUMMARY

| Pollutant                            | CAS                | RTECS               | Categories |   |   |   |     | S      | Tox'.         |
|--------------------------------------|--------------------|---------------------|------------|---|---|---|-----|--------|---------------|
|                                      | Registry<br>Number | Accession<br>Number | С          | М | R | A | Tot |        | Score         |
|                                      | · ·                |                     |            |   |   |   |     |        |               |
| America Trievide                     | 1327-53-3          | CG3325000           | 4          | 4 | 4 | 4 | 16  | 0      | 16.0          |
| Arsenic Trioxide                     | 62-75-9            | IQ0525000           | 4          | 4 | 4 | 4 | 16  | Õ      | 16.0          |
| N-Nitrosodimethylamine               | 107-13-1           | AT5250000           | 4          | 4 | 4 | 3 | 15  | 0.50   | 15.5          |
| Acrylonitrile<br>Benzene             | 71-43-2            | CY1400000           | 4          | 4 | 4 | 3 | 15  | 0.50   | 15.5          |
| Chloroform                           | 67-66-3            | FS9100000           | 4          | 4 | 4 | ž | 15  | 0.50   | 15.5          |
| Chromium (Potassium Chromate)        | 7789-00-6          | GB2940000           | 4          | 4 | 3 | 4 | 15  | 0.50   | 15.5          |
| Dioxin                               | 1746-01-6          | HP3500000           | 3          | 4 | 4 | 4 | 15  | 0.50   | 15.5          |
| Epichlorohydrin                      | 106-89-8           | TX4900000           | 4          | 4 | 4 | 3 | 15  | 0.50   | 15.5          |
| Ethyleneimine                        | 151-56-4           | KX5075000           | 3          | 4 | 4 | 4 | 15  | 0.50   | 15.5          |
| Formaldehyde                         | 50-00-0            | LP8925000           | 3          | 4 | 4 | 4 | 15  | 0.50   | 15.5          |
| Nitroso-n-Methylurea                 | 684-93-5           | YT7875000           | 4          | 4 | 4 | 3 | 15  | 0.50   | 15.5          |
| •                                    | 100-42-5           | WL3675000           | 4          | 4 | 4 | 3 | 15  | 0.50   | 15.5          |
| Styrene<br>Polychlorinated Biphenyls | 11097-69-1         | TQ1360000           | 4          | 4 | 4 | 2 | 14  | 1.00   | 15.0          |
| Vinyl Chloride                       | 75-01-4            | KU9625000           | 4          | 4 | 4 | 2 | 14  | 1.00   | 15.0          |
| Benzo(a)Pyrene                       | 50-32-8            | DJ3675000           |            | 4 | 4 | 3 | 14  | 0.58   | 14.6          |
| Cadmium                              | 7440-43-9          | EU9800000           | 3<br>3     | 3 | 4 | 4 | 14  | 0.58   | 14.6          |
| Cadmium chloride                     | 10108-64-2         | EV0175000           | 3          | 4 | 4 | 3 | 14  | 0.58   | 14.6          |
| Carbon tetrachloride                 | 56-23-5            | FG4900000           | 4          | 4 | 3 | 3 | 14  | 0.58   | 14.6          |
| Hydrazine                            | 302-01-2           | MU7175000           | 3          | 4 | 4 | 3 | 14  | 0.58   | 14.6          |
| Beryllium                            | 7440-41-7          | DS1750000           | 4          | 4 | 1 | 4 | 13  | 1.50   | 14.5          |
| Bis (chloromethyl) ether             | 542-88-1           | KN1575000           | 4          | 4 | 1 | 4 | 13  | 1.50   | 14.5          |
|                                      | 107-30-2           | KN6650000           | 4          | 4 | 1 | 4 | 13  | 1.50   | 14.5          |
| Chloromethyl methyl ether            | 107-30-2           | KN6650000           | 4          | 4 | 1 | 4 | 13  | 1.50   | 14.5          |
| Methylchloromethyl Ether             | 51-75-2            | IA1750000           | 1          | 4 | 4 | 4 | 13  | 1.50   | 14.5          |
| Nitrogen Mustard                     | 53-96-3            | AB9450000           | 3          | 4 | 4 | 2 | 13  | 0.96   | 14.0          |
| Acetamide, N-flouren-2-yl            | 100-44-7           | XS8925000           | 2          | 4 | 3 | 4 | 13  | 0.96   | 14.0          |
| Benzyl chloride                      | 77-78-1            | WS8225000           | 3          | 4 | 2 | 4 | 13  | 0.96   | 14.0          |
| Dimethyl Sulfate                     | 51-79-6            | FA8400000           | z          | 4 | 4 | 2 | 13  | 0.96   | 14.0          |
| Urethane                             | 60-11-7            | BX7350000           | 3<br>3     | 4 | 3 | 3 | 13  | 0.50   | 13.5          |
| Dimethylaminoazobenzene              | 75-56-9            | TZ2975000           | 3          | 4 | 3 | 3 | 13  | 1.00   | 13.5          |
| Epoxypropane                         | 75-07-0            | AB1925000           | ĩ          | 4 | 4 | 3 | 12  | 1.41   | 13.4          |
| Acetaldehyde                         | 1332-21-4          | CI6475000           | 4          | 3 | 1 | 4 | 12  | 1.41   | 13.4          |
| Asbestos                             | 2465-27-2          | BY3500000           | 4          | 4 | 1 | 3 | 12  | 1.41   | 13.4          |
| Auramine                             | 92-87-5            | DC9625000           | 4          | 4 | ī | 3 | 12  | 1.41   | 13.4          |
| Benzidine                            | 57-57-8            | RQ7350000           | 3          | 4 | 1 | 4 | 12  | 1.41   | 13.4          |
| Beta-Propiolactone                   | 117-81-7           | TI0350000           | 3          | 4 | 4 | 1 | 12  | 1.41   | 13.4          |
| Bis (2-ethylhexyl) phthalate         | 75-15-0            | FF6650000           | 1          | 4 | 4 | 3 | 12  | 1.41   | 13.4          |
| Carbon Disulfide                     | 7758-98-7          | GL8800000           | 1          | 4 | 4 | 3 | 12  | 1.41   | 13.4          |
| Copper Sulfate                       | 75-21-8            | KX2450000           | 1          | 4 | 4 | 3 | 12  | 1.41   | 13.4          |
| Ethylene Oxide                       | 123-31-9           | MX3500000           | 1          | 4 | 3 | 4 | 12  | 1.41   | 13.4          |
| Hydroquinone                         | 7553-56-2          | NN1575000           | 1          | 3 | 4 | 4 | 12  | 1.41   | 13.4          |
| Iodine                               | /353-50-2          | MHT2/2000           | т          | 5 | - | 7 |     | T • 47 | <b></b> ♥ ● T |

| Pollutant                  | CAS                    | RTECS              | -   |        | S      | S      | Tox. |      |       |
|----------------------------|------------------------|--------------------|-----|--------|--------|--------|------|------|-------|
|                            | Registry               | Accession          |     |        |        |        |      |      | Score |
|                            | Number                 | Number             | С   | М      | R      | Α      | Tot  |      |       |
|                            |                        |                    |     |        |        |        |      |      |       |
| Ve the landman in a        | 60-34-4                | MV5600000          | 1   | 4      | ٦      | 4      | 12   | 1.41 | 13.4  |
| Methylhydrazine            | 59-89-2                | QE7525000          | 4   | 4      | 3<br>1 | 3      | 12   | 1.41 | 13.4  |
| N-Nitrosomorpholine        |                        | CM8050000          | 3   | 4      | 1      | 4      | 12   | 1.41 | 13.4  |
| Propyleneimine             | 75-55-8                |                    | 1   | 4      | 4      | 3      | 12   | 1.41 | 13.4  |
| Zinc Chloride              | 7646-85-7 <sup>,</sup> | ZHI 400000         |     | 4      | 2      | 2      | 12   | 1.15 | 13.4  |
| 1,2-Dichloroethane         | 107-06-2               | KI0525000          | 4   | 4<br>4 | 4      | 2      | 12   | 1.15 | 13.2  |
| Tetrachloroethylene        | 127-18-4               | KX3850000          | 2   |        | 4      | 2      | 12   | 1.15 | 13.2  |
| Trichloroethylene          | 79-01-6                | KX4550000          | 2   | 4      | 4<br>2 | 23     | 12   |      | 12.8  |
| 1,3-Propanesultone         | 1120-71-4              | RP5425000          | 3   | 4      | 2      |        |      | 0.82 | 12.8  |
| Hexachlorobutadiene        | 87-68-3                | ES0700000          | 2   | 4      | 3      | 3      | 12   | 0.82 |       |
| Hexamethylphosphamide      | 680-31-9               | TD0875000          | 3   | 4      | 3      | 2      | 12   | 0.82 | 12.8  |
| Nickel                     | 7440-02-0              | QR5950000          | 3   | 3      | 2      | 4      | 12   | 0.82 | 12.8  |
| Acrolein                   | 107-02-8               | AS1050000          | 1   | 4      | 2      | 4      | 11.  | 1.50 | 12.5  |
| Alpha-Napthalene           | 134-32-7               | QM1400000          | 4   | 4      | 1      | 2      | 11   | 1.50 | 12.5  |
| Arsenic                    | 7440-38-2              | CG0525000          | 4   | 4      | 2      | 1      | 11   | 1.50 | 12.5  |
| Benzotrichloride           | 98-07-07               | XT9275000          | 4   | 2      | 1      | 4      | 11   | 1.50 | 12.5  |
| Beta-Napthylamine          | 91-59-8                | QM2100000          | 4   | 4      | 1      | 2      | 11   | 1.50 | 12.5  |
| Ethyl Benzene              | 100-41-4               | DA0700000          | 1   | 4      | 4      | 2      | 11   | 1.50 | 12.5  |
| Hydrogen Chloride          | 7647-01-0              | MW4025000          | . 1 | 4      | 2      | 4      | 11   | 1.50 | 12.5  |
| Lead                       | 7439-92-1              | · 0F7525000        | 1   | 4      | 4      | 2      | 11   | 1.50 | 12.5  |
| Methylene Chloride         | 75-09-2                | PA8050000          | · 1 | 4      | 4      | 2      | 11   | 1.50 | 12.5  |
| Pentachlorophenol          | 87-87-5                | SM6300000          | 1   | 2      | 4      | 4      | 11   | 1.50 | 12.5  |
| Styrene Oxide              | 96-09-3                | CZ9625000          | 1   | 4      | 4      | 2      | 11   | 1.50 | 12.5  |
| Toluene                    | 108-88-3               | XS5250000          | 1   | 4      | 4      | 2<br>2 | 11   | 1.50 | 12.5  |
| o-Toluidine                | 95-53-4                | XU2975000          | 4   | 4      | 1      | 2      | 11   | 1.50 | 12.5  |
| p-Aminodiphenyl            | 92-67-1                | DU8925000          | 4   | 4      | 1      | 2      | 11   | 1.50 | 12.5  |
| 1,1-Dimethyl Hydrazine     | 57-14-7                | MV2450000          | 3   | 4      | 1      | 3      | 11   | 1.26 | 12.3  |
| 2,4-Toluene Diamine        | 95-80-7                | XS9625000          | 3   | 4      | 1      | 3      | 11   | 1.26 | 12.3  |
| Acetamide                  | 60-35-5                | AB4025000          | . 3 | 4      | 3      | 1      | 11   | 1.26 | 12.3  |
| Acrylamide                 | 79-06-1                | AS3325000          | 1   | 4      | 3      | 3      | 11   | 1.26 | 12.3  |
| Alpha Benzene Hexachloride | 319-84-6               | GV3500000          | 3   | 4      | 1      | 3      | 11   | 1.26 | 12.3  |
| Dimethylcarbamyl Chloride  | 79-44-7                | FD4200000          | • 3 | 4      | 1      | 3      | 11   | 1.26 | 12.3  |
| Diphenylhydrazine          | 122-66-7               | MW2625000          | 3   | 4      | 1      | 3      | 11   | 1.26 | 12.3  |
| Glycidaldehyde             | 765-34-4               | MB3150000          | 3   | 4      | 1      | 3      | 11   | 1.26 | 12.3  |
| Mercury                    | 7439-97-6              | OV4550000          | 1   | 4      | 3      | 3      | 11   | 1.26 | 12.3  |
| Phenol                     | 108-95-2               | SJ3325000          | 1   | 4      | 3      | 3      | 11   | 1.26 | 12.3  |
| Diethyl Sulfate            | 64-67-5                | WS8750000          | 3   | 4      | 2      | 2      | 11   | 0.96 | 12.0  |
| Arsine                     | 7784-42-1              | CG6475000          | 4   | 1      | 1      | 4      | 10   | 1.73 | 11.7  |
| Chlorine                   | 7782-50-5              | F02100000          | 1   | 4      | 1      | 4      | 10   | 1.73 | 11.7  |
| Chromium (Lead Chromate)   | 7758-97-6              | GB2975000          | 4   | 4      | 1      | 1      | 10   | 1.73 | 11.7  |
| Vinylidine Chloride        | 75-35-4                | YZ8061000          | 1   | 4      | 4      | 1      | 10   | 1.73 | 11.7  |
| Resorcinol                 | 108-46-3               | VG9625000          | 1   | 4      | 1      | 4      | 10   | 1.73 | 11.7  |
| 1,4-Dioxane                | 123-91-1               | JG8225000          | 3   | 4      | 1      | 2      | 10   | 1.29 | 11.3  |
| 3,3-Dimethoxybenzidine     | 119-90-4               | DD0875000          | 3   | 4      | 1      | 2      | 10   | 1.29 | 11.3  |
| 4-Nitrobiphenyl            | 92-93-3                | DV5600000          | 3   | 4      | 1      | 2      | 10   | 1.29 | 11.3  |
| Chloroprene                | 126-99-8               | EI9625000          | 1   | 4      | 3      | 2      | 10   | 1.29 | 11.3  |
| Melamine                   | 108-78-1               | OS0700000          | 3   | 4      | 1      | 2      | 10   | 1.29 | 11.3  |
| Methyl Chloride            | 75-09-2                | P <b>A</b> 6300000 | 1   | 3      | 4      | 2      | 10   | 1.29 | 11.3  |
| Methyl Methacrylate        | 80-62-6                | OZ5075000          | 1   | 4      | 3      | 2      | 10   | 1.29 | 11.3  |
| Napthalene                 | 91-20-3                | QJ0525000          | 1   | 4      | 2      | 3      | 10   | 1.29 | 11.3  |
| -                          |                        |                    |     |        |        |        |      |      |       |

-

| Pollutant                   | CAS              | RTECS     |   | Cat    | ego    | rie    | S       | S            | Tox.       |
|-----------------------------|------------------|-----------|---|--------|--------|--------|---------|--------------|------------|
|                             | Registry         | Accession | С | М      | D      | A      | Tot     |              | Score      |
|                             | Number           | Number    | C | IAI    | К      | M      | 101     |              |            |
|                             |                  |           |   |        |        |        |         |              | _          |
| Phenylhydrazine             | 100-63-0         | MV8925000 | 1 | 4      | 2      | 3      | 10      | 1.29         | 11.3       |
| Vinyl Cyclohexene Dioxide   | 106-87-6         | RN8640000 | 3 | 4      | 1      | 2      | 10      | 1.29         | 11.3       |
| 1,1,1-Trichloroethane       | 71-55-6          | KJ2975000 | 1 | 3      | 3      | 3      | 10      | 1.00         | 11.0       |
| Methyl Iodide               | 74-88-4          | PA9450000 | 3 | 3      | 1      | 3      | 10      | 1.00         | 11.0       |
| Rotenone                    | 83-79-4          | DJ2800000 | 1 | 3      | 3      | 3      | 10      | 1.00         | 11.0       |
| 2,5-Diaminotoluene          | 95-70-5          | XS9700000 | 1 | - 4    | 1      | 3      | 9       | 1.50         | 10.5       |
| 3,3-Dichlorobenzidine       | 91-94-1          | DD0525000 | 3 | 4      | 1      | 1      | 9       | 1.50         | 10.5       |
| 4,4-Methylene Dianiline     | 101-77-9         | BY5425000 | 1 | 4      | 1      | 3      | 9       | 1.50         | 10.5       |
| Aldicarb                    | 116-06-3         | UE2275000 | 1 | 3      | 1      | 4      | 9       | 1.50         | 10.5       |
| Aniline                     | 62-53 <b>-</b> 3 | BW6650000 | 1 | 4      | 1      | 3      | 9       | 1.50         | 10.5       |
| Formic Acid                 | 64-18-6          | LQ4900000 | 1 | 4      | 1      | 3      | 9       | 1.50         | 10.5       |
| Methyl Mercaptan            | 74-93-1          | PB4375000 | 1 | 4      | 1      | 3      | 9       | 1.50         | 10.5       |
| Picric Acid                 | 88-89-1          | TJ7875000 | 1 | 4      | 1      | 3      | 9       | 1.50         | 10.5       |
| n-Butylamine                | 109-73-9         | E02975000 | 1 | 4      | 1      | 3      | 9       | 1.50         | 10.5       |
| p-Chloronitrobenzene        | 100-00-5         | CZ1050000 | 1 | 4      | 1      | 3      | 9       | 1.50         | 10.5       |
| p-Nitrophenol               | 100-02-7         | SM2275000 | 1 | 4      | 1      | 3      | 9       | 1.50         | 10.5       |
| p-Phenylenediamine          | 106-50-3         | SS8050000 | 1 | 4      | 1      | 3      | 9       | 1.50         | 10.5       |
| 1,1,2-Trichloroethane       | 79-00-5          | KJ3150000 | 2 | 4      | 1      | 2      | 9       | 1.26         | 10.3       |
| Allyl chloride              | 107-05-1         | UC7350000 | 1 | 4      | 2      | 2      | 9       | 1.26         | 10.3       |
| Nitrobenzene                | 98-95-3          | DA6475000 | 1 | 2      | 2      | 4      | 9       | 1.26         | 10.3       |
| Xylene                      | 1330-20-7        | ZE2100000 | 1 | 2      | 4      | 2      | 9       | 1.26         | 10.3       |
| Manganese Chloride          | 7773-01-5        | 000962500 | 1 | 3      | 3      | 2      | 9       | 0.96         | 10.0       |
| Acrylic Acid, Ethyl Ester   | 140-88-5         | AT0700000 | 1 | 4      | 1      | 2      | 8       | 1.41         | 9.4        |
| Barium Chloride             | 10361-37-2       | CQ8750000 | 1 | 1      | 2      | 4      | 8       | 1.41         | 9.4        |
| Chlorine Dioxide            | 10049-04-4       | F03000000 | 1 | 1      | 2      | 4      | 8       | 1.41         | 9.4        |
| Chrysene                    | 218-01-9         | GC0700000 | 2 | 4      | 1      | 1      | 8       | 1.41         | 9.4        |
| Ethylene Glycol Ethyl Ether | 110-80-5         | KK8050000 | 1 | 1      | 4      | 2      | 8       | 1.41         | 9.4        |
| Formamide                   | 75-12-7          | LQ0525000 | 1 | 2      | 4      | 1      | 8       | 1.41         | 9.4        |
| Methyl Cellosolve           | 109-86-4         | KL5775000 | 1 | 1      | 4      | 2      | 8       | 1.41         | 9.4        |
| N-Phenyl-Beta-Napthylamine  | 133-88-6         | QM4550000 | 2 | 4      | 1      | 1      | 8       | 1.41         | 9.4        |
| Nitroglycerine              | 55-63-0          | OX2100000 | 1 | 2      | 1      | 4      | 8       | 1.41         | 9.4        |
| Phosphorus                  | 7723-14-0        | TH3500000 | 1 | 1      | 2      | 4      | 8       | 1.41         | 9.4        |
| Vanadium Pentoxide          | 1314-62-1        | YW2450000 | 1 | 2      | 1      | 4      | 8       | 1.41         | 9.4        |
| Vinyl Bromide               | 593-60-2         | KU8400000 | 1 | 4      | 1      | 2      | 8       | 1.41         | 9.4        |
| p-Anisidine                 | 104-94-9         | BZ5450000 | 1 | 4      | 1      | 2      | 8       | 1.41         | 9.4        |
| Acrylic Acid                | 79-10-7          | AS4375000 | 1 | 1      | 3      | 3      | 8       | 1.15         | 9.2        |
| Barium Carbonate            | 513-77-9         | CQ8600000 | 1 | 1      | 3      | 3      | 8       | 1.15         | 9.2        |
| Ethyl Ether                 | 60-29-7          | KI5775000 | 1 | 3      | 1      | 3      | 8       | 1.15         | 9.2        |
| Furfural                    | 98-01-1          | LT7000000 | 1 | 3      | 1      | 3      | 8       | 1.15         | 9.2        |
| Furfuryl Alcohol            | 98-00-0          | LU9100000 | 1 | 3      | 1      | 3      | 8       | 1.15         | 9.2        |
| Maleic Anhydride            | 108-31-6         | ON3675000 | 1 | 3      | 1      | 3      | 8       | 1.15         | 9.2        |
| Quinoline                   | 91-22-5          | VA9275000 | 1 | 3      | 1      | 3      | 8       | 1.15         | 9.2        |
| p-Chloroaniline             | 106-47-8         | BX0700000 | 1 | 3      | 1      | 3      | 8       | 1.15         | 9.2        |
| 1,1,2,2-Tetrachloroethane   | 79-34-5          | KI8575000 | 2 | 2      | 1      | 3      | 8.<br>7 | 0.82         | 8.8        |
| Antimony                    | 7440-36-0        | CC4025000 | 1 | 1      | 1      | 4      | 7       | 1.50         | 8.5        |
| Cyanide                     | 57-12-5          | GS7175000 | 1 | 1      | 1      | 4      | 7       | 1.50         | 8.5        |
| Cyanogen                    | 460-19-5         | GT1925000 | 1 | 1      | 1      |        | 7       | 1.50         | 8.5        |
| Fluorine                    | 7782-41-4        | LM6470000 | 1 | 1<br>1 | 1<br>1 | 4<br>4 | 7<br>7  | 1.50<br>1.50 | 8.5<br>8.5 |
| Hexachloronapthalene        | 1335-87-1        | QJ7350000 | T | T      | T      | 4      | /       | 1.00         | 0.0        |

.

| Pollutant                           | CAS                 | RTECS     | , Ca                                            | tego | rie | S          | S    | Tox.  |
|-------------------------------------|---------------------|-----------|-------------------------------------------------|------|-----|------------|------|-------|
|                                     | Registry            | Accession | <b>a</b> 14                                     |      |     | <b>m</b> , |      | Score |
|                                     | Number              | Number    | СM                                              | R    | A   | Tot        |      |       |
|                                     |                     |           |                                                 | •    |     |            |      |       |
| Indregen Granida                    | 74-90-8             | MW6825000 | 1 1                                             | 1    | 4   | 7          | 1.50 | 8.5   |
| Hydrogen Cyanide                    | 7783-06-4           | MX1225000 | $\begin{array}{ccc} 1 & 1 \\ 1 & 1 \end{array}$ | 1    | 4   | ,<br>7     | 1.50 | 8.5   |
| Hydrogen Sulfide                    | 624-83-9            | NQ9450000 | 1 1                                             |      | 4   | ,<br>7     | 1.50 | 8.5   |
| Methyl Isocyanate                   | 75-44-5             | SY5600000 | 1 1                                             |      | 4   | ,<br>7     | 1.50 | 8.5   |
| Phosgene<br>Tetrachlorodibenzofuran | 51207 <b>-</b> 31-9 | HP5295000 | 1 $1$                                           |      | 4   | ,<br>7     | 1.50 | 8.5   |
|                                     | 7440-28-0           | XG3425000 | 1 1                                             |      | 4   | ,<br>7     | 1.50 | 8.5   |
| Thallium<br>Vizul Elugrido          | 75-02-5             | YZ7351000 | 1 4                                             |      | 1   | ,<br>7     | 1.50 | 8.5   |
| Vinyl Fluoride                      | 78-87-5             | TX9625000 | 1 2                                             |      | 3   | ,<br>7     | 0.96 | 8.0   |
| 1,2-Dichloropropane                 | 584-84-9            | CZ6300000 | 1 2<br>1 2                                      | ī    | 3   | ,<br>7     | 0.96 | 8.0   |
| 2,4-Toluene Diisocyanate            | 92 <b>-</b> 52-4    | DU8050000 | 1 3                                             |      | 2   | 7          |      | 8.0   |
| Biphenyl<br>Die zamethene           | 334-88-3            | PA7000000 | 3 2                                             |      | 1   | 7          | 0.96 | 8.0   |
| Diazomethane                        | 77-47-4             | GY1225000 | 1 1                                             | 2    | 3   | 7          | 0.96 | 8.0   |
| Hexachlorocyclopentadiene           | 78-93-3             | EL6475000 | 1 1                                             | 3    | 2   | ,<br>7     | 0.96 | 8.0   |
| Methyl Ethyl Ketone                 | 106-51-4            | DK2625000 | 1 2                                             |      | 3   | ,<br>7     | 0.96 | 8.0   |
| Quinone                             | 109-99-9            | LU5950000 | $1 \frac{1}{3}$                                 |      | 2   | 7          | 0.96 | 8.0   |
| Tetrahydrofuran ·                   | 108-39-4            | GO1250000 | 1 1                                             |      | 3   | 7          | 0.96 | 8.0   |
| m-Cresol                            | 99-65-0             | CZ7350000 | 1 2                                             |      | 3   | 7          | 0.96 | 8.0   |
| m-Dinitrobenzene                    | 104-91-6            | SM4725000 | 1 2                                             |      | 3   | 7          | 0.96 | 8.0   |
| p-Nitrosophenol                     | 67-64-1             | AL3150000 | 1 2<br>1 2                                      |      | 2   | ,<br>7     | 0.50 | 7.5   |
| Acetone                             | 84-66-2             | TI1050000 | 1 2                                             |      | 2   | 7          | 0.50 | 7.5   |
| Diethyl phthalate                   | 532-27-4            | AM6300000 | 1 1                                             | 1    | 3   | 6          | 1.00 | 7.0   |
| 2-Chloroacetophenone                | 7726-95-6           | EF9100000 | 1 1                                             |      | 3   | 6          | 1.00 | 7.0   |
| Bromine                             | 1307-96-6           | GG2800000 | 1 1                                             | ī    | 3   | 6          | 1.00 | 7.0   |
| Cobalt Oxide                        | 420-04-2            | GS5950000 | 1 1                                             |      | 3   | 6          | 1.00 | 7.0   |
| Cyanimide<br>Hydrogen Bromide       | 10035-10-6          | MW3850000 | 1 1                                             | 1    | 3   | 6          | 1.00 | 7.0   |
|                                     | 75-31-0             | NT8400000 | 1 1                                             |      | 3   | 6          | 1.00 | 7.0   |
| Isopropylamine<br>Nitric Acid       | 7697-37-2           | QU5775000 | 1 1                                             |      | 3   | 6          | 1.00 | 7.0   |
| Oxalic Acid                         | 144-62-7            | R02450000 | 1 1                                             |      | 3   | 6          | 1.00 | 7.0   |
| 1,2,4-Trichlorobenzene              | 120-82-1            | DC2100000 | 1 1                                             |      | 2   | 6          | 0.58 | 6.6   |
| 1,3-Butadiene                       | 106-99-0            | EI9275000 | 1 2                                             |      | 2   | 6          | 0.58 | 6.6   |
| Butanol                             | 71-36-3             | E01400000 | 1 2                                             |      | 2   | 6          | 0.58 | 6.6   |
| Isoamyl Alcohol                     | 123-51-3            | EL5425000 | 1 2                                             |      | 2   | 6          | 0.58 | 6.6   |
| Pyridine                            | 110-86-1            | UR8400000 | 1 2                                             |      | · 2 | 6          | 0.58 | 6.6   |
| n-Butyl Acetate                     | 123-86-4            | AF7350000 | $\overline{1}$ $\overline{1}$                   | 2    | 2   | 6          | 0.58 | 6.6   |
| p-Nitroaniline                      | 100-01-6            | BY7000000 | $\overline{1}$ $\overline{2}$                   |      | 2   | 6          | 0.58 | 6.6   |
| p-Nitrotoluene                      | 99-99-0             | XT3325000 | 1 2                                             |      | 2   | 6          | 0.58 | 6.6   |
| 1,2-Dichlorobenzene                 | 95-50-1             | CZ4500000 | 1 1                                             | 1    | 2   | 5.         | 0.50 | 5.5   |
| 1-Nitropropane                      | 108-03-2            | TZ5075000 | 1 1                                             | 1    | 2   | 5          | 0.50 | 5.5   |
| 2,2-Iminodiethanol                  | 111-42-2            | KL2975000 | 1 1                                             | 1    | 2   | 5          | 0.50 | 5.5   |
| Acetic Anhydride                    | 108-24-7            | AK1925000 | 1 1                                             | 1    | 2   | 5          | 0.50 | 5.5   |
| Butanethiol                         | 109-79-5            | EK6300000 | 1 1                                             | 1    | 2   | 5          | 0.50 | 5.5   |
| Cyclohexane                         | 110-82-7            | GU6300000 | 1 2                                             | 1    | 1   | 5          | 0.50 | 5.5   |
| Diphen. meth. 4,4-diisocyan.        | 101-68-8            | NQ9350000 | 1 2                                             | 1    | 1   | 5          | 0.50 | 5.5   |
| Ethanethiol                         | 75-08-1             | KI9625000 | 1 1                                             | 1    | 2   | • 5        | 0.50 | 5.5   |
| Ethanolamine                        | 141-43-5            | KJ5775000 | 1 1                                             | 1    | 2   | 5          | 0.50 | 5.5   |
| Ethyl Acetate                       | 141-78-6            | AH5425000 | 1 1                                             | 1    | 2   | 5          | 0.50 | 5.5   |
| Ethyl Chloride                      | 75-00-3             | KH7525000 | 1 1                                             | 1    | 2   | 5          | 0.50 | 5.5   |
| Isophorone                          | 78-59-1             | GW7700000 | 1 1                                             | 1    | 2   | 5          | 0.50 | 5.5   |
| Ketene                              | 463-51-4            | OA7700000 | 1 1                                             | 1    | 2   | 5          | 0.50 | 5.5   |
|                                     |                     |           |                                                 |      |     |            |      |       |

۰,

| Pollutant                     | CAS<br>Registry       | RTECS<br>Accession     |        | Cat    | ego    | orie   | S      | S            | Tox.<br>Score |
|-------------------------------|-----------------------|------------------------|--------|--------|--------|--------|--------|--------------|---------------|
| Number                        |                       |                        |        | М      | R      | A      | Tot    |              | 30016         |
| Monochlorobenzene             | 108-90-7              | CZ0175000              | 1      | 1      | 1      | 2      | 5      | 0.50         | 5.5           |
| Potassium Cyanate<br>Selenium | 590-28-3<br>7782-49-2 | GS6825000<br>VS7700000 | 1<br>1 | 1<br>1 | 1<br>2 | 2<br>1 | 5<br>5 | 0.50<br>0.50 | 5.5<br>5.5    |
| Sodium Cyanate                | 917-61-3              | GS7000000              | 1      | ī      | 1      | 2      | 5      | 0.50         | 5.5           |
| Turpentine                    | 8006-64-2             | Y08400000              | 1      | 1      | 1      | 2      | 5      | 0.50         | 5.5           |
| Xylidine                      | 1300-73-8             | ZE8575000              | 1      | 1      | 1      | 2      | 5      | 0.50         | 5.5           |
| m-Nitrotoluene                | 99-08-1               | XT2975000              | 1      | 1      | 1      | 2      | 5      | 0.50         | 5.5           |
| Cyanoacetamide                | 107-91-5              | AB5950000              | 1      | 1      | 1      | 1      | 4      | 0            | 4.0           |
| Diiosoctyl Phthalate          | 27554-26-3            | TI1300000              | 1      | 1      | 1      | 1      | 4      | 0            | 4.0           |
| Diisodecyl Phthalate          | 26761-40-0            | TI1300000              | 1      | 1      | 1      | 1      | 4      | 0            | 4.0           |
| Ethylene                      | 74-85-1               | KU5340000              | 1      | 1      | 1      | 1      | 4      | 0            | 4.0           |
| Methyl Isobutyl Ketone        | 108-10-1              | SA9275000              | 1      | 1      | 1      | 1      | 4      | 0            | 4.0           |
| Octachloronapthalene          | 2234-13-1             | QK0250000              | 1      | 1      | 1      | 1      | 4      | 0            | 4.0           |
| Terephthalic Acid             | 100-21-0              | WZ0875000              | 1      | 1      | 1      | 1      | 4      | 0            | 4.0           |
| Titanium Oxide                | 13463-67-7            | XR2275000              | 1      | 1      | 1      | 1      | 4      | 0            | 4.0           |

•

.

-72-

•

•

.

• ,

`

## \*\* APPENDIX G \*\*

.

.

•

•

· .

,

## APPENDIX G

,

# TOXICITY RANKING FOR HAZARDOUS AIR POLLUTANTS EMITTED IN MAINE

| Pollutant                   | Toxicity<br>Score | Emissions<br>(lbs/yr) | Toxicity<br>Rank | Emissions<br>Rank | Tota |
|-----------------------------|-------------------|-----------------------|------------------|-------------------|------|
| Arsenic                     | 16.0              | 430                   | 1                | 50                | 51   |
| Chromium                    | 15.5              | 184                   | 2                | 54                | 56   |
| Epichlorhydrin              | 15.5              | 12                    | 2                | 58                | 60   |
| Formaldehyde                | 15.5              | 79,401                | . 2              | 21                | 23   |
| Styrene                     | 15.5              | 13,001                | 2                | 32                | 34   |
| Benzene                     | 15.5              | 52,392                | 2                | 24                | 26   |
| Hydrazine                   | 14.6              | 740                   | 7                | 49                | 56   |
| Cadmium                     | 14.6              | 238                   | 7                | 52                | 59   |
| Benzo-a-Pyrene              | 14.6              | 15,180                | 7                | 30                | 37   |
| Epoxypropane                | 13.5              | 124,600               | 10               | 19                | 29   |
| Bis 2-ethylhexyl phthalate  | 13.4              | 10,190                | 11               | 34                | 45   |
| Copper                      | 13.4              | 107                   | 11               | 55                | 66   |
| Ethylene Oxide              | 13.4              | 1,535                 | 11               | 45                | 56   |
| Zinc                        | 13.4              | 946                   | 11               | 47                | 58   |
| 1,2 Dichloroethane          | 13.2              | 32,400                | 15               | 28                | 43   |
| Tetrachloroethylene         | 13.2              | 708,050               | 15               | 6                 | 21   |
| Trichloroethylene           | 13.2              | 110,865               | 15               | 20                | 35   |
| Hydrogen Chloride           | 12.5              | 44,731                | 18               | 26                | 44   |
| Lead                        | 12.5              | 178,630               | 18               | 16                | 34   |
| Methylene Chloride          | 12.5              | 288,569               | 18               | 13                | 31   |
| Napthalene                  | 12.5              | 11,799                | 18               | 33                | 51   |
| Ethyl Benzene               | 12.5              | 80                    | 18               | 56                | 74   |
| Toluene                     | 12.5              | 2,511,623             | 18               | 1                 | 19   |
| Mercury                     | 12.3              | 16                    | 24               | 57                | 81   |
| Phenol                      | 12.3              | 5,180                 | 24               | 37                | 61   |
| Diethyl Sulfate             | 12.0              | 5,424                 | 26               | 38                | 64   |
| Chlorine                    | 11.7              | 1,433,003             | 27               | 3                 | 30   |
| Methyl Chloride             | 11.3              | 16,8 <b>0</b> 0       | 28               | 29                | 57   |
| Methyl Methacrylate         | 11.3              | 184,550               | 28               | 15                | 43   |
| 1,1,1-Trichloroethane       | 11.0              | 1,496,539             | 30               | 2                 | 32   |
| Méthyl Mercaptan            | 10.5              | 428,940               | 31               | 9                 | 40   |
| p-Nitrophenol               | 10.5              | 228                   | 31               | 53                | 84   |
| Formic Acid                 | 10.5              | 50,433                | 31               | 25                | 56   |
| Xylene                      | 10.3              | 1,091,274             | 34               | 4                 | 38   |
| Manganese                   | 10.0              | 9,320                 | 35               | 35                | 70   |
| Barium                      | 9.4               | 2,156                 | 36               | 44                | 80   |
| Chlorine Dioxide            | 9.4               | 296,787               | 36               | 10                | 46   |
| Methyl Cellosolve           | 9.4               | 632,248               | 36               | 7                 | 43   |
| Ethylene Glycol Ethyl Ether | 9.4               | 277,118               | 36               | 11                | 47   |
| Furfural                    | 9.2               | 7,110                 | 40               | 36                | 76   |
| Hydrogen Sulfide            | 8.5               | 269,912               | 41               | 12                | 53   |
| Cyanide                     | 8.5               | 2,955                 | 41               | 42                | 83   |

#### TOXICITY RANKING FOR HAZARDOUS AIR POLLUTANTS EMITTED IN MAINE (con't

| Pollutant                        | Toxicity<br>Score | Emissions<br>(1bs/yr) | Toxicity<br>Rank | Emissions<br>Rank | Tota: |
|----------------------------------|-------------------|-----------------------|------------------|-------------------|-------|
| Biphenyl                         | 8.0               | 4,510                 | 43               | 40                | 83    |
| Methyl Ethyl Ketone              | 8.0               | 512,611               | 43               | 8                 | 51    |
| Tetrahydrofuran                  | 8.0               | 400                   | 43               | 51                | 94    |
| Acetone                          | 7.5               | 804,521               | 46               | 5                 | 51    |
| Nitric Acid                      | 7.0               | 41,450                | 47               | 27                | 74    |
| Oxalic Acid                      | 7.0               | 868                   | 47               | 48                | 95    |
| n-Butyl Acetate                  | 6.6               | 253,563               | 49               | 14                | 63    |
| Butanol                          | 6.6               | 149,490               | 49               | 17                | 66    |
| Acetic Anhydride                 | 5.5               | 1,403                 | 51               | 46                | 97    |
| 1,2 Dichlorobenzene              | 5.5               | 2,400                 | 51               | 43                | -94   |
| Diphenyl Methyl 4,4-Diisocyanate | 5.5               | 146,000               | 51               | 18                | 69    |
| Ethyl Acetate                    | 5.5               | 66,537                | 51               | 23                | 74    |
| Ethanolamine                     | 5.5               | 3,318                 | 51               | 41                | 92    |
| Turpentine                       | 5.5               | 77,130                | 51               | 22                | 73    |
| Metĥyl Isobutyl Ketone           | 4.0               | 14,045                | 57               | 31                | 88    |
| Titanium Oxide                   | 4.0               | 5,240                 | 57               | 39                | 96    |

.

----

.

# \*\* APPENDIX H \*\*

.

· · ·

-

.

#### APPENDIX H

# EXPOSURE RANKING FOR HAZARDOUS AIR POLLUTANTS EMITTED IN MAINE

| Pollutant                        | Toxicity<br>Score | Emissions<br>(lbs/yr) | Toxicity<br>Rank | Emissions<br>Rank | Total           |
|----------------------------------|-------------------|-----------------------|------------------|-------------------|-----------------|
| Toluene                          | 12.5              | 2,511,623             | 18               | 1                 | 19              |
| 1,1,1-Trichloroethane            | 11.0              | 1,496,539             | 30               | 2                 | 32              |
| Chlorine                         | 11.7              | 1,433,003             | 27               | 3                 | 30              |
| Xylene                           | 10.3              | 1,091,274             | 34               | 4                 | 38              |
| Acetone                          | 7.5               | 804,521               | 46               | 5                 | 51              |
| Tetrachloroethylene              | 13.2              | 708,050               | 15               | 6                 | 21              |
| Methyl Cellosolve                | 9.4               | 632,248               | 36               | . 7               | 43              |
| Methyl Ethyl Ketone              | 8.0               | 512,611               | 43               | · 8               | 51              |
| Methyl Mercaptan                 | 10.5              | 428,940               | 31               | 9                 | 40              |
| Chlorine Dioxide                 | 9.4               | 296,787               | 36               | 10                | 46              |
| Ethylene Glycol Ethyl Ether      | 9.4               | 277,118               | 36               | 11                | 47              |
| Hydrogen Sulfide                 | 8.5               | 269,912               | 41               | 12                | 53              |
| Methylene Chloride               | 12.5              | 288,569               | 18               | 13                | 31              |
|                                  | 6.6               | 253,563               | 49               | 14                | 63              |
| n-Butyl Acetate                  | 11.3              | 184,550               | 28               | 15                | 43              |
| Methyl Methacrylate              | 12.5              | 178,630               | 18               | 16                | 34              |
| Lead                             | 6.6               | 149,490               | 49               | 17                | 66              |
| Butanol                          | 5.5               | 146,000               | 51               | 18                | 69              |
| Diphenyl Methyl 4,4-Diisocyanate | 13.5              | 124,600               | 10               | 19                | 29              |
| Epoxypropane                     | 13.2              | 110,865               | 15               | 20                | 35              |
| Trichloroethylene                | 15.5              | 79,401                | 2                | 21                | 23              |
| Formaldehyde                     | 5.5               | 77,130                | 51               | 22                | 73              |
| Turpentine                       | 5.5               | 66,537                | 51               | 23                | 74              |
| Ethyl Acetate                    | 15.5              | 52,392                | 2                | 24                | 26              |
| Benzene                          | 10.5              | 50,433                | 31               | 25                | 56              |
| Formic Acid                      | 12.5              | 44,731                | 18               | 26                | 44 <sup>°</sup> |
| Hydrogen Chloride                | 7.0               | 44,751                | 47               | 27                | 74              |
| Nitric Acid                      | 13.2              | 32,400                | 15               | 28                | 43              |
| 1,2 Dichloroethane               | 11.3              | 16,800                | 28               | 29                | 57              |
| Methyl Chloride                  |                   | 15,180                | 28               | 30                | 37              |
| Benzo-a-Pyrene                   | 14.6              |                       | 57               | 31                | 88              |
| Methyl Isobutyl Ketone           | 4.0<br>15.5       | 14,045                | 2                | 32                | 34              |
| Styrene                          |                   | 13,001                | 18               | 33                | 51              |
| Napthalene                       | 12.5              | 11,799                | 18               | 34                | 45              |
| Bis 2-ethylhexyl phthalate       | 13.4              | 10,190                | 35               | 35                | 70              |
| Manganese                        | 10.0              | 9,320                 | 40               | 36                | 76              |
| Furfural                         | 9.2               | 7,110                 |                  | . 37              | 61              |
| Phenol                           | 12.3              | 5,180                 | 24<br>26         | 38                | 64              |
| Diethyl Sulfate                  | 12.0              | 5,424                 |                  | 39 ·              | 96              |
| Titanium Oxide                   | 4.0               | 5,240                 | 57               | 40                | 90<br>83        |
| Biphenyl                         | 8.0               | 4,510                 | 43               |                   | 92              |
| Ethanolamine                     | 5.5               | 3,318                 | 51               | 41                |                 |
| Cyanide                          | 8.5               | 2,955                 | 41               | 42                | 83<br>94        |
| 1,2 Dichlorobenzene              | 5.5               | 2,400                 | 51               | 43                |                 |
| Barium                           | 9.4               | 2,156                 | 36               | 44                | 80              |

| Pollutant        | Toxicity | Emissions | Toxicity | Emissions | Total      |
|------------------|----------|-----------|----------|-----------|------------|
|                  | Score    | (lbs/yr)  | Rank     | Rank      |            |
| Ethylene Oxide   | 13.4     | 1.535     | 11       | 45        | 56         |
| Acetic Anhydride | 5.5      | 1,403     | 51.      | 46        | 97         |
| Zinc             | 13.4     | 946       | 11       | 47        | 58         |
| Oxalic Acid      | 7.0      | 868       | 47       | 48        | 9 <b>5</b> |
| Hydrazine        | 14.6     | 740       | 7        | 49        | 56         |
| Arsenic          | 16.0     | 430       | 1        | 50        | 51         |
| Tetrahydrofuran  | 8.0      | 400       | 43       | 51        | 94         |
| Cadmium          | 14.6     | 238       | 7        | 52        | 59         |
| p-Nitrophenol    | 10.5     | 228       | 31       | 53        | 84         |
| Chromium         | 15.5     | 184       | 2        | 54        | 56         |
| Copper           | 13.4     | 107       | 11       | 55        | 66         |
| Ethyl Benzene    | 12.5     | 80        | 18       | 56        | 74         |
| Mercury          | 12.3     | 16        | 24       | 57        | 81         |
| Epichlorhydrin   | 15.5     | 12        | 2        | 58        | 60         |
| Epicnlornyarin   | 15.5     | 12        | 2        | 58        | 00         |

• .

. .

# EXPOSURE RANKING FOR HAZARDOUS AIR POLLUTANTS EMITTED IN MAINE (con't)

,

\*\* NOTES \*\*

· · · ·

----

· ·

.

\*\* NOTES \*\*

. .

. .

. . .