

STATE LAW LIBRARY AUGUSTA MAINE

Annual Report on Air Quality 1995

TD 883.5

.M2 M33 1995

APR 1.4 1997

1995 ANNUAL REPORT

ON AIR QUALITY IN THE STATE OF MAINE

Prepared by Jeffrey C. Emery with assistance from staff of the Division of Technical Services and the Division of Field Services

Maine Department of Environmental Protection Bureau of Air Quality Division of Field Services

Leighton E. Carver, Division Director James Brooks, Bureau Director Edward O. Sullivan, Commissioner

TABLE OF CONTENTS

TABLE OF CONTENTS	. i
LIST OF TABLES	. iii
LIST OF FIGURES	
1. INTRODUCTION	.1
1.1 Purpose and Overview	.1
1.2 Description of Air Monitoring Network	
1.3 Document Organization	
1.3.1 Explanation of Data Summary Tables	. 11
1.3.2 Explanation of Historical Comparison Tables	. 11
1.3.3 Explanation of Trends Tables	. 17
2. CARBON MONOXIDE (CO)	. 18
2.1 Description and Sources	. 18
2.2 Health and Welfare Effects	. 18
2.3 Standards	. 19
2.4 Monitoring	. 19
3. OZONE (O3)	. 20
3.1 Description and Sources	. 20
3.2 Health and Welfare Effects	. 20
- 3.3 Standards	. 21
3.4 Monitoring	. 21
4. NITROGEN DIOXIDE (NO2)	. 36
4.1 Description and Sources	
4.2 Health and Welfare Effects	. 36
4.3 Standards	. 36
4.4 Monitoring	
5. SULFUR DIOXIDE (SO2)	
5.1 Description and Sources	
5.2 Health and Welfare Effects	
5.3 Standards	
5.4 Monitoring	
6. PARTICULATES (TSP and PM10)	
6.1 Description and Sources	
6.2 Health and Welfare Effects	
6.3 Standards	
6.4 Monitoring	
7. LEAD (Pb)	
7.1 Description and Sources	
7.2 Health and Welfare Effects	
7.3 Standards	
7.4 Monitoring	
8. SULFATES (SO4) AND NITRATES (NO3)	
8.1 Description and Sources	
8.2 Health and Welfare Effects	
8.3 Standards	
8.4 Monitoring	. 50

9. ATMOSPHERIC DEPOSITION	52
9.1 Description and Sources	52
9.2 Health and Welfare Effects	
9.3 Standards	52
9.4 Monitoring	52
10. HYDROCARBONS (HC)	
10.1 Description and Sources	59
10.2 Health and Welfare Effects	
10.3 Standards	59
10.4 Monitoring	59
11. PRECISION AND ACCURACY	
11.1 Precision	60
11.2 Accuracy	60
12. AIR TOXICS	68
12.1 Compound-specific Background	68
12.2 Monitoring	70
References	73
13. PHOTOCHEMICAL ASSESSMENT MONITORING	75
13.1 Background and History	75
13.2 Monitoring Network	
13.3 Photochemistry	
13.4 Relationships Between Ground-level Ozone (O3), Nitrogen Oxides (NOy)	
and Volatile Organic Compounds (VOCs)	76
14. ULTRAVIOLET-B (UV-b)	
14.1 Description and Sources	81
14.2 Health and Welfare Effects	
14.3 Standards	81
14.4 Monitoring	
15 ERRATA SHEETS	83

- ii -

TABLE	TITLE	PAGE
1-1	National Ambient Air Quality Standards	2
1-2	State of Maine Ambient Air Quality Standards	2
1-3	Number of Ambient Air Quality Standard Exceedances by	3
	Counties(1995)	
1-4	Distribution of Air Monitoring Instruments	10
1-5	Monitor Operators During 1995	10
1-6	1995 Ambient Air Quality Monitoring Site Directory	12
3-1	1995 Ozone Data Summary	23
3-2	Ozone Historical Comparisons	24
3-3	Ozone Trends	25
3-4	Summary of Hourly Ozone Data For Sites Operating During 1995	26
3-5	Federal Ozone Exceedances in Maine Listed by County and Site	31
3-6	Yearly State Ozone Health Warning Level Exceedance Days	35
	Comparison	25
3-7	Yearly Federal Ozone Standard Exceedance Days Comparison	35
4-1	1995 Nitrogen Dioxide Data Summary	36
5-1	1995 Sulfur Dioxide Data Summary	39
5-2	Sulfur Dioxide Historical Comparisons-Maximum 24-Hour	40
5-3	Concentrations of Sulfur Dioxide Sulfur Dioxide Historical Comparisons-Sites with Exceedances of the	40
5-5	Standards in the Past Seven Years	40
6-1	1995 Total Suspended Particulates Data Summary	44
6-2	Total Suspended Particulates Historical Comparison-Annual	44
° -	Geometric Means	••
6-3	1995 Fine Particulate Data Summary	45
6-4	Fine Particulates Historical Comparison-Annual Arithmetic Means	47
6-5	Fine Particulates Historical Comparison-Sites with Samples Greater	48
	Than 150 ug/m ³	
8-1	Sulfate Thresholds for Adverse Health Effects	51
8-2	1995 Sulfate Data Summary	51
9-1	1995 Atmospheric Deposition Data Summary	53
9-2	Historical Summary of Atmospheric Deposition Data	54
11-1	1995 Precision Data Summary	62
11-2	1995 Accuracy Data Summary	65
12-1	Hazardous Air Pollutants for Portland Monitoring Study	72
13-1	Target VOC Ozone Precursors - Hydrocarbons	76
14-1	1995 Maximum Hourly Values For Total Solar, UV-b And Med Units	81

LIST OF TABLES

,

FIGURE	TITLE	PAGE
1-1	PM10 Trends in Maine - AAM	4
1-2	Sulfur Dioxide Trends in Maine - AAM	5
1-3	Sulfur Dioxide Trends in Maine - 24 Hour	6
1-4	Ozone Trends - Hours of State Exceedances	8
1-5	Map of the State of Maine	16
9-1	Caribou Airport Acid Deposition Trends	55
9-2	Bridgton Acid Deposition Trends	56
9-3	Acadia National Park Acid Deposition Trends	57
9-4	Greenville Acid Deposition Trends	58
13-1	Chromatogram of Calibration Compounds	77
13-2	Cape Elizabeth - Two Lights State Park July 9, 1995	78
13-3	Cape Elizabeth - Two Lights State Park July 21, 1995	79

LIST OF FIGURES

1. INTRODUCTION

1.1 Purpose and Overview

The purpose of this report is to present the air quality monitoring data generated by and for the Maine Department of Environmental Protection, Bureau of Air Quality, and to provide a historical perspective from which the significance of that data can be interpreted. Air Quality monitoring measures the concentrations of various pollutants in the ambient air. The monitoring is in response to State and Federal requirements to determine whether the air we breathe is attaining and maintaining National and State Ambient Air Quality Standards which are designed to protect the health and welfare of the public. Federal Primary Standards are intended to protect public health. Federal Secondary Standards are intended to protect public welfare. The State Standards are at least as strict as Federal Standards and in some cases are more strict. The reasoning behind establishing more stringent standards is that generally air quality in Maine is significantly cleaner than in other areas and should remain cleaner. The current Federal and State Standards are presented in Tables 1-1 and 1-2. Table 1-3 is a summary indicating all the exceedances of ambient air quality standards or health warning levels in the State by counties. Later on in this report those exceedances will be listed by the sites at which they occurred.

A significant portion of the data collected in the State is collected by industry. The DEP has required industry to establish monitoring programs primarily when there are air quality problems associated with the industry, or when an industry is planning to build or expand causing a potential increase in air emissions. The State is still collecting monitoring data for long term trends, special studies and for compliance determinations. Ambient air monitoring by both industry and the State will continue in various regions where necessary until such time as standards are being met and background information has been collected.

Included in this section are some figures which depict some of the results of air quality monitoring and control in the State. Figures 1- 1 through 1-4 display trends or the lack of a trend which have been occurring at several long term key sites around the State.

Figure 1-1 indicates trends over the last eleven years in the annual arithmetic means for fine particulate. The majority of the sites collecting PM10 data are showing either a downward trend or are low enough that they are probably recording regional background concentrations and are not indicating a significant trend in either direction.

Figures 1-2 and 1-3 indicate the sulfur dioxide trends at seven sites with a long term history. All of the sites appear to indicate relatively stable long term sulfur dioxide levels since 1983 with no

POLLUTANT	AVERAGING TIME	CONCENTRATION
Particulates (PM10)	Expected Annual Arithmetic Mean:	
	Primary	50 ug/m ³
	Secondary	50 ug/m ³
	Twenty-Four Hour:***	
	Primary	150 ug/m ³
	Secondary	150 ug/m ³
Lead (Pb)	Calendar Quarter	1.5 ug/m ³
Carbon Monoxide (CO)	One Hour**	35 ppm
	Eight Hour**	9 ppm
Ozone (O3)	One Hour***	0.12 ppm
Nitrogen Dioxide (NO2)	Annual Arithmetic Mean	0.05 ppm
Sulfur Dioxide (SO2)	Annual Arithmetic Mean	0.03 ppm
	Twenty-Four Hour**	0.14 ppm
	Three-Hour Secondary**	0.50 ppm

TABLE 1-1 NATIONAL AMBIENT AIR QUALITY STANDARDS (1995)

* = Federal Guideline Only.

**= Not to be exceeded more than once per year.

*** = Statistically estimated number of days with exceedances is not to be more than 1 per year.

ppm = Parts of pollutant per million parts of air.

 ug/m^3 = Micrograms of pollutant per cubic meter of air.

TABLE 1-2

STATE OF MAINE AMBIENT AIR QUALITY STANDARDS (1995)

POLLUTANT	AVERAGING TIME	CONCENTRATION
Particulates (PM10)	Annual Arithmetic Mean	40 ug/m ³
(Effective 9-30-89)	Twenty-Four Hour**	150 ug/m ³
Lead (Pb)	Twenty-Four Hour*	1.5 ug/m ³
Carbon Monoxide (CO)	One Hour*	35 ppm (40 mg/m ³)
	Eight Hour*	9 ppm (10 mg/m ³)
Ozone (O3)	One Hour*	.081 ppm (160 ug/m ³)
Ozone (O3) Effective 9-25-95	State Standard = Federal Standard	
Nitrogen Dioxide (NO2)	Annual Arithmetic Mean	.053 ppm (100 ug/m ³)
Sulfur Dioxide (SO2)	Annual Arithmetic Mean	.022 ppm (57 ug/m ³)
	Twenty-Four Hour*	.088 ppm (230 ug/m ³)
	Three Hour*	.439 ppm (1150 ug/m ³)
Hydrocarbon	Three Hour*	160 ug/m ³
Particulates (TSP)***	Twenty-Four Hour	150 ug/m ³

* = Not to be exceeded more than once per year.

** = Statistically estimated number of days with exceedances is not to be more than 1 per year.

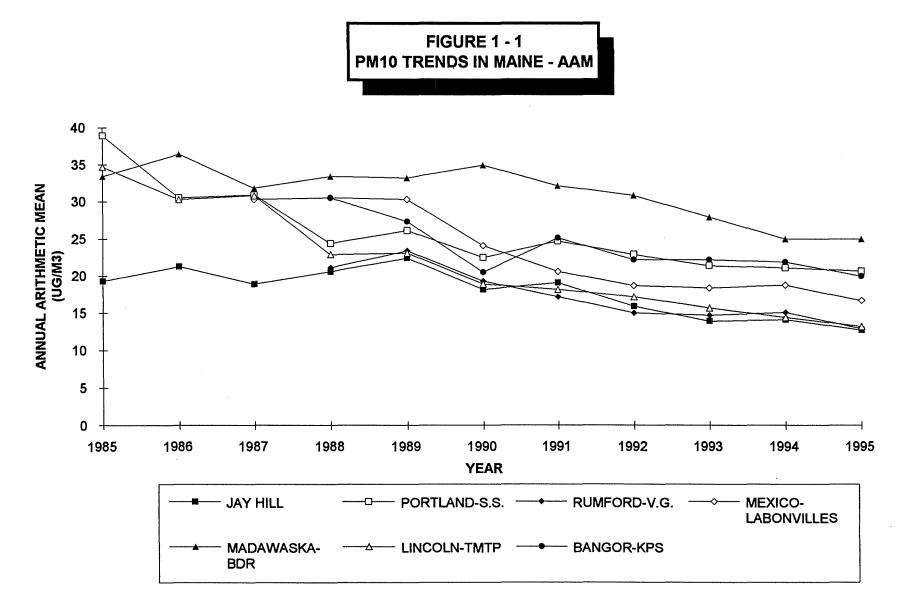
*** = Indication of a nuisance condition only.

PPM = Parts of pollutant per million parts of air.

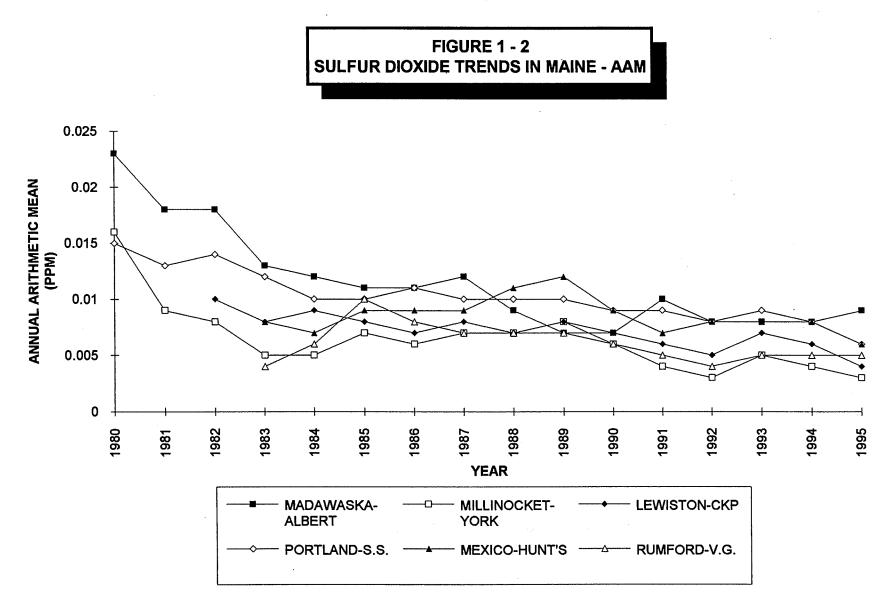
 ug/m^3 = Micrograms of pollutant per cubic meter of air.

 $mg/m^3 =$ Milligrams of pollutant per cubic meter of air.

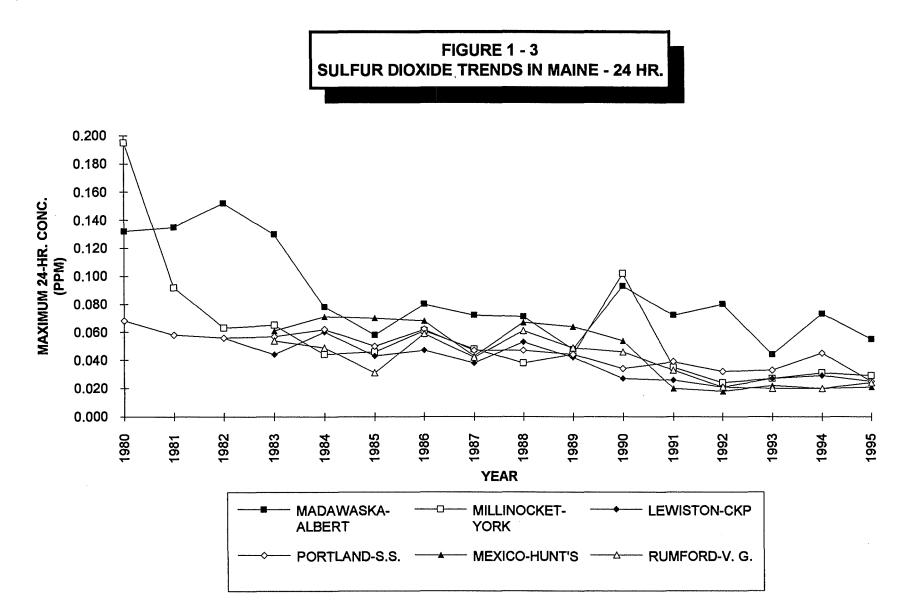
	<u>,</u>			COUNTIES															
POLLUTA	NT		A Z D R O % U O Ø Ø – Z	A R O O S T O O K	CUMBERLAND	F R A N K L I N	HANCOCK	K E N N E B E C	ĸNOX	L I N C O L N	O X F O R D	P E N O B S C O T	P I S C A T A Q U I S	SAGADAHOC	S O M E R S E T	W A L D O	W A S H I N G T O N	YORK	T O T A L S
Fine Partic	ulate(PM10):																		
	Annual Arithmetic	: Mean* State Federal	0 0	0 0	0 0	0 0	0 0	0	0 0	? ?	0 0	0 0	? ?	? ?	0 0	? ?	? ?	0 0	0 0
	,	State Federal		0 0	0 0	0 0	0 0	0 0	0 0	? ?	2 2	0 0	? ?	? ?	0 0	? ?	? ?	0 0	2 2
Lead:	Twenty-four Hour	State Federal				No	monii	toring) done	e for t	this p	olluta	nt du	iring 1	995				
Carbon M	Ionoxide: One Hour Eight Hour					No	moni	toring	l done	e for t	this p	olluta	nt du	iring 1	995				
Nitrogen L	Dioxide: Annual Arithmetic	: Mean*	?	?	0	?	?	?	?	?	?	?	?	?	?	?	?	0	0
Sulfur Diox	(ide;																		
	Annual Arithmetic	: Mean* State Federal	0 0	0 0	0 0	? ?	? ?	6 6	? ?	? ?	0 0	0 0	? ?	? ?	? ?	? ?	? ?	? ?	0 0
	Twenty-four Hour	State Federal	0	0 0	0 0	? ?	? ?	6 6	? ?	? ?	0 0	0 0	? ?	? ?	? ?	? ?	?	? ?	0 0
	Three Hour	State Federal	0 0	0	0 0	? ?	? ?	6 6	? ?	? ?	0	0	? ?	? ?	? ?	? ?	? ?	? ?	0 0
Ozone:	One Hour State Health Level of J Days		?	?	98	?	82	12	83	?	8	26	7	110	9	?	41	148	624
		Federal	?	?	١	?	2	0	1	?	0	0	0	2	0	?	0	5	11


 TABLE 1-3

 NUMBER OF AMBIENT AIR QUALITY STANDARD EXCEEDANCES BY COUNTIES(1995)


* Annual Means generated by only a few samples are not included in this summary.

,


? No monitoring done for this pollutant within this county during 1995.

- 4

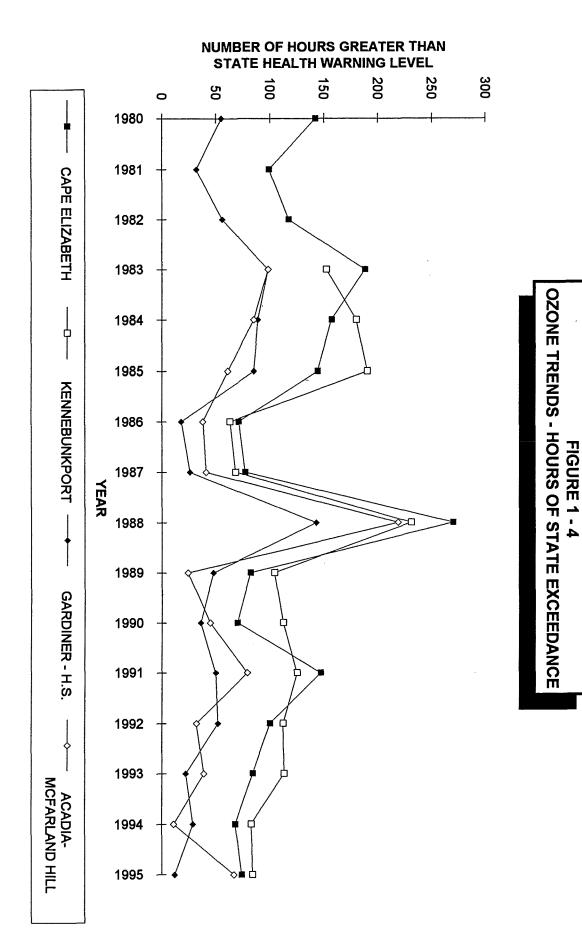
- 5 -

- 6 -

significant trend in either direction or in some cases a slight downward trend. Figure 1-3 indicates the fluctuations in the short term concentrations over the last few years. The site in Madawaska has the highest 24-hour concentrations over the last few years but has not shown any exceedance since 1990. The site is probably being impacted by stack emissions from a large industrial facility with emissions on both sides of the U.S./Canada border.

Figure 1-4 depicts the number of hourly exceedances of the State ozone health warning level. As can be seen from the graphs, the violations vary greatly from year to year and while showing a very significant increase in the number of violations during 1988 there was a significant decrease during 1989 which carried over to later years at most of the sites. Weather conditions are responsible for a lot of the variability from year to year and the conditions during 1988 were very conducive to the formation of ozone while those of subsequent years were not as conducive. Because of the significant effect weather has on the formation of ozone, Maine, as well as the rest of the northeast, will need to control emissions to such a level that even under ideal weather conditions for the formation of ozone, standards will not be exceeded.

Data summarized in this report is available for review in the DEP headquarters in Augusta and copies can be obtained from that office for a nominal fee.


1.2 Description of Air Monitoring Network

The Maine ambient air monitoring network consists of three types of monitoring sites or stations, which are required by the U.S. Environmental Protection Agency as set forth in Title 40 of the <u>Code of Federal Regulations</u>, Part 58 (40 CFR 58). The types of monitoring sites are distinguished from one another on the basis of the general monitoring objectives they are designed to meet. All of the instruments at a particular monitoring site may not have the same designation. The three types of monitoring sites with their monitoring objectives are as follows:

1. State/Local Air Monitoring Station (SLAMS) Network.

The SLAMS network is designed to meet a minimum of four basic monitoring objectives:

- a. To determine highest concentrations expected to occur in the area covered by the network.
- b. To determine representative concentrations in areas of high population density.
- c. To determine the impact on ambient pollution levels of significant sources or source categories.
- d. To determine general background concentrations levels.

2. National Air Monitoring Station (NAMS) Network.

The NAMS network is a subset of the SLAMS network with the following objectives:

- a. To monitor in the areas where the pollutant concentration and the population exposure are expected to be the highest consistent with the averaging time of the NAAQS.
- b. To monitor in areas of expected maximum concentrations.
- c. To monitor in areas which combine poor air quality with a high population density.
- d. To provide data for national policy analysis/trends and for reporting to the public on major metropolitan areas.
- 3. Special Purpose Monitoring Station (SPMS) Network.

Any monitoring site that is not a designated SLAMS or NAMS is considered a special purpose monitoring station. Some of the SPMS network objectives are:

- a. To verify the maintenance of ambient air standards in areas not covered by or represented by the SLAMS/NAMS network.
- b. To provide additional data for developing local control strategies and to document their effectiveness.
- c. To provide data on noncriteria pollutants.

The number of monitors operated for the various monitoring types are summarized in Table 1-4. This monitoring network has been fairly stable for the last couple of years. The total suspended particulate network was significantly reduced due to the elimination of the standard and the control of fugitive dust problems. Sulfur dioxide monitoring has been reduced and lead monitoring eliminated due to sufficient data having been collected documenting the compliance status and low levels of those pollutants in most areas of the State.

Table 1-5 provides a breakdown of who operated the monitors during 1995. The breakdown indicates most point-source oriented pollutant monitors are operated by the sources which contribute to the problem whereas secondary pollutants or population caused pollutant monitors are generally operated by the DEP, or other governmental agencies.

Air quality data are developed using two basic methods: 1) the continuous monitoring of gaseous pollutants and; 2) the periodic sampling of particulate and gaseous pollutants. In addition to pollutant monitoring there is also the continuous monitoring of meteorological parameters. Eightynine monitors collected data at sixty-five different sites during 1995.

Continuous gaseous monitoring was done at twenty-seven sites in Maine during 1995. Ozone was monitored at fifteen of these stations, nitrogen dioxide at two and sulfur dioxide at thirteen. Carbon monoxide and lead were not monitored during 1995. Hazardous air pollutants(HAPS) canister samplers were operating at five sites by the end of the year.

Particulate sampling was done at twenty-eight sites in Maine during 1995. Only one station monitored total suspended particulates. Twenty-seven of these sites collected fine particulate

TABLE 1-4 **DISTRIBUTION OF AIR MONITORING EQUIPMENT IN 1995**

POLLUTANT	<u>NAMS</u>	<u>SLAMS</u>	<u>SPMS</u>	TOTAL
Fine Particulate	2	14	12	28
Total Suspended Particulate	0	0	1	1
Lead	0	0	0	0
Carbon Monoxide	0	0	0	0
Sulfur Dioxide	2	3	8	13
Nitrogen Dioxide	0	0 *	2	2
Ozone	0	6	9	15
Sulfate	0	0	2	2
WS/WD	0	0	19	19
Atmospheric Depsition	0	0	4	4
Hazardous Air Pollutants	<u>0</u>	<u>0</u>	<u>5</u>	<u>5</u>
Total	4	23	62	89

* The PEOPL site in Portland is a SLAMS site for NOx but was not operated in 1995 and is not included in this summary.

TABLE 1-5 **MONITOR OPERATORS DURING 1995**

POLLUTANT	DEP*	INDUSTRY**	TOTAL
Fine Particulate Total Suspended Particulate Lead Carbon Monoxide Sulfur Dioxide Nitrogen Dioxide Ozone Sulfate WS/WD Atmospheric Deposition	16 0 0 4 2 14 2 8 4	12 1 0 9 0 1 0 11 0	28 1 0 13 2 15 2 19 4
Hazardous Air Pollutants	<u>5</u>	<u>0</u>	<u>5</u>
Total	55	34	89

Includes other governmental agencies.
** Includes industries and their consultants.

fractions. Two sites were analyzed for sulfates. There were also four sites collecting acid deposition data. One site was operated by the State and the others were operated by the National Park Service, the University of Maine and NOAA/National Weather Service.

In addition to pollutant monitoring, wind speed and direction was recorded at nineteen sites around the State during 1995. Some of these sites also recorded other meteorological parameters such as sigma (stability) and temperature, precipitation and solar radiation.

Table 1-5 presents all the monitoring sites in Maine that operated during 1995 and indicates which parameters were monitored at each site. The map in Figure 1-5 shows the minor civil divisions within the State.

1.3 Document Organization

This document is divided by pollutant into chapters. Each chapter contains: 1) a description of the nature and sources of that pollutant, 2) its health and welfare effects, 3) a discussion on the standards (current and proposed) for that pollutant, 4) a discussion of the monitoring methods for that pollutant, 5) a table presenting the 1995 monitored data, 6) in the case of some pollutants, historical tables presenting 1995 data along with data for previous years to show trends, effects of control strategy, or change in emission sources.

1.3.1 Explanation of Data Summary Tables

The Data Summary Tables were designed to facilitate comparing 1995 air quality monitoring data with the standards for each pollutant. Therefore, the data are presented for each averaging time for which standards exist for a pollutant.

An annual average concentration is presented for each pollutant that has a long-term, annual standard (NO₂, SO₂, PM10).

For pollutants that have short-term standards, the highest short-term values are presented. Some pollutants are allowed to exceed the standard once during the year so the second highest value would be used to determine whether there was a violation or not.

All of the data collected during 1995 has been presented in the Data Summary Tables. However, in making comparisons of the data, one should be aware that a site with only a few samples will not be a valid indicator of pollutant concentrations in the area.

1.3.2 Explanation of Historical Comparison Tables

The Historical Comparison Tables present air quality data for 1995 and those years prior to 1995 when the same pollutant was monitored at the same site. The purpose of the Tables are to indicate

TABLE 1-6 1995 AMBIENT AIR MONITORING SITE DIRECTORY

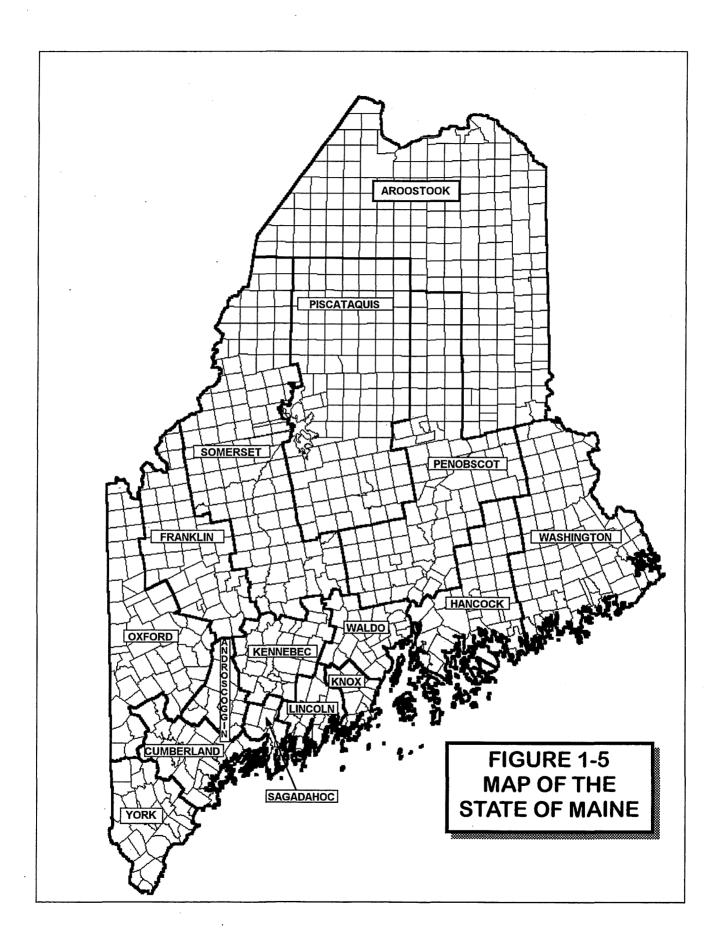
SITE	ADDRESS	OPERATOR	PARAMETERS MEASURED
ANDROSCOGGIN COUNTY			
Auburn 23 001 0005	Lewiston-Auburn Airport Lewiston Junction Road	DEP	WS/WD
Lewiston 23 001 001 1	Country Kitchen Parking Lot Canal Street	DEP	SO2,PM10
Livermore Falls(DISC) 23 001 2002	10-12 Millett Street	International Paper	\$O2
Lewiston(DISC) 23 001 3002	Birch Street	DEP	SO2,PM10
AROOSTOOK COUNTY			
Madawaska 23 003 0006	Fraser Paper Company Bridge Street	Fraser Paper	WS/WD,Temperature
Madawaska 23 003 0009	Albert Street	Fraser Paper	SO2,Precipitation
Madawaska 23 003 0012	U. S. Post Office 430 E. Main Street	Fraser Paper	so2,WS/WD
Madawaska 23 003 0013	Big Daddy's Restaurant 395 E. Main Street	DEP	PM10
Madawaska 23 003 1003	Madawaska High School 7th Avenue	Fraser Paper	SO2
Presque Isle(DISC) 23 003 1005	Northeastland Hotel 436 Main Street	DEP	PM10
Presque Isle 23 003 1008	DEP Regional Office 528 Central Drive	DEP	WS/WD,PM10
Presque Isle 23 003 1011	Riverside Street	DEP	PM10,SO2
CUMBERLAND COUNTY			
Bridgton 23 005 0002	Upper Ridge Road	DEP	PM10,Sulfate,Acid Precipitation
Portland 23 005 0014	Shelter Site(P.E.O.P.L.) Elm Street	DEP	\$O2,PM10,Sulfate,Ozone(s),HAPS(n)
Portland 23 005 0015	Tukey's Bridge	DEP	PM10,HAPS(n)
South Portland 23 005 0022	130 Wescott Road	DEP	PMIO
Portland(NEW) 23 005 0023	Canco Road	DEP	HAPS
Portland(NEW) 23 005 0024	Deering High School Leland Street	DEP	HAPS

<u>SITE</u>	ADDRESS	OPERATOR	PARAMETERS MEASURED
Portland(NEW) 23 005 0025	Cumberland County Jail County Way	DEP	HAPS
Cape Elizabeth 23 005 2003	Shelter Site Two Lights State Park	DEP	Ozone(s),WS/WD(s),NO2(s), NO(s),NOx(s),NOy(n),Temperature, Relative Humidity,Solar Radiation Uv-B Radiation(n),Barometric Pressure VOC's,TNMOC
FRANKLIN COUNTY			
Jay 23 007 0003	Crash Road Gilbert Jewell Property	International Paper	PM10
Jay 23 007 0004	Jay Hill Bomaster Property	International Paper	PM10
Jay 23 007 2001	Weather Level I Lagoon Hill	International Paper	WS/WD,Temperature, Solar Radiation, Precipitation
HANCOCK COUNTY			
Acadia National Park 23 009 0003	McFarland Hill Ranger Sta. Route #233	NPS	Acid Precipitation, Precipitation
Acadia NP 23 009 0101	Acadia NP Route #233	DEP	Ozone,WS/WD,Temperature, Dewpoint
Cadillac Mountain(NEW) 23 009 0102	23 Cadillac Mountain Acadia National Park	DEP	Ozone
Ellsworth(NEW) 23 009 0201	Coastal Carpets 21 Water Street	DEP	PM10
Ellsworth(NEW) 23 009 0202	Triangle Exxon 190 High Street	DEP	PM10
KENNEBEC COUNTY			
Augusta 23 011 0008	Governor's Hangar State Airport	DEP	WS/WD
Augusta 23 011 0014	Rines Hill Parking Lot Water Street	DEP	PM10
Gardiner 23 011 2005	Pray Street School	DEP	Ozone(s)
KNOX COUNTY			
Port Clyde 23 013 0004	Port Clyde Ozone St. George	DEP	Ozone(s)
Thomaston 23 013 1005	Dragon Cement Weather Route #1	Dragon Products	W\$/WD
Thomaston 23 013 2001	Mitchell Property 2 Dexter Avenue	Dragon Products	TSP,PM10
OXFORD COUNTY			
Vlexico 23 017 0008	Labonville's Route #2	Boise Cascade	PM10
Mexico 23 017 001 1	Hunt's Property Route #2	Boise Cascade	SO2

<u>SITE</u>	ADDRESS	OPERATOR	PARAMETERS MEASURED
Rumford 23 017 2002	Boise Cascade Weather II Swift River Pump House	Boise Cascade	WS/WD,Temperature,Solar Radiation
Rumford(DISC) 23 017 2005	Taylor Mountain I	Boise Cascade	SO2,PM10
Rumford(DISC) 23 017 2006	Taylor Mountain II	Boise Cascade	SO2
Rumford 23 017 2007	Village Green Site	Boise Cascade	SO2,PM10
North Lovell 23 017 3001	DOT Garage Route #5	DEP	Ozone(s)
PENOBSCOT COUNTY			
Bangor 23 019 0002	Kenduskeag Pump Station Washington Street	DEP	PM10
Bangor 23 019 0010	BIA - Building #489 Air National Guard	DEP	W\$/WD
Lincoln 23 019 1007	Thomas Motel Trailer Park 39 West Broadway	Lincoln Pulp & Paper	PM10
Lincoln 23 019 1012	Penobscot River	Lincoln Pulp & Paper	PM10
Lincoln 23 019 1013	Lincoln Mill Katahdin Avenue	Lincoln Pulp & Paper	W\$/WD,Temperature
Lincoln 23 019 2003	Lincoln Post Office Building 50 Fleming Street	Lincoln Pulp & Paper	РМ10
Millinocket 23 019 2009	York Street	Great Northern Paper	SO2,PM10
Millnocket 23 019 2013	Mill Stone Dam	Great Northern Paper	W\$/WD,Temperature
Howland(DISC) 23 019 4007	Meadow Brook Road	DEP	Solar Radiation, Uv-B Radiation
Holden 23 019 4008	Summit of Rider Bluff	DEP	Ozone(s)
Old Town 23 019 5004	Woodlands Garage James River Corporation	James River Corp.	W\$/WD,Temperature
PISCATAQUIS COUNTY			
Greenville 23 021 0001	Squaw Brook Greenville	University of Maine	Acid Precipitation, Precipitation
Greenville 23 021 0002	Greenville Municipal Airport	DEP	Ozone(s),WS/WD(n)
SAGADAHOC COUNTY			
Phippsburg 23 023 0003	Small Point Navy Road	DEP	Ozone(s)

<u>SITE</u> SOMERSET COUNTY	ADDRESS	OPERATOR	PARAMETERS MEASURED			
Madison 23 025 1004	The Ballfield Main Street	Madison Paper Ind.	W\$/WD,Temperature			
Skowhegan 23 025 2001	Hinckley Hinckley Farm School	S. D. Warren	PM10			
Skowhegan 23 025 2002	Eaton Ridge	S. D. Warren	PM10			
Skowhegan 23 025 2003	Somerset Mill S. D. Warren	S. D. Warren	WS/WD,Ozone,Temperature			
WASHINGTON COUNTY						
Jonesport 23 029 0019	Public Landing	DEP	Ozone(s)			
Woodland 23 029 0020	100 Meter Tower	Georgia Pacific Corp.	WS/WD,Temperature, Dewpoint			
Campobello Island(NEW) CC 004 0002	Roosevelt-Campobello Park Campobello Island, N. B.	DEP/RCP	Ozone(s)			
YORK COUNTY						
Biddeford 23 031 0005	Eagles Aerie 57 Birch Street	DEP	PM10			
Kennebunkport 23 031 2002	Parson's Way	DEP	Ozone(s)			
Kittery(NEW) 23 031 3002	Frisbee School Godsoe Road	NH	Ozone(s),NO2(s),NO(s),NOx(s) Temperature(s),Relative Humidity(s) WS/WD(s),TNMOC,VOC's			

(AIRS Site #)


NEW	-Site established in 1995
DISC	-Site discontinued in 1995
_	
TSP	-Total Suspended Particulates
SO2	-Sulfur Dioxide
NO	-Nitric Oxide
NOx	-Oxides of Nitrogen
NO2	-Nitrogen Dioxide
NOy	-Low level NO, NOx, NO2
CO	-Carbon Monoxide
Pb	-Lead
WS/WD	-Wind Speed and Direction
PM10	-Fine Particulate
VOC	-Volatile Organic Compounds

- voc -volatile Organic Compounds
 TNMOC -Total Nonmethane Organic Compounds
 HAPS -U------
 - HAPS -Hazardous Air Pollutants
- NMHC -Nonmethane Hydrocarbons

n -Instrument installed during 1995

- d -instrument removed during 1995
- s -Instrument operated seasonally during 1995
 i -Instrument operated intermittently
- during 1995

,

the variations in air quality from year to year. The Tables in some cases represent maximum concentrations for specific time periods and in others the number of days in each year that the standards were violated.

1.3.3 Explanation of Trends Tables

The highest hourly concentration in a year is not the best indicator of long-term air quality trends because it is an erratic value. Therefore, special trend tables are presented for carbon monoxide and ozone when monitoring is conducted. The trend tables present the 10th, 50th, and 90th percentile values to represent the bulk of the air quality data for each year. Percentiles indicate the fraction, or percent, of the value that are below a particular level. For example, if the 90th percentile value for some sets of CO observations is 5.0 ppm, it means that 90% of the time the concentrations of CO are less than 5.0 ppm. Conversely, it also means that 10% of the time the concentrations are above 5.0 ppm. Thus the existence or lack of long-term trends in overall air quality for CO and O3 can be more reliably determined using the Trends Tables, than by looking at just the Historical Comparison Tables.

The ozone data has been incorrectly interpreted in the past and consequently the trends tables have not reported the ozone data in a consistent format. Starting in 1988 data was stored in the AIRS database instead of the old SAROAD system. Under the SAROAD system reports were generated which indicated the percentiles or frequency distribution of all the hourly data values reported. Reports generated under the AIRS system are now based on percentiles calculated based on each days maximum hourly value. Thus, a 50th percentile of .050 ppm means that 50% of the days monitored had a maximum hourly value during the day of .050 ppm or less. All of the trend information for ozone beginning with the 1991 Annual Report have been revised to reflect this method of calculation based on the AIRs report format. If a report format can be developed that will provide percentiles based on total hourly values then that statistic will be used in future reports as it is a better indicator of total exposure to high ozone levels.

2. CARBON MONOXIDE (CO)

2.1 Description and Sources

Carbon monoxide is colorless, odorless and tasteless gas. Therefore you do not even know you are breathing it until you feel its detrimental effects. It constitutes the largest single fraction of the pollutants found in urban atmospheres. It is produced primarily by the incomplete combustion of organic materials used as fuels for transportation and in the heating of buildings; it also results from industrial processes, refuse burning, and agricultural burning. Several natural sources of CO of both biological and non-biological origin have also been identified, but their contributions to urban atmospheric concentrations are thought to be small. Background levels of CO (resulting from natural and technological sources) found in relatively nonpolluted air range from 0.025 to 1.0 ppm. Urban carbon monoxide is produced primarily by motor vehicles.

Because motor vehicle traffic is the major source of CO, daily concentration peaks coincide with morning and evening rush hours. The worst carbon monoxide problems are found where large numbers of slow moving cars congregate. These problems are further aggravated when they occur in a "street canyon" situation. When there are large amounts of slow moving traffic in a street canyon situation, with the wind blowing perpendicular to the street, carbon monoxide can be trapped in the canyon and build up to unhealthful levels.

CO problems are usually worse in winter because: 1) cold weather makes motor vehicles run dirtier and requires more combustion for space heating; and 2) on winter nights a strong inversion layer develops in the atmosphere, that traps pollution near the ground, preventing it from mixing with cleaner air above.

2.2 Health and Welfare Effects

Carbon monoxide affects the central nervous system by depriving the body of the oxygen it needs. Tests of automobile drivers show exposure to carbon monoxide can impair driver's judgement and ability to respond rapidly in traffic. It can also impair vision and produce headaches.

Carbon monoxide enters the bloodstream by combining with hemoglobin, the substance that carries oxygen to the cells. Hemoglobin that is bound up with CO is called carboxyhemoglobin. This combination occurs 200 times more readily with CO than with oxygen, so the amount of oxygen being distributed throughout the body by the bloodstream is reduced in CO's presence. Blood laden with CO can weaken heart contractions, lowering the volume of blood distributed to various parts of the body. It can also significantly reduce a healthy person's ability to perform manual tasks, such as working, jogging and walking. A life-threatening situation exists in patients with heart disease, who can't compensate for the oxygen loss. The 4.2 million people in the U.S. suffering from angina pectoris (a heart disease characterized by brief spasmodic attacks of chest pain due to insufficient oxygen levels in the heart muscles) are especially susceptible. Carbon monoxide is also harmful to persons who have lung disease, anemia or cerebral-vascular disease. Others sensitive to carbon monoxide include the human fetus, and people exposed to long-term concentrations, such as traffic officers.

People who sit in idling cars over sustained periods risk harmful CO exposure, as do cigarette smokers. Since about two percent of cigarette smoke is carbon monoxide, if you or someone else smokes while driving in heavy traffic, you may both experience the harmful effects of CO from the cigarette smoke and the engine exhaust accumulated in streets. Even three or four hours after you're exposed, half the excess CO still remains in your bloodstream. Because it takes time for CO to build up in the bloodstream, the severity of health effects depends both on the concentration being breathed and the length of time the person is exposed.

2.3 Standards

The existing standards for carbon monoxide are currently set at 9 parts CO per million parts air (ppm), averaged over a period of 8 hours, and 35 ppm averaged over 1 hour, not to be exceeded more than once per year. As a result of a review and revision of the health criteria, EPA had proposed to retain the existing primary 8-hour standard at 9 ppm and to lower the primary 1-hour standard to 25 ppm. However, this change has not occurred and the standards remain the same. The change in the 1-hour standard had been proposed because of the more rapid accumulation of blood carboxyhemoglobin in moderately exercising sensitive persons compared to resting individuals. The impact of exercise, which is greater for short-duration exposures, was not considered in the original standard.

2.4 Monitoring

Carbon monoxide was not monitored in Maine during 1995.

3. OZONE (O3)

3.1 Description and Sources

Ozone is a highly reactive form of oxygen which, at very high concentrations, is a blue unstable gas that has a characteristic pungent odor most commonly identified around an arcing electric motor, lightning storms, or other electrical discharges. However, at normal ambient concentrations, ozone is colorless and odorless. Ozone is the major component of photochemical "smog", but the haziness and odors of smog are primarily caused by other components.

Natural ground level ozone occurs in low concentrations (less than .05 ppm) due to natural physical and chemical phenomena. Occasionally, unique meteorological conditions can result in natural levels between .05 and .10 ppm.

Ozone is not emitted directly from a source as are other pollutants. It forms as a secondary pollutant. It's precursors are hydrocarbons and nitrogen oxides, which chemically react in sunlight to form ozone. The hydrocarbons are emitted in automobile exhaust, from gasoline and oil storage and transfer, and from industrial use of paint solvents, degreasing agents, cleaning fluids, ink solvents, incompletely burned coal or wood and many other sources. Plants also give off hydrocarbons such as terpenes from pine trees. Nitrogen oxides are emitted by all combustion sources.

The highest ozone levels generally occur during summer afternoons when the high temperatures and strong sunlight promote photochemical reactions. Stagnant weather may cause smog to remain in an area for several days. The winds may also transport ozone many miles outside of the urban environment. For example, it is estimated that the majority of the ozone in the State of Maine is transported into the State from sources located outside the State. In addition a much smaller amount of the ozone is naturally occurring background concentrations, part of which is also transported into the State. The remaining ozone is assumed to be due to local sources within the State. Because of long-range transport, local control of emissions by itself may not solve the ozone problem. An effective national program may be necessary to achieve national compliance.

Ground-level ozone, discussed above, should not be confused with the stratospheric ozone layer, located about seven miles high in the atmosphere, which shields the earth from cancer-causing ultraviolet rays. Concentrations of ozone in this layer may reach as high as 10 ppm. Concern over potential reduction of the necessary levels of ozone in the stratosphere by reactions with fluorocarbons from aerosol cans has resulted in the removal of most of these propellants from the market. However, ozone at ground level, where it is breathed, is a pollutant.

3.2 Health and Welfare Effects

Ozone at low concentrations causes eye irritations and at higher concentrations difficulty in breathing for people with respiratory problems, the elderly, and children. Symptoms associated with exposure to higher concentrations of ozone are shortness of breath, pain when inhaling deeply,

wheezing and coughing. Even healthy adults and children may be affected. Many plants, such as white pine, soybeans and alfalfa, are extremely sensitive to ozone, and ozone is known to weaken materials such as rubber and fabrics.

3.3 Standards

The existing National Ambient Air Quality Standard (NAAOS) for ozone is 0.12 ppm and will be attained when "the expected number of days per calendar year with maximum hourly average concentrations above 0.12 ppm is equal to or less than one." This standard was effective February 8, 1979 and replaced a more restrictive 0.08 ppm standard that was established April 10, 1971. The change was the result of a required assessment of existing NAAOS to include a review of new health effects data that have become available since 1970. As a result of this review and national public comments, the standard was changed to a level that is considered to be sufficient to protect the public health and welfare. Since then additional research has concluded that there is in fact damage being caused by ozone levels less than the existing federal standard. Based on recent studies there appears to be significant vegetation damage at levels considerably below the federal standard and some "adverse" health effects at the current federal standard. Proposals have recently been made to add an eight hour average concentration as a new standard. Also under consideration is a new secondary standard. Final decisions on these new standards are expected to occurr in 1997. The State standard at the beginning of the year was .081 ppm. It had been established at the same time the original federal standard was established and had remained the same until 1995. Effective September 29, 1995 the State standard was eliminated and the State adopted whatever the federal standard is for ozone as a state standard. Should the federal standard be changed it will automatically be adopted as the new State standard. The old State standard of .081 ppm is to be retained as a health warning level only. In the past the State standard was interpreted to be .080 ppm but a conversion of the actual 160 ug/m3 standard to ppm yields .081 ppm. Therefore, only hourly averages in excess of .081 ppm are considered exceedances of the State standard or as is the case now the health warning level..

3.4 Monitoring

Ozone was monitored at fourteen sites in Maine and one site in New Brunswick during 1995 using continuous monitoring equipment of two kinds, either chemiluminescence or ultra-violet absorption analyzers. The site in New Brunswick is located at the Roosevelt Campobello International Park on Campobello Island and was operated jointly by Park staff, Environment Canada and the Maine DEP. Maine's ozone monitoring season is limited to April through October due to the weather conditions which are not conducive to ozone formation at other times of the year.

Table 3-1 summarizes the 1995 ozone data. Table 3-2 presents ozone historical comparisons and Table 3-3 presents ozone trends. Tables 3-4 and 3-5 summarize the number of days during each month when either the state health warning level or the state/federal standard has been exceeded. Exceeding the standard does not necessarily mean a violation. The standard allows for an exceedance before a violation is recorded. Table 3-4 is an analysis and summary of the ozone data based on the state health warning level. The state health warning level is an hourly value and

consequently the summary deals with hours of data. Theoretically, you can have 24 exceedances of the state health warning level in one day. Data recovery includes total hours during the year in which monitored data is available, total hours during the ozone season of April 1 through October 31 in which monitored data is available and the percent of monitored hours of data during the ozone season. The second, third and fourth high hourly maximums could all have occurred on the same day as the highest hourly value. Hours greater than the state health warning level have been broken down into various concentration ranges to provide an indication of the levels of exposure and those hours greater than .081 ppm have been averaged to provide additional exposure information. The last column in this table lists the separate days on which at least one hourly exceedance of the state health warning level occurred. Table 3-5 summarizes the ozone data based on the state/federal standard. The state/federal standard only requires one hour of monitored data to exceed .12 ppm to be considered as an exceedance of the state/federal standard. Ozone data is recorded to three decimal places but the state/federal standard is only two decimal places. Therefore, the third decimal place is rounded off and the monitored value must be .125 or greater to exceed the standard of .12 ppm. The percent data recovery in this table is based on the number of valid days of data collected during the ozone season. One hour of data greater than .12 ppm is sufficient to consider a day valid even if it is the only valid hour of data for the entire day. Otherwise, 75% of the data collected between the hours of 9:01 a.m. and 9:00 p.m. local time must be valid for the day to be considered a valid day(See 40 CFR Ch. 1 Pt. 50, Appendix H). The high, second high, third high and fourth high hourly maximums are all on separate days. The measured exceedances are actual measured values or days that exceeded the standard. The estimated exceedances takes into account missing data which may have been during high periods of ozone. The last two columns are explained in a footnote at the end of the table. Tables 3-6 and 3-7 summarize the data collected over the years at those sites which were in operation during 1995. They include a monthly breakdown of the number of days on which either the state health warning level or state/federal standard was exceeded as well as the number of sites that were in operation.

The ozone data has been incorrectly interpreted in the past and consequently the trends tables have not reported the ozone data in a consistent format. Starting in 1988 data was stored in the AIRS database instead of the old SAROAD system. Under the SAROAD system reports were generated which indicated the percentiles or frequency distribution of all the hourly data values reported. Reports generated under the AIRS system are now based on percentiles calculated based on each days maximum hourly value. Thus, a 50th percentile of .050 ppm means that 50% of the days monitored had a maximum hourly value during the day of .050 ppm or less. All of the trend information for ozone beginning with the 1991 Annual Report have been revised to reflect this method of calculation based on the AIRs report format. If a report format can be developed that will provide percentiles based on total hourly values then that statistic will be used in future reports as it is a better indicator of total exposure to high ozone levels.

TABLE 3-1 1995 OZONE DATA SUMMARY (Parts Per Million)

<u>SITE</u>	ADDRESS	NUMBER OF OBSERVATIONS	HOURLY CONC <u>HIGHEST</u>	CENTRATIONS <u>2ND HIGH</u>	NUM OF EXCE <u>STATE*</u>	ABER EDANCES <u>FEDERAL**</u>
CUMBERLAND COUNTY Portland Cape Elizabeth	Shelter Site Shelter Site	4264 6913	0.110 0.161	0.109 0.138	24 74	0 1
HANCOCK COUNTY Acadia National Park Acadia National Park	McFarland Hill Ranger Station Cadillac Mountain	8407 2640	0.128 0.134	0.127 0.121	67 15]]
KENNEBEC COUNTY Gardiner	Pray Street School	4829	0.102	0.091	12	0
KNOX COUNTY Port Clyde	Port Clyde Ozone	4066	0.140	0.135	83	١
OXFORD COUNTY Lovell	Route #5	4305	0.105	0.105	8	0
PENOBSCOT COUNTY Holden	Summit of Rider Bluff	4702	0.108	0.105	26	0
PISCATAQUIS COUNTY Greenville	Greenville Municipal Airport	8595	0.091	0.09	7	0
SAGADAHOC COUNTY Phippsburg	Navy Road	3893	0.172	0.145	110	2
SOMERSET COUNTY Skowhegan	Somerset Mill	4139	0.089	0.088	9	0
WASHINGTON COUNTY Jonesport Campobello Island***	Public Landing Roosevelt-Campobello Park	4374 2252	0.119 0.073	0.115 0.071	41 0	0 0
Y ORK COUNTY Kennebunkport Kittery	Parson's Way Frisbee School	4169 2754	0.159 0.127	0.156 0.127	84 64	2 3

* Total number of hours greater than .081 ppm. This is a health warning level only.
 ** Measured number of days with an hour that exceeds .12 ppm. Not a statistical estimate.

TABLE 3 - 2 OZONE HISTORICAL COMPARISONS

(1-Hour Concentrations)

CAPE ELIZABETH

Shelter Site

KENNEBUNKPORT

Parson's Way

OF STATE

SECOND

	SECOND	# OF STATE
<u>YEAR</u>	<u>HIGH</u>	EXCEEDANCES*
1978	.160 PPM	202
1979	.155 PPM	116
1980	.178 PPM	141
1981	.122 PPM	98
1982	.140 PPM	117
1983	.163 PPM	187
1984	.146 PPM	156
1985	.165 PPM	143
1986	.128 PPM	70
1987	.152 PPM	76
1988	.168 PPM	269
1989	.136 PPM	81
1990	.144 PPM	69
1991	.141 PPM	146
1992	.125 PPM	99
1993	.116 PPM	83
1994	.135 PPM	67
1995	.138 PPM	73

<u>HIGH</u> **EXCEEDANCES*** YEAR 1982 .120 PPM 42 1983 .148 PPM 151 1984 .147 PPM 179 1985 .168 PPM 189 1986 .138 PPM 62 1987 .145 PPM 67 ,168 PPM 1988 230 1989 .147 PPM 103 1990 .162 PPM 111 .150 PPM 124 1991 1992 .127 PPM 111 .127 PPM 1993 112 1994 .125 PPM 82 1995 .156 PPM 83

GARDINER

Gardiner H.S./Pray Street School

	SECOND	# OF STATE
YEAR	<u>HIGH</u>	EXCEEDANCES*
1981	.122 PPM	31
1982	.120 PPM	55
1983	.140 PPM	97
1984	.112 PPM	88
1985	.133 PPM	84
1986	.110 PPM	17
1987	.112 PPM	25
1988	.145 PPM	142
1989	.118 PPM	47
1990	.107 PPM	35
1991	.123 PPM	49
1992	.111 PPM	51
1993	.096 PPM	21
1994	.111 PPM	28
1995	.091 PPM	11

JONESPORT

Public Landing

	SECOND	# OF STATE
<u>YEAR</u>	<u>HIGH</u>	EXCEEDANCES*
1989	.099 PPM	18
1990	.106 PPM	17
1991	.117 PPM	69
1992	.103 PPM	37
1993	.103 PPM	18
1994	.098 PPM	14
1995	.115 PPM	40

* Exceedances of the state health warning level.

ACADIA McFarland Hill Ranger Station

	SECOND	# OF STATE
<u>YEAR</u>	<u>HIGH</u>	EXCEEDANCES*
1983	.135 PPM	97
1984	.130 PPM	84
1985	.117 PPM	60
1986	.108 PPM	37
1987	.126 PPM	40
1988	.153 PPM	218
1989	.113 PPM	23
1990	.118 PPM	44
1991	,125 PPM	78
1992	.105 PPM	31
1993	.104 PPM	38
1994	.095 PPM	10
1995	.127 PPM	66

TABLE 3 - 3 OZONE TRENDS (1-Hour Concentrations)

CAPE ELIZABETH Shelter Site

PERCENTILES

YEAR	<u>10%</u>	<u>50%</u>	<u>90%</u>
1978	0.018	0.026	0.054
1979	0.038	0.053	0.106
1980	0.033	0.049	0.097
1981	0.030	0.047	0.086
1982	0.033	0.052	0.082
1983	0.034	0.049	0.095
1984	0.034	0.051	0.100
1985	0.037	0.052	0.092
1986	0.032	0.048	0.075
1987	0.034	0.048	0.074
1988	0.033	0.050	0.106
1989	0.034	0.048	0.070
1990	0.031	0.046	0.077
1991	0.034	0.048	0.089
1992	0.032	0.046	0.079
1993	0.028	0.041	0.077
1994	0.032	0.047	0.076
1995	0.029	0,043	0.072

GARDINER

Gardiner H. S./Pray Street School

	P	ERCENTILE	S
YEAR	<u>10%</u>	<u>50%</u>	<u>90%</u>
1980	0.032	0.046	0.088
1981	0.029	0.045	0.073
1982	0.028	0.047	0.073
1983	0.033	0.047	0.083
1984	0.030	0.046	0.081
1985	0.033	0.049	0.082
1986	0.027	0.043	0.062
1987	0.028	0.041	0.065
1988	0.027	0.049	0.087
1989	0.034	0.047	0.073
1990	0.034	0.048	0.075
1991	0.031	0.044	0.074
1992	0.030	0.044	0.072
1993	0.026	0.039	0.064
1994	0.029	0.044	0.067
1995	0.025	0.038	0.062

Site relocated to the Pray Street School in 1991.

JONESPORT Public Landing

	P	ERCENTILE	S
YEAR	<u>10%</u>	<u>50%</u>	<u>90%</u>
1989	0.024	0.038	0.071
1990	0.019	0.038	0,063
1991	0.027	0.039	0.068
1992	0.027	0.040	0,066
1993	0.026	0.036	0.057
1994	0.029	0.046	0.068
1995	0.027	0.040	0.068

KENNEBUNKPORT Parson's Way

	PERCENTILES													
YEAR	<u>10%</u>	<u>50%</u>	<u>90%</u>											
1983	0.028	0.460	0.103											
1984	0.031	0.049	0.103											
1985	0.038	0.056	0.098											
1986	0.033	0.048	0.077											
1987	0,033	0.046	0.074											
1988	0.035	0.052	0.119											
1989	0.036	0.052	0.085											
1990	0.035	0.050	0.089											
1991	0.038	0.050	0.088											
1992	0.033	0.047	0.086											
1993	0.031	0.047	0.087											
1994	0.034	0.052	0.085											
1995	0.032	0.046	0.079											
	المعادية والمراجع	-l 100C -	-living d 700											

Percentiles calculated during 1985 only used 70% of the data.

ACADIA McFarland Hill Ranger Station

	F	PERCENTILE	S
<u>YEAR</u>	<u>10%</u>	<u>50%</u>	<u>90%</u>
1983	0.020	0.045	0.080
1984	0.030	0.045	0.087
1985	0.030	0.043	0.079
1986	0.030	0.042	0.063
1987	0.026	0.044	0.068
1988	0.031	0.049	0.097
1989	0.031	0.047	0.069
1990	0.033	0.044	0.070
1991	0.030	0.043	0.078
1992	0.026	0.038	0.068
1993	0.029	0.042	0.062
1994	0.029	0.045	0.071
1995	0.027	0.043	0.071

 TABLE 3-4

 SUMMARY OF HOURLY OZONE DATA FOR SITES OPERATING DURING 1995

			Hour	ly Data Rec	overy		Hourly M	aximums		Nu	mber of H	ours(In Pl	PM Range	əs)	Hours >	.081 ppm	Annual	Days with
			Total	Ozone	Percent	Max.	2nd	3rd	4th	>.081	>.090	>.100	>.110	>.120	Number	Arithmetic	Arithmetic	Hour
Site		Year	Hours	Season	Recovery	Hour	High	High	High	<.091	<.101	<.111	<.121		of Hours	Mean	Mean	> .081 ppm
CUMBERLAND	COUNTY							1										
Portland	Shelter Site	1995	4264	4264	83.0%	0.110	0.109	0.104	0.099	14	7	3	0	0	24	0.091	0.0423	9
Cape Elizabeth	Shelter Site	1980	3405	3405	66.3%	0.190	0.178	0.168	0.151	52	43	12	13	22	142	0.102	0.0590	26
		1981	3877	3877	75.5%	0.142	0.136	0.135	0.134	43	24	14	8	10	99	0.097	0.0532	20
		1982	4101	4101	79.8%	0.142	0.140	0.137	0.136	45	25	21	10	16	117	0.100	0.0560	18
		1983	5011	5011	97.6%	0.172	0.163	0.152	0.152	61	51	30	21	25	188	0.101	0.0579	36
		1984	4747	4747	92.4%	0.171	0.166	0.147	0.146	49	49	20	17	22	157	0.102	0.0593	31
		1985	4000	3937	76.7%	0.167	0.165	0.158	0.151	60	40	11	8	25	144	0.099	0.0592	27
		1986	4954	4954	96.5%	0.131	0.128	0.126	0.119	27	27	11	3	З	71	0.096	0.0516	13
		1987	5165	5037	98.1%	0.156	0.152	0.141	0.138	23	19	8	10	17	77	0.104	0.0523	15
		1988	4953	4953	96.4%	0.178	0.168	0.166	0.164	76	86	39	26	43	270	0.103	0.0595	35
		1989	4627	4627	90.1%	0.146	0.136	0.134	0.130	32	22	12	9	7	82	0.098	0.0519	16
		1990	4645	4645	90.4%	0.148	0.144	0.130	0.129	35	16	9	4	6	70	0.096	0.0505	17
		1991	4815	4815	93.8%	0.145	0.141	0.139	0.137	65	27	21	15	19	147	0.099	0.0546	28
		1992	4805	4805	93.6%	0.128	0.125	0.118	0.115	44	27	20	7	2	100	0.095	0.0508	17
		1993	4798	4798	93.4%	0.122	0.116	0.112	0.106	48	24	9	2	1	84	0.090	0.0468	17
		1994	6262	4876	94.9%	0.148	0.135	0.122	0.121	36	21	6	1	4	68	0.093	0.0512	16
		1995	8299	4879	95.0%	0.161	0.138	0.124	0.121	29	24	13	4	4	74	0.096	0.0482	15
HANCOCK COL	JNTY																	
Bar Harbor	Acadia Nat. Pk.	1982	2049	609	11.9%	0.055	0.055	0.050	0.050	0	0	0	0	0	0	*	0.0313	0
		1983	7560	4800	93.5%	0.138	0.135	0.130	0.128	51	27	10	6	4	98	0.094	0.0521	20
		1984	7902	4529	88.2%	0.140	0.130	0.117	0.117	44	23	12	4	2	85	0.094	0.0510	24
		1985	8550	4967	96.7%	0.120	0.117	0.102	0.101	39	18	2	2	0	61	0.087	0.0486	19
		1986	7861	4977	96.9%	0.109	0.108	0.104	0.104	18	14	6	0	0	38	0.093	0.0442	8
		1987	8000	4923	95.9%	0.130	0.126	0.121	0.118	11	13	8	6	3	41	0.109	0.0477	9
		1988	6701	4485	87.3%	0.179	0.153	0.151	0.144	70	63	48	19	19	219	0.099	0.0563	32
		1989	6374	4585	89.3%	0.130	0.114	0.105	0.104	13	з	6	1	1	24	0.094	0.0492	4
		1990	7043	4532	88.2%	0.123	0.118	0.112	0.108	24	11	7	2	1	45	0.093	0.0478	10
		1991	7138	3877	75.5%	0.128	0.125	0.125	0.122	39	15	14	6	5	79	0.096	0.0502	15

TABLE 3-4(Continued) SUMMARY OF HOURLY OZONE DATA FOR SITES OPERATING DURING 1995

			Hour	y Data Re	covery		Hourly M	aximums		Nu	mber of H	ours(In Pi	PM Range	es)	Hours >	.081 ppm	Annual	Days with
			Total	Ozone	Percent	Max.	2nd	3rd	4th	>.081	>.090	>.100	>.110	>.120	Number	Arithmetic	Arithmetic	Hour
Site		Year	Hours	Season	Recovery	Hour	High	High	High	<.091	<.101	<.111	<.121		of Hours	Mean	Mean	> .081 ppm
Bar Harbor	Acadia Nat. Pk.	1992	5808	3314	64.5%	0.108	0.105	0.101	0.101	25	3	4	0	0	32	0.088	0.0434	8
		1993	7645	4836	94.2%	0.112	0.104	0.093	0.093	28	9	1	1	0	39	0.088	0.0434	11
		1994	8200	4723	92.0%	0.102	0.095	0.093	0.092	7	3	1	0	0	11	0.089	0.0475	7
		1995	8407	5067	98.7%	0.128	0.127	0.119	0.115	36	20	6	3	2	67	0.093	0.0461	, 16
Bar Harbor	Cadillac Mtn.	1995	2640	2345	45.7%	0.134	0.121	0.117	0.116	6	4	0	3	2	15	0.099	0.0468	5
KENNEBEC COU	NTY "																	
Gardiner	Gardiner H. S.	1980	3299	3299	64.2%	0.143	0.143	0.118	0.117	24	18	9	2	2	55	0.082	0.0525	17 ·
		1981	3831	3831	74.6%	0.127	0.122	0.122	0.118	9	12	6	2	3	32	0.098	0.0490	9
		1982	4001	4001	77.9%	0.126	0.122	0.119	0.118	22	16	11	5	2	56	0.096	0.0498	10
		1983	5023	5023	97.8%	0.145	0.140	0.138	0.138	50	21	13	7	7	98	0.096	0.0525	23
		1984	5024	4965	96.7%	0.124	0.112	0.109	0.107	43	35	9	1	1	89	0.092	0.0513	20
		1985	4240	4159	81.0%	0.142	0.133	0.130	0.129	43	21	10	6	5	85	0.095	0.0539	19
		1986	4298	4216	82.1%	0.111	0.110	0.107	0.104	10	4	З	1	0	18	0.093	0.0449	5
		1987	4879	4879	95.0%	0.119	0.112	0.106	0.101	17	5	2	2	0	26	0.090	0.0447	7
		1988	4794	4794	93.3%	0.159	0.145	0.145	0.134	63	39	21	13	7	143	0.097	0.0528	28
		1989	4855	4836	94.2%	0.126	0.118	0.117	0.108	32	8	5	2	1	48	0.092	0.0504	10
		1990	4216	4162	81.0%	0.108	0.107	0.107	0.104	17	13	6	0	0	. 36	0.092	0.0508	11
	Pray Street	1991	4789	4778	93.0%	0.132	0.123	0.120	0.119	27	10	7	4	2	50	0.094	0.0487	12
		1992	5112	4860	94.6%	0.115	0.111	0.108	0.104	30	16	4	2	0	52	0.091	0.0474	15
		1993	4878	4825	93.9%	0.098	0.096	0.096	0.096	12	10	0	0	0	22	0.090	0.0426	7
		1994	4537	4140	80.6%	0.120	0.111	0.099	0.098	18	9	0	2	0	29	0.090	0.0481	9
		1995	4829	4829	94.0%	0.102	0.091	0.091	0.090	9	2	1	0	0	12	0.088	0.0410	5
KNOX COUNTY																		
isie Au Haut	Fire Station	1986	2241	2241	43.6%	0.126	0.107	0.104	0.103	14	7	4	0	1	26	0.092	0.0461	7
		1987	3113	3113	60.6%	0.154	0.151	0.128	0.127	31	20	10	16	11	88	0.099	0.0526	13
		1988	2624	2624	51.1%	0.202	0.185	0.185	0.160	60	56	39	46	41	242	0.105	0.0670	31
		1989	3053	3053	59.4%	0.118	0.115	0.111	0.109	17	7	9	З	0	36	0.095	0.0430	6

- 27 -

			Hourly Data Recovery			Hourly Maximums				Ňu	umber of H	lours(In P	PM Rang	Hours >	.081 ppm	Annual	Days with	
			Total	' Ozone	Percent	Max.	2nd	3rd	4th	>.081	>.090	>.100	>.110	>.120	Number	Arithmetic	Arithmetic	Hour
Site		Year	Hours	Season	Recovery	Hour	High	High	High	<.091	<.101	<.111	<.121		of Hours	Mean	Mean	> .081 ppm
Isle Au Haut	Fire Station	1990	3672	3672	71.5%	0.132	0.131	0.118	0.117	29	20	з	2	2.	56	0.093	0.0506	11
		1991	3710	3710	72.2%	0.137	0.136	0.135	0.134	49	26	20	18	11	124	0.093	0.0553	22
		1992	4466	4466	87.0%	0.110	0.100	0.108	0.107	52	20	8	0	0	80	0.098	0.0353	14
		1993	4629	4629	90.1%	0.115	0.113	0.111	0.108	15	8	8	3	0	34	0.095	0.0452	8
		1994	3833	3833	74.6%	0.116	0.115	0.105	0.105	23	5	4	2	õ	34	0.090	0.0491	8
		1995									Dperat	e d	-	Ũ		0.000	1 0.0401	I
																	l	
Port Clyde	Marshall Point	1987	3308	3308	64.4%	0.149	0.146	0.142	0.140	21	22	14	15	11	83	0.104	0.0538	13
		1988	4511	4312	84.0%	0.185	0.183	0.167	0.164	75	67	44	20	33	239	0.102	0.0622	34
	·	1989	4146	4146	80.7%	0.134	0.129	0.127	0.125	21	30	7	8	4	70	0.097	0.0511	12
		1990	3825	3825	74.5%	0.153	0.149	0.140	0.135	41	28	13	5	6	93	0.097	0.0540	16
		1991	4541	4280	83.3%	0.137	0.135	0.134	0.133	53	41	32	23	14	163	0.100	0.0559	29
		1992	4403	4257	82.9%	0.122	0.118	0.118	0.117	43	39	15	6	1	104	0.094	0.0522	16
		1993	4237	4237	82.5%	0.131	0.122	0.116	0.112	18	18	7	5	2	50	0.096	0.0486	13
		1994	4360	4053	78.9%	0.124	0.123	0.111	0.107	35	8	2	1	2	48	0.090	0.0504	12
		1995	4066	4043	78.7%	0.140	0.135	0.123	0.123	40	21	11	5	6	83	0.095	0.0486	12
OXFORD COUNT	гү																	
North Lovell	Route 5	1992	3144	3144	61.2%	0.097	0.094	0.093	0.091	12	4	0	0	0	16	0.087	0.0410	4
		1993	4051	4051	78.9%	0.083	0.080	0.079	0.076	1	0	0	0	0	1	0.083	0.0408	1
		1994	4219	4219	82.1%	0.102	0.099	0.097	0.095	з	з	1	0	0	7	0.094	0.0449	2
		1995	4305	4305	83.8%	0.105	0.105	0.104	0.093	4	1	3	0	0	8	0.094	0.0440	2
PENOBSCOT CO	DUNTY																	
Holden	Rider Bluff	1993	3195	3195	62.2%	0.104	0.099	0.097	0.095	24	5	1	0	0	30	0.087	0.0462	8
		1994	3758	3758	73.2%	0.106	0.101	0.090	0.087	7	0	2	0	0	9	0.089	0.0443	3
		1995	4702	4620	90.0%	0.108	0.105	0.105	0.104	13	8	5	0	0	26	0.092	0.0449	7
PISCATAQUIS C																		
Greenville	Mun. Airport	1993	1430	1430	27.8%	0.067	0.063	0.062	0.061	0	0	0	0	0	o	*	0.0316	0

TABLE 3-4(Continued) SUMMARY OF HOURLY OZONE DATA FOR SITES OPERATING DURING 1995

TABLE 3-4(Continued) SUMMARY OF HOURLY OZONE DATA FOR SITES OPERATING DURING 1995

			Hou	rly Data Rec	overy		Hourly M	aximums		Nu	mber of H	lours(In P	PM Rang	es)	Hours >	.081 ppm	Annual	Days with
			Total	Ozone	Percent	Max.	2nd	3rd	4th	>.081	>.090	>.100	>.110	>.120	Number	Arithmetic	Arithmetic	Hour
Site		Year	Hours	Season	Recovery	Hour	High	High	High	<.091	<.101	<.111	<.121		of Hours	Mean	Mean	> .081 ppm
Greenville	Mun, Airport	1994	5732	5047	98.3%	0.084	0.079	0.076	0.076	1	0	0	0	0	1	0.084	0.0391	1
		1995	8595	5019	97.7%	0.091	0.090	0.087	0.086	6	1	õ	ů 0	õ	7	0.087	0.0430	2
SAGADAHOC C	OUNTY																	
Phippsburg	Navy Road	1993	2529	2529	49.2%	0.132	0,126	0.125	0,122	29	30	6	4	4	73	0.095	0.0532	16
, i v	,,	1994	4069	4069	79.2%	0.148	0.128	0.124	0.112	58	21	5	2	3	89	0.000	0.0561	18
		1995	3893	3893	75.8%	0.172	0.145	0.139	0.139	61	16	18	4	11	110	0.096	0.0548	20
SOMERSET CO	UNTY																	
Skowhegan	Somerset Mill	1991	4828	4828	94.0%	0.116	0.112	0,106	0.105	6	1	2	2	0	11	0.095	0.0420	3
-		1992	4970	4970	96.8%	0.096	0.090	0.090	0.090	9	1	0	0	0	10	0.088	0.0406	2
		1993	4901	4901	95.4%	0.099	0.098	0.095	0.094	7	8	0	0	0	15	0.090	0.0379	4
		1994	3915	3915	76.2%	0.096	0.095	0.088	0.088	9	2	0	0	0	11	0.087	0.0433	5
		1995	4139	4139	80.6%	0.089	0.088	0.088	0.087	9	0	0	0	0	9	0.086	0.0405	3
WASHINGTON	COUNTY	2																
Jonesport	Public Landing	1989	2879	2879	56.1%	0.100	0.099	0.093	0.092	13	6	0	0	0	19	0.089	0.0431	6
	-	1990	4172	4172	81.2%	0.106	0.106	0.105	0.103	12	2	4	0	0	18	0.090	0.0400	3
		1991	4373	4291	83.5%	0.120	0.117	0.114	0.111	31	26	9	4	0	70	0.093	0.0452	14
		1992	4267	4119	80.2%	0.104	0.103	0.101	0.098	28	7	3	0	0	38	0.089	0.0447	8
		1993	4820	4762	92.7%	0.105	0.104	0.103	0.098	10	6	3	0	0	19	0.091	0.0395	3
		1994	4427	4427	86.2%	0.104	0.098	0.098	0.092	10	4	1	0	0	15	0.089	0.0482	6
		1995	4374	4340	84.5%	0. <u>1</u> 19	0.115	0.112	0.107	28	9	4	0	0	41	0.090	0.0432	10
YORK COUNTY																		
Kennebunkport	Parson's Way	1983	3873	3873	75.4%	0.149	0.148	0.143	0.137	50	43	28	13	18	152	0.100	0.0554	29
		1984	4006	4006	78.0%	0.149	0.147	0.145	0.140	68	47	20	11	34	180	0.101	0.0601	34
		1985	3992	3931	76.5%	0.170	0.168	0.166	0.165	74	51	20	18	27	190	0.101	0.0639	38
		1986	4089	4089	79.6%	0.142	0.138	0.132	0.126	22	21	11	• 4	5	63	0.098	0.0524	14
		1987	4168	4168	81.2%	0.152	0.145	0.142	0.142	19	14	15	6	14	68	0.104	0.0511	12

- 29 -

	Hourly Data Recove				covery	Hourly Maximums				N	umber			M	Hours > .081 ppm		Annual	Days with
			Total	Ozone	Percent	Max.	2nd,	3rd	4th	>.081		anges >.100		>.120			Arithme	Hour
Site		Year	Hours	Saman	Recove	Hour	High	High	High	< 001	<.101	~ 111	< 101		er of	tic Mean	tic Mean	> .081
5110		reui	HOUIS	2902011	ry	HOU	пığı	пуп	пığı	<.091	<.101	<	<.121		of Hours	Nedi	Nedn	2.061 ppm
Kennebunkport	Parson's Way	1988	3898	3898	75.9%	0.177	0.168	0.166	0.154	53	59	39	39	41	231	0.105	0.0650	38
		1989	3784	3784	73.7%	0.154	0.147	0.145	0.140	36	21	23	10	14	104	0.101	0.0576	17
		1990	4067	4067	79.2%	0.162	0.162	0.160	0.152	37	30	17	12	16	112	0.102	0.0570	23
		1991	4074	4074	79.3%	0.158	0.150	0.148	0.143	62	21	17	8	17	125	0.098	0.0582	27
		1992	4180	4180	81.4%	0.133	0.127	0.124	0.122	54	31	16	7	4	112	0.095	0.0536	21
		1993	3822	3822	74.4%	0.134	0.127	0.125	0.121	49	36	19	5	4	113	0.095	0.0537	21
		1994	3820	3820	74.4%	0.141	0.125	0.122	0.116	44	22	12	2	3	83	0.093	0.0560	20
		1995	4169	4169	81.2%	0.159	0.156	0.136	0.129	39	21	10	7	7	84	0.097	0.0516	16
Kittery	Frisbee School	1995	2754	2754	53.6%	0.127	0.127	0.126	0.119	34	18	5	4	3	64	0.093	0.0511	15
NEW BRUNSWICK Campobello	RC Park	1995	2252	2252	43.8%	0.073	0.071	0.071	0.071	0	0	0	0	0	0	*	0.0413	0

TABLE 3-4(Continued) SUMMARY OF HOURLY OZONE DATA FOR SITES OPERATING DURING 1995

NOTES:
SiteCity Name and Site name.
YearIndicates data for this calendar year.
Total Hours
Ozone Season
Percent Recovery Percent of hours of data collected during the ozone season.
Max Hour
2nd High Second highest hourly concentration recorded during the year. Could be same day as highest.
3rd High Third highest hourly concentration recorded during the year. Could be same day as the two higher
numbers.
4th High Fourth highest hourly concentration recorded during the year. Could be same day as the three
higher numbers.
Number of Hours in ranges Number of hours of data that fall into each specified range.
Total hours >.081ppm Number of hours that are greater than .081ppm. Should equal sum of five previous columns.
Arithmetic mean of these hours only.
Annual Arithmetic Mean AAM of the hourly data collected during the ozone season only.
Days with Hour > .081 ppm Number of separate days that have at least one hour > .081 ppm during the year.

TABLE 3 - 5FEDERAL OZONE EXCEEDANCES IN MAINE LISTED BY COUNTY AND SITE

			Percent Data		Daily Hourly	/ Maximums		Excee	dances	3 Year Ave.	Compliance
			Data	High	Second	Third	Fourth	Meas.	Est.	of Estimated	With Fed.
Site		Year	Recovery	Day	, High	High	High	>.12 ppm	>.12 ppm	Exceedances	Standard
CUMBERLAND CC	DUNTY										
Portland	Shelter Site	1995	83.6%	0.110	0.104	0.096	0.092	0	0.0	0.00	?
Cape Elizabeth	Shelter Site	1980	66.4%	0.190	0.178	0.149	0.145	7	10.4	3.47	No
		1981	76.2%	0.142	0.138	0.136	0.134	5	6.5	5.63	No
		1982	80.8%	0.142	0.137	0.131	0.127	5	6.2	7.70	No
		1983	98.6%	0.172	0.152	0.152	0.133	9	9.1	7.27	No
		1984	93.5%	0.171	0.147	0.140	0.137	6	6.3	7.20	No
		1985	7.7.6%	0.167	0.158	0.144	0.138	4	5.1	6.83	No
		1986	98.1%	0.131	0.119	0.112	0.107	1	1.0	4.13	No
		1987	99.5%	0.156	0.141	0.138	0.136	4	4.0	3.37	No
		1988	97.7%	0.178	0.168	0.166	0.150	11	11.2	5.40	No
		1989	94.9%	0.146	0.130	0.125	0.113	3	3.2	6.13	No
		1990	94.9%	0.148	0.125	0.123	0.109	2	2.1	5.50	No
		1991	98.6%	0.145	0.141	0.137	0.127	4	4.0	3.10	No
		1992	98.6%	0.128	0.118	0.110	0.109	1	1.0	2.37	No
		1993	98.1%	0.122	0.112	0.103	0.103	0	0.0	1.67	No
		1994	100.0%	0.148	0.122	0.102	0.099	1	1.0	0.67	Yes
		1995	100.0%	0.161	0.116	0.116	0.107	1	1.0	0.67	Yes
HANCOCK COUN											
Bar Harbor	Acadia Nat. Pk.	1982	12.1%	0.055	0.055	0.050	0.040	0	0.0	0.00	?
		1983	93,5%	0.138	0.135	0.128	0.113	3	3.2	1.07	No
		1984	87.9%	0.140	0.117	0.108	0.107	1	1.1	1.43	No
		1985	97.7%	0.120	0.117	0.102	0,100	0	0.0	1.43	No
		1986	95.8%	0.109	0.104	0.101	0.100	0	0.0	0.37	Yes
		1987	95.8%	0.130	0.121	0.117	0.112		1.0	0.33	Yes
		1988	91.6%	0.179	0.153	0.135	0.133	6	6.5	2.50	No
		1989	94.4%	0.130	0.104	0.104	0.088	1	1.0	2.83	No
		1990	95.8%	0.123	0.112	0.105	0.096	0	0.0	2.50	No
		1991	75.7%	0.128	0.125	0.111	0.109	2	2.5	1.17	No
		1992	63.6%	0.108	0.095	0.093	0.088	0	0.0	0.83	Yes
		1993	99.1%	0.112	0.094	0.093	0.093	0	0.0	0.83	Yes
		1994	90.2%	0.102	0.092	0.088	0.087	0	0.0	0.00	Yes
		1995	99.1%	0.128	0.119	0.105	0.104	1	1.0	0.33	Yes
Bar Harbor	Cadillac Mtn.	1995	45.8%	0.134	0.121	0.115	0.088	1	2.2	0.73	?

			Percent		Daily Hourly	Maximums		Excee	dances	3 Year Ave.	Compliance
			Data	High	Second	Third	Fourth	Meas.	Est.	of Estimated	With Fed.
Site	•	Year	Recovery	Day	High	High	High	>.12 ppm	>.12 ppm	Exceedances	Standard
KENNEBEC COUN	ITY										
Gardiner	Gardiner H. S.	1980	65.0%	0.143	0.110	0.107	0.105	1	1.5	0.50	?
		1981	74.3%	0.127	0.122	0.118	0.108	i	1.3	0.93	?
		1982	77.6%	0.126	0.122	0.112	0.106	1	1.3	1.37	No
		1983	99.1%	0.145	0.140	0.138	0.118	3	3.0	1.87	No
		1984	97.2%	0.124	0.112	0.107	0.107	0	0.0	1.43	No
		1985	80.8%	0.142	0.129	0.125	0.114	3	3.7	2.23	No
		1986	82.7%	0.111	0.110	0.100	0.087	0	0.0	1.23	No
,		1987	95.8%	0.119	0.093	0.092	0.087	0	0.0	1.23	No
		1988	94.9%	0.159	0.134	0.125	0.119	3	3.1	1.03	No
		1989	99.1%	0.126	0.108	0.100	0.098	1	1.0	1.37	No
		1990	85.5%	0.108	0.107	0.102	0.097	0	0.0	1.37	No
	Pray Street	1991	98.6%	0.132	0.111	0.106	0.102	1	1.0	0.67	Yes
		1992	100.0%	0.115	0.104	0.103	0.096	0	0.0	0.33	Yes
		1993	99.5%	0.098	0.096	0.096	0.095	0	0.0	0.33	Yes
		1994	84.1%	0.120	0.098	0.094	0.093	0	0.0	0.00	Yes
		1995	99.1%	0.102	0.091	0.088	0.084	0	0.0	0.00	Yes
KNOX COUNTY											
Port Clyde	Marshall Point	1987	64.5%	0.149	0.142	0.129	0,120	3	4.7	1.57	Nia
		1988	84.1%	0.185	0.142	0.129	0.120	9	4.7	5.13	No No
		1989	85.0%	0.134	0.149	0.140	0.141	7	1.2	5.13	No
		1990	72.9%	0.153	0.120	0.118	0.116	1	1.2	4.40	No
		1991	87.9%	0.137	0.135	0.129	0.128	4	4.5	2.33	No
		1992	87.4%	0.122	0.118	0.129	0.120	0	0.0	1.93	No
		1993	86.9%	0.121	0.122	0.112	0.100	1	1.2	1.90	No
		1994	82.2%	0.124	0.111	0.103	0.091	0	0.0	0.40	Yes
		1995	82.2%	0.140	0.123	0.108	0.104	1	1.2	0.40	Yes
								,		0.00	
OXFORD											
North Lovell	Route 5	1992	61.7%	0.097	0.087	0.083	0.082	0	0.0	0.00	?
		1993	79.4%	0.083	0.080	0.079	0.071	0	0.0	0.00	?
		1994	83.2%	0.102	0.097	0.079	0.077	0	0.0	0.00	Yes
		1995	84.6%	0.105	0.093	0.071	0.071	0	0.0	0.00	Yes

 TABLE 3 - 5(Continued)

 FEDERAL OZONE EXCEEDANCES IN MAINE LISTED BY COUNTY AND SITE

.

TABLE 3 - 5(Continued) FEDERAL OZONE EXCEEDANCES IN MAINE LISTED BY COUNTY AND SITE

	•		Percent	, , , , , , , , , , , , , , , , , , , ,					Jances	3 Year Ave.	Compliance
Site		Year	Data Recovery	High Day	Second High	Third High	Fourth High	Meas. >.12 ppm	Est. >.12 ppm	of Estimated Exceedances	With Fed. Standard
PENOBSCOT								į			
Holden	Rider Bluff	1993	62.1%	0.104	0.097	0.095	0.088	0	0.0	0.00	?
		1994	72.9%	0.106	0.083	0,082	0.081	0	0.0	0.00	?
		1995	91.6%	0.108	0.100	0.095	0.095	0	0.0	0.00	Yes
PISCATAQUIS											
Greenville	Mun. Airport	1993	28.0%	0.067	0.054	0.053	0.050	0	0.0	0.00	?
		1994	99.1%	0.084	0.076	0.072	0.066	0	0.0	0.00	?
		1995	99.1%	0.091	0.087	0.079	0.075	0	0.0	0.00	Yes
SAGADAHOC											
Phippsburg	Navy Road	1993	52.3%	0.132	0.125	0.104	0.102	2	3.8	1.27	No
		1994	83.6%	0.148	0.124	0.111	0.106	1	1.2	1.67	No
		1995	79.9%	0.172	0.139	0.110	0.107	2	2.5	2.50	No
SOMERSET											
Skowhegan	Somerset Mill	1991	95.3%	0.116	0.085	0.083	0.081	0	0.0	0.00	?
		1992	98.1%	0.096	0,090	0.081	0.079	0	0.0	0.00	?
		1993	97.7%	0.099	0.094	0.093	0.091	0	0.0	0.00	Yes
		1994 1995	77.1% 81.8%	0.096 0.089	0.088 0.088	0.088 0.088	0.086 0.078	0	0.0	0.00	Yes
		1775	01.076	0.009	0.000	0.000	0.076		0.0	0.00	Yes
WASHINGTON											
Jonesport	Public Landing	1989	55.6%	0.100	0.093	0.092	0.092	0	0.0	0.00	?
		1990 1991	80.4%	0.106	0.106	0.088	0.077	0	0.0	0.00	?
		1991	84.1% 80.8%	0.120 0.104	0.114 0.098	0.104 0.097	0.103 0.094	0	0.0 0.0	0,00	Yes
		1992	93.9%	0.104	0.098	0.097	0.094	0	0,0 0,0	0.00	Yes Yes
		1994	86.4%	0.104	0.092	0.089	0.088	Ő	0,0	0.00	Yes
		1995	86.4%	0.119	0.107	0.096	0.096	Ō	0.0	0.00	Yes

			Percent		Daily Hourly	/ Maximums		Exceed	dances	3 Year Ave.	Compliance
Site		Year	Data Recovery	High Day	Second High	Third High	Fourth High	Meas. >.12 ppm	Est. >.12 ppm	of Estimated Exceedances	With Fed. Standard
YORK COUNTY					1						
Kennebunkport	Parson's Way	1983	75.7%	0.149	0.143	0.137	0.135	7	9.2	3.07	No
		1984	78.5%	0.149	0.147	0.145	0.140	11	14.0	7.73	No
		1985	76.2%	0.170	0.165	0.152	0.145	4	5.2	9.47	No
		1986	80.4%	0.142	0.126	0.117	0.115	2	2.5	7.23	No
		1987	81.8%	0.152	0.142	0.135	0.131	4	4.9	4.20	No
		1988	74.8%	0,177	0.154	0.152	0.152	13	17.1	8.17	No
		1989	74.3%	0.154	0.147	0.140	0.122	3	4.0	8.67	No
		1990	79.0%	0.162	0.152	0.144	0.142	5	6.3	9.13	No
		1991	83.2%	0.158	0.148	0.141	0.126	4	4.8	5.03	No
		1992	85.5%	0,133	0.127	0.118	0.109	2	2.3	4.47	No.
		1993	78.5%	0.134	0.125	0.117	0.116	2	2.5	3.20	No
		1994	78.5%	0,141	0.116	0.104	0.103	ī	1.3	2.03	No
		1995	85.0%	0.159	0,129	0,118	0.117	2	2.3	2.03	No
Kittery	Frisbee School	1995	54.2%	0.127	0.127	0.126	0.103	3	5.5	1.83	No
NEW BRUNSWICK											
Campobello	RC Park	1995	43.9%	0.073	0.071	0.066	0.065	0	0.0	0.00	2

TABLE 3 - 5(Continued) FEDERAL OZONE EXCEEDANCES IN MAINE LISTED BY COUNTY AND SITE

* Based on the federal ozone standard of .12ppm. The standard is attained when the expected number of days per calendar year with maximum hourly average concentrations above .12 part per million is equal to or less than 1, as determined by Part 50 Appendix H. Appendix H says that this is a 3 year average of exceedances or if the data is not complete it is a 3 year average of the estimated number of exceedances.

NOTE:

Site	City Name and Site name
Year	Indicates data for this calendar year.
Percent Data Recovery	Percent of valid days of data during the ozone season. (n/214)
High Day	Highest hourly value during the ozone season.
Second High	Separate day with the second highest hourly value.
Third High	Separate day with the third highest hourly value.
Fourth High	Separate day with the fourth highest hourly value.
Exceedances Meas. > .12ppm	Number of days that recorded an hourly concentration greater than .12ppm.
Exceedances Est. > .12ppm	Estimated number of days with an hourly value > .12ppm taking into account missing data.
3 Year Ave. of Est. Exceedances	Average of estimated exceedances based on the year indicated plus the two previous years. If less than three years of data
	the average is for two years or is the estimate for the year if only one year of data exists.
Compliance with Fed. Std	If the estimated exceedances average is greater than one then the site is not in compliance with the federal standard. A
	question mark means not enough information is available to make that decision.

TABLE 3-6 YEARLY STATE OZONE HEALTH WARNING LEVEL EXCEEDANCE DAYS COMPARISON* STATE OF MAINE

	YEAR																
MONTH	<u> 1980</u>	<u>1981</u>	<u>1982</u>	<u>1983</u>	<u>1984</u>	<u> 1985</u>	<u>1986</u>	<u>1987</u>	<u>1988</u>	<u>1989</u>	<u>1990</u>	<u>1991</u>	<u>1992</u>	<u>1993</u>	<u>1994</u>	<u> 1995 A</u>	VERAGE
APRIL	1	0	5	1	1	0	0	0	0	0	1	1	0	0	0	0	0.63
MAY	3	4	5	2	3	6	2	3	6	2	1	5	6	1	2	2	3.31
JUNE	10	4	2	9	11	9	7	7	12	4	8	7	8	6	2	7	7.06
JULY	15	4	12	15	16	19	6	5	18	6	8	12	4	7	16	12	10.94
AUGUST	7	9	7	9	11	10	3	8	12	8	6	11	7	8	9	6	8.19
SEPTEMBER	2	1	2	12	5	6	2	3	3	6	4	2	4	3	1	2	3.63
OCTOBER	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0.13
TOTALS	. 38	22	33	48	47	50	20	26	51	26	29	38	29	25	30	30	33.88
# OF SITES	7	6	8	6	6	8	9	10	9	9	9	11	14	13	12	14	

TABLE 3-7 YEARLY FEDERAL OZONE STANDARD EXCEEDANCE DAYS COMPARISON* STATE OF MAINE

									YEA	R							
<u>MONTH</u>	<u>1980</u>	<u> 1981</u>	<u> 1982</u>	<u> 1983</u>	<u> 1984</u>	<u> 1985</u>	<u> 1986</u>	<u> 1987</u>	<u> 1988</u>	<u> 1989</u>	<u> 1990 </u>	<u>1991</u>	<u> 1992</u>	<u> 1993</u>	<u>1994</u>	<u> 1995 A</u>	VERAGE
APRIL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00
MAY	0	3	0	0	0	1	0	0	1	0	0	0	1	0	0	0	0.38
JUNE	1	1	0	1	2	0	0	1	5	0	1	3	0	0	0	1	1.00
JULY	4	0	4	3	6	2	1	1	6	3	1	3	0	3	1	1	2.44
AUGUST	2	2	0	3	4	3	1	3	7	0	3	1	1	1	0	2	2.06
SEPTEMBER	0	0	1	3	0	0	0	0	0	1	0	0	0	0	0	0	0.31
OCTOBER	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00
TOTALS	7	6	5	10	12	6	2	5	19	4	5	7	2	4	1	4	6.19
# OF SITES	7	6	8	6	6	8	9	10	9	9	9	11	14	13	12	14	

* Separate days on which either the federal standard or state health warning level was exceeded.

4. NITROGEN DIOXIDE (NO2)

4.1 Description and Sources

In its pure state, nitrogen dioxide is a reddish-orange-brown gas with a characteristic pungent odor. It is corrosive and a strong oxidizing agent. Nitrogen dioxide comprises about 10% of the oxides of nitrogen (NOx) that are formed when nitrogen in the air combines with oxygen during high temperature combustion. Most of the rest of the NOx emitted by combustion sources is nitric oxide (NO). However, during the day most of the NO is photochemically transformed into NO₂. Thus, essentially all the NOx emitted can be assumed to eventually become NO₂.

4.2 Health and Welfare Effects

Exposure to NO₂ affects the delicate structure of lung tissue. High levels cause lung irritation and potential lung damage. Lower levels have been associated with increased respiratory disease. Oxides of nitrogen can cause serious injury to vegetation, including bleaching or death of plant tissue, loss of leaves, and reduced growth rate. NOx also deteriorates fabrics and fades fabric dyes. Nitrate salts formed from nitrogen oxides have been associated with the corrosion of metals. Nitrogen oxides can also reduce visibility.

4.3 Standards

The current standard for NO_2 is an annual arithmetic mean (average) value not to exceed .05 ppm. NO_2 is the only gaseous pollutant for which only a long-term (annual average) standard has been established.

4.4 Monitoring

Nitrogen Dioxide was monitored at two sites in Maine during 1995 using continuous monitoring equipment. The site in Kittery was operated and maintained by the New Hampshire Department of Environmental Resources as a required downwind PAMS(Photochemical Assessment Monitoring Station) site for the Portsmouth/Dover/Rochester MSA(Metropolitan Statistical Area). Table 4-1 presents the data collected during 1995.

TABLE 4 - 11995 NITROGEN DIOXIDE DATA SUMMARY
(Parts Per Million)

<u>SITE</u>	ADDRESS	OBSERVATIONS	ARITHMETIC MEAN
CUMBERLAND CO Cape Elizabeth		5531	0.005*
YORK COUNTY Kittery	Frisbee School	4206	0.008*

* Insufficient data collected for a valid annual arithmetic mean.

5. SULFUR DIOXIDE (SO2)

5.1 Description and Sources

Sulfur dioxide is a colorless irritating gas having the same pungent odor as a struck match. Most people can detect its taste at a level of about 0.3 to 1 part per million. SO_2 is highly soluble in water, forming sulfurous acid. On a worldwide basis, SO_2 is considered to be one of the major pollution problems. It is emitted mainly from stationary sources that utilize fossil fuels (coal, oil) such as power plants, ore smelters, and refineries.

5.2 Health and Welfare Effects

The health effects of sulfur dioxide appear to be always associated with high levels of particulates or other pollutants. The world's major recorded air pollution disasters have been associated with high levels of sulfur dioxide and particulates. The excess deaths attributed to these pollutants were due to respiratory failures and occurred predominantly, but not exclusively, in the elderly and infirm. Atmospheres containing high levels of sulfur dioxide are associated with elevated concentrations of other sulfur compounds such as sulfates and sulfuric acid mists, which are corrosive and potentially carcinogenic.

The corrosiveness of SO_2 and its derivatives also causes crop and material damage. Its transport and transformation into sulfurous and sulfuric acids contribute to acid precipitation, causing soils and lakes to become seriously acidified.

5.3 Standards

There are two existing Primary National Ambient Air Quality Standards for sulfur dioxide. The first is a long-term one year arithmetic average of 0.03 parts per million (ppm). The second is a short-term 24-hour average standard where concentrations are not to exceed 0.14 ppm more than once per year. The current Secondary NAAQS for SO₂ is a 3-hour average concentration of 0.5 ppm not to be exceeded more than once per year.

In addition there are three State standards for sulfur dioxide. The first is a long-term one-year arithmetic average of .022 parts per million. The second was a short-term 24-hour average standard of .088 ppm not to be exceeded. The third was a short-term 3-hour average concentration of .439 ppm not to be exceeded. During 1987 both of the short-term standards were amended to allow for one exceedance per year.

5.4 Monitoring

Sulfur dioxide was monitored at thirteen sites in Maine during 1995 using continuous monitoring equipment utilizing either the pulsed fluorescent or coulometric methods. Four of those sites were shut down during the year.

Table 5-1 is a summary of the 1995 sulfur dioxide data. Tables 5-2 and 5-3 present SO_2 historical comparison data. Table 5-3 in past years had indicated violations but because one exceedance was allowed per year beginning in 1987 this table now indicates exceedances of the standards rather than violations to maintain continuity for comparisons.

TABLE 5 - 1 1995 SULFUR DIOXIDE DATA SUMMARY (Parts Per Million)

SITE	ADDRESS	NUMBER OF Observations,	HIGHEST <u>3-HOUR AVE.</u>	SECOND HIGHEST <u>3-HOUR AVE.</u>	HIGHEST <u>24-HOUR AVE.</u>	SECOND HIGHEST <u>24-HOUR AVE.</u>	ANNUAL ARITH. <u>MEAN</u>
ANDROSCOGG Lewiston Livermore Falls Lewiston	IN COUNTY Country Kitchen Parking Lot 10-12 Millett Street Birch Street	8293 1862 4309	0.057 0.063 0.063	0.053 0.051 0.062	0.025 0.034 0.028	0.020 0.020 0.026	.004 .010* .005*
AROOSTOOK C	COUNTY						·
Madawaska Madawaska Madawaska	Albert Street U. S. Post Office Madawaska High School	8314 8317 8320	0.237 0.093 0.118	0.128 0.092 0.098	0.055 0.054 0.078	0.054 0.041 0.028	.009 .010 .004
Presque Isle	Riverside Street	8639	0.016	0.013	0.009	0.008	.002
Portland OXFORD COUN	Shelter Site	8243	0.049	0.049	0.025	0.025	.006
Mexico Rumford Rumford	Hunt's Property Taylor Mountain 1 Taylor Mountain 2	8122 2676 2715	0.029 0.044 0.028	0.027 0.040 0.026	0.021 0.029 0.017	0.015 0.019 0.016	.006 .006* .006*
Rumford PENOBSCOT CO Millinocket	Village Green Site DUNTY York Street	8232 8684	0.035 0.048	0.033 0.048	0.024 0.029	0.021	.005 .003

TABLE 5 - 2SULFUR DIOXIDE HISTORICAL COMPARISONS(Maximum 24 - Hour Concentrations of Sulfur Dioxide)

<u>SITE</u>	ADDRESS	<u> 1989</u>	<u>1990</u>	<u>1991</u>	<u> 1992</u>	<u>1993</u>	<u>1994</u>	<u>1995</u>
ANDROSCOGG Lewiston Livermore Falls Lewiston	IN COUNTY Country Kitchen Parking Lot 10-12 Millett Street Birch Street	0.042 	0.027	0.026 	0.021 	0.027	0.029 0.033 0.030	0.025 0.034 0.028
AROOSTOOK C Madawaska Madawaska Madawaska Presque Isle	OUNTY Albert Street U. S. Post Office Madawaska High School Riverside Drive	0.048 0.069 0.032 	0.093 0.042 0.027 	0.072 0.048 0.045	0.080 0.088 0.040 	0.044 0.070 0.045 	0.073 0.060 0.050 0.008	0.055 0.054 0.078 0.009
CUMBERLAND (Portland	COUNTY Shelter Site	0.044	0.034	0.039	0.032	0.033	0.045	0.025
OXFORD COUN Mexico Rumford Rumford Rumford	I TY Hunt's Property Taylor Mountain 1 Taylor Mountain 2 Village Green Site	0.064 0.044 0.053 0.049	0.054 0.066 0.063 0.046	0.020 0.022 0.027 0.033	0.018 0.021 0.024 0.021	0.022 0.026 0.021 0.020	0.020 0.019 0.016 0.020	0.021 0.029 0.017 0.024
PENOBSCOT CO Millinocket	DUNTY York Street	0.044	0.102	0.035	0.024	0.027	0.031	0.029

TABLE 5 - 3SULFUR DIOXIDE HISTORICAL COMPARISONS(Sites with exceedances of the standards in the past seven years)

<u>SITE</u>	ADDRESS	<u>1989</u>	<u>1990</u>	<u>1991</u>	<u>1992</u>	<u>1993</u>	<u>1994</u>	<u>1995</u>
PENOBSCOT C Millinocket	OUNTY York Street	0	1	0	0	0	0	0

* Includes 3-Hour and 24-Hour Exceedances.

6. PARTICULATES (TSP and PM10)

6.1 Description and Sources

Particulates is the term given to the tiny particles of solid or semi-solid material found in the atmosphere. It is this "dirt" in the air that is visible as a "Brown Cloud", haze or smog. The sources of particulates are many: wind-blown dust and sand from roadways, fields, and construction; coal dust, fly ash, and carbon black from various combustion sources; and automobile exhaust, to name a few. Particulates that range in size from less than 0.1 micrometer up to approximately 45 micrometers are called "total suspended particulates." Particles larger than that range tend to settle out of the air and not remain suspended, except in high winds.

6.2 Health and Welfare Effects

The human nose filters out 99 percent of the large and medium-sized particles. The rest enter the windpipe and lungs, where some, known as inhalable particulates, cling to protective mucous and are removed. Some of the smallest, called respirable particulates, are deposited in the lungs' tiny air sacs (alveoli).

In the lungs particulates slow down the exchange of oxygen with carbon dioxide in the blood, causing shortness of breath. The heart may be strained because it must work harder to compensate for oxygen loss. Usually the people most sensitive to these conditions have respiratory diseases like emphysema, bronchitis, asthma, or heart problems. The elderly and children are also sensitive.

Particles themselves may be poisonous if inhaled or absorbed, damaging remote organs like the kidneys or liver. Swallowed mucous that is laden with poisonous particulate matter may damage the stomach.

In addition, particulates may be carriers of poisonous liquid or gaseous substances. Sulfur dioxide, a major air pollutant in its own right, is frequently absorbed by particulates and can react with them to form sulfates. Sulfates react with moisture in the air or in the respiratory tract to form a corrosive liquid (sulfuric acid) that irritates delicate membranes and slows down the cleansing action of mucous. This effect can reduce the body's ability to remove harmful bacteria, increasing the possibility of infection.

Adverse health effects from particulate matter aren't always seen immediately. Particulates can accumulate in the lungs after repeated, long-term exposure, causing respiratory distress and other health problems that may be manifested later.

Particles in the air block out and scatter sunlight, reducing visibility. Particulates soil and corrode metals, masonry, and textiles. Irritating odors are often associated with particulates, also.

6.3 Standards

Primary:

At the beginning of 1987 the primary particulate standards were for total suspended particulates (TSP), independent of particle size or chemical composition. The long-term standard was an annual geometric mean not to exceed 75 micrograms of particulates per cubic meter of air (ug/m³). The short-term standard was a 24-hour average of 260 ug/m³ not to be exceeded more than once per year.

In July of 1987 EPA published revised particulate standards to account for the deeper inhalability of small particles and eliminated the total suspended particulate standards. The new standards, rather than applying to TSP, apply to inhalable or fine particulates. A particle size of 10 micrometers was selected as the upper size limit with a 24-hour concentration of 150 ug/m³ and an annual standard of 50 ug/m³ expressed as an expected annual arithmetic mean (AAM). The short term standard is attained when the expected number of exceedances is no more than one per year. The expected AAM is determined by averaging the annual arithmetic averages from three successive years of data. EPA has recently proposed new fine particulate standards for those particles that are 2.5 microns or less. These proposals will be reviewed with a final promulgation expected in 1997.

Secondary:

The secondary TSP standard was a 24-hour average of 150 ug/m³ not to be exceeded more than once per year, designed to protect from soiling, corrosion, etc.

When EPA adopted the fine particulate standards they eliminated the secondary TSP standards and made the secondary fine particulate standards equal to the primary fine particulate standards. In the recent proposals EPA is again proposing to use the primary standards as the secondary standards also.

State Standards:

As of the end of 1988 the State Standards for total suspended particulates still included an annual geometric mean of 60 micrograms per cubic meter and a 24-hour standard of 150 micrograms per cubic meter not to be exceeded. In addition, the Board of Environmental Protection adopted the Federal fine particulate standards for both the short term twenty-four hour and the annual arithmetic mean.

In 1989 the State Legislature passed a more restrictive annual standard for fine particulates of 40 ug/m^3 . In addition, the TSP annual State standard was eliminated and the 24 hour standard was changed to be an indicator of a nuisance condition.

6.4 Monitoring

Total Suspended Particulates were monitored at only one site in Maine during 1995 using High-Volume Particulate Air Samplers (Hi-Vols).

Hi-Vols operate on the same principle as a vacuum cleaner in that the air is drawn through a filter to "catch the dust". The difference is that a Hi-Vol draws a calibrated volume of air through a preweighed filter pad (rather than a bag) for a twenty-four hour period. The change in weight of the filter pad is recorded as total suspended particulate or TSP in micrograms of particulates per cubic meter of air.

Table 6-1 is a summary of the TSP data collected in Maine during 1995. Table 6-2 is a historical comparison of the TSP annual geometric means. There have been no exceedances of the TSP nuisance standard at this site over the last seven years that it has been in operation.

Fine particulates were monitored at twenty-seven sites during 1995 using PM10 samplers. The sampling is conducted with size-selective inlets and flow controlling devices designed to meet EPA's monitor specifications.

Table 6-3 is a summary of the fine particulate data collected in Maine during 1995. Tables 6-4 and 6-5 provide some historical comparison data over the last few years these monitors have been in operation.

TABLE 6 - 1 1995 TOTAL SUSPENDED PARTICULATES DATA SUMMARY (Micrograms Per Cubic Meter)

<u>SITE</u>	ADDRESS	NUMBER OF OBSERVATIONS	HIGHEST 24-HOUR	SECOND <u>HIGHEST</u>	THIRD <u>HIGHEST</u>	ANNUAL GEOMETRIC <u>MEAN</u>
KNOX COUN Thomaston	IY Mitchell Property	114	129	119	116	21.4

TABLE 6 - 2TOTAL SUSPENDED PARTICULATES HISTORICAL COMPARISONANNUAL GEOMETRIC MEANS(UG/M3)

		ANNUAL GEOMETRIC MEANS(UG/M3)						
<u>SITE</u>	ADDRESS	<u>1989</u>	<u>1990</u>	<u>1991</u>	<u>1992</u>	<u>1993</u>	<u>1994</u>	<u>1995</u>
KNOX COUN	TY							
Thomaston	Mitchell Property	25.1	21.3	20.5	21.7	21.0	21.2	21.4

TABLE 6 - 3 1995 FINE PARTICULATE DATA SUMMARY (Micrograms Per Cubic Meter)

						ANNUAL	ANNUAL
<u>SITE</u>	ADDRESS	NUMBER OF OBSERVATIONS	HIGHEST 24-HOUR	SECOND <u>HIGHEST</u>	THIRD <u>HIGHEST</u>	ARITH. <u>MEAN</u>	GEOM. <u>MEAN</u>
ANDROSCO	GGIN COUNTY						
Lewiston	Country Kitchen Parking Lot	59	58	46	42	19.8	16.7
Lewiston	Birch Street	31	43	36	34	19.7 *	18.2 *
AROOSTOOI	COUNTY						
Madawaska	Big Daddy's Restaurant	58	81	56	51	25.0	21.9
Presque Isle	Northeastland Hotel(Continuous)	235	78	65	58	19.5	13.7
Presque Isle	Regional Office	116	41	38	33	12.4	10.5
Presque Isle	Riverside Street	. 95	71	60	50	17.9	16.0
Presque Isle	Riverside Street(Continuous)	105	38	30	30	14.8	11.5
CUMBERLAN	D COUNTY						
Bridgton	Upper Ridge Road	53	30	22	21	9.0	7.8
Portland	Shelter Site	61	69	49	35	20.7	18.5
Portland	Tukey's Bridge	57	88	86	73	34.3	28.6
South Portland	130 Wescott Road	60	44	29	29	16.2	14.8
FRANKLIN C	OUNTY						
Jay	Crash Road	113	58	40	35	14.3	12.5
Jay	Jay Hill	117	52	49	34	12.7	10.3
	COUNTY						
Ellsworth	Coastal Carpets	44	108	61	54	25.2	16.4
Ellsworth	Triangle Exxon	41	92	65	59	17.4	14.5
KENNEBEC C							
Augusta	Rines Hill Parking Lot	64	102	83	63	20.5	16.2
-	-	_					
			17		50	14.0	10.0
Thomaston	Mitchell Property	118	67	55	53	14.8	12.0
OXFORD CC	DUNTY						
Mexico	Labonville's	181	162	54	52	16.7	13.8
Rumford	Taylor Mountain 1	59	164	40	37	13.4 *	10.0 *
Rumford	Village Green	181	113	46	39	12.9	10.3

TABLE 6 - 3 (Continued) 1995 FINE PARTICULATE DATA SUMMARY (Micrograms Per Cubic Meter)

.

.

,

<u>SITE</u>	ADDRESS	NUMBER OF OBSERVATIONS	HIGHEST 24-HOUR	SECOND <u>HIGHEST</u>	THIRD <u>HIGHEST</u>	ANNUAL ARITH. <u>MEAN</u>	ANNUAL GEOM. <u>MEAN</u>
PENOBSCO1	COUNTY						
Bangor	Kenduskeag Pump Station	62	52	51	49	20.0	17.5
Lincoln	Thomas Motel Trailer Park	62	35	33	32	13.2	10.9
Lincoln	Penobscot River	61	34	24	24	9.3	7.5
Lincoln	Lincoln Post Office Building	176	139	92	75	22.4	17.6
Millinocket	York Street	62	41	38	37	15.8	14.1
SOMERSET C	OUNTY						
Skowhegan	Hinckley	61	36	33	30	11.1	9.1
Skowhegan	Eaton Ridge	60	40	34	22	10.7	8.8
YORK COUN	ITY						
Biddeford	Eagles Aerie	59	50	33	31	18.0	16.1

* Insufficient data collected for valid annual geometric mean.

I.

TABLE 6 - 4 FINE PARTICULATE HISTORICAL COMPARISON ANNUAL ARITHMETIC MEANS (ug/m3)

<u>SITE</u>	ADDRESS	<u>1990</u>	<u>1991</u>	<u>1992</u>	<u>1993</u>	<u>1994</u>	<u>1995</u>
ANDROSCOG	GIN COUNTY						
Lewiston	Country Kitchen Parking Lot	24.7	28.5	24.4	24.3	20.2	19.8
AROOSTOOK COUNTY Madawaska	Big Daddy's Restaurant	34.9	32.1	30.8	27.9	25.0	25.0
Presque Isle Presque Isle	Northeastland Hotel Regional Office	29.0 14.1	27.7 16.3	28.4 * 14.9	28.8 * 13.5	23.0 13.5	19.5 12.4
Presque Isle	Riverside Street	N/A	N/A	N/A	N/A	20.3	17.9
CUMBERLAND	COUNTY						
Bridgton Portland Portland South Portland	Upper Ridge Road Shelter Site Tukey's Bridge 130 Wescott Road	13.4 22.5 N/A N/A	12.2 24.7 27.6 N/A	10.5 22.9 24.1 * N/A	8.7 21.4 29.0 19.7	8.9 21.1 26.5 19.3	9.0 20.7 34.3 16.2
FRANKLIN CC	DUNTY						
Jay	Crash Road	N/A 18.2	· N/A 19.1	N/A 15.9	13.7 * 13.9	15.2 14.1	14.3 12.7
Jay	Jay Hill	18.2	19.1	15.9	13.9	14.1	12./
KENNEBEC COUNTY Augusta	Rines Hill Parking Lot	N/A	26.3	24.9	24.8	20.2	20.5
KNOX COUNTY Thomaston	Mitchell Property	15.3	15.2	14,2	14.1	13.9	14.8
OXFORD COUNTY							
Mexico	Labonville's Taylor Mountain 1	24.1 N/A	20.6 17.8	18.7 14.3	18.4 15.7	18.8 16.4	16.7 13.4 *
Rumford Rumford	Taylor Mountain 1 Village Green	19.3	17.8	14.3	14.7	15.1	13.4

TABLE 6 - 4 (continued) FINE PARTICULATE HISTORICAL COMPARISON ANNUAL ARITHMETIC MEANS (ug/m3)

•

SITE	ADDRESS	<u>1990</u>	<u>1991</u>	<u>1992</u>	<u>1993</u>	<u>1994</u>	<u> 1995</u>
PENOBSCOT Bangor Lincoln Lincoln	COUNTY Kenduskeag Pump Station Thomas Motel Trailer Park Penobscot River	20.5 18.9 11.7	25.1 18.2 11.5	22.2 17.2 11.4	22.2 15.7 10.6	21.9 14.4 10.0	20.0 13.2 9.3
Lincoln Millinocket	Lincoln Post Office Building York Street	22.5 16.2	26.8 15.5	25.8 16.7	25.9 19.0	23.0 18.5	22.4 15.8
SOMERSET COUNTY							
Skowhegan Skowhegan	Hinckley Eaton Ridge	13.8 13.6	14.2 14.0	13.4 11.9	11.5 11.5	11.7 11.9	11.1 10.7
YORK COUNTY Biddeford	Eagles Aerie	N/A	N/A	N/A	18.3	19.0	18.0

* Insufficient data collected for valid annual geometric mean.

TABLE 6-5 FINE PARTICULATE HISTORICAL COMPARISON (Sites with samples greater than 150 ug/m3)

		TOTAL NUMBER OF SAMPLES GREATER THAN 150 UG/M3						
<u>SITE</u>	ADDRESS	<u>1989</u>	<u>1990</u>	<u>1991</u>	<u>1992</u>	<u>1993</u>	<u>1994</u>	<u>1995</u>
AROOSTOOK CC Presque Isle	Northeastland Hotel	0	1	0	0	0	0	0

7. LEAD (Pb)

7.1 Description and Sources

Lead in the ambient air exists primarily as particulate matter in the inhalable size range. The predominant source of atmospheric lead is from motor vehicles and incineration of solid wastes. Trace amounts of lead are still present in "unleaded" gasoline and are emitted in motor vehicle exhaust. Other major sources of atmospheric lead are the extraction and processing of metallic ores.

7.2 Health and Welfare Effects

When atmospheric lead is breathed in, it is absorbed into the bloodstream and distributed throughout the body along with lead from contaminated food and drinking water. Lead accumulation in the body can impair the production of hemoglobin. Clinical lead poisoning occurs when the body's accumulation of lead becomes too high. Symptoms of lead poisoning range from loss of appetite, fatigue, cramps and constipation, and pains in the ankles and wrists to loss of power in the arms and legs, anemia, kidney disease, mental retardation, blindness and death. Lead concentrations in the ambient air are not sufficient to produce lead poisoning but they do increase the risk of harm when other sources of lead are present. And, indirectly, lead fallout from automotive exhaust onto soil and street surfaces can be ingested in considerable amounts by infants and young children.

7.3 Standards

The current National Ambient Air Quality Standard for lead is a 3-month (calendar quarter) average concentration not to exceed 1.5 micrograms of lead per cubic meter of air.

The current State Standard for lead is a 24-hour average concentration of 1.5 micrograms of lead per cubic meter of air not to be exceeded more than once per year.

7.4 Monitoring

Lead was not monitored in Maine during 1995 due to the extremely low concentrations recorded in previous years.

8. SULFATES (SO4) AND NITRATES (NO3)

8.1 Description and Sources

Sulfates and Nitrates are compounds of varying harmfulness found everywhere in the atmosphere. They are produced by nature as well as man. Man-made sulfates have their origin in sulfur dioxide while nitrates have theirs in nitrogen oxides. Fine particulate compounds, including sulfates and nitrates are formed from chemical reactions between sulfur dioxide or nitrogen dioxide emitted into the air and other substances present there. These fine particulate compounds have a long atmospheric residence time, can be transported in the air for long distances, and are capable of penetrating deeply into the human respiratory tract.

8.2 Health and Welfare Effects

Epidemiological studies of populations exposed to particulate sulfates have shown that atmospheric sulfates, more than sulfur dioxide gas or total suspended particulates, are related to aggravation of asthma, aggravation of heart and lung disease in the elderly, and impairment of lung function in school children. This evidence was obtained from EPA's Community Health and Environmental Surveillance System (CHESS). From these studies, estimates of the sulfate threshold for adverse health effects have been derived, as shown in Table 8-1. However, these epidemiological studies have not been substantiated by laboratory studies.

Both sulfates and nitrates are considered to be contributors to the acid deposition problem.

8.3 Standards

There are currently no standards for levels of sulfates in ambient air. EPA has been working on a standard and is expected to make a proposal in the future.

There are no standards for nitrates nor are there any proposed.

8.4 Monitoring

Sulfate levels were measured at two sites in Maine during 1995 by taking samples of the PM10 filters from those sites and analyzing the samples for sulfates using the Methylthymol Blue Procedure. There is no standard yet and the monitoring methodology is questionable but the data is being included in this report as an aid to those interested in further information about Maine's air quality. Table 8-2 summarizes the sulfate data collected during 1995.

Nitrate levels were not measured in Maine during 1995.

TABLE 8-1SULFATE THRESHOLDS FOR ADVERSE HEALTH EFFECTS

THRESHOLD CONCENTRATION FOR ADVERSE HEALTH EFFECT	SUSPENDED SULFATES
Aggravation of Asthma	6 to 10 Micrograms Per Cubic Meter for 24 Hours.
Aggravation of Heart and Lung	9 Micrograms Per Cubic Meter for Disease in the Elderly for 24 Hours
Subtle Decreases in Childhood	9 to 13 Micrograms Per Cubic Meter Lung Function for 1 Year.
Increase in Acute Respiratory	13 Micrograms Per Cubic Meter for Disease in Children for 1 Year.

TABLE 8-21995 SULFATE DATA SUMMARY(Micrograms Per Cubic Meter)

<u>SITE</u>	ADDRESS	NUMBER OF <u>OBSERVATIONS</u>	HIGHEST <u>24-HOUR</u>	SECOND <u>HIGHEST</u>	thrd <u>Highest</u>	ANNUAL ARITHMETIC <u>MEAN</u>
CUMBERL Bridgton	AND COUNTY Upper Ridge Road	53	8.5	7.7	5	2.2
Portland	Shelter Site	61	12.4	9.4	8.7	3.1

9. ATMOSPHERIC DEPOSITION

9.1 Description and Sources

As a result of the combustion of tremendous quantities of fossil fuels such as coal and oil, the United States annually discharges approximately 50 million metric tons of sulfur and nitrogen oxides into the atmosphere. Through a series of complex chemical reactions these pollutants can be converted into acids, which may return to earth as components of either rain or snow. This atmospheric deposition, more commonly known as acid rain, may have severe ecological impacts on widespread areas of the environment.

9.2 Health and Welfare Effects

While direct health effects from acid rain have not been documented there are numerous indirect effects which could have definite effect on mankind. Atmospheric deposition is known to leach heavy metals such as mercury from rocks causing possible contamination of water supplies. Hundreds of lakes in North America and Scandanavia have become so acidic that they can no longer support fish life. The rain falling on forests and other non-farmlands could, in time, cause extensive changes in the soil chemistry. There is not enough information yet to make it possible to say exactly what the results might be, but there is no reason to think the changes will be beneficial.

9.3 Standards

There are no standards in effect or proposed for atmospheric deposition. The only permanent solution to the acid rain problem is to keep the acid levels low. The only practical way of achieving this is by reducing emissions at their sources.

9.4 Monitoring

During 1995 there were four sites collecting data on atmospheric deposition. Those four sites included a Bureau maintained site in Bridgton, a National Park Service maintained site at Acadia National Park, a University of Maine maintained site in Greenville and a NOAA/National Weather Service maintained site in Caribou. The samples from these four sites are normally collected every Tuesday morning at 9:00 a.m.. Consequently, the samples are not necessarily a single storm event but are more likely to be a composite of all storm events during the previous week. The samples, if there was a significant storm, are used for field measurements of pH and conductivity and are then packaged up for shipment to the National Atmospheric Deposition Program central laboratory in Illinois. In the central laboratory they are also tested for pH and conductivity as well as additional components. Table 9-1 is a summary of the measurements taken at the central laboratory in Illinois from the four sites for the year 1995. The sulfate deposition figures were corrected for marine aerosol contribution. Table 9-2 is a historical summary of the atmospheric deposition data. Some of the data has been reviewed and revised slightly by the NADP lab as a result of some of their quality assurance activities. The data listed in Table 9-2 is data retrieved this year from the NADP database and does contain some minor changes in the data that has been reported in the past.

TABLE 9-1 1995 ATMOSPHERIC DEPOSITION DATA SUMMARY

<u>SITE</u>	ADDRESS	рН <u>МАХІМUM*</u>	pH <u>MINIMUM*</u>	pH <u>MEAN**</u>	DEPOSITION SO4***	l (Kg/ha) <u>NO3</u>
AROOSTOOK COUNTY Caribou	Airport	5.47	3.81	4.68	7	8
CUMBERLAND COUNT Bridgton	r Upper Ridge Road	5.26	4	4.62	. 8	8
HANCOCK COUNTY Acadia National Park	McFarland Hill Ranger Station	5.42	3.86	4.66	13	11
PISCATAQUIS COUNTY Greenville	, Squaw Brook	5.58	4.06	4.7	8	8

- 53 -

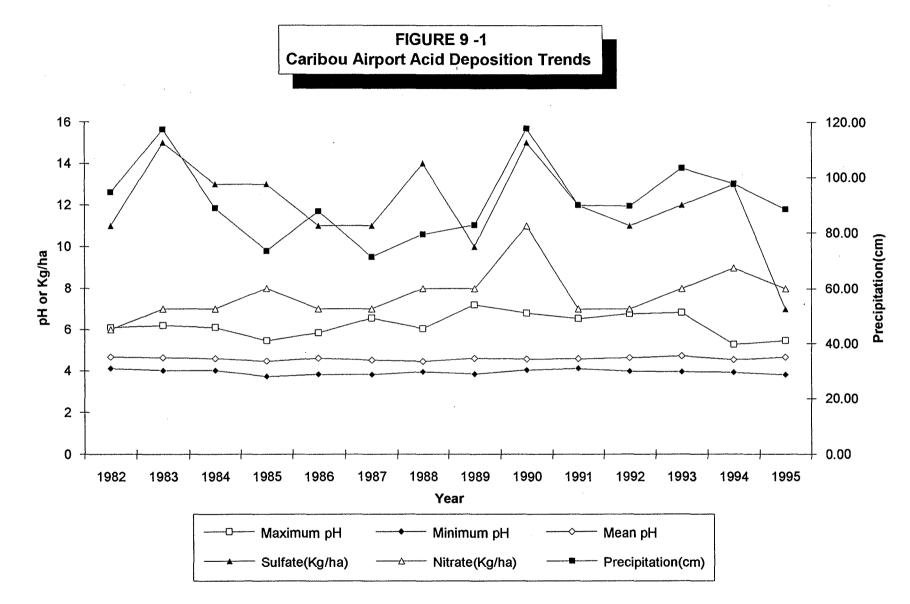
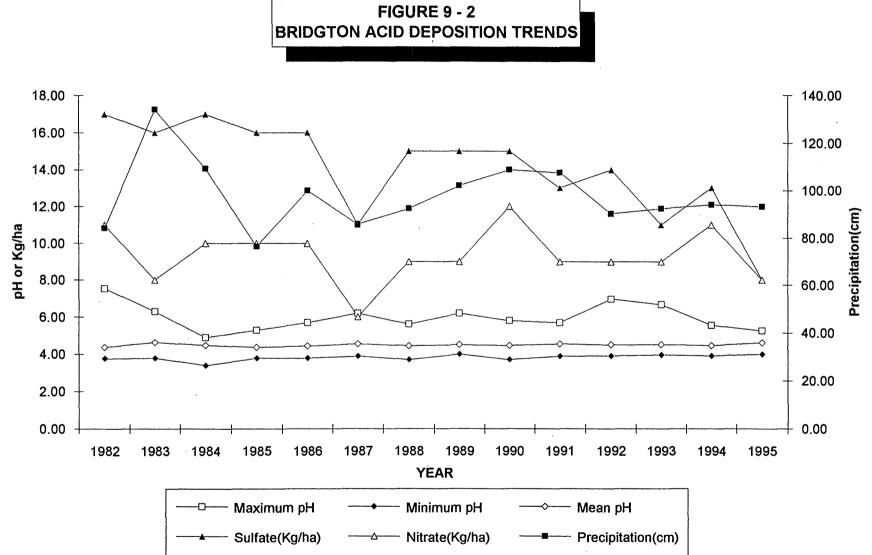
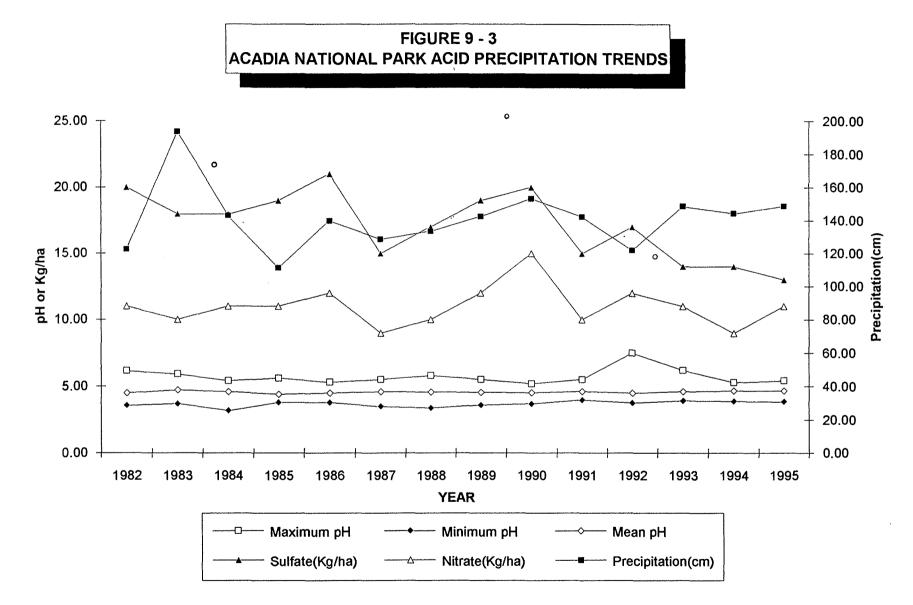

* Lab measurements.
** Precipitation weighted mean.
*** Corrected for marine aerosol and normalized to 52 weeks.

TABLE 9-2 HISTORICAL SUMMARY OF ATMOSPHERIC DEPOSITION DATA

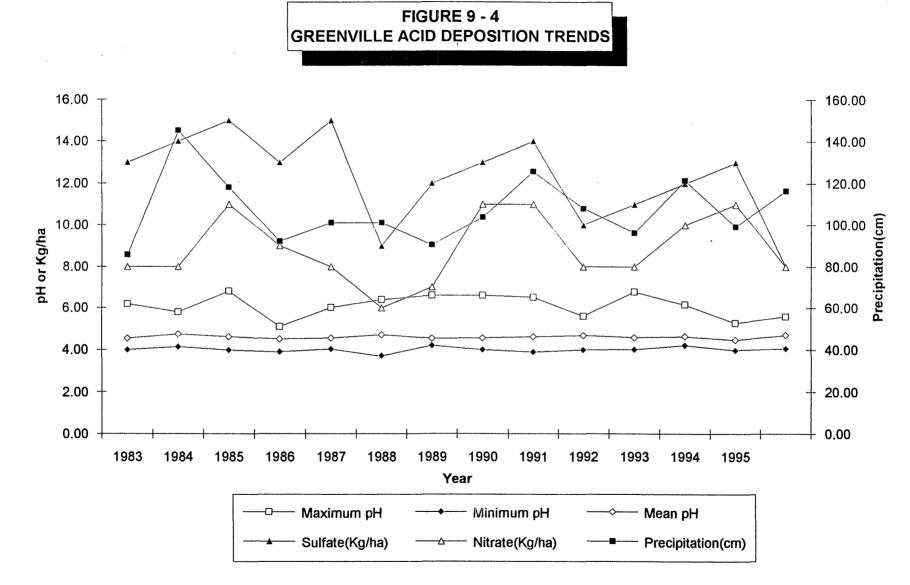

<u>SITE</u>	ADDRESS	PARAMETER	<u>1982</u>	<u>1983</u>	<u>1984</u>	<u>1985</u>	<u>1986</u>	<u>1987</u>	<u>1988</u>	<u>1989</u>	<u>1990</u>	<u>1991</u>	<u>1992</u>	<u>1993</u>	<u>1994</u>	<u>1995</u>	<u>Ave.</u>
AROOSTOOK COUNTY																	
Caribou	Airport	Maximum pH	6.09	6.2	6.1	5.46	5.84	6.55	6.04	7.19	6.8	6.54	6.77	6.83	5.3	5.47	6.23
		Minimum pH	4.11	4.02	4.01	3.72	3.82	3.82	3.95	3.85	4.05	4.13	3.99	3.97	3.94	3.81	3.94
		Mean pH	4.67	4.65	4.6	4.47	4.62	4.53	4.46	4.62	4.58	4.6	4.65	4.74	4.55	4.68	4.60
		Sulfate(Kg/ha)	11.00	15.00	13.00	13.00	11.00	11.00	14.00	10.00	15.00	12.00	11.00	12.00	13.00	7.00	12.00
		Nitrate(Kg/ha)	6.00	7.00	7,00	8.00	7.00	7.00	8.00	8,00	11.00	7.00	7.00	8.00	9.00	8.00	7.71
		Precipitation(cm)	94.61	117.25	88.76	73.40	87.62	71.30	79.34	82.63	117.62	89.91	89.57	103.34	97.71	88.44	91.54
CUMBERLANI	COUNTY																
Bridgton	Upper Ridge	Maximum pH	7.53	6.30	4.90	5.30	5.70	6.20	5.60	6.20	5.80	5.70	6.95	6.66	5.55	5.26	6.03
	Road	Minimum pH	3.75	3.80	3.40	3.80	3.80	3.90	3.70	4.00	3.70	3.90	3.91	3.96	3.91	4.00	3.81
		Mean pH	4.38	4.63	4.49	4.38	4.44	4.56	4.45	4.51	4.46	4.56	4.51	4.52	4.47	4.62	4.50
		Sulfate(Kg/ha)	17.00	16.00	17.00	16.00	16.00	11.00	15.00	15.00	15.00	13.00	14.00	11.00	13.00	8.00	14.07
		Nitrate(Kg/ha)	11.00	8.00	10.00	10.00	10.00	6.00	9.00	9.00	12.00	9.00	9.00	9.00	11.00	8.00	9.36
		Precipitation(cm)	84.16	134.21	109.44	76.45	99.92	85.78	92.50	102.09	108.84	107.58	90.32	92.42	94.02	93.23	97.93
Acadia Nat'I	McFarland Hill	Maximum pH	6.14	5.90	5.40	5.60	5.30	5.50	5.80	5,50	5.20	5.50	7.50	6.19	5.28	5.42	5.73
Park	Ranger Station	Minimum pH	3.58	3.70	3.20	3.80	3.80	3.50	3.40	3.60	3.70	4.00	3.78	3.95	3.90	3.86	3.70
		Mean pH	4.49	4.71	4.59	4.39	4.49	4.60	4.56	4.54	4.51	4.62	4.50	4.62	4.66	4.66	4.57
		Sulfate(Kg/ha)	20.00	18.00	18.00	19.00	21.00	15.00	17.00	19.00	20.00	15.00	17.00	14.00	14.00	13.00	17.14
		Nitrate(Kg/ha)	11.00	10.00	11.00	11.00	12.00	9.00	10.00	12.00	15.00	10.00	12.00	11.00	9.00	11.00	11.00
	·	Precipitation(cm)	122.39	193.56	142.94	111.16	139.79	128.53	133.32	142.44	153.16	142.29	121.88	148.81	144.41	148.70	140.96
PISCATAQUIS COUNTY																	
Greenville	Squaw Brook	Maximum pH	6.19	5.80	6.80	5.09	6.01	6.40	6.60	6.60	6.50	5.60	6.77	6.16	5.28	5.58	6.10
		Minimum pH	4.00	4.14	3.98	3.91	4.03	3.70	4.20	4.00	3.90	4.00	4.02	4.21	3.99	4.06	4.01
		Mean pH	4.54	4.74	4.61	4.50	4.55	4.71	4.54	4.55	4.62	4.67	4.59	4.64	4.48	4.70	4.60
		Sulfate(Kg/ha)	13.00	14.00	15.00	13.00	15.00	9.00	12.00	13.00	14.00	10.00	11.00	12.00	13.00	8.00	12.29
		Nitrate(Kg/ha)	8.00	8.00	11.00	9.00	8.00	6.00	7.00	11.00	11.00	8.00	8.00	10.00	11.00	8.00	8.86
		Precipitation(cm)	85.58	145.22	118.07	92.15	101.09	101.10	90.35	103.72	125.67	107.93	96.16	121.45	99.16	116.37	107.43

- 54 -

~



- 55 -



- 56 -

0

- 57 -

- 58 -

10. HYDROCARBONS (HC)

10.1 Description and Sources

Hydrocarbons are a class of compounds containing carbon and hydrogen in various combinations. They are found especially in petroleum, natural gas and coal. Some are gaseous, some liquid and some are solid. There are in fact over a thousand hydrocarbon compounds. Many of the polluting hydrocarbons are discharged into the air by incomplete combustion of organic materials. A major source of this kind of hydrocarbon emission is the burning of gasoline in automobiles. Other major contributors are organic solvent evaporation, industrial processes, solid waste disposal and fuel combustion in stationary sources. The control of hydrocarbon emissions are accomplished by combustion process optimization, recovery by mass transfer principles, restriction of evaporative loss and process material and fuel substitution.

10.2 Health and Welfare Effects

Hydrocarbon air pollutants enter into and promote the formation of photochemical smog (ozone) and thus contribute to the development of eye irritation and respiratory tract problems. By themselves, hydrocarbons may induce adverse health effects, although there is relatively little quantitative data to relate individual hydrocarbons to the risk of human disease.

10.3 Standards

The present State Standard for non-methane hydrocarbons is a three hour average concentration of 160 ug/m^3 .

10.4 Monitoring

Hydrocarbons, as defined in this standard, were not monitored as part of the State's continuous air monitoring program during 1995.

11. PRECISION AND ACCURACY

The U.S. Environmental Protection Agency regulations governing the SLAMS/NAMS network were published in 40 CFR Part 58. These regulations specify the minimum necessary requirements for the control and assessment of the quality of the ambient air monitoring data submitted to EPA. The State of Maine in its Quality Assurance Plan has required the same checks as the EPA program but has increased the number of checks required in some cases. Each organization that reports data to the State of Maine has their own reporting organization number and the precision and accuracy results are made available for each of those organizations as well as the DEP.

Precision and accuracy are two fundamental measures of the quality of data from a measurement process. Simply stated, "precision" is a measure of repeatability of the measurement process when measuring the same thing, and "accuracy" is a measure of closeness of an observed measurement value to the truth. Precision and accuracy of air monitoring or measurement data cannot be ascertained from the data themselves, but require the use of specially planned checks from which precision and accuracy can be estimated. The results are used to assess the quality of the monitoring data being reported to EPA by an agency.

The U.S. EPA has established guidelines for evaluating the upper and lower 95% probability limits. The quarterly probability limits for precision data should fall within a range of -15% to +15% and the quarterly probability limits for accuracy data should fall within a range of -20% to +20% ($\pm 15\%$ for TSP and PM10). These ranges are only guidelines, but when they are exceeded, procedures should be reviewed to determine the reason for the wide variation in the data.

11.1 Precision

For automated methods, this requirement is met by challenging the analyzer to a one point precision check gas of known concentration. The concentration of the precision check gas and the concentration indicated by the analyzer are used to assess the precision of the monitoring data. Data from all the monitors operated for a particular pollutant by a reporting organization are then combined to give overall precision data for that pollutant and that reporting organization. Precision checks for manual methods are obtained by operating co-located samplers at selected sites (specific requirements must be met for these sites). For each pair of co-located samplers, one is designated as the sampler which will be used to report air quality for the site and the other is designated as the duplicate sampler. The differences in the measured concentration (ug/m³) between the two co-located samplers are used to calculate and assess the precision of the monitoring data.

11.2 Accuracy

To measure the closeness of an observed measurement value to the truth, some material or condition of known (true) property must be measured by the measurement system being checked. The measurement system is "challenged" with the "known" to obtain the observed measurement. For automated analyzers, "known" gaseous pollutant concentrations determined using different standards and different equipment from those used for routine calibration and spanning are

introduced into the measurement instruments. In this way, two different calibration systems are involved: the one used for routine monitoring and the one used to assess the "known." For manual methods, it is difficult to challenge the total measurement system with "knowns." Therefore, an accuracy audit is made of only a portion of the measurement system. The two major portions of manual measurement systems are the flow and the analytical measurements. The flow measurement portion of the particulate methods are audited for accuracy. Blind samples are provided by EPA for analysis to determine the bad accuracy results.

The precision and accuracy results are reported in Tables 11-1 and 11-2. When reviewing this data, it is important to note that not all precision data collected is used in the analysis. The particulate precision data, especially PM10 data, because of the low concentrations recorded at most sites, is most affected by this. Typically only a small percent of the valid pairs are utilized in the analysis and because of that the probability limits can be much larger than might be expected. Additional review of the data will document those cases.

In a number of instances accuracy probability limits are not calculated even though audits were conducted. Apparently, the program used to calculate accuracy does not calculate it when there is only one monitor or one site in operation. Hopefully, the program will be revised in the future to account for all the data.

TABLE 11-11995 PRECISION DATA SUMMARY

PARAMETER	SUMMARY <u>PERIOD</u>	NUMBER OF SITES	PRECISION <u>CHECKS</u>	PROBABIL <u>LOWER 95%</u>	ITY LIMITS UPPER 95%
Sites operated by M	laine DEP				
Sulfur Dioxide	Q1 Q2 Q3 Q4 Year	4 4 2 4	51 54 36 23 164	-6 -5 -8 -5 -6	6 5 9 5 6
Ozone	Q1 Q2 Q3 Q4 Year	3 12 11 8 13	26 132 119 43 320	-6 -3 -3 -6 -4	3 4 3 4
Fine Particulate*	Q1 Q2 Q3 Q4 Year	4 3 3 4 4	50 41 36 52 179	-11 -10 -12 -15 -12	9 10 10 14 10
Sites operated by S.	D. Warren Con	npany, Skowh	egan		
Ozone	Q1 Q2 Q3 Q4 Year	0 1 1 1	0 13 13 5 31	-9 -5 -3 -7	1 0 0 1
Fine Particulate*	Q1 Q2 Q3 Q4 Year	1 1 1 1	13 11 16 11 51	** ** ** -3	** ** 11 ** 19
Sites operated by In	ternational Pap	er Company,	Jay		
Sulfur Dioxide	Q1 Year	1 1	13 13	-1 -1	3 3
Fine Particulate*	Q1 Q2 Q3 Q4 Year	1 1 1 1	15 15 15 14 59	9 ** -2 ** -5	2 ** 1 ** 2

TABLE 11-1(Continued)1995 PRECISION DATA SUMMARY

.1

PARAMETER	SUMMARY <u>PERIOD</u>	NUMBER <u>OF SITES</u>	PRECISION <u>CHECKS</u>	PROBABII LOWER 95%	LITY LIMITS UPPER 95%
Sites operated by B	oise Cascade F	aper Group,	Rumford		
Sulfur Dioxide	Q1 Q2 Q3 Q4 Year	4 2 2 4	49 33 27 28 137	-7 -4 -3 -6	11 9 7 4 9
Fine Particulate*	Q1 Q2 Q3 Q4 Year	1 1 1 1	15 15 14 15 59	-1 0 -2 -2 -1	4 0 3 6 3
Sites operated by D	ragon Products	, Thomaston			
Total Suspended Particulates*	Q1 Q2 Q3 Q4 Year	1 1 1 1	14 14 12 15 55	-6 -6 0 -1 -6	11 9 21 34 20
Fine Particulate*	Q1 Q2 Q3 Q4 Year	1 1 1 1	15 14 15 15 59	** -2 -1 -4 -3	** 10 8 -2 8
Sites operated by Lin	ncoln Pulp & Pa	per Company	y, Lincoln		
Fine Particulate*	Q1 Q2 Q3 Q4 Year	1 1 1 1	14 13 15 15 57	-4 -8 3 ** -5	12 11 4 **
Sites operated by G	reat Northern P	aper Compar	ny, Millinocket		
Sulfur Dioxide	Q1 Q2 Q3 Q4 Year	1 1 1 1	6 6 8 7 27	-3 -7 -3 -9 -6	4 5 4 12 7

TABLE 11-1(Continued) 1995 PRECISION DATA SUMMARY

PARAMETER	SUMMARY <u>PERIOD</u>	NUMBER <u>OF SITES</u>	PRECISION <u>CHECKS</u>	PROBABII <u>LOWER 95%</u>	Lity limits <u>UPPER 95%</u>
Fine Particulate*	ୟା	1	15	-10	18
	Q2	1	15	1	14
	Q3	1	. 16	-7	12
	Q4	1	15	-10	18
	Year	1	61	-7	15
Sites operated by F	raser Paper Coi	mpany, Mada	ıwaska		
Sulfur Dioxide	QI	3	39	-1	3
	Q2	3	39	0	5
	Q3	3	39	-1	7
	Q4	3	39	-1	2
	Year	3	156	-2	5
Site operated by Ne Sites operated by N	-		Environmenta	l Resources	

Nitrogen Dioxide	Q2	0	0		
-	ଭ3	1	17	-3	10
-	Q4	0	0		
	Year	1	17	-3	10

 $^{\ast}\,$ The total number of precision checks collected is listed for this parameter but not all of the

.

pairs are used in the calculation of probability limits.

** Insufficient data was available to calculate the probability limits.

TABLE 11-21995 ACCURACY DATA SUMMARY

<u>PARAMETER</u>	SUMMARY <u>PERIOD</u>	NO. OF <u>AUDITS</u>	LE ^v <u>-95%</u>	VEL 1 <u>95%</u>	PROBABIL LE ^V <u>-95%</u>	ITY LIMITS VEL 2 <u>95%</u>	LE <u>-95%</u>	VEL 3 <u>95%</u>
Sites operated by N	Maine DEP							
Sulfur Dioxide	Q1 Q2 Q3 Q4	2 2 0 3	-3	2	-4 -5	3 0	-3 -3	2 0
. *	Year	7	-3	-1	-3	-2	-2	-1
Ozone	ଭୀ ଭ2 ଭ3	2 6 0	-7 -8	3 11	-9 -7	4 8	-13 -3	7 5
	Q4 Year	14 22	-11 -9	13 12	-3 -3	3 4	-2 -1	3 3
Fine Particulate	Q1 Q2 Q3 Q4 Year	16 16 13 16 61			-3 -10 -8 -3 -4	10 10 10 8 7		
Sites operated by S	. D. Warren Cor	npany, Sko	owhegan					
Ozone	Q1 Q2 Q3 Q4 Year	0 1 1 0 2	* * *	* *	* *	* *	* *	* *
Fine Particulate	Q1 Q2 Q3 Q4 Year	3 3 3 12			1 2 3 2 2	1 2 3 4 2		
Sites operated by Ir	nternational Pap	per Compo	any, Jay					
Sulfur Dioxide	Q1 Year	1	*	*	*	*		
Fine Particulate	Q1 Q2 Q3 Q4 Year	3 3 3 12			-2 3 2 -7 0	2 1 3 4 5		

TABLE 11-2(Continued)1995 ACCURACY DATA SUMMARY

.

PARAMETER	SUMMARY <u>PERIOD</u>	NO. OF <u>AUDITS</u>	LEVE <u>-95%</u>	L 1 <u>95%</u>	PROBABILI LE\ <u>-95%</u>	TY LIMITS /EL 2 <u>95%</u>	LE\ <u>-95%</u>	/EL 3 <u>95%</u>
Sites operated by Bo	oise Cascade F	aper Grou	up, Rumford	k.				
Sulfur Dioxide	Q1 Q2 Q3 Q4 Year	4 2 2 10	-9 -4 0 -3 -2	16 27 9 6 12	-8 -3 1 -3 -4	11 17 2 2 6	-9 -4 -2 -5 -6	12 15 2 0 6
Fine Particulate	Q1 Q2 Q3 Q4 Year	5 3 3 14			3 3 0 2	6 7 6 3 7		
Sites operated by Dr	agon Products	, Thomasto	on					
Total Suspended Particulates	Q1 Q2 Q3 Q4 Year	0 6 0 6 12			* *	* * *		
Fine Particulate	Q1 Q2 Q3 Q4 Year	0 6 0 6 12			* *	* * *		
Sites operated by Lin	icoln Pulp & Pa	per Comp	oany, Linco	In				
Fine Particulate	Q1 Q2 Q3 Q4 Year	4 2 4 4 14			-6 -3 -8 -6 -3	-1 3 9 3 1		
Sites operated by Gr	eat Northern P	aper Com	pany, Millir	nocket				
Sulfur Dioxide	Q1 Q2 Q3 Q4 Year	0 1 1 2 4	* * *	* * *	* * *	* * *	* * *	* * *

,

TABLE 11-2(Continued) 1995 ACCURACY DATA SUMMARY

					PROBABIL	ITY LIMITS		
	SUMMARY	NO. OF	LE	VEL 1	LEV	/EL 2	LE	VEL 3
PARAMETER	PERIOD	AUDITS	<u>-95%</u>	<u>95%</u>	<u>-95%</u>	<u>95%</u>	<u>-95%</u>	<u>95%</u>
Fine Particulate	QI	0						
	Q2	4			*	*		
	Q3	0						
	Q4	4			*	*		
	Year	8			*	¥		

Sites operated by Fraser Paper Company, Madawaska

Sulfur Dioxide	QI	3	-8	6	-7	6	-10	6
	Q2	3	-11	13	-3	7	-3	7
	Q3	3	5	15	0	10	-2	10
	Q4	3	-1	7	-6	7	-7	5
	Year	12	-2	8	-2	5	-3	4

Site operated by New Hampshire Department of Environmental Resources

Nitrogen dioxide	Q2	0						
	Q3	0						
-	Q4	2	*	*	*	*	*	*
	Year	2	*	*	*	*	*	*

* Insufficient data was available to calculate the probability limits.

12. AIR TOXICS

12.1 Compound-specific Background

Chlorine/Chloroform:

Chlorine is principally used by the chemical manufacturers' industry to produce chemicals (principally chlorinated organics), by the pulp and paper industry for bleaching pulp to produce white paper, in water and waste treatment processes for disinfection, and in cooling towers to curb biofouling in heat transfer systems (1) (2). It is known that the presence of chlorine and hydrocarbons in water can form such chlorinated compounds as chloroform, dioxin, chlorinated phenols, and other chlorinated hydrocarbons. Since there are no major organic chemical production facilities in Maine, the primary sources of chloroform in Maine are water and wastewater treatment facilities, cooling towers, and the pulp and paper industry.

Theoretically, we expect to see levels of chloroform that are higher than normal around pulp mills. The Toxic Release Inventory developed by the U.S. Environmental Protection Agency (EPA) requires that certain manufacturing facilities submit chemical emissions data. These data indicate that pulp mills are one of the major industrial sources of chloroform in Maine.

Other sources of chloroform are waste water treatment facilities. DEP's Volatile Organic Compound (VOC) emissions inventory for the towns in the 1992 air toxics monitoring study indicate VOCs from these facilities (chloroform is one of many VOCs) are substantially less than pulp mill chloroform emissions alone. For example, based on EPA emission factors, the DEP has estimated that Westbrook's wastewater treatment works had VOC releases in 1990 of 5.5 tons; the S.D. Warren facility in Westbrook had chloroform releases of approximately 27 tons in 1990. Similarly, in Woodland, the emissions of VOCs from the sewage treatment facility were less than 1 ton, whereas Georgia Pacific emitted 177 tons of chloroform. According to the Agency for Toxic Substances and Disease Registry (ATSDR) Draft Toxicological Profile for chloroform (3), most of the chloroform in the environment originates from industrial processes.

Cooling tower emissions of chloroform in Maine, primarily associated with electric generators, is currently unknown.

Due to chloroform's volatility, it eventually is released to the air, where it breaks down slowly (in approximately 5 - 6 months). Since chloroform is persistent in the atmosphere, it can be transported for long distances depending on the meteorological conditions. Those areas with no major known sources of chloroform, but where chloroform is found, may be experiencing this phenomenon.

DHS guideline is: 210 micrograms per cubic meter averaged over 24 hours 0.43 micrograms per cubic meter averaged over 1 year (1 in 100,000 excess cancer risk) 0.043 micrograms per cubic meter averaged over 1 year (1 in 1,000,000 excess cancer risk)

Tetrachloroethylene:

The majority of tetrachloroethylene (PCE) releases are from the dry cleaning industry (4). Other emissions to the air are from processes that use PCE as a solvent, such as in metal degreasing operations. This use of PCE is being phased out as less toxic metal degreasing solvents enter the market. In general, PCE levels in the air are higher in urban/suburban areas than in more remote areas. PCE persists several months in the atmosphere.

DEP standard is: 0.01 micrograms per cubic meter average over 1 year (1 in 1,000,000 excess cancer risk).

Benzene:

Nationally, petroleum refining operations and petrochemical manufacturing sites are the main sources of benzene in the environment (5). Emissions from burning coal and oil, benzene waste and storage operations, motor vehicle exhaust, evaporation from gasoline service stations, and use of industrial solvents also contribute to benzene levels in air. According to the Toxic Release Inventory - 1990 database, there are no major industrial users or sources of benzene at or above the TRI reporting thresholds in Maine. This suggests that in Maine, the primary sources of benzene are most likely combustion of fossil fuel, and evaporation from gasoline service stations. Once released to the atmosphere, benzene breaks down (photooxidizes) within a few days.

DHS guideline is:	450 micrograms per cubic meter averaged over 24 hours
	0.12 micrograms per cubic meter averaged over 1 year
	(1 in 100,000 excess cancer risk)
	0.012 micrograms per cubic meter averaged over 1 year
	(1 in 1,000,000 excess cancer risk)

Toluene:

Toluene is a solvent, and is also a component of gasoline. Nationally, marketing and combustion of gasoline represent the major sources of toluene emissions (6). Toluene releases will end up in the atmosphere, due to its volatility, where it will photooxidize within a few hours to a few days (6). In 1985, the DEP estimated that approximately 855 tons of toluene were emitted from the marketing of gasoline and its combustion. According to the 1990 TRI database only 234 tons of toluene were released from stationary sources. Toluene is used by some of the sources potentially impacting the monitors.

DEP standard is: 15,000 micrograms per cubic meter (instantaneous) 260 micrograms per cubic meter averaged over 24 hours 180 micrograms per cubic meter averaged over 1 year

Xylenes:

Solvents and thinners for paints and varnishes often contain xylenes. Xylenes are used as a solvent in the printing, rubber, and leather industries, and also as cleaning agents. They are also found in gasoline. Xylenes photooxidize in the atmosphere fairly rapidly, within 1 - 2 days. A total of 169 tons of xylenes were released to the air in 1990, based on TRI data. (7).

DHS guideline is: 65,000 micrograms per cubic meter (instantaneous) 300 micrograms per cubic meter averaged over 24 hours 300 micrograms per cubic meter averaged over 1 year

1,3-butadiene:

1,3-butadiene is associated with fossil fuel combustion. It is primarily released to the atmosphere during manufacture, use, transport, and storage of gasoline, but other sources exist, such as wood smoke (8). 1,3-butadiene breaks down rapidly in air, especially in the presence of sunlight. The total expected life of 1,3-butadiene is short; approximately 0.48 hrs (10) to 2 hours (8).

DHS guideline is:	370 micrograms per cubic meter averaged over 24 hours
	0.036 micrograms per cubic meter averaged over 1 year
	(1 in 100,000 excess cancer risk)
	0.0036 micrograms per cubic meter averaged over 1 year
· -	(1 in 1,000,000 excess cancer risk)

Carbon tetrachloride:

Carbon tetrachloride (CCl4) has been widely used as a refrigerant and aerosol propellant, although its use for these purposes is being phased out due to its effect on the stratospheric ozone layer. CCl4 was once used as a cleaning fluid, but this use was stopped in the mid-1960's. However, it is a very stable and persistent compound in the environment; it takes 30-100 years for half of the carbon tetrachloride that is released to be broken down into other components in the air (9).

DHS guideline is:	860 micrograms per cubic meter averaged over 24 hours
	0.7 micrograms per cubic meter averaged over 1 year
	(1 in 100,000 excess cancer risk)
	0.07 micrograms per cubic meter averaged over 1 year
	(1 in 1,000,000 excess cancer risk)

12.2 Monitoring

Air toxics monitoring was conducted in the Fall of 1991 at two sites in the Rumford/Mexico area, as a pilot study. The Department of Environmental Protection (DEP) then conducted an expanded monitoring effort in 1992 for four towns (10 sites) in southern Maine, two towns (five

sites) Downeast, and one town (5 sites) in central Maine. The samples were collected for a 24hour period, and analyzed for a suite of compounds commonly examined in laboratories doing air toxics work. The Department of Human Services (DHS) evaluated the data for potential health risks.

Very little is known about air toxics in Maine and the concentrations to which people are being exposed; an enhanced inventory is necessary to define all sources of hazardous air pollutants. DEP believes that the 1992 monitoring program was a start in understanding ambient air quality in Maine regarding toxics; in particular, in understanding the relationship between emissions and exposure.

During 1993 a limited number of canister samples were collected in the Rumford/Mexico area to provide additional information and to verify some of the previous data collected in that area. The canisters were analyzed late in 1995 and preliminary findings appear to confirm earlier sampling results. That data is now being evaluated by the Bureau of Health and a report will be issued at a later date.

Five monitoring sites targeting hazardous air pollutants were established in November and December, 1995 in the greater Portland area. The sites encircle a roughly 4 square mile area, and are located in both heavily urbanized and residential sections of the city. More detailed information on site locations may be found in Table 1-6.

The Portland area study will survey levels of 36 separate hazardous air pollutants over a one year period, focusing on March 1, 1996 through March 1, 1997. Canister samples are collected for a 24 hour period every six days. In addition to the hazardous air pollutants, each sample is analyzed for target VOC ozone precursors as discussed in Section 13. Some data from late 1995 has been obtained, but analysis of the data is not yet complete. Further details on the Portland area study will become available in the 1996 annual report.

Hazardous air pollutants being targeted for the Portland study are outlined in Table 12-1.

TABLE 12 - 1HAZARDOUS AIR POLLUTANTS FOR PORTLAND MONITORING STUDY

AIRS CODE	COMPOUND NAME	AIRS CODE	COMPOUND NAME
16916	FREON 12	43818	1,1,2,2-TETRACHLOROETHANE
43841	1,3- DICHLOROPROPENE	43819	METHYL BROMIDE
45201	BENZENE	43820	1,1,2-TRICHLOROETHANE
45202	TOLUENE	43824	TRICHLOROETHYLENE
45203	ETHYL BENZENE	43829	PROPYLENE DICHLORIDE
45102	TOTAL XYLENES	43843	ETHYLENE DIBROMIDE
45207	1,3,5-TRIMETHYLBENZENE	43844	HEXACHLOROBUTADIENE
45220	STYRENE	43860	VINYL CHLORIDE
43207	FREON 113	45208	1,2,4-TRIMETHYLBENZENE
43208	FREON 114	45801	CHLOROBENZENE
43218	1,3-BUTADIENE	45805	1,2-DICHLOROBENZENE
43801	METHYL CHLORIDE	45806	1,3-DICHLOROBENZENE
43802	METHYLENE CHLORIDE	45807	1,4-DICHLOROBENZENE
43803	CHLOROFORM	45810	1,2,4-TRICHLOROBENZENE
43804	CARBON TETRACHLORIDE	43817	TETRACHLOROETHYLENE
43811	FREON 11	43816	cis-1,2-DICHLOROETHYLENE
43812	ETHYL CHLORIDE	43815	1,2-DICHLOROETHANE
43813	1,1-DICHLOROETHANE	43814	1,1,1-TRICHLOROETHANE

References

- Chlorine and Hydrogen Chloride Environmental Health Criteria 21 IPCS International Programme on Chemical Safety World Health Organization, Geneva, 1982
- Locating and Estimating Air Emissions from Sources of Chloroform Office of Air Quality Planning and Standards US Environmental Protection Agency March 1984
- Toxicological Profile for Chloroform Dept. of Health and Human Services, Public Health Service Agency for Toxic Substances and Disease Registry (ATSDR) Draft document, February 18, 1992
- Toxicological Profile for Tetrachloroethylene
 Dept. of Health and Human Services
 Public Health Service
 Agency for Toxic Substances and Disease Registry (ATSDR)
 Draft document, February 18, 1992
- Toxicological Profile for Benzene
 Dept. of Health and Human Services
 Public Health Service
 Agency for Toxic Substances and Disease Registry (ATSDR)
 Draft document, February 18, 1992
- Risk Assessment Document for Toluene
 Dept. of Human Services
 Bureau of Health
 Final report, March, 1987
- Toxicological Profile for Total Xylenes
 Dept. of Health and Human Services
 Public Health Service
 Agency for Toxic Substances and Disease Registry (ATSDR)
 December, 1990
- 8. Toxicological Profile for 1,3-Butadiene
 Dept. of Health and Human Services
 Public Health Service
 Agency for Toxic Substances and Disease Registry (ATSDR)
 Draft document, February 15, 1991

- 9. Toxicological Profile for Carbon Tetrachloride
 Dept. of Health and Human Services
 Public Health Service
 Agency for Toxic Substances and Disease Registry (ATSDR)
 December, 1989
- Handbook of Environmental Organic Chemicals Karel Verschueren 1983

-

13. PHOTOCHEMICAL ASSESSMENT MONITORING

13.1 Background and History

The Clean Air Act Amendments of 1990 required EPA to promulgate regulations for the "enhanced" monitoring of ozone and its precursors for ozone nonattainment areas classified as serious, severe or extreme. Both Congress and EPA recognized the need for an improved understanding of the ozone problem, and better feedback mechanisms for evaluating the effectiveness of ozone control strategies. In 1993, EPA published the final rule detailing the minimum requirements for Photochemical Assessment Monitoring Stations (PAMS), which includes measurements of nitrogen oxides (NOx), speciated volatile organic compounds (VOCs), and meteorological parameters. These monitoring regulations provide for the collection of an "enhanced" ambient air quality database which can be used to better characterize the nature and extent of the ozone problem, aid in tracking VOC and NOx emission inventory reductions, assess air quality trends, make attainment/nonattainment decisions, and evaluate photochemical grid-model performance.

13.2 Monitoring Network

The size and design of a PAMS network for a serious, severe or extreme ozone nonattainment area can vary from just 2 to as many as 4 - 5 sites, depending on the area's population size. There are four different types of PAMS sites, each serving a specific monitoring purpose: a Type 1 is upwind of the urban area and represents background concentrations coming into the area; a Type 2 is on the downwind fringe of the urban area and represents maximum precursor concentrations from the area; a Type 3 is located downwind to represent the maximum ozone concentration generated from the area; and a Type 4 is at an extreme downwind location to represent long-range transport from the area. Therefore, PAMS sites required for an area will not necessarily all be located within the boundaries of the nonattainment area. This is how Maine, with no serious, severe or extreme nonattainment areas itself, can end up having two PAMS sites in operation during 1995.

A Type 4 PAMS site was established at Two Lights State Park in Cape Elizabeth in the spring of 1993 to represent extreme downwind impacts from the Greater Connecticut nonattainment area. This site operated in 1995 with an ozone (O3) monitor, a low-level nitrogen oxides (NO/NOy) monitor, a meteorological system and an automated gas chromatograph (GC) analytical system. A new Type 2 PAMS site was established in the spring of 1995 at the Frisbee School in Kittery to represent maximum presursor emissions coming from the Portsmouth-Dover-Rochester NH nonattainment area. This site is operated by the State of New Hampshire, and has an ozone monitor, a NOx monitor, a meteorological system, and an auto-GC as well.

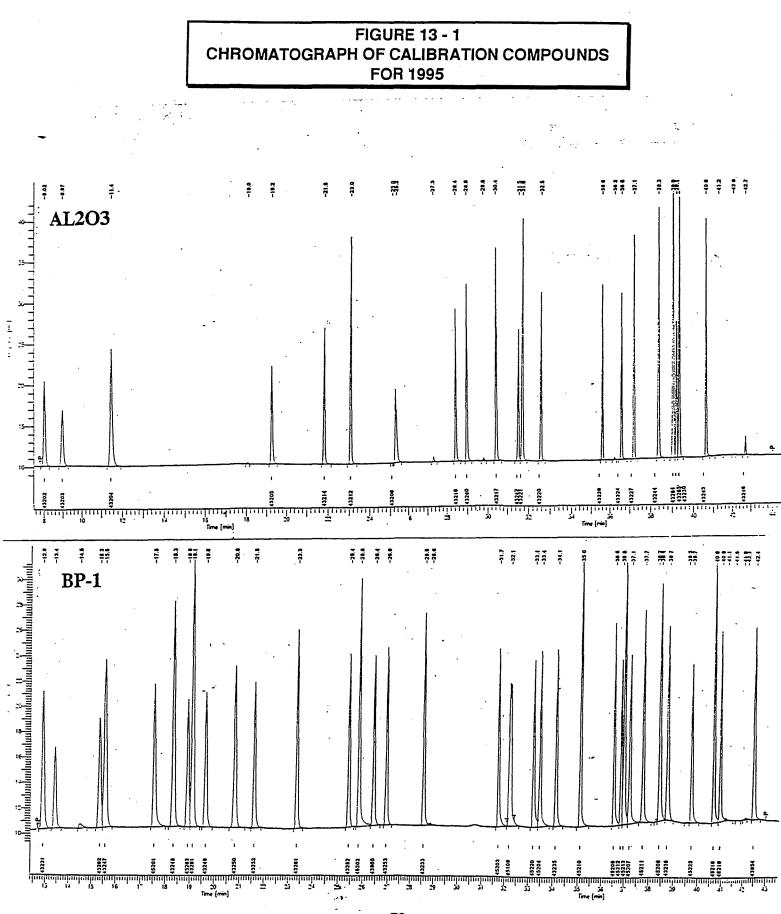
13.3 Photochemistry

The distinguishing features that make PAMS sites truly "enhanced" ozone monitoring stations is that they collect data simultaneously on the essential ingredients (NOy and VOCs) and factors

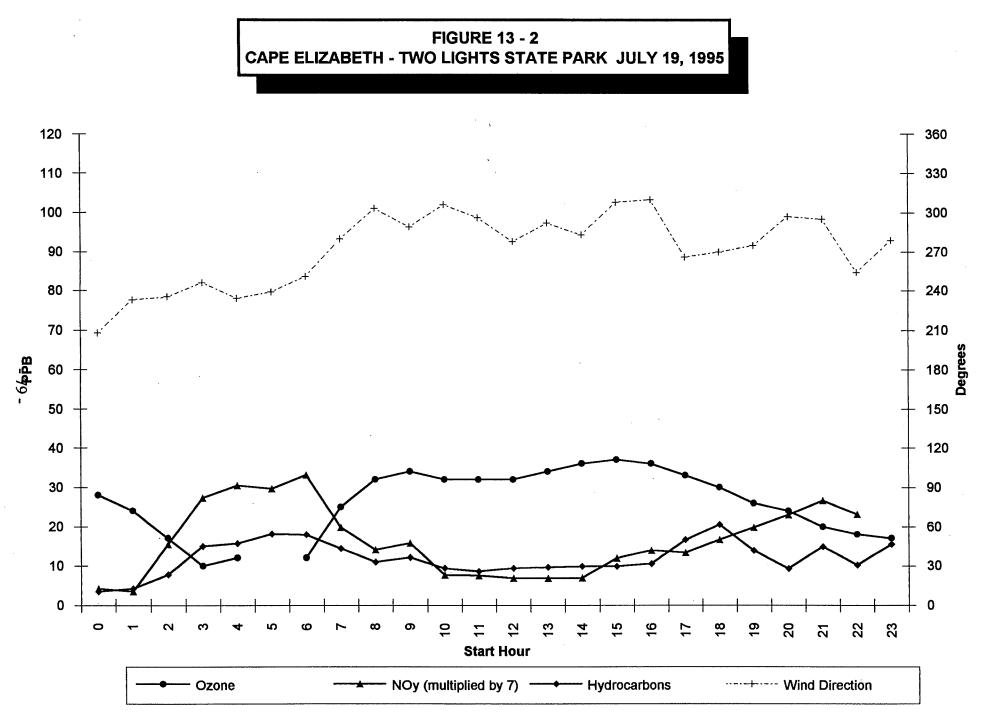
(meteorology) that produce ground-level ozone through photochemical reactions in the atmosphere. Gaining a better understanding of how these variables interplay with each other in actual real-world instances is absolutely necessary in order to effectively address Maine's and the nation's continuing ozone problem.

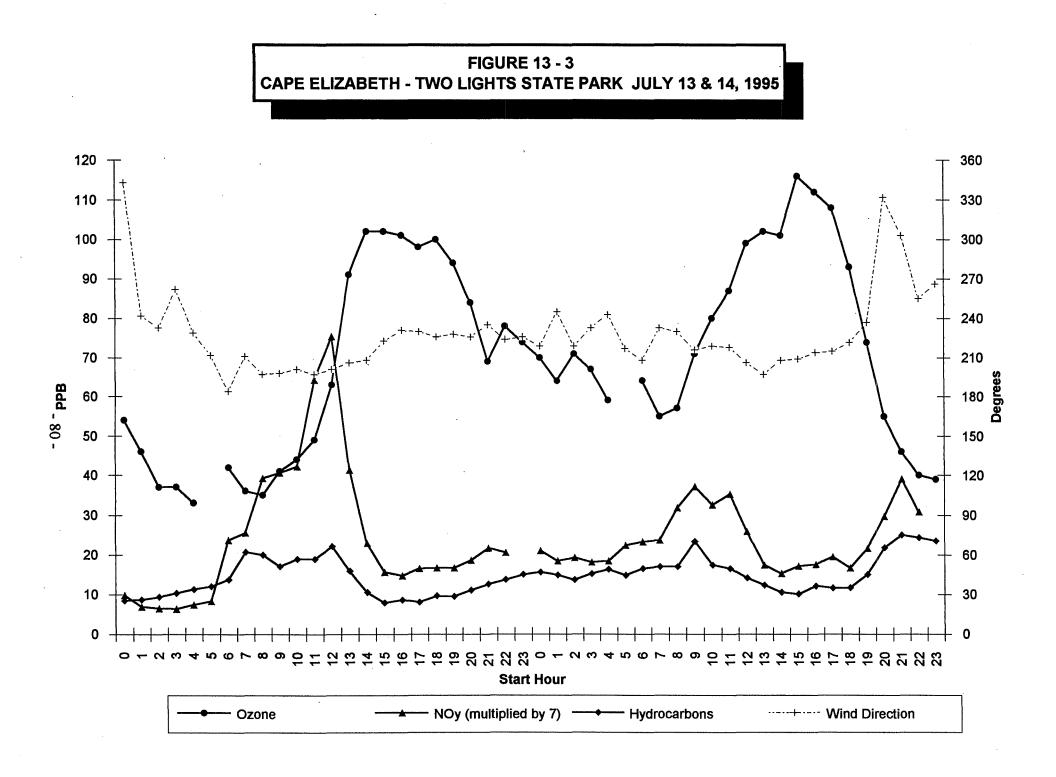
The compounds on the list of Target VOC Ozone Precursors (Table 13.1) are the hydrocarbons which are of particular interest to EPA and the DEP regarding ground-level ozone formation. A majority of these hydrocarbons are associated with gasoline, before and after combustion, and are dominant in urban atmospheres due to mobile source emissions. These hydrocarbon compounds contain two to eleven carbon atoms and are known to be photochemically reactive. Obtaining hourly speciated VOC data via a GC operated in the field compared to operating one in the laboratory, to be certain, is a technically demanding challenge. A 40-minute integrated ambient air sample is taken each hour and analyzed for 55 separate VOCs. This is done 24 hours a day between June 1st and September 30th. Effectively handling and managing the tremendous volume of VOC data generated by these auto-GC systems is an equally challenging task.

The two chromatograms which follow (Figure 13.1) illustrate the actual presence and concentration of 55 compounds contained in the calibration standard which was used at the PAMS sites in 1995. Each large peak is identified using its corresponding AIRS code as a specific compound on the Target VOC Ozone Precursor List (except for TNMOC which is the total of all of the compounds analyzed). The order in which these compounds appear on the chromatogram is determined by their carbon content, molecular weight and boiling point. Compounds with lower boiling points elute first from the analytical column followed by the heavier higher molecular weight components with higher boiling points.


13.4 Relationships Between Ground-level Ozone (O3), Nitrogen Oxides (NOy) and Volatile Organic Compounds (VOCs)

The charts which follow show the relationship between four important parameters during an ozone event: ground level ozone(O3), its two precursors - nitrogen oxides (NOy) and total nonmethane organic compounds (TNMOC), and wind direction. When looking at the charts, the scale for wind direction is on the right-hand side of the chart and the three other parameters use the scale on the left side of the chart. The chart (Figure 13.2) illustrates a summer day with a predominant west-northwesterly wind (270-330°) where ground-level ozone readings reached a high of .037 ppm. This is a typical example of a summer day when these winds prevail. The second chart (Figure 13.3) illustrates a two day period when ozone reached a maximum hourly value of .102 ppm on the first day and .116 ppm the second day. These values are over the Maine health advisory warning level of .081 ppm and are considered to be in the unhealthy category. The wind was predominantly southwest (210-240°) throughout this 2-day period, which is typical for a high ozone day. This chart illustrates just one example of how these parameters are related during a ground-level ozone event. Each event seems to have its own "personality", depending on when, where, how it was formed, and the age of the air parcel. The continuous analysis of all the important photochemical parameters helps us to better understand the formation of ground-level ozone.


TABLE 13 - 1
TARGET VOC OZONE PRECURSORS - HYDROCARBONS


AIRS	COMPOUND AIRS		COMPOUND		
CODE	NAME	CODE	NAME		
43206	ACETYLENE	43203	ETHYLENE		
43202:	ETHANE	43205	PROPYLENE		
43204	PROPANE	43280	1-BUTENE		
43214	ISOBUTANE	43216	trans-2-BUTENE		
43212	n-BUTANE	43217	cis-2-BUTENE		
43224	1-PENTENE	43221	ISOPENTANE		
43220	n-PENTANE	43243	ISOPRENE		
43226	trans-2-PENTENE	43227	cis-2-PENTENE		
43244	2,2-DIMETHYLBUTANE	43242	CYCLOPENTANE		
43284	2,3-DIMETHYLBUTANE	43285	2-METHYLPENTANE		
43230	3-METHYLPENTANE	43246	2-METHYL-1-PENTENE		
43231	n-HEXANE	43262	METHYLCYCLOPENTANE		
43247	2,4-DIMETHYLPENTANE	45201	BENZENE		
43248	CYCLOHEXANE	43263	2-METHYLHEXANE		
43291	2,3-DIMETHYLPENTANE	43249	3-METHYLHEXANE		
43250	2,2,4-TRIMETHYLPENTANE	43232	n-HEPTANE		
43261	METHYLCYCLOHEXANE	43252	2,3,4-TRIMETHYLPENTANE		
45202	TOLUENE	43960	2-METHYLHEPTANE		
43253	3-METHYLHEPTANE	43233	n-OCTANE		
45203	ETHYLBENZENE	45109	meta/para-XYLENE		
45220	STYRENE	45204	ortho-XYLENE		
43235	n-NONANE	45210	ISOPROPYLBENZENE		
45211	ortho-ETHYLTOLUENE	45212	meta-ETHYLTOLUENE		
45213	para-ETHYLTOLUENE	45218	meta-DIETHYLBENZENE		
45219	p-DIETHYLBENZENE	45225	1,2,3-TRIMETHYLBENZENE		
45209	n-PROPYLBENZENE	45207	1,3,5-TRIMETHYLBENZENE		
45208	1,2,4-TRIMETHYLBENZENE	43238	n-DECANE		
43954	n-UNDECANE				
43102	TOTAL NON-METHANE ORGANIC				
	COMPOUNDS (TNMOC)				

.

- 78 -

14. ULTRAVIOLET-B (UV-b)

14.1 Description and Sources

Ultraviolet-b is part of the radiation reaching the earth's surface from the sun. Solar UV radiation is divided into three regions; UV-a(400-315 nanometers(nm)), UV-b(315-280nm) and UV-c(280nm to x-ray region). Because of the absorption by the upper atmosphere no light with a wavelength shorter than 280nm reaches the earth's surface. The majority of the UV-b is also absorbed by the ozone layer and the atmosphere. The amount of UV-b that actually reaches the earth's surface is further affected by ground level ozone, particulates and other pollutants, clouds and the elevation of the surface. In addition, the effects of the UV-b reaching the earth's surface are magnified by a reflective ground cover such as snow or water.

14.2 Health and Welfare Effects

Light in the UV-b wavelength region has been shown to be responsible for many biologically harmful effects in both plants and animals. In plants overexposure to UV-b is known to cause DNA damage and decreased agriculture yields. In animals overexposure to UV-b is known to cause skin cancer, eye damage, suppression of the immune response system, sunburns and premature wrinkling of the skin.

14.3 Standards

There are currently no standards for UV-b. Data from UV-b monitoring is reported as MED(Minimum Erythemal Dose) units. MED is a measurement based on the dose of effective radiation received and its ability to cause damage, such as sunburn, to the human skin. MED units are based on the time it took to cause erythemia(reddening) of the skin of the average caucasian using differing wavelengths of UV-b. Data is reported as the number of MED's received that hour. For example, if for a particular hour 4 MED's were reported then that means a person would have received four times the amount of sunlight it takes to cause sunburn in the average caucasian. Various agencies around the world have developed indices for rating the amount of exposure to UV-b that individuals receive. For example less than 2 MED's/hour might be considered low whereas 6 or more MED's/hour might be considered very high exposure.

14.4 Monitoring

During 1993 a monitoring site in Howland was equipped with a UV-b monitor and a total solar monitor. This site was chosen because of its rural location, stable land use, freedom from obstructions and the availability of other data from instruments already installed at the site. Some problems were experienced during this first year of operation, most notably frost forming on the dome of the total solar monitor. The lack of a Quality Assurance plan has also caused minor problems. Quality assurance checks currently performed are based on our present knowledge of this methodology. On June 1, 1995 the monitoring equipment was removed from Howland and set up the next day at a site in Cape Elizabeth. The Howland site was difficult to maintain due to

telecommunications problems and winter access to the site. The Cape Elizabeth site is located in the major population center of the State and the issuance of public advisories during high UV episodes will be more accurate for the majority of the people in the State. Table 13-1 is a summary of the top twenty hourly values collected during 1995 for each of the parameters indicated including the data from both sites. A more detailed description of the 1995 UV-b monitoring program is available from the Bureau of Air Quality.

TABLE 14 - 1

1995 MAXIMUM HOURLY VALUES FOR TOTAL

SOLAR, UV-B AND MED UNITS

TOTAL SOLAR		ULTRAVIOLET-B			MED UNITS			
DATE	TIME	Total Solar w/m2	DATE	TIME	AVG UV- B 280- 315nm	DATE	TIME	MED UNITS
05/28/95	12:00	970.5586	06/10/95	13:00	1.81	06/10/95	12:00	4.39
06/09/95	11:00	958.3594	07/24/95	12:00	1.81	07/16/95	12:00	4.38
05/25/95	12:00	950.8271	06/10/95	12:00	1.81	06/10/95	13:00	4.31
07/16/95	12:00	944.9487	07/16/95	12:00	1.80	07/24/95	12:00	4.29
07/16/95	13:00	943.2231	07/16/95	13:00	1.78	07/15/95	12:00	4.26
05/25/95	11:00	940.6436	07/15/95	12:00	1.75	07/16/95	13:00	4,23
06/10/95	12:00	939.4512	07/30/95	12:00	1.75	07/80/95	12:00	4.16
06/10/95	13:00	938.0024	07/30/95	13:00	1.75	06/09/95	11:00	4.16
05/09/95	12:00	933.8086	08/13/95	12:00	1.74	06/10/95	11:00	4.11
07/04/95	12:00	931.9717	06/09/95	11:00	1.71	07/31/95	12:00	4.05
07/04/95	13:00	927.0542	07/31/95	12:00	1.71	08/01/95	12:00	4.05
05/28/95	11:00	921.9302	08/01/95	12:00	1.70	07/30/95	13:00	4.04
07/22/95	12:00	918,186	08/13/95	13:00	1,70	07/14/95	13:00	4.04
06/10/95	11:00	918.022	07/14/95	13:00	1.70	07/22/95	12:00	4.03
05/10/95	13:00	917.1284	07/22/95	12:00	1.70	08/13/95	12:00	4.02
05/02/95	12:00	915.3047	07/31/95	13:00	1.69	05/25/95	12:00	4.01
08/07/95	12:00	915,1333	07/24/95	13:00	1.69	07/14/95	12:00	4.00
05/25/95	13:00	913.7402	05/25/95	12:00	1.69	07/24/95	11:00	4.00
05/03/95	12:00	912.646	06/10/95	11:00	1.69	07/04/95	12:00	3.99
06/06/95	12:00	912.5771	07/24/95	11:00	1.68	06/09/95	12:00	3.97

SHADED BOXES INDICATES TWO LIGHTS STATE PARK DATA

CLEAR BOXES INDICATES HOWLAND DATA

15. ERRATA SHEETS

During reviews of previous Annual Reports on Air Quality, a number of errors were discovered As a result some of the statistics reported were incorrect. For the benefit of the reader, all of the known corrections are presented below.

<u>1994 Annual Report on Air Quality</u>

- Page iii Title of Table 1-3 should be "Number of Ambient Air Quality Exceedances by Counties(1994)"
- Page 20 Notes at bottom of Table 1-6 should refer to 1994 not 1993.
- Page 81 Section 13.1 "...was established at Two Lights State Park in Cape Elizabeth in the spring of 1994" should read "...in the spring of 1993."

Section 13.2 The last two sentences should read, "At the Two Lights State Park site, a 40 minute integrated ambient sample was taken and analyzed each hour, 24 hours a day between June first and September thirtieth. Analysis for these compunds did occur during all ground level ozone exceedances throughout the season of 1994." Section 13.3 First sentence should read, "The two chromatograms in Figure 13.1 are the actual 55 calibration compounds which were analyzed for at the Two Lights State Park site in 1994."

Section 13.4 should be replaced with the following:

The two charts which follow show the relationship between four important parameters during an ozone event, ground level ozone(O3), its two precursors: nitrogen oxides (NOx), and total non-methane organic compounds (TNMOC) and wind direction. When looking at these charts, the scale for wind direction is on the right hand side of the chart and the three other parameters use the scale on the left side of the chart. The first chart (Figure 13.2) represents a summer day with easterly, southeasterly winds. Ozone and its precursors are usually low with these winds. The maximum hourly value for ozone was .035ppm. The second chart (Figure 13.3) illustrates a day when the ozone reached an hourly value of .148ppm. This is over the Maine health standard of .081ppm and the Federal standard of .12ppm and is considered to be in the unhealthful catagory. The wind was predominantly southwest throughout the day. This chart illustrates just one example of how these parameters are related during a ground level ozone event. Each event seems to have its own "personality", depending on when, where, and how it was formed. The continuous analysis of the photoreactive volatile organic compounds help us to understand the formation of ground level ozone. VOC's are an integral piece of the ground level ozone puzzle.

<u>1993 Annual Report on Air Quality</u>

- Page 3 Table 1-3. Federal days of ozone violation in Region 110 should be 2 instead of 4. Totals column should be 2 also.
- Page 18 Table 1-6. Madawaska site number should be 23 003 1003.

- Page 19 Table 1-6. TSP sites in Franklin county were all discontinued in 1995.
- Page 30 Table 3-1. Last two columns are Number of Exceedances rather than Violations. Table should indicate 1 federal exceedance at Port Clyde.
- Page 31 Table 3-2. Isle Au Haut site for 1988 should indicate 241 hours of violation. This table was redone in the 1995 Report to indicate number of state exceedances. A complete review of the data was done and other minor discrepancies in the number of hours of exceedance were discovered. Please refer to Table 3-2 in the 1995 Report for the corrected numbers.
- Page 32 Table 3-3. Kennebunkport site 50th percentile for 1983 should be .046 ppm.

1992 Annual Report on Air Quality

- Page 3 Table 1-3. Federal ozone violations for Region 110 should be 3. Totals column should also be 3.
- Page 18 Table 1-6. Madawaska site number should be 23 003 1003.
- Page 30 Table 3-1. Federal ozone violations for the Cape Elizabeth site should be 1.
- Page 31 Table 3-2. Number of violations at the Dedham and Isle Au Haut sites for 1988 were switched. Dedham should be 111 and Isle Au Haut should be 241.
- Page 45 Table 6-3. Number of exceedances at the Burnham site in Jay for 1992 should be 1.

1991 Annual Report on Air Quality

- Page 33 Table 3-2. Number of violations at the Dedham and Isle Au Haut sites for 1988 were switched. Dedham should be 111 and Isle Au Haut should be 241.
- Page 63 Table 9-1. Title should read "1991 Atmospheric Deposition Data Summary."

<u>1990 Annual Report on Air Quality</u>

Page 22 Table 1-4. References to year should all be 1990.

1989 Annual Report on Air Quality

- Page 2 Table 1-1. Hydrocarbons should not be listed on this table.
- Page 49 Table 6-4. Data for Bangor-Kenduskeag Pump Station should read 61, 59, 54, 53, 26.2 and 23.5.
- Page 51 Table 6-5. Annual arithmetic mean for 1989 at the Bangor-Kenduskeag Pump Station site should be 26.2.
- Page 64 Sec. 10.3 Standards "and Federal" should be eliminated.

1988 Annual Report on Air Quality

Page 2 Table 1-1. Hydrocarbon should not be listed on this table.

- Page 10 Figure 1-3. Two sites used the same symbol. The Madawaska site is the higher of the two.
- Page 51 Table 6-5. Gulley Hill Road site: 1988 AAM should be 24.9 and the Northeastland Hotel site 1988 AAM should be 26.4.
- Page 59 TAble 8-2. Madawaska-St. Jarres data should be 57, 9.3, 9.2, 9.0, 4.4.
- Page 63 Sec. 10.3 Standards "and Federal" should be eliminated.

<u>1987 Annual Report on Air Quality</u>

Page 2 Table 1-1. Hydrocarbon should not be listed on this table.

Page 55 Sec. 10.3 Standards "and Federal" should be elimated.

1986 Annual Report on Air Quality

Page 2 Table 1-1. Hydrocarbon should not be listed on this table.

Page 53 Sec. 10.3 Standards "and Federal" should be elimated.

1985 Annual Report on Air Quality

- Page 2 Table 1-1. Hydrocarbon should not be listed on this table.
- Page 53 Sec. 10.3 Standards "and Federal" should be elimated.

1984 Annual Report on Air Quality

- Page 2 Table 1-1. Hydrocarbon should not be listed on this table.
- Page 18 Table 2-1. Concentrations are in mg/m³. Bangor data should read 58, 4.4, 3.2, 1.9, 0.9, 0.6 Portland data should read 5543, 12.2, 11.4, 7.9, 7.9, 3.8
- Page 22 Table 3-2. Cape Elizabeth second high for 1984 should be .146 ppm. Acadia second high for 1984 should be .130 ppm.
- Page 27 Table 5-1. Dexter Avenue-Thomaston number of observations should be 7877. Greenfield Drive-Kittery number of observations should be 5221. Masonic Temple-Kittery number of observations should be 7723.
- Page 33 Table 6-1. Reilly Property-South Paris should read 12, 160, 152, 120, 93.4.

Hinckley-Skowhegan should read 118, 68, 64, 61, 20.8.

- Page 40 Table 7-1. Presque Isle-Northeastland Hotel had 48 observations and Creasey Ridge Road had 41.
- Page 46 Sec. 10.3 Standards "and Federal" should be elimated.

1983 Annual Report on Air Quality

Page 2 Table 1-1. Hydrocarbon should not be listed on this table.

Page 48 Sec. 10.3 Standards "and Federal" should be elimated.

1982 Annual Report on Air Quality

Page 2 Table 1-1. Hydrocarbon should not be listed on this table.

Page 48 Sec. 10.3 Standards "and Federal" should be elimated.

<u>1981 Annual Report on Air Quality</u>

Page 44 Sec. 10.3 Standards "and Federal" should be elimated.

<u>1980 Annual Report on Air Quality</u>

Page 27 Table 5-1. East Millinocket-Katahdin School % Data Recovery should be 96.8%.

Page 29 Table 5-2. Millinocket-York Street maximum 24-hr for 1980 should be .195.

Page 32 Table 6-1. Augusta-Cony High School Annual Geometric Mean should be 62.1.