MAINE STATE LEGISLATURE

The following document is provided by the

LAW AND LEGISLATIVE DIGITAL LIBRARY

at the Maine State Law and Legislative Reference Library

http://legislature.maine.gov/lawlib

Reproduced from scanned originals with text recognition applied (searchable text may contain some errors and/or omissions)

Annual Report on Air Quality 1990

MAINE

STATE LAM LEROUSY ALGUSTA, MARKET

Department of Environmental Protection

1990 ANNUAL REPORT ON AIR QUALITY IN THE STATE OF MAINE

Prepared by
Jeffrey C. Emery
Environmental Specialist

Maine Department of Environmental Protection Bureau of Air Quality Control Division of Field Services

> Leighton E. Carver, Division Director Dennis L. Keschl, Bureau Director Dean C. Marriott, Commissioner

TABLE OF CONTENTS

			PAGE
	TABLE (OF CONTENTS	i
	LIST O	F TABLES	iii
	LIST O	F FIGURES	. V
1.			1
	1.1	Purpose and Overview	1
	1.2	Monitoring Sites	14
	1.3	Document Organization Explanation of Data Summary Tables	14
	1.3.1	Explanation of Data Summary Tables Explanation of Historical Comparison Tables	14 24
	1.3.3	Explanation of Trends Tables	24
2.	CARBON	MONOXIDE (CO)	25
		Description and Sources	25
	2.2	Health and Welfare Effects	2 5
		Standards	26
	2.4	Monitoring	26
3.			28
		Description and Sources	28
	3.2	Health and Welfare Effects	29
	3.3	Standards Monitoring	29 29
4.	NTTROC	EN DIOXIDE (NO2)	33
•	4.1	Description and Sources	33
		Health and Welfare Effects	33
	4.3	Standards	33
	4.4	Monitoring	33
5.	SULFUR	DIOXIDE (SO2)	35
	5.1	Description and Sources	35
	5.2	Health and Welfare Effects	35
		Standards	35
	5.4	Monitoring	35
6.		ULATES (TSP and PM10)	40
	6.1 6.2	Description and Sources Health and Welfare Effects	40 40
	6.3	Standards	41
	6.4	Monitoring	41
7.	LEAD (Pb)	53
	7.1	Description and Sources	53
	7.2	Health and Welfare Effects	53
	7.3	Standards	53
	7.4	Monitoring	53

TABLE OF CONTENTS (continued)

			PAGE
8.	SULFAT	TES (SO4) AND NITRATES (NO3)	57
•		Description and Sources	5 <i>7</i>
		Health and Welfare Effects	57
		Standards	5 7
		Monitoring	57
9.	ATMOSI	PHERIC DEPOSITION	61
	9.1	Description and Sources	61
	9.2	Health and Welfare Effects	. 61
	9.3	Standards	61
	9.4	Monitoring	61
10.	HYDROC	CARBONS (HC)	63
		Description and Sources	63
		Health and Welfare Effects	63
	10.3	Standards	63
	10.4	Monitoring	63

LIST OF TABLES

TABLE	<u>TITLE</u>	PAGE
1-1	National Ambient Air Quality Standards	2
1-2	State of Maine Ambient Air Quality Standards	3
1-3	Number of Ambient Air Quality Violations by Regions	4
1-4	1990 Ambient Air Quality Monitoring Site Directory	15
2-1	1990 Carbon Monoxide Data Summary	27
3-1	1990 Ozone Data Summary	30
3-2	Ozone Historical Comparisons	31
3-3	Ozone Trends	32
4-1	1990 Nitrogen Dioxide Data Summary	34
5-1	1990 Sulfur Dioxide Data Summary	37
5-2	Sulfur Dioxide Historical Comparisons-Maximum 24-Hour Concentrations of Sulfur Dioxide	38
5 - 3	Sulfur Dioxide Historical Comparisons-Sites with Exceedances of the Standards in the Past Seven Years	39
6-1	1990 Total Suspended Particulates Data Summary	43
6-2	Total Suspended Particulates Historical Comparison-Annual Geometric Means	45
6-3	Total Suspended Particulates Historical Comparisons-Sites With Samples Greater Than 150 ug/m3	47
6-4	1990 Fine Particulate Data Summary	48
6-5	Fine Particulates Historical Comparison-Annual Arithmetic Means	50
6-6	Fine Particulates Historical Comparison-Sites with Sample Greater Than 150 ug/m3	s 52
7-1	1990 Lead Data Summary	54
7-2	1990 Lead Data Summary by Quarters	55
7-3	Lead Historical Comparisons	56

LIST OF TABLES (continued)

TABLE	TITLE	PAGE
8-1	Sulfate Thresholds for Adverse Health Effects	58
8-2	1990 Sulfate Data Summary	59
8-3	1990 Nitrate Data Summary	60
9-1	1990 Atmospheric Deposition Data Summary	62

LIST OF FIGURES

FIGURE	<u>TITLE</u>	<u>PAGE</u>
1-1	TSP Trends	5
1-2A	PM10 Trends - Southern Maine	7
1-2B	PM10 Trends - Northern Maine	8
1-3	Sulfur Dioxide Trends - 24 Hour	9
1-4	Sulfur Dioxide Trends - AAM	10
1-5	Ozone Trends - Hours of State Violations	11
1-6	Lead Trends - Second High 24 Hour	12
1-7	Lead Trends - AAM	13
1-8	State of Maine, Ambient Air Quality Control Regions	23

1. INTRODUCTION

1.1 Purpose and Overview

The purpose of this report is to present the air quality monitoring data generated by and for the Maine Department of Environmental Protection, Bureau of Air Quality Control, and to provide a historical perspective from which the significance of that data interpreted. Air Quality monitoring measures the concentrations of various pollutants in the ambient air. The monitoring is in response to State and Federal requirements to determine whether the air we breathe is attaining and maintaining National and State Ambient Air Quality Standards which are designed to protect the health and welfare Federal Primary Standards are intended to protect of the public. public health. Federal Secondary Standards are intended to protect public welfare. The State Standards are at least as strict as Federal Standards and in some cases are more strict. The reasoning behind establishing more stringent standards is that generally air quality in Maine is significantly cleaner than in other areas and should remain cleaner. The current Federal and State Standards are presented in Tables 1-1 and 1-2. Table 1-3 is a summary indicating all the violations of ambient air quality standards in the State by regions. Later on in this report those violations will be listed by the sites at which they occurred.

A significant portion of the data collected in the State is collected by industry. The Department has required industry to establish monitoring programs primarily when there are air quality problems associated with the industry, or when an industry is planning to build or expand causing a potential increase in air emissions. The State is still collecting monitoring data for long term trends, special studies and for compliance determinations. Ambient air monitoring by both industry and the State will continue in various regions where necessary until such time as standards are being met and background information has been collected.

Included in this section are some figures which depict some of the results of air quality monitoring and control in the State. Figures 1-1 through 1-7 display trends or the lack of a trend which have been occurring at several long term key sites around the State.

Figure 1-1 depicts the annual geometric means for total suspended particulates at several long term sites. The two highest sites, the Research Building site in Westbrook and the Kenduskeag Pump Station site in Bangor, have shown a significant decrease in their annual concentrations of Total Suspended Particulates. With the exception of the site in Lincoln all of the TSP sites included in the graph appear to be showing definite downward trends. The site in Lincoln appears to have reversed their downward trend of earlier years and for the last three years have been showing a gradual increase in concentrations. With the elimination of the total suspended particulate standard the emphasis will be placed on keeping the fine particulates under control

TABLE 1-1 NATIONAL AMBIENT AIR QUALITY STANDARDS (1990)

Pollutant	Averaging Time	Concentration
Particulates (PM10)	Expected Annual Arithmetic Primary Secondary	Mean: 50 ug/m3 50 ug/m3
	Twenty-Four Hour:*** Primary Secondary	150 ug/m3 150 ug/m3
Lead (Pb)	Calendar Quarter	1.5 ug/m3
Carbon Monoxide (CO)	One Hour**	35 ppm
	Eight Hour**	mqq e
Ozone (O3)	One Hour***	0.12 ppm
Nitrogen Dioxide (NO2)	Annual Arithmetic Mean	0.05 ppm
Sulfur Dioxide (SO2)	Annual Arithmetic Mean	0.03 ppm
	Twenty-Four Hour**	0.14 ppm
	Three-Hour** Secondary	0.50 ppm

^{* =} Federal Guideline Only.

^{** =} Not to be exceeded more than once per year.
*** = Statistically estimated number of days with exceedances is not

to be more than 1 per year.

ppm = Parts of pollutant per million parts of air. ug/m3 = Micrograms of pollutant per cubic meter of air.

TABLE 1-2 STATE OF MAINE AMBIENT AIR QUALITY STANDARDS (1990)

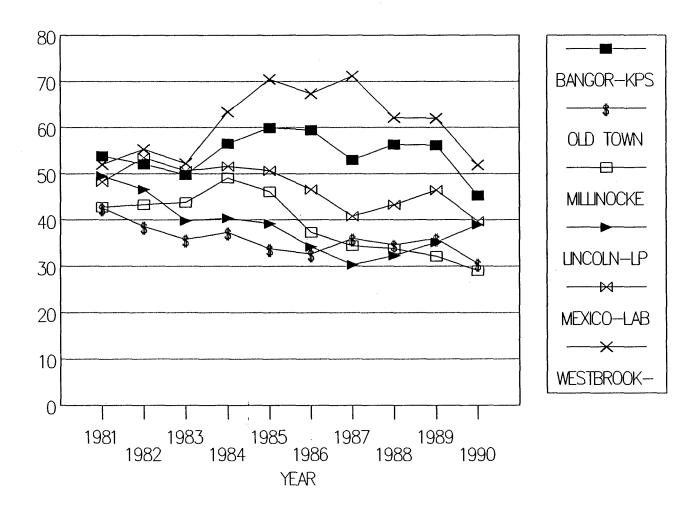
<u>Pollutant</u>	Averaging Time	<u>Concentration</u>
Particulates (PM10)	Annual Arithmetic Mean	40 ug/m3
(Effective 9-30-89)	Twenty-Four Hour**	150 ug/m3
Lead (Pb)	Twenty-Four Hour*	1.5 ug/m3
Carbon Monoxide (CO)	One Hour*	35 ppm(40 mg/m3)
	Eight Hour*	9 ppm(10 mg/m3)
Ozone (O3)	One Hour*	.081 ppm(160 ug/m3)
Nitrogen Dioxide (NO2)	Annual Arithmetic Mean	.053 ppm(100 ug/m3)
Sulfur Dioxide (SO2)	Annual Arithmetic Mean	.022 ppm(57 ug/m3)
	Twenty-Four Hour*	.088 ppm(230 ug/m3)
	Three Hour*	.439 ppm(1150 ug/m3)
Hydrocarbon	Three Hour*	160 ug/m3
Particulates (TSP) ***	Twenty-Four Hour	150 ug/m3

Not to be exceeded more than once per year.
 Statistically estimated number of days with exceedances is not to be more than 1 per year.

Indication of a nuisance condition only. *** =

PPM = Parts of pollutant per million parts of air. ug/m3 = Micrograms of pollutant per cubic meter of air. mg/m3 = Milligrams of pollutant per cubic meter of air.

TABLE 1-3 NUMBER OF AMBIENT AIR QUALITY VIOLATIONS BY REGIONS (1990)

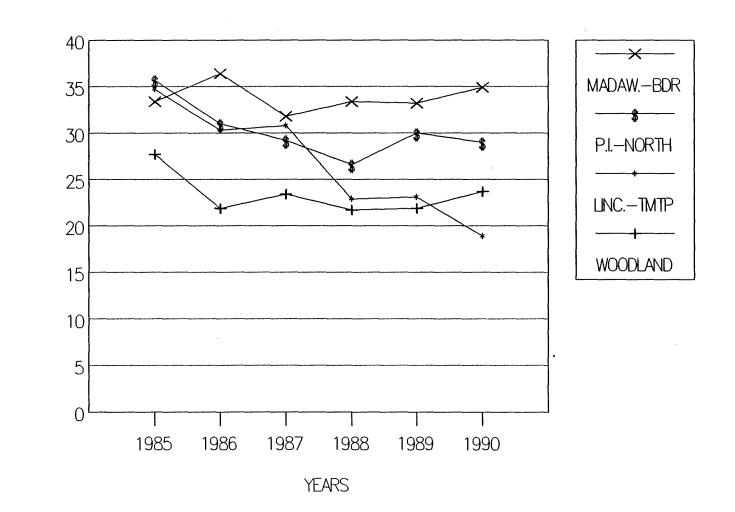

		I	REGIONS	3		
POLLUTANT	<u> 107</u>	<u> 108</u>	<u> 109</u>	<u>110</u>	<u>111</u>	TOTALS
Time Developed (DM10)						
Fine Particulate(PM10) Annual Arithmetic Mean						
State	0	0	0	0	?	0
Federal	0	0	0	0	3	0
Twenty-four Hour	· ·	Ū	Ū	Ū	•	Ŭ
State	0	0	0	0	?	0
Federal	Ō	Ō	Ō	Ō	?	0
Lead						
Twenty-four Hour						
State	0	?	0	0	?	0
Federal	0	?	0	0	3	0
Carbon Monoxide						
One Hour	? ?	? ?	3	0	?	0
Eight Hour	3	?	?	0	3	0
Ozone						
One Hour						
State	182	?	132	198	?	512
Days						
Federal	0	3	0	5	?	5
Nitrogen Dioxide						
Annual Arithmetic Mean	?	3	?	0	?	0
Sulfur Dioxide						
Annual Arithmetic Mean						
State	0	0	0	0	?	0
Federal	0	0	0	0	?	0
Twenty-four Hour					_	
State	0	0	1	0	?	1
Federal	0	0	0	0	?	0
Three Hour State	0	0	0	0	2	^
Federal	0	0 0	0 0	0 0	?	0
renerar	J	U	U	U	•	U

^{*} Annual Means generated by only a few samples are not included in this summary.

[?] No monitoring done for this pollutant within this region during 1990.

-5-

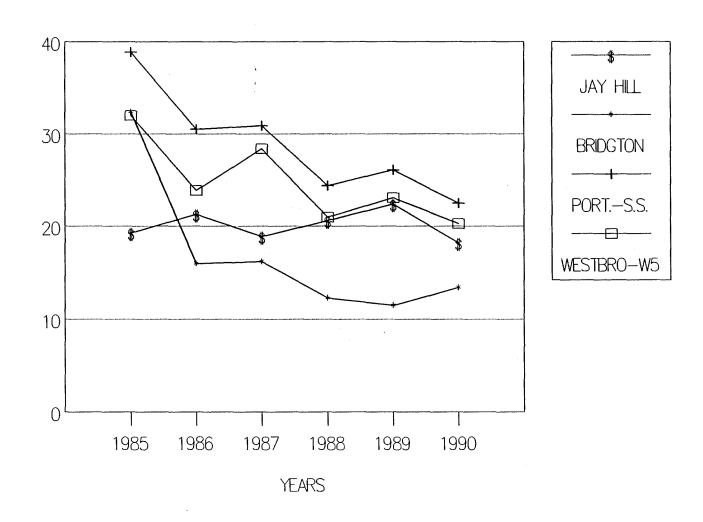
but the TSP will be tracked to ensure that any source emissions are properly controlled.

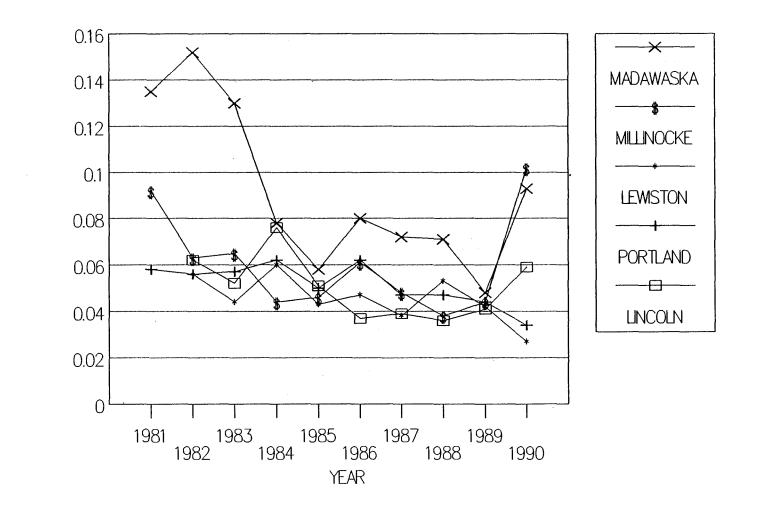

Figures 1-2A and 1-2B indicate trends over the last five years in the annual arithmetic mean for fine particulate. The majority of the sites collecting PM10 data over the last five years are showing either a downward trend or are low enough that they are probably recording regional background concentrations and are not indicating a significant trend in either direction. One exception appears to be the site in Madawaska which is recording concentrations in the 30-40 microgram range and is remaining relatively constant. These levels are probably due to a regional background level plus a relatively constant contribution from the winter sanding of the streets in Madawaska.

Figures 1-3 and 1-4 indicate the sulfur dioxide trends at five sites with a long term history. Four of the five sites appear to indicate relatively stable long term sulfur dioxide levels since 1984 with no significant trend in either direction. The exception is Madawaska which does appear to have a fairly significant downward trend over the last ten years. This is most likely due to the reduction in oil usage at the Fraser Paper facility in Madawaska and Edmonston, New Brunswick. In Figure 1-3 there are three sites that show a significant increase over previous years. All three of these sites are in towns with large industrial sources and probably indicate brief periods of upset conditions or unusual meteorological conditions which resulted in those high concentrations. The second high 24-hour concentrations in Madawaska and Lincoln were much closer to the previous years highs. Millinocket the second high also exceeded the state standard of .088 ppm.

Figure 1-5 depicts the number of hourly violations of the State ozone standard. As can be seen from the graphs, the violations vary greatly from year to year and while showing a very significant increase in the number of violations during 1988 there was a significant decrease during 1989 which carried over to 1990 at most of the sites. Weather conditions are responsible for a lot of the variability from year to year and the conditions during 1988 were very conducive to the formation of ozone while those of 1989 and 1990 were not. Because of the significant effect weather has on the formation of ozone, Maine, as well as the rest of the northeast, will need to control emissions to such a level that even under ideal weather conditions ozone levels can be kept below the standards.

Figures 1-6 and 1-7 indicate the very significant reduction that has occurred in lead levels throughout the state in both short term concentrations and in the annual arithmetic means. These significant downward trends are primarily due to the decreased use of lead in gasoline. Current lead levels are less than 20% of the state standard and even less of the federal standard and are expected to remain at those levels with only minor fluctuations expected in either direction.


Data summarized in this report is available for review in the Department headquarters in Augusta and copies can be obtained from that office for a nominal fee.



ANNUAL ARITHMETIC MEANS (UG/M3)

ANNUAL ARTHMETIC MEANS (UG/M3)

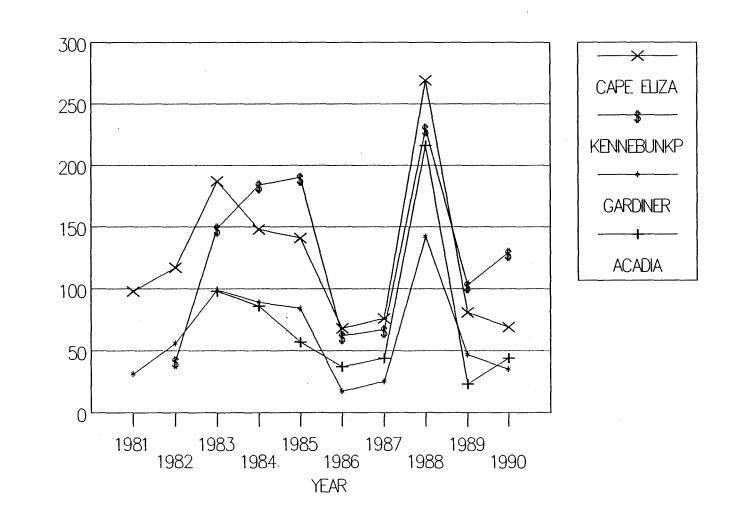
FIGURE 1-2A PM10 TRENDS - SOUTHERN MAINE

Maximum 24—Hr. Conc. (PPM)

Annual Arithmetic Mean (PPM)

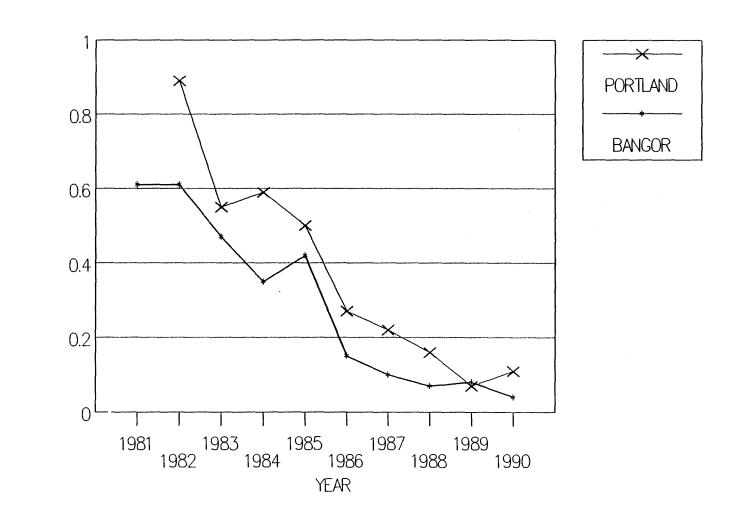
0.02 MADAWASKA 0.015 MILLINOCKE **LEWISTON** 0.01 **PORTLAND** 0.005 LINCOLN-TM 1981 1983 1985 1987 1982 1984 1986 1988 1988 1990

YEAR


FIGURE 1-4

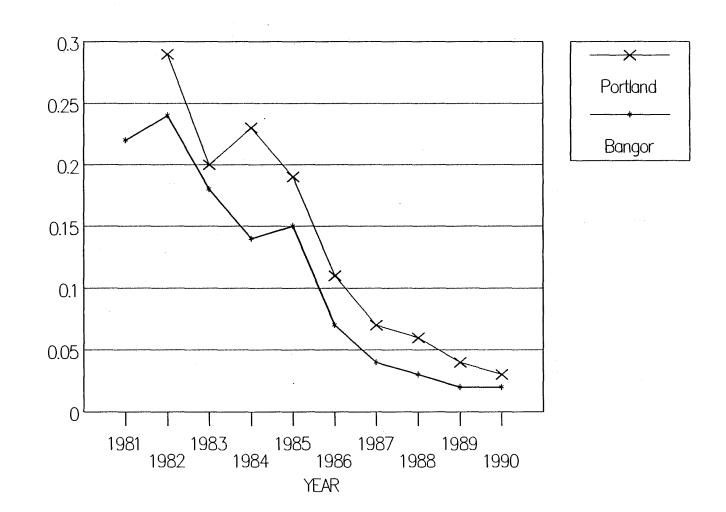
SULFUR DİOXIDE TRENDS – AAM

Number of Hours


FIGURE 1-5

OZONE TRENDS - HOURS OF STATE VIOLATION

CONCENTRATION (UG/M3)


FIGURE 1-6 LEAD TRENDS - SECOND HIGH 24 HOUR

ANNUAL ARITHMETIC MEAN (UG/M3)

FIGURE 1-7

LEAD HISTORICAL TRENDS - AAM

1.2 Monitoring Sites

Air quality data are developed using two basic methods; 1) the continuous monitoring of gaseous pollutants and; 2) the periodic sampling of particulate and gaseous pollutants. In addition to pollutant monitoring there is also the continuous monitoring of meteorological parameters.

Continuous gaseous monitoring was done at twenty-five sites in Maine during 1990. Carbon Monoxide was monitored at one of these stations, ozone at nine, nitrogen dioxide at two and sulfur dioxide at eighteen.

Particulate sampling was done at fifty-three sites in Maine during 1990. Thirty-five of these stations monitored total suspended particulates. Thirty-seven of these sites also collected fine particulate fractions. Also, lead monitoring was done at eight stations. Five sites were analyzed for sulfates and nitrates. There were also two sites collecting acid rain data as part of the state monitoring network.

In addition to pollutant monitoring, wind speed and direction was recorded at twenty-four sites around the State during 1990. Some of these sites also recorded other meteorological parameters such as sigma (stability) and temperature, precipitation and solar radiation.

Table 1-4 presents all the monitoring sites in Maine that operated during 1990 and indicates which parameters were monitored at each site. The map in Figure 1-8 shows the Air Quality Control Regions within the State.

1.3 Document Organization

This document is divided by pollutant into chapters. Each chapter contains: 1) a description of the nature and sources of that pollutant, 2) its health and welfare effects, 3) a discussion on the standards (current and proposed) for that pollutant, 4) a discussion of the monitoring methods for that pollutant, 5) a table presenting the 1990 monitored data, 6) in the case of some pollutants, historical tables presenting 1990 data along with data for previous years to show trends, effects of control strategy, or change in emission sources.

1.3.1 Explanation of Data Summary Tables

The Data Summary Tables were designed to facilitate comparing 1990 air quality monitoring data with the standards for each pollutant. Therefore, the data are presented for each averaging time for which standards exist for a pollutant.

An annual average concentration is presented for each pollutant that has a long-term, annual standard (NO2, SO2, PM10).

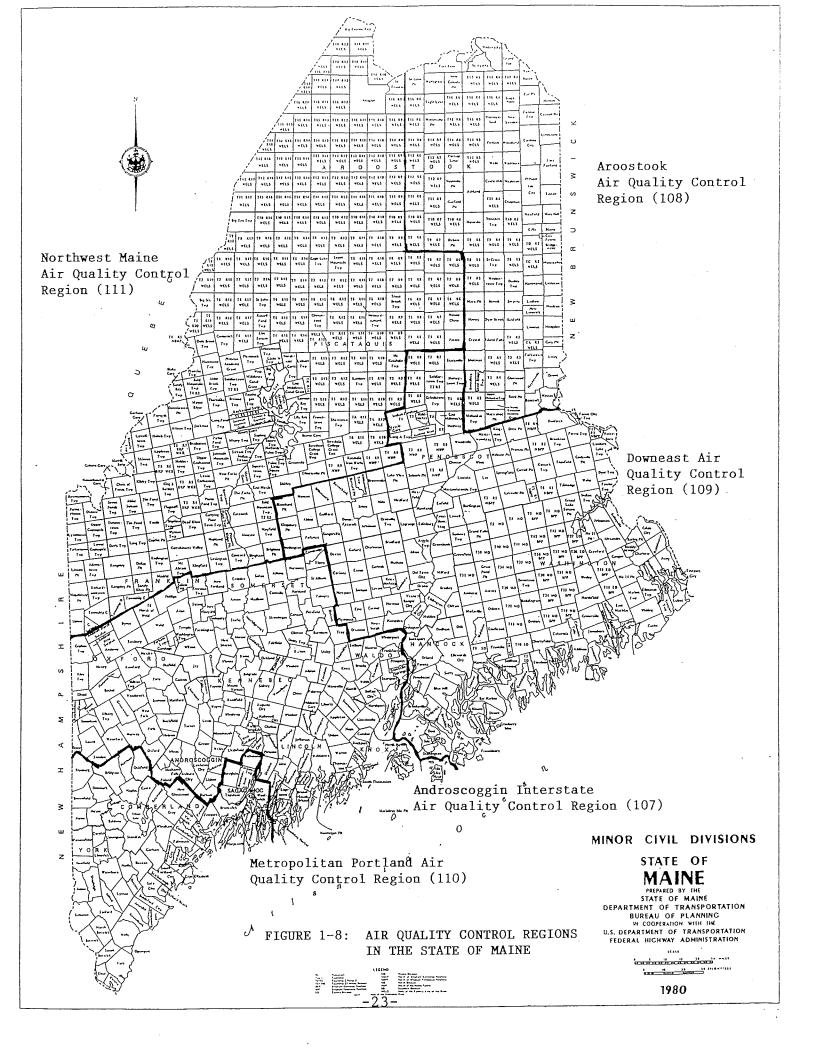
For pollutants that have short-term standards, the highest short-term values are presented. Some pollutants are allowed to exceed the

SITE	ADDRESS	<u>OPERATOR</u>	PARAMETERS MEASURED			
ANDROSCOGGIN INTERSTATE AIR QUALITY CONTROL REGION (107)						
Auburn (0060 005/001 0005)	Lewiston-Auburn Airport Lewiston Junction Road	DEP	WS/WD			
Augusta (0080 008/011 0008)	Governor's Hangar State Airport	DEP	WS/WD			
Gardiner (0460 001/011 2001)	Gardiner High School West Hill Road	DEP	Ozone(s)			
Jay (0530 001/007 2001)	Weather Level I Lagoon Hill	International Paper	WS/WD,Temperature,Solar Radiation, Precipitation,TSP,FP			
Jay (0530 003/007 0003)	Crash Road Gilbert Jewell Property	International Paper	TSP			
Jay (0530 004/007 0004)	Jay Hill	International Paper	TSP, FP			
Jay (0530 008/007 0008)	Burnham Site	International Paper	TSP			
Port Clyde (0595 004/013 0004)	Port Clyde Ozone St. George	DEP	Ozone(s)			
Isle Au Haut (0595 003/013 0003)	Isle Au Haut Fire Station	UM/DEP ;	Ozone(s)			
Lewiston (0620 011/001 0011)	Country Kitchen Parking Lot Canal Street	DEP	SO2,TSP,Pb,FP(n)			
Livermore Falls(NEW) (/001 0013)	James River/Otis Mill	James River Corporation	WS/WD,Temperature			
Madison(NEW) (/025 1004)	The Ballfield Main Street	Madison Paper Industries	ws/WD			

SITE	ADDRESS	<u>OPERATOR</u>	PARAMETERS MEASURED
Mexico (0760 008/017 0008)	Labonville's Route #2	Boise Cascade	TSP, FP
Mexico (0760 011/017 0011)	Hunt's Property Route #2	Boise Cascade	so2
Rumford (1020 002/017 2002)	Boise Cascade Weather II Swift River Pump House	Boise Cascade	WS/WD,Temperature
Rumford (1020 005/017 2005)	Taylor Mountain I	Boise Cascade	TSP,SO2,Sulfate,Nitrate,WS/WD(d)
Rumford (1020 006/017 2006)	Taylor Mountain II	Boise Cascade	TSP(d),S02
Rumford (1020 007/017 2007)	Village Green Site Route #108	Boise Cascade	TSP,S02,FP
Rumford(DISC) (1020 008/017 2008)	Taylor Hill 3	Boise Cascade	TSP
Rumford(DISC) (1020 009/017 2009)	Taylor Hill 4	Boise Cascade	TSP
Skowhegan (1100 001/025 2001)	Hinckley Hinckley Farm School	S. D. Warren	TSP,FP
Skowhegan (1100 002/025 2002)	Eaton Ridge	S. D. Warren	TSP,FP
Thomaston (1150 001/013 2001)	Mitchell Property 2 Dexter Avenue	Dragon Products	TSP,FP
Thomaston (1150 005/013 1005)	Dragon Cement Weather Route #1	Dragon Products	ws/wD
Thomaston (1150 007/013 1007)	Marsh Road	Dragon Products	TSP, FP

SITE	ADDRESS	<u>OPERATOR</u>	PARAMETERS MEASURED
Waterville(DISC) (1220 003/011 1003)	Stern's Department Store Main Street	DEP	TSP
Waterville(NEW) (/011 1004)	Front Street Municipal Park	DEP	TSP,FP,S02
Winslow (1280 003/011 2003)	Gulley Hill Road	Scott Paper Company	TSP,FP(d)
Winslow(NEW) (/011 2004)	Boston Avenue	Scott Paper Company	TSP,FP
AROOSTOOK AIR QUALITY	CONTROL REGION (108)		
Madawaska (0720 003/003 1003)	Madawaska High School 7th Avenue	Fraser Paper	so2
Madawaska (0720 006/003 0006)	Fraser Paper Company Bridge Street	Fraser Paper	WS/WD,Temperature
Madawaska (0720 009/003 0009)	Albert Street	Fraser Paper	SO2,Precipitation
Madawaska (0720 012/003 0012)	U. S. Post Office 430 E. Main Street	Fraser Paper	SO2,WS/WD
Madawaska (0720 013/003 0013)	Big Daddy's Restaurant 395 E. Main Street	DEP	FP
Presque Isle (0980 005/003 1005)	Northeastland Hotel 436 Main Street	DEP	FP
Presque Isle (0980 008/003 1008)	Regional Office 528 Central Drive	DEP	WS/WD,FP
T12R8(NEW) (/003 6001)	Bald Mountain Project	Boliden Resources, Inc.	FP,WS/WD

SITE	<u>ADDRESS</u>	<u>OPERATOR</u>	PARAMETERS MEASURED
DOWNEAST AIR QUALITY (CONTROL REGION (109)		
Acadia National Park (0010 003/009 0003)	McFarland Hill Ranger Station Route #233	NPS/DEP	Acid Precipitation,Precipitation
Acadia NP (/009 0101)	Acadia NP Route #233	NPS	Ozone, SO2
Bangor (0100 002/019 0002)	Kenduskeag Pump Station Washington Street	DEP	TSP,Pb,FP
Bangor (0100 010/019 0010)	BIA-Building #489 Air National Guard	DEP	WS/WD
Brewer (0180 002/019 1002)	Brewer Junior High School 5 Somerset Street	DEP	TSP
Bucksport (0205 005/009 1005)	Waste Disposal Site Route #15	Champion International	WS/WD,Temperature,Precipitation
Bucksport(NEW) (/009 1006)	Napa Auto Parts 240 Main Street	Applied Energy Services, Inc.	S02 ·
East Millinocket (0315 003/019 2012)	Mill Entrance Main Street	Great Northern Paper Company	SO2
East Millinocket (0315 004/019 2011)	Library/Municipal Building 53 Main Street	Great Northern Paper Company	FP
Hampden (0485 001/019 8011)	McGraw School	Penobscot Energy Recovery Company	FP
Dedham (0495 003/009 2003)	Bald Mountain	DEP	Ozone(s), WS/WD(s), SO2(d), CO(n)
Jonesport (/029 0019)	Public Landing	DEP	Ozone(s)


SITE	ADDRESS	OPERATOR	PARAMETERS MEASURED
Lincoln(DISC) (0640 002/019 3002)	Vocational Education Building West Broadway	Lincoln Pulp & Paper Company	TSP
Lincoln (0640 003/019 2003)	Lincoln Post Office Building 50 Fleming Street	Lincoln Pulp & Paper Company	TSP,FP(n)
Lincoln (0640 007/019 1007)	Thomas Motel Trailer Park 39 West Broadway	Lincoln Pulp & Paper Company	TSP,SO2,FP
Lincoln (0640 010/019 1010)	Lincoln Airport	Lincoln Pulp & Paper Company	WS/WD
Lincoln(NEW) (/019 1011)	Lincoln Street	Lincoln Pulp & Paper Company	FP
Lincoln(NEW) (/019 1012)	Penobscot River	Lincoln Pulp & Paper Company	FP
Millinocket (0780 007/019 2007)	Katahdin Nursing Home	Great Northern Paper Company	FP(n)
Millinocket (0780 009/019 2009)	York Street	Great Northern Paper Company	TSP,SO2,FP
Millinocket (/019 2013)	Mill Stone Dam	Great Northern Paper Company	WS/WD,Temperature
Old Town (0840 003/019 4003)	Marsh Island Apartments 100 South Main Street	DEP	TSP
Orrington (0845 005/019 8001)	Center Drive School	Penobscot Energy Recovery Company	FP
Newburgh(DISC) (0907 005/019 4005)	Newburgh School Route #9	DEP	TSP
Milford(NEW) (/019 4006)	Costigan French Settlement Road	DEP	Ozone(s)

SITE	ADDRESS	<u>OPERATOR</u>	PARAMETERS MEASURED	
Woodland (1205 007/029 0007)	Secondary Treatment Pipeline	Georgia Pacific Corporation	TSP,FP	
Woodland (1205 008/029 0008)	Woodland High School	Georgia Pacific Corporation	TSP, FP	
Woodland (1205 017/029 0017)	Woodyard Woodland Mill	Georgia Pacific Corporation	ws/wd	
Woodland (1205 018/029 0018)	Background	Georgia Pacific Corporation	TSP, FP	
Woodland (1205 019/029 0020)	100 Meter Tower	Georgia Pacific Corporation	WS/WD,Temperature	
METROPOLITAN PORTLAND AIR QUALITY CONTROL REGION (110)				
Biddeford (0160 002/031 0002)	Biddeford Treatment Plant Water Street	DEP	TSP,Pb(n),S02,FP(n)	
Biddeford(NEW) (/031 0004)	Biddeford Rotary Park	DEP	ws/wd	
Biddeford(NEW) (/031 0005)	Eagles Aerie 57 Birch Street	DEP .	TSP,Pb	
Saco(NEW) (/031 0006)	Saco Island - CMP	DEP	Pb	
Saco(NEW) (/031 0007)	Ames Store Roof Spring Street	DEP	Pb	
Bridgton (0190 002/005 0002)	Upper Ridge Road	DEP	Acid Precipitation, Sulfate, Nitrate, FP, Precipitation	
Cape Elizabeth (0250 003/005 2003)	Shelter Site Two Lights State Park	DEP	Ozone(s),WS/WD(s)	

(0935 001/021 0001) Greenville

SITE	ADDRESS	OPERATOR	PARAMETERS MEASURED
Portland (0960 010/005 0010)	Chevrus High School Ocean Avenue	DEP	WS/WD
Portland (0960 014/005 0014)	Shelter Site (P.E.O.P.L.) Elm Street	DEP	TSP,Pb,SO2,FP,Nitrate,Sulfate,NO2(n),NO(n) NOX(n)
Portland (0960 015/005 0015)	Tukey's Bridge	DEP	Pb
South Portland (1140 002/005 6002)	SMVTI Vocational Drive	DEP	TSP,Sulfate,Nitrate
South Portland(DISC) (/005 0021)	Jordan Marsh Auto Center 100 Maine Mall Road	DEP	TSP,FP,Nitrate,Sulfate
Westbrook (1260 002/005 7002)	N. E. T.& T. Company Ash Street	S. D. Warren	TSP(d),FP
Westbrook (1260 008/005 1008)	Research Building S. D. Warren	S. D. Warren	TSP,FP
Westbrook (1260 009/005 1009)	S. D. Warren Company Wind S. D. Warren Property	S. D. Warren	WS/WD,Temperature
Westbrook(DISC) (1260 012/005 1012)	S. D. Warren Warehouse #5 Main Street	S. D. Warren	TSP,FP
Bath(NEW) (/023 0002)	Coal Pocket Site	Bath Iron Works	SO2,FP,WS/WD
Kennebunkport (1325 002/031 2002)	Parson's Way	DEP	Ozone(s),NO2(s),NO(s),NOX(s)
NORTHWEST MAINE AIR QUALITY CONTROL REGION (111)			
Greenville	Squaw Brook	DEP	Acid Precipitation, Precipitation

SITE	ADDRESS	<u>OPERATOR</u>	PARAMETERS MEASURED
(SAROAD #/AIRS #)	NEW - Site established in 1989 DISC - Site discontinued in 1989 TSP - Total Suspended Particulates SO2 - Sulfur Dioxide NO - Nitric Oxide NOX - Oxides of Nitrogen	d - Instrument s - Instrument	installed during 1989 removed during 1989 operated seasonally during 1989 operated intermittently during 1989
	CO - Carbon Monoxide Pb - Lead WS/WD - Wind Speed and Direction FP - Fine Particulate NMHC - Nonmethane Hydrocarbons		

standard once during the year so the second highest value would be used to determine whether there was a violation or not.

All of the data collected during 1990 has been presented in the Data Summary Tables. However, in making comparisons of the data, one should be aware that a site with only a few samples will not be a valid indicator of pollutant concentrations in the area.

1.3.2 Explanation of Historical Comparison Tables

The Historical Comparison Tables present air quality data for 1990 and those years prior to 1990 when the same pollutant was monitored at the same site. The purpose of the Tables are to indicate the variations in air quality from year to year. The Tables in some cases represent maximum concentrations for specific time periods and in others the number of days in each year that the standards were violated.

1.3.3 Explanation of Trends Tables

The highest hourly concentration in a year is not the best indicator of long-term air quality trends because it is an erratic value. Therefore, special trend tables are presented for carbon monoxide and ozone. The trend tables present the 10th, 50th, and 90th percentile values to represent the bulk of the air quality data for each year. Percentiles indicate the fraction, or percent, of the value that are below a particular level. For example, if the 90th percentile value for some set of CO observations is 5.0 ppm, it means that 90% of the time the concentrations of CO are less than 5.0 ppm. Conversely, it also means that 10% of the time the concentrations are above 5.0 ppm. Thus the existence or lack of long-term trends in overall air quality for CO and O3 can be more reliably determined using the Trends Tables, than by looking at just the Historical Comparison Tables.

2. CARBON MONOXIDE (CO)

2.1 <u>Description and Sources</u>

Carbon monoxide is colorless, odorless and tasteless gas. Therefore you do not even know you are breathing it until you feel its detrimental effects. It constitutes the largest single fraction of the pollutants found in urban atmospheres. It is produced primarily by the incomplete combustion of organic materials used as transportation and in the heating of buildings; it also results from industrial processes, refuse burning, and agricultural Several natural sources of CO of both biological and non-biological origin have also been identified, but their contributions to urban atmospheric concentrations are thought to be small. Background levels of CO (resulting from natural and technological sources) found in relatively nonpolluted air range from 0.025 to 1.0 ppm. Urban carbon monoxide is produced primarily by motor vehicles.

Because motor vehicle traffic is the major source of CO, daily concentration peaks coincide with morning and evening rush hours. The worst carbon monoxide problems are found where large numbers of slow moving cars congregate. These problems are further aggravated when they occur in a "street canyon" situation. When there are large amounts of slow moving traffic in a street canyon situation, with the wind blowing perpendicular to the street, carbon monoxide can be trapped in the canyon and build up to unhealthful levels.

CO problems are usually worse in winter because: 1) cold weather makes motor vehicles run dirtier and requires more combustion for space heating; and 2) on winter nights a strong inversion layer develops in the atmosphere, that traps pollution near the ground, preventing it from mixing with cleaner air above.

2.2 Health and Welfare Effects

Carbon monoxide affects the central nervous system by depriving the body of the oxygen it needs. Tests of automobile drivers show exposure to carbon monoxide can impair driver's judgement and ability to respond rapidly in traffic. It can also impair vision and produce headaches.

Carbon monoxide enters the bloodstream by combining hemoglobin, the substance that carries oxygen to the cells. Hemoglobin that is bound up with CO is called carboxyhemoglobin. This combination occurs 200 times more readily with CO than with oxygen, so the amount of oxygen being distributed throughout the body by the bloodstream is Blood laden with CO can weaken heart reduced in CO's presence. contractions, lowering the volume of blood distributed to various parts of the body. It can also significantly reduce a healthy person's ability to perform manual tasks, such as working, jogging and walking. A life-threatening situation exists in patients with heart disease, who can't compensate for the oxygen loss. The 4.2 million people in the U.S. suffering from angina pectoris (a heart disease characterized by

brief spasmodic attacks of chest pain due to insufficient oxygen levels in the heart muscles) are especially susceptible. Carbon monoxide is also harmful to persons who have lung disease, anemia or cerebral-vascular disease. Others sensitive to carbon monoxide include the human fetus, and people exposed to long-term concentrations, such as traffic officers.

People who sit in idling cars over sustained periods risk harmful CO exposure, as do cigarette smokers. Since about two percent of cigarette smoke is carbon monoxide, if you or someone else smokes while driving in heavy traffic, you may both experience the harmful effects of CO from the cigarette smoke and the engine exhaust accumulated in streets. Even three or four hours after you're exposed, half the excess CO still remains in your bloodstream. Because it takes time for CO to build up in the bloodstream, the severity of health effects depends both on the concentration being breathed and the length of time the person is exposed.

2.3 Standards

The existing standards for carbon monoxide are currently set at 9 parts CO per million parts air (ppm), averaged over a period of 8 hours, and 35 ppm averaged over 1 hour, not to be exceeded more than once per year. As a result of a review and revision of the health criteria, EPA had proposed to retain the existing primary 8-hour standard at 9 ppm and to lower the primary 1-hour standard to 25 ppm. However, this change has not occurred and the standards remain the same. The change in the 1-hour standard had been proposed because of the more rapid accumulation of blood carboxyhemoglobin in moderately exercising sensitive persons compared to resting individuals. The impact of exercise, which is greater for short-duration exposures, was not considered in the original standard.

2.4 Monitoring

Carbon monoxide was monitored at one site in Maine during 1990 using continuous monitoring equipment utilizing the non-dispersive infrared technique. Table 2-1 is the 1990 Data Summary for CO.

TABLE 2 - 1
1990 CARBON MONOXIDE DATA SUMMARY
(Parts Per Million)

		NUMBER OF	1-HOUR	CONCENTRATIONS	8-HOUR	CONCENTRATIONS	ANNUAL
SITE	<u>ADDRESS</u>	<u>OBSERVATIONS</u>	HIGHEST	SECOND HIGHEST	<u>HIGHEST</u>	SECOND HIGHEST	ARITH. MEAN
METROPOLITAN PORT	LAND AIR QUALITY CONTROL REGI	ON (110)					
Dedham	Bald Mountain	7807	9.0	4.0	2.0	1.5	0.35

3. **OZONE (O3)**

3.1 Description and Sources

Ozone is a highly reactive form of oxygen which, at very high concentrations, is a blue unstable gas that has a characteristic pungent odor most commonly identified around an arcing electric motor, lightning storms, or other electrical discharges. However, at normal ambient concentrations, ozone is colorless and odorless. Ozone is the major component of photochemical "smog", but the haziness and odors of smog are primarily caused by other components.

Natural ground level ozone occurs in low concentrations (less than .05 ppm) due to natural physical and chemical phenomena. Occasionally, unique meteorological conditions can result in natural levels between .05 and .10 ppm.

Ozone is not emitted directly from a source as are other pollutants. It forms as secondary pollutant. Its precursors are hydrocarbons and nitrogen oxides, which chemically react in sunlight to form ozone. The hydrocarbons are emitted in automobile exhaust, from gasoline and oil storage and transfer, and from industrial use of paint solvents, degreasing agents, cleaning fluids, ink solvents, incompletely burned coal or wood and many other sources. Plants also give off hydrocarbons such as terpenes from pine trees. Nitrogen oxides are emitted by all combustion sources.

The highest ozone levels generally occur during summer afternoons when the high temperatures and strong sunlight promote photochemical reactions. Stagnant weather may cause smog to remain in an area for several days. The winds may also transport ozone many miles outside of the urban environment. For example, it is estimated that the majority of the ozone in the State of Maine is transported into the State from sources located outside the State. In addition a much smaller amount of the ozone is naturally occurring background concentrations, part of which is also transported into the State. The remaining ozone is assumed to be due to local sources within the State. Because of long-range transport, local control of emissions by itself may not solve the ozone problem. An effective national program may be necessary to achieve national compliance.

Ground-level ozone, discussed above, should not be confused with the stratospheric ozone layer, located about seven miles high in the atmosphere, which shields the earth from cancer-causing ultraviolet rays. Concentrations of ozone in this layer may reach as high as 10 ppm. Concern over potential reduction of the necessary levels of ozone in the stratosphere by reactions with fluorocarbons from aerosol cans has resulted in the removal of most of these propellants from the market. However, ozone at ground level, where it is breathed, is a pollutant.

3.2 Health and Welfare Effects

Ozone at low concentrations causes eye irritations and at higher concentrations difficulty in breathing for people with respiratory problems, the elderly, and children. Many plants, such as white pine, soybeans and alfalfa, are extremely sensitive to ozone, and ozone is known to weaken materials such as rubber and fabrics.

3.3 Standards

The existing National Ambient Air Quality Standard (NAAQS) ozone is 0.12 ppm and will be attained when "the expected number of days per calendar year with maximum hourly average concentrations above 0.12 ppm is equal to or less than one". This standard was effective February 8, 1979 and replaced a more restrictive 0.08 ppm standard that was established April 10, 1971. The change was the result of a required assessment of existing NAAQS to include a review of new health effects data that have become available since 1970. As a result of this review and national public comments, the standard was changed to a level that is considered to be sufficient to protect the public health and welfare. Since then additional research has concluded that there is in fact damage being caused by ozone levels less than the existing Federal standard. Based on recent studies there appears to be significant vegetation damage at levels considerably below the Federal standard and some "adverse" health effects at the current Federal standard. As of the date this report was compiled no proposals have been made for changing the Federal standard. The current State Standard is .081 ppm. It was established at the same time the original Federal Standard was established and has not been changed. In the past the state standard was interpreted to be .080 ppm but a conversion of the actual 160 ug/m3 standard to ppm yields .081. Therefore, only hourly averages in excess of .081 ppm are considered exceedances of the state standard.

3.4 Monitoring

Ozone was monitored at nine sites in Maine during 1990 using continuous monitoring equipment of two kinds, either chemiluminescence or ultra-violet absorption analyzers. Maine's ozone monitoring season is limited to April through October due to the weather conditions which are not conducive to ozone formation at other times of the year.

Table 3-1 is the 1990 Data Summary for Ozone. Table 3-2 presents the Ozone Historical Comparisons and Table 3-3 presents the Ozone Trends.

TABLE 3 - 1
1990 OZONE DATA SUMMARY
(Parts Per Million)

SITE	ADDRESS	NUMBER OF OBSERVATIONS	HIGHEST CONCENTRATION	SECOND HIGHEST CONCENTRATION	NUMBER OF	VIOLATIONS FEDERAL**			
ANDROSCOGGIN INTERSTATE AIR QUALITY CONTROL REGION (107)									
Gardiner	Gardiner High School	4216	.108	.107	35	0			
Port Clyde	Port Clyde Ozone	3825	.153	.149	92	0			
Isle Au Haut	Isle Au Haut Fire Station	3672	.132	.131	55	0			
DOWNEAST AIR QUALITY C	ONTROL REGION (109)								
Acadia National Park	McFarland Hill Ranger Station	7043	.123	.118	44	0			
Dedham	Bald Mountain	4984	.122	.119	68	0			
Jonesport	Public Landing	3460	.106	.106	17	0			
Milford	French Settlement Road	3901	.097	.091	3	0			
METROPOLITAN PORTLAND AIR QUALITY CONTROL REGION (110)									
Cape Elizabeth	Shelter Site	4645	.148	-144	69	1			
Kennebunkport	Parson's Way	4067	.162	.162	129	4			

^{*} Total number of hours minus one greater than .081 ppm.

^{**} Number of days in violation. Not a statistical estimate.

TABLE 3 - 2 OZONE HISTORICAL COMPARISONS (1-Hour Concentrations)

CAPE ELIZABETH Shelter Site

KENNEBUNKPORT Parson's Way

YEAR	SECOND HIGH	# OF STATE VIOLATIONS	<u>YEAR</u>	SECOND HIGH	# OF STATE
1978	.160 PPM	202	1982	.120 PPM	42
1979	.155 PPM	116	1983	.148 PPM	149
1980	.178 PPM	141	1984	.147 PPM	184
1981	.122 PPM	98	1985	.168 PPM	190
1982	.140 PPM	117	1986	.138 PPM	62
1983	.163 PPM	187	1987	.145 PPM	67
1984	.146 PPM	148	1988	.168 PPM	230
1985	.165 PPM	141	1989	.147 PPM	103
1986	.128 PPM	68	1990	.162 PPM	129
1987	.152 PPM	76			
1988	.168 PPM	269			
1989	.136 PPM	81			
1990	.144 PPM	69			•

GARDINER Gardiner High School

ACADIA McFarland Hill Ranger Station

	STATE
	TIONS
1980 .117 PPM 54 1982* .055 PPM	
	0
1981 .122 PPM 31 1983 .135 PPM 9	8
1982 .120 PPM 56 1984 .130 PPM 8	6
1983 .140 PPM 99 1985 .117 PPM 5	7
1984 .112 PPM 89 1986 .108 PPM 3	57
1985 .133 PPM 84 1987 .126 PPM 4	.4
1986 .110 PPM 17 1988 .153 PPM 21	6
1987 .112 PPM 25 1989 .113 PPM 2	23
1988 .145 PPM 142 1990 .118 PPM 4	.4
1989 .118 PPM 47	
1990 .107 PPM 35 * Not a complete year.	

TABLE 3 - 3
OZONE TRENDS
(1-Hour Concentrations)

CAPE	EL	ΙZ	AΒ	ΕT	H
Shel	te	r :	Si	te	•

	PE	RCENTILES	i
<u>Year</u>	<u>10%</u>	<u>50%</u>	<u>90%</u>
1978	.015	.035	.065
1979	.018	.036	.070
1980	.019	.035	.065
1981	.015	.032	.056
1982	.018	.036	.058
1983	.018	.034	.061
1984	.019	.040	.064
1985	.022	.038	.062
1986	.016	.033	.055
1987	.018	.035	.055
1988	.033	.050	.106
1989	.034	.048	.070
1990	.031	.046	.077

KENNEBUNKPORT Parson's Way

	PE	RCENTILES	;
<u>Year</u>	<u>10%</u>	<u>50%</u>	90%
1983	.008	.027	.058
1984	.012	.032	.064
1985*	.015	.037	.072
1986	.013	.033	.053
1987	.013	.032	.054
1988	.035	.052	.119
1989	.036	.052	.085
1990	.035	.050	.089

^{*} Percentiles calculated using 70% of the data.

GARDINER Gardiner High School

	PERCENTILES						
<u>YEAR</u>	<u>10%</u>	<u>50%</u>	90%				
1980	.008	.031	.056				
1981	.009	.029	.050				
1982	.009	.030	.053				
1983	.009	.031	.056				
1984	.007	.031	.055				
1985	.012	.034	.057				
1986	.009	.029	.047				
1987	.008	.028	.048				
1988	.027	-049	.087				
1989	.034	.047	.073				
1990	.034	.048	.075				

ACADIA
McFarland Hill Ranger Station

		PERCENTIL	ES
YEAR	<u>10%</u>	<u>50%</u>	90%
1982*	.005	.020	.030
1983	.019	.032	.053
1984	.020	.032	.050
1985	.022	.032	.048
1986	.019	.032	.047
1987	.021	.033	.049
1988	.032	.051	.102
1989	.033	.046	.069
1990	.030	.044	.070

^{*} Not a complete year.

4. NITROGEN DIOXIDE (NO2)

4.1 Description and Sources

In its pure state, nitrogen dioxide is a reddish-orange-brown gas with a characteristic pungent odor. It is corrosive and a strong oxidizing agent. Nitrogen dioxide comprises about 10% of the oxides of nitrogen (NOX) that are formed when nitrogen in the air combines with oxygen during high temperature combustion. Most of the rest of the NOX emitted by combustion sources is nitric oxide (NO). However, during the day most of the NO is photochemically transformed into NO2. Thus, essentially all the NOX emitted can be assumed to eventually become NO2.

4.2 Health and Welfare Effects

Exposure to NO2 affects the delicate structure of lung tissue. High levels cause lung irritation and potential lung damage. Lower levels have been associated with increased respiratory disease. Oxides of nitrogen can cause serious injury to vegetation, including bleaching or death of plant tissue, loss of leaves, and reduced growth rate. NOX also deteriorates fabrics and fades fabric dyes. Nitrate salts formed from nitrogen oxides have been associated with the corrosion of metals. Nitrogen oxides can also reduce visibility.

4.3 Standards

The current standard for NO2 is an annual arithmetic mean (average) value not to exceed .05 ppm. NO2 is the only gaseous pollutant for which only a long-term (annual average) standard has been established.

4.4 Monitoring

Nitrogen Dioxide was monitored at two sites in Maine during 1990 using continuous monitoring equipment. Table 4-1 presents the data collected during 1990.

-34-

TABLE 4 - 1 1990 NITROGEN DIOXIDE DATA SUMMARY (Parts Per Million)

SITE	ADDRESS	NUMBER OF OBSERVATIONS	ANNUAL <u>ARITHMETIC MEAN</u>
METROPOLITAN PORTLAND	AIR QUALITY CONTROL REGION (110)		
Portland	Shelter Site	7202	.017
Kennebunkport	Parson's Way	1281	.005*

^{*} Insufficient data collected for valid annual arithmetic mean.

5. SULFUR DIOXIDE (SO2)

5.1 Description and Sources

Sulfur dioxide is a colorless irritating gas having the same pungent odor as a struck match. Most people can detect its taste at a level of about 0.3 to 1 part per million. SO2 is highly soluble in water, forming sulfurous acid. On a worldwide basis, SO2 is considered to be one of the major pollution problems. It is emitted mainly from stationary sources that utilize fossil fuels (coal, oil) such as power plants, ore smelters, and refineries.

5.2 Health and Welfare Effects

The health effects of sulfur dioxide appear to be always associated with high levels of particulates or other pollutants. The world's major recorded air pollution disasters have been associated with high levels of sulfur dioxide and particulates. The excess deaths attributed to these pollutants were due to respiratory failures and occurred predominantly, but not exclusively, in the elderly and infirm. Atmospheres containing high levels of sulfur dioxide are associated with elevated concentrations of other sulfur compounds such as sulfates and sulfuric acid mists, which are corrosive and potentially carcinogenic.

The corrosiveness of SO2 and its derivatives also causes crop and material damage. Its transport and transformation into sulfurous and sulfuric acids contribute to acid precipitation, causing soils and lakes to become seriously acidified.

5.3 Standards

There are two existing Primary National Ambient Air Quality Standards for sulfur dioxide. The first is a long-term one year arithmetic average of 0.03 parts per million (ppm). The second is a short-term 24-hour average standard where concentrations are not to exceed 0.14 ppm more than once per year. The current Secondary NAAQS for SO2 is a 3-hour average concentration of 0.5 ppm not to be exceeded more than once per year.

In addition there are three state standards for sulfur dioxide. The first is a long-term one-year arithmetic average of .022 parts per million. The second was a short-term 24-hour average standard of .088 ppm not to be exceeded. The third was a short-term 3-hour average concentration of .439 ppm not to be exceeded. During 1987 both of the short-term standards were amended to allow for one exceedance per year.

5.4 Monitoring

Sulfur dioxide was monitored at eighteen sites in Maine during 1990 using continuous monitoring equipment utilizing either the pulsed fluorescent or coulometric methods.

Table 5-1 is the 1990 Data Summary for SO2. Tables 5-2 and 5-3 present the SO2 Historical Comparison Data. Table 5-3 in past years had indicated violations but because one exceedance was allowed per year beginning in 1987 this table now indicates exceedances of the standards rather than violations to maintain continuity for comparisons.

TABLE 5 - 1
1990 SULFUR DIOXIDE DATA SUMMARY
(Parts Per Million)

SITE	ADDRESS	NUMBER OF OBSERVATIONS	HIGHEST 3-HOUR AVERAGE	SECOND HIGHEST 3-HOUR AVERAGE	HIGHEST 24-HOUR AVERAGE	SECOND HIGHEST 24-HOUR AVERAGE	ANNUAL ARITH. MEAN
ANDROSCOGGIN INTERSTAT	TE AIR QUALITY CONTROL REGION (10	07)					
Lewiston	Country Kitchen Parking Lot	8298	.072	.068	.027	.027	.007
Mexico	Hunt's Property	8163	.192	.127	.054	.046	.009
Rumford	Taylor Mountain I	8214	.198	.188	.066	.053	.009
Rumford	Taylor Mountain II	8273	.184	.153	.063	.057	.008
Rumford	Village Green Site	8212	.134	.114	.046	.036	.006
Waterville	Front Street	7514	.061	.059	.029	.025	.007
AROOSTOOK AIR QUALITY	CONTROL REGION (108)						
Madawaska	Madawaska High School	8277	.078	.075	.027	.020	.003
Madawaska	Albert Street	8277	.182	.135	.093	.055	.007
Madawaska	U. S. Post Office	8282	.091	.090	.042	.040	.007
DOWNEAST AIR QUALITY (CONTROL REGION (109)						
Acadia National Park	McFarland Hill Ranger Station	7901	- 016	.014	.007	.006	.001
Bucksport	240 Main Street	5159	.048	.041	.030	.025	.005*
East Millinocket	Main Street	8695	.022	.020	.009	.008	.002
Dedham	Bald Mountain	7018	.054	.024	.011	.011	.002
Lincoln	Thomas Motel Trailer Park	7712	.140	.092	.059	.051	.005
Millinocket	York Street	8471	.322	.242	.102	.093	.006
METROPOLITAN PORTLAND	AIR QUALITY CONTROL REGION (110)					
Biddeford	Biddeford Treatment Plant	6214	.048	.042	.024	.023	.006*
Portla nd	Shelter Site	8306	.061	.059	.034	.034	.009
Bath	Coal Pocket Site	2535	.064	.046	.031	.023	.007*

^{*} Insufficient data collected for valid annual arithmetic mean.

TABLE 5 - 2
SULFUR DIOXIDE HISTORICAL COMPARISONS
(Maximum 24-Hour Concentrations of Sulfur Dioxide)

				MAXIMUM 24-HOUR	CONCENT	RATION (PPM)		
SITE	ADDRESS	<u>1984</u>	<u>1985</u>	<u>1986</u>	<u>1987</u>	<u>1988</u>	<u>1989</u>	<u>1990</u>
	- 110 0011 177 0007001 050101 (407)							
ANDROSCOGGIN INTERSTATI	E AIR QUALITY CONTROL REGION (107)							
Lewiston	Country Kitchen Parking Lot	.060	.043	.047	.038	.053	.042	.027
Mexico	Hunt's Property	.071	.070	.068	.043	.067	.064	.054
Rumford	Taylor Mountain I	.096	.066	.086	.098	.125	.044	.066
Rumford	Taylor Mountaîn II	.071	.050	.067	.065	.074	.053	.063
Rumford	Village Green Site	.049	.031	.059	.042	.061	.049	.046
AROOSTOOK AIR QUALITY	CONTROL REGION (108)							
Madawaska	Madawaska High School	.066	.037	.046	.076	.057	.032	.027
Madawaska	Albert Street	.078	.058	.080	.072	.071	.048	.093
Madawaska	U. S. Post Office		.061	.068	.084	.073	.069	.042
DOWNEAST AIR QUALITY CO	ONTROL REGION (109)							
Acadia National Park	McFarland Hill Ranger Station			* •			.011	.007
East Millinocket	Main Street					.031	.011	.009
Dedham	Bald Mountain						.022	.011
Lincoln	Thomas Motel Trailer Park	.076	.051	.037	.039	.036	.041	.059
Millinocket	York Street	.044	.046	.061	.048	.038	.044	.102
METROPOLITAN PORTLAND	AIR QUALITY CONTROL REGION (110)							
Biddeford	Biddeford Treatment Plant					.044	.032	.024
Portland	Shelter Site	.062	.050	.062	.047	.047	.044	.034

^{*} Not a complete year.

TABLE 5 - 3 ${\small \hbox{SULFUR DIOXIDE HISTORICAL COMPARISONS}}$ (Sites with exceedances of the standards in the past seven years)

		TOTAL NUMBER OF EXCEEDANCES*						
SITES	<u>ADDRESS</u>	<u>1984</u>	<u>1985</u>	<u>1986</u>	<u>1987</u>	<u>1988</u>	<u>1989</u>	<u>1990</u>
ANDROSCOGGIN INTERSTAT	E AIR QUALITY CONTROL REGION (107)							
Rumford	Taylor Mountain I	1	. 0	0	1	1	0	0
DOWNEAST AIR QUALITY C	ONTROL REGION (109)							
Millinocket	York street	0	0	0	0	0	0	1

^{*} Includes 3-Hour and 24-Hour Exceedances.

6. PARTICULATES (TSP and PM10)

6.1 Description and Sources

Particulates is the term given to the tiny particles of solid or semi-solid material found in the atmosphere. It is this "dirt" in the air that is visible as a "Brown Cloud", haze or smog. The sources of particulates are many: wind-blown dust and sand from roadways, fields, and construction; coal dust, fly ash, and carbon black from various combustion sources; and automobile exhaust, to name a few. Particulates that range in size from less than 0.1 micrometer up to approximately 45 micrometers are called "total suspended particulates". Particles larger than that range tend to settle out of the air and not remain suspended, except in high winds.

6.2 Health and Welfare Effects

The human nose filters out 99 percent of the large and medium-sized particles. The rest enter the windpipe and lungs, where some, known as inhalable particulates, cling to protective mucous and are removed. Some of the smallest, called respirable particulates, are deposited in the lungs' tiny air sacs (alveoli).

In the lungs particulates slow down the exchange of oxygen with carbon dioxide in the blood, causing shortness of breath. The heart may be strained because it must work harder to compensate for oxygen loss. Usually the people most sensitive to these conditions have respiratory diseases like emphysema, bronchitis, asthma, or heart problems. The elderly and children are also sensitive.

Particles themselves may be poisonous if inhaled or absorbed, damaging remote organs like the kidneys or liver. Swallowed mucous that is laden with poisonous particulate matter may damage the stomach.

In addition, particulates may be carriers of poisonous liquid or gaseous substances. Sulfur dioxide, a major air pollutant in its own right, is frequently absorbed by particulates and can react with them to form sulfates. Sulfates react with moisture in the air or in the respiratory tract to form a corrosive liquid (sulfuric acid) that irritates delicate membranes and slows down the cleansing action of mucous. This effect can reduce the body's ability to remove harmful bacteria, increasing the possibility of infection.

Adverse health effects from particulate matter aren't always seen immediately. Particulates can accumulate in the lungs after repeated, long-term exposure, causing respiratory distress and other health problems that may be manifested later.

Particles in the air block out and scatter sunlight, reducing visibility. Particulates soil and corrode metals, masonry, and textiles. Irritating odors are often associated with particulates, also.

6.3 Standards

Primary:

At the beginning of 1987 the primary particulate standards were for total suspended particulates (TSP), independent of particle size or chemical composition. The long-term standard was an annual geometric mean not to exceed 75 micrograms of particulates per cubic meter of air (ug/m3). The short-term standard was a 24-hour average of 260 ug/m3 not to be exceeded more than once per year.

In July of 1987 EPA published revised particulate standards to account for the deeper inhalability of small particles and eliminated the total suspended particulate standards. The new standards, rather than applying to TSP, apply to inhalable or fine particulates. A particle size of 10 micrometers was selected as the upper size limit with a 24-hour concentration of 150 ug/m3 and an annual standard of 50 ug/m3 expressed as an expected annual arithmetic mean(AAM). The short term standard is attained when the expected number of exceedances is no more than one per year. The expected AAM is determined by averaging the annual arithmetic averages from three successive years of data.

Secondary:

The secondary TSP standard was a 24-hour average of 150 ug/m3 not to be exceeded more than once per year, designed to protect from soiling, corrosion, etc.

When EPA adopted the fine particulate standards they eliminated the secondary TSP standards and made the secondary fine particulate standards equal to the primary fine particulate standards.

State Standards:

As of the end of 1988 the State Standards for total suspended particulates still included an annual geometric mean of 60 micrograms per cubic meter and a 24-hour standard of 150 micrograms per cubic meter not to be exceeded. In addition, the Board of Environmental Protection adopted the federal fine particulate standards for both the short term twenty-four hour and the annual arithmetic mean.

In 1989 the State Legislature passed a more restrictive annual standard for fine particulates of 40~ug/m3. In addition, the TSP annual state standard was eliminated and the 24 hour standard was changed to be an indicator of a nuisance condition.

6.4 Monitoring

Total Suspended Particulates were monitored at 35 sites in Maine during 1990 using High-Volume Particulate Air Samplers (Hi-Vols).

Hi-Vols operate on the same principle as a vacuum cleaner in that the air is drawn through a filter to "catch the dust". The difference is that a Hi-Vol draws a calibrated volume of air through a pre-weighed filter pad (rather than a bag) for a twenty-four hour period. The change in weight of the filter pad is recorded as total suspended particulate or TSP in micrograms of particulates per cubic meter of air.

Table 6-1 is a summary of the TSP data collected in Maine during 1990. Table 6-2 is a historical comparison of the TSP Annual Geometric Means at sites which have been in existence over the last two years. Table 6-3 summarizes the number of exceedances of the TSP nuisance standard which have occurred over the last six years and the sites at which they occurred.

Fine particulate sampling increased again during 1990. During 1990 thirty-seven sites were operating with PM10 samplers. The increased sampling is being conducted to obtain data to evaluate the federal and state fine particulate standards, to document compliance with those standards and to obtain background data for new and previously licensed sources. The sampling was conducted with size-selective hi-vols.

The data collected and the sites which were in operation during 1990 have been summarized in Table 6-4. Tables 6-5 and 6-6 provide some historical comparison data over the last few years these monitors have been in operation.

TABLE 6 - 1
1990 TOTAL SUSPENDED PARTICULATES DATA SUMMARY
(Micrograms Per Cubic Meter)

		NUMBER OF	HIGHEST	SECOND	THIRD	ANNUAL
SITE	ADDRESS	OBSERVATIONS	24-HOUR	HIGHEST	HIGHEST	GEOMETRIC MEAN
ANDROSCOGGIN INTERSTA	TE AIR QUALITY CONTROL REGION (10	(70				
Jay	Weather Level I	180	103	92	81	27.5
Jay	Crash Road	178	91	64	_. 51	16.0
Jay	Jay Hill	181	108	98	64	20.9
Jay	Burnham	181	103	93	85	28.1
Lewiston	Country Kitchen Parking Lot	59	144	143	124	47.1
Mexico	Labonville's	99	108	105	102	39.7
Rumford	Taylor Mountain I	167	86	75	73	26.5
Rumford	Taylor Mountain II	73	66	56	53	20.5
Rumford	Village Green Site	107	96	90	80	28.8
Rumford	Taylor Mountain III	73	68	54	51	20.9
Rumford	Taylor Mountain IV	73	95	76	68	25.4
Skowhegan	Hinckley	61	42	41	39	14.1
Skowhegan	Eaton Ridge	61	46	43	39	14.0
Thomaston	Mitchell Property	115	99	88	78	21.3
Thomaston	Marsh Road	119	7 5	65	64	20.5
Waterville	Stern's Department Store	14	117	115	113	52.8*
Waterville	Front Street	53	167	162	151	39.9
Winslow	Gulley Hill Road	90	172	167	104	41.1
Winslow	Boston Avenue	119	129	106	106	33.3
DOWNEAST AIR QUALITY	CONTROL REGION (109)					
Bangor	Kenduskeag Pump Station	59	144	137	109	45.3
Brewer	Brewer Junior High School	54	105	96	78	31.8
Lincoln	Vocational Education Building	57	101	81	80	28.4
Lincoln	Lincoln Post Office Building	121	258	196	153	39.0
Lincoln	Thomas Motel Trailer Park	194	135	134	125	32.8
Millinocket	York Street	117	119	100	92	29.0
Old Town	Marsh Island Apartments	48	100	92	88	30.5
Newburgh	Newburgh School	18	40	29	26	20.4*
Woodland	Woodland High School	30	182	166	147	34.2*

TABLE 6 - 1 (continued)

1990 TOTAL SUSPENDED PARTICULATES DATA SUMMARY

(Micrograms Per Cubic Meter)

SITE	ADDRESS	NUMBER OF OBSERVATIONS	HIGHEST 24-Hour	SECOND <u>HIGHEST</u>	THIRD <u>Highest</u>	ANNUAL GEOMETRIC MEAN
METROPOLITAN PORTLAND	AIR QUALITY CONTROL REGION (110)	1				
		*				
Biddeford	Biddeford Treatment Plant	52	57	57	48	27.5
Biddeford	57 Birch Street	102	81	78	74	34.2
South Portland	SMVTI	20	53	38	35	26.0*
South Portland	Jordan Marsh Auto Center	24	115	109	93	52.5*
Westbrook	N. E. T. & T. Company	47	97	79	73	37.0
Westbrook	Research Building	114	172	123	120	51.9
Westbrook	Warehouse #5	47	95	91	83	46.3

^{*} Insufficient data collected for valid annual geometric mean.

TABLE 6 - 2

TOTAL SUSPENDED PARTICULATES HISTORICAL COMPARISON
ANNUAL GEOMETRIC MEANS (UG/M3)

			ANNL	AL GEOMETRIC	MEANS (ug/m	3)	
SITE	ADDRESS	<u>1985</u>	<u>1986</u>	<u>1987</u>	<u>1988</u>	<u>1989</u>	<u>1990</u>
ANDROSCOGGIN INTE	RSTATE AIR QUALITY CONTROL REGION (107)	•					
Jay	Weather Level I	36.6	33.5	34.1	38.3	35.0	27.5
Jay	Crash Road	18.7	18.9	19.4	20.7	19.6	16.0
Jay	Jay Hill	24.5	24.6	25.1	26.0	25.2	20.9
Jay	Burnham			444 444	36.0	32.9	28.1
Lewiston	Country Kitchen Parking Lot					50.5	47.1
Mexico	Labonville's	50.7	46.6	40.8	43.3	46.5	39.7
Rumford	Taylor Mountain I	35.8	33.0	30.0	30.7	33.8	26.5
Rumford	Taylor Mountain II	26.7	24.3	22.9	23.8	24.3	20.5
Rumford	Village Green Site	31.2	29.7	27.2	27.7	29.7	28.8
Rumford	Taylor Mountain III				23.0	25.1	20.9
Rumford	Taylor Mountain IV				27.3	30.4	25.4
Skowhegan	Hinckley	18.5	16.6	18.0	14.9	16.8	14.1
Skowhegan	Eaton Ridge	18.4	17.1	15.5	14.0	18.2	14.0
Thomaston	Mitchell Property	22.9	22.0	21.9	24.5	25.1	21.3
Thomaston	Marsh Road	24.0	23.5	23.4	23.9	23.4	20.5
Waterville	Sterns Department Store	40.8	42.1	55.1	46.5	41.4*	52.8*
Winslow	Gulley Hill Road .			43.6	44.1	51.9*	41.1
DOWNEAST AIR QUAL	ITY CONTROL REGION (109)						
Bangor	Kenduskeag Pump Station	59.9	59.4	53.0	56.3	56.2	45.3
Brewer	Brewer Junior High School	38.1	36.5	37.0	37.4	36.8	31.8
Lincoln	Vocational Education Building	37.1	30.3	28.8	29.7	34.0	28.4
Lincoln	Lincoln Post Office Building	39.2	34.2	30.3	32.3	35.2	39.0
Lincoln	Thomas Motel Trailer Park	41.4	34.9	33.9	34.1	33.9	32.8
Millinocket	York Street	46.1	37.3	34.4	33.8	32.1	29.0
Old Town	Marsh Island Apartments	33.8	32.6	36.0	34.6	36.0	30.5
Newburgh	Newburgh School	15.1	16.9	15.1	17.0	19.4	20.4*
Woodland	Woodland High School		33.2	29.0	26.5	26.4	34.2*

TABLE 6 - 2 (continued)
TOTAL SUSPENDED PARTICULATES HISTORICAL COMPARISON
ANNUAL GEOMETRIC MEANS (UG/M3)

		ANNUAL GEOMETRIC MEANS (ug/m3)					
SITE	ADDRESS	<u>1985</u>	<u>1986</u>	<u>1987</u>	<u>1988</u>	<u>1989</u>	<u>1990</u>
METROPOLITAN PORTLAND	AIR QUALITY CONTROL REGION (110)						
Biddeford	Biddeford Treatment Plant	35.8	38.8	36.0	40.8	32.1	27.5
South Portland	SMVTI	30.7	29.8	28.7	28.8	27.3	26.0*
South Portland	Jordan Marsh Auto Center					43.9	52.5*
Westbrook	N. E. T. & T. Company	44.7	39.2	38.2	44.8	46.3	37.0
Westbrook	Research Building	70.5	67.4	71.2	62.1*	62.0	51.9
Westbrook	Warehouse #5	62.5	57.4	60.1	61.6	59.0	46.3

^{*} Insufficient data collected for valid annual geometric mean.

TABLE 6 - 3
TOTAL SUSPENDED PARTICULATES HISTORICAL COMPARISON
(Sites with samples greater than 150 ug/m3)

			TOTAL NU	JMBER OF SHO	RT TERM EXCE	EDANCES	
SITE	ADDRESS	<u>1985</u>	<u>1986</u>	<u>1987</u>	<u>1988</u>	<u>1989</u>	<u>1990</u>
ANDROSCOGGIN INTERST	ATE AIR QUALITY CONTROL REGION (107)						
Jay	Weather Level I	0	0	1	0	0	0
Jay	Burnham	-	0	1.	1	0	0
Mexico	Labonville's	1	0	0	0	2	0
Rumford	Village Green	0	0	0	0	0	0
Thomaston	Mitchell Property	0	0	2	3	0	0
Waterville	Sterns Department Store	-	-	1	0	1	0
Winslow	Gulley Hill Road	-	-	2	1	6	2
DOWNEAST AIR QUALITY	CONTROL REGION (109)						
Bangor	Kenduskeag Pump Station	5	6	2	1	2	0
Lincoln	Vocational Education Building	0	0	0 ,	0	1	0
Lincoln	Lincoln Post Office Building	1	1	2	0	2	3
Lincoln	Thomas Motel Trailer Park	3	0	0	2	4	0
Millinocket	York Street	1	1	4	0	0	0
Old Town	Marsh Island Apartments	1	0	1	1	2	0
Woodland	Woodland High School	0	8	5	0	0	2
METROPOLITAN PORTLAN	D AIR QUALITY CONTROL REGION (110)						
Westbrook	N. E. T. & T. Company	0	0	0	0	0	0
Westbrook	Research Building	8	15	11	0	4	1
Westbrook	Warehouse #5	0	2	4	3	1	0

TABLE 6 - 4
1990 FINE PARTICULATE DATA SUMMARY
(Micrograms Per Cubic Meter)

SITE	ADDRESS	NUMBER OF OBSERVATIONS	HIGHEST 24-Hour	SECOND HIGHEST	THIRD <u>Highest</u>	ANNUAL <u>ARITH. MEAN</u>	ANNUAL GEOM. MEAN
ANDROSCOGGIN INTERST	FATE AIR QUALITY CONTROL REGION (1	107)					
Jay	Weather Level I	175	40	38	37	15.6	14.0
Jay	Jay Hill	178	50	48	48	18.2	15.6
Lewiston	Country Kitchen Parking Lot	61	59	55	53	24.7	23.1
Mexico	Labonville's	158	98	71	63	24.1	20.7
Rumford	Village Green	157	78	62	59	19.3	16.0
Skowhegan	Hinckley	60	41	29	25	13.8	12.1
Skowhegan	Eaton Ridge	60	37	31	28	13.6	11.7
Thomaston	Mitchell Property	109	71	39	39	15.3	13.2
Thomaston	Marsh Road	109	60	45	45	16.3	14.1
Waterville	Front Street	57	59	58	54	25.8	23.4
Winslow	Gulley Hill Road	8	29	24	24	22.4	22.1*
Winslow	Boston Avenue	121	74	65	65	27.8	21.3
AROOSTOOK AIR QUALIT Madawaska Presque Isle Presque Isle T12R8	TY CONTROL REGION (108) Big Daddy's Restaurant Northeastland Hotel Regional Office Bald Mountain Project	158 201 128 27	122 168 43 17	119 136 42 15	96 123 42 13	34.9 29.0 14.1 6.0	30.6 27.2 12.5 4.8*
DOWNEAST AIR QUALITY	CONTROL REGION (109)						
Bangor	Kenduskeag Pump Station	59	38	37	37	20.5	18.7
Hampden	McGraw School	60	32	29	25	12.9	11.2
East Millinocket	Library/Municipal Building	114	62	52	44	16.2	13.6
Lincoln	Lincoln Post Office Building	136	74	63	49	22.5	18.9
Lincoln	Thomas Motel Trailer Park	156	53	49	48	18.9	16.2
Lincoln	Lincoln Street	123	28	28	27	12.7	10.8
Lincoln	Penobscot River	127	36	32	32	11.7	9.3
Millinocket	Katahdin Nursing Home	60	46	42	30	15.3	13.0
Millinocket	York Street	116	45	42	42	16.2	14.4
Orrington	Center Drive School	60	30	27	25	11.5	9.9

TABLE 6 - 4 (continued)
1990 FINE PARTICULATE DATA SUMMARY
(Micrograms Per Cubic Meter)

SITE	ADDRESS	NUMBER OF OBSERVATIONS	HIGHEST 24-HOUR	SECOND <u>Highest</u>	THIRD <u>Highest</u>	ANNUAL <u>ARITH. MEAN</u>	ANNUAL <u>Geom. Mean</u>
Woodland	Secondary Treatment Pipeline	47	59	56	50	18.5	15.5
Woodland	Woodland High School	74	114	90	80	23.7	21.1
Woodland	Background	53	28	23	23	13.2	11.7
Biddeford	AIR QUALITY CONTROL REGION (110) Biddeford Treatment Plant	54	50 29	42 29	34 27	22.0	20.0
Bridgton	Upper Ridge Road	44				13.4	11.3
Portland	Shelter Site	60	49	42	40	22.5	20.8
South Portland	Jordan Marsh Auto Center	23	51	40	35	23.6	22.5*
Westbrook	N. E. T.& T. Company	59	43	30	- 29	17.3	15.3
Westbrook	Research Building	311	48	48	47	21.5	19.9
Westbrook	Warehouse #5	46	45	41	31	20.3	19.6
Bath	Coal Pocket Site	105	41	38	35	15.9	13.6*

^{*} Insufficient data collected for valid annual geometric mean.

TABLE 6 - 5
FINE PARTICULATE HISTORICAL COMPARISON
ANNUAL ARITHMETIC MEANS (ug/m3)

		ANNUAL ARITHMETIC MEANS (ug/m3)					
SITE	ADDRESS	<u>1985</u>	<u>1986</u>	1987	1988	<u>1989</u>	<u>1990</u>
	_						
ANDROSCOGGIN INTERSTATE	E AIR QUALITY CONTROL REGION (107)						
Jay	Weather Level I				17.7	18.1	15.6
Jay	Jay Hill	19.3	21.3	18.9	20.6	22.4	18.2
Mexico	Labonvilles			30.3	30.5	30.3	24.1
Rumford	Village Green				21.1	23.4	19.3
Skowhegan	Hinckley				22.3	21.9	13.8
Skowhegan	Eaton Ridge				14.5	15.5	13.6
Thomaston	Mitchell Property				22.5	18.2	15.3
Thomaston	Marsh Road				20.9	17.5	16.3
Winslow	Gulley Hill Road		24.8	28.6	24.9	28.2	22.4
AROOSTOOK AIR QUALITY (CONTROL REGION (108)						
Madawaska	Big Daddy's Restaurant	33.4	36.4	31.8	33.4	33.2	34.9
Presque Isle	Northeastland Hotel	35.7	31.0	29.2	26.4	30.0	29.0
Presque Isle	Regional Office					15.8	14.1
DOWNEAST AIR QUALITY CO	ONTROL REGION (109)						
Bangor	Kenduskeag Pump Station				30.5	27.3	20.5
Hampden	McGraw School			15.3	15.7	15.1	12.9
East Millinocket	Library/Municipal Building				14.4	20.0	16.2
Lincoln	Thomas Motel Trailer Park	34.7	30.3	30.8	22.9	23.1	18.9
Millinocket	Katahdin Nursing Home					18.3	15.3
Millinocket	York street				16.0	18.9	16.2
Orrington	Center Drīve school			13.9	14.0	13.2	11.5
Woodl and	Secondary Treatment Pipeline			***	16.1	17.7	18.5
Woodland	Woodland High School	27.7	21.9	23.4	21.7	21.9	23.7
Woodland	Background				10.7	12.7	13.2

TABLE 6 - 5 (continued) FINE PARTICULATE HISTORICAL COMPARISON ANNUAL ARITHMETIC MEANS (ug/m3)

			ANNUA	L ARITHMETIC	MEANS (ug/m	3)	
SITE	ADDRESS	<u>1985</u>	<u>1986</u>	<u>1987</u>	<u>1988</u>	<u>1989</u>	<u>1990</u>
METROPOLITAN PORTLA	ND AIR QUALITY CONTROL REGION (110)						
Biddeford	Biddeford Treatment Plant					26.9	22.0
Bridgton	Upper Ridge Road	32.4	16.0	16.2	12.3	11.5	13.4
Portland	Shelter Site	38.9	30.5	30.9	24.4	26.1	22.5
South Portland	Jordan Marsh Auto Center					25.2	23.6
Westbrook	N. E. T.&T. Company				21.0	20.7	17.3
Westbrook	Research Building				25.0	24.0	21.5
Westbrook	Warehouse #5	32.0	23.9	28.4	21.0	23.1	20.3

TABLE 6 - 6
FINE PARTICULATE HISTORICAL COMPARISON
(Sites with samples greater than 150 ug/m3)

SITE	ADDRESS	<u>1985</u>	TOTAL NU <u>1986</u>	MBER OF SAMPLE 1987	S GREATER THA 1988	N 150 UG/M3 1989	<u>1990</u>
AROOSTOOK AIR QUALI	TY CONTROL REGION (108)						
Madawaska Presque Isle	Big Daddy's Restaurant Northeastland Hotel	0 0	0 1	1 3	1 0	0 0	0 1

7. LEAD (Pb)

7.1 Description and Sources

Lead in the ambient air exists primarily as particulate matter in the inhalable size range. The predominant source of atmospheric lead is from motor vehicles that burn "leaded" gasoline. The lead in gasoline is in the form of tetraethyl lead, an "anti-knock" compound. Other major sources of atmospheric lead are the extraction and processing of metallic ores.

7.2 Health and Welfare Effects

When atmospheric lead is breathed in, it is absorbed into the bloodstream and distributed throughout the body along with lead from contaminated food and drinking water. Lead accumulation in the body can impair the production of hemoglobin. Clinical lead poisoning occurs when the body's accumulation of lead becomes too high. Symptoms of lead poisoning range from loss of appetite, fatigue, cramps and constipation, and pains in the ankles and wrists to loss of power in anemia, kidney disease, mental retardation. the arms and legs, Lead concentrations in the ambient air are not blindness and death. sufficient to produce lead poisoning but they do increase the risk of harm when other sources of lead are present. And, indirectly, lead fallout from automotive exhaust onto soil and street surfaces can be ingested in considerable amounts by infants and young children.

7.3 Standards

The current National Ambient Air Quality Standard for lead is a 3-month (calendar quarter) average concentration not to exceed 1.5 micrograms of lead per cubic meter of air.

The current State Standard for lead is a 24-hour average concentration of 1.5 micrograms of lead per cubic meter of air not to be exceeded more than once per year.

7.4 Monitoring

Lead was monitored at eight sites in Maine during 1990 by taking samples of the Hi-Vol filters from those sites and analyzing the samples for lead content using an atomic absorption analyzer.

Tables 7-1 and 7-2 are the 1990 Data Summaries for Lead. Table 7-3 presents the Lead Historical Comparison Data.

TABLE 7 - 1 1990 LEAD DATA SUMMARY (Micrograms Per Cubic Meter)

SITE	ADDRESS	NUMBER OF Observations	HIGHEST 24-Hour	SECOND HIGHEST	THIRD <u>Highest</u>	ANNUAL GEOMETRIC MEAN
ANDROSCOGGIN INTERS	TATE AIR QUALITY CONTROL REGION (1	07)				
Lewiston	Country Kitchen Parking Lot	59	.04	.04	.03	.01
DOWNEAST AIR QUALIT	Y CONTROL REGION (109)					
Bangor	Kenduskeag Pump Station	60	.10	_04	.03	.01
METROPOLITAN PORTLA	ND AIR QUALITY CONTROL REGION (110)				
Biddeford	Biddeford Treatment Plant	327	.63	.54	.01	.02
Biddeford	57 Birch Street	320	.26	.08	.07	.01
Saco	Saco Island - CMP	318	.70	.60	.09	.02
Saco	Spring Street	319	.07	.06	.06	.01
Portland	Tukey's Bridge	57	.08	.05	.05	.02
Portland	Shelter Site	59	.12	.11	.08	.03

j

TABLE 7 - 2
1990 LEAD DATA SUMMARY BY QUARTERS
(Micrograms Per Cubic Meter)

•			1990 QUARTER	LY AVERAGES	
SITE	ADDRESS	<u>1ST</u>	<u>2ND</u>	3RD	<u>4TH</u>
ANDROSCOGGIN INTERS	TATE AIR QUALITY CONTROL REGION (107)				
Lewiston	Country Kitchen Parking Lot	.02	01	.01	.02
DOWNEAST AIR QUALIT	Y CONTROL REGION (109)				
Bangor	Kenduskeag Pump Station	.03	.01	.01	.01
METROPOLITAN PORTLA	ND AIR QUALITY CONTROL REGION (110)				
Biddeford	Biddeford Treatment Plant	.02	.01	.03	.03
Biddeford	57 Birch Street	.02	.01	.01	.02
Saco	Saco Island - CMP	.02	.04	.03	.03
Saco	Spring Street	.02	.01	.01	.02
Portland	Tukey's Bridge	.03	.02	.02	.03
Portland	Shelter Site	.04	.02	.02	.04

TABLE 7 - 3
LEAD HISTORICAL COMPARISONS
(Micrograms Per Cubic meter)

<u>site</u>	ADDRESS	1984	<u>1985</u>	MAXIMUM 24-	HOUR CONCENTR	ATION / AAM 1988	1989	<u>1990</u>
<u> </u>	ADDRESS	1704	1702	1755	1701	1700	1707	1770
ANDROSCOGGIN INTERSTATE AIR QUALITY CONTROL REGION (107)								
Lewiston	Country Kitchen Parking Lot						0.12/0.03	0.04/0.02
DOWNEAST AIR QUALITY C	ONTROL REGION (109)							
Bangor	Kenduskeag Pump Station	0.53/0.14	0.64/0.15	0.18/0.07	0.12/0.04	0.08/0.03	0.09/0.02	0.10/0.02
METROPOLITAN PORTLAND AIR QUALITY CONTROL REGION (110)								
Biddeford	Biddeford Treatment Plant						0.82/0.06	0.63/0.03
Portland	Shelter Site	0.71/0.23	0.53/0.19	0.33/0.11	0.27/0.07	0.17/0.06	0.10/0.04	0.12/0.03
Portland	Tukey's Bridge		1.10/0.42	0.87/0.35			0.08/0.04	0.08/0.03

8. SULFATES (SO4) AND NITRATES (NO3)

8.1 <u>Description and Sources</u>

Sulfates and Nitrates are compounds of varying harmfulness found everywhere in the atmosphere. They are produced by nature as well as man. Man-made sulfates have their origin in sulfur dioxide while nitrates have theirs in nitrogen oxides. Fine particulate compounds, including sulfates and nitrates are formed from chemical reactions between sulfur dioxide or nitrogen dioxide emitted into the air and other substances present there. These fine particulate compounds have a long atmospheric residence time, can be transported in the air for long distances, and are capable of penetrating deeply into the human respiratory tract.

8.2 Health and Welfare Effects

Epidemiological studies of populations exposed to particulate sulfates have shown that atmospheric sulfates, more than sulfur dioxide gas or total suspended particulates, are related to aggravation of asthma, aggravation of heart and lung disease in the elderly, and impairment of lung function in school children. This evidence was obtained from EPA's Community Health and Environmental Surveillance System (CHESS). From these studies, estimates of the sulfate threshold for adverse health effects have been derived, as shown in Table 8-1. However, these epidemiological studies have not been substantiated by laboratory studies.

Both sulfates and nitrates are considered to be contributors to the acid deposition problem.

8.3 Standards

There are currently no standards for levels of sulfates in ambient air. EPA has been working on a standard and is expected to make a proposal in the future.

There are no standards for nitrates nor are there any proposed.

8.4 Monitoring

Sulfate levels were measured at five sites in Maine during 1990 by taking samples of the Hi-Vol filters from those sites and analyzing the samples for sulfates using the Automated Technicon II Methylthymol Blue Procedure. There is no standard yet and the monitoring methodology is questionable but the data is being included in this report as an aid to those interested in further information about Maine's air quality. Table 8 -2 summarizes the sulfate data collected during 1990.

Nitrate levels were measured at five sites in Maine during 1990 by also taking samples of the Hi-Vol filters from those sites and analyzing the samples using Method 353.1(Colorimetric, Automated,

Hydrazine Reduction). This data, summarized in Table 8 - 3, is also being included in this report as an aid to those interested in further information about Maine's air quality. Nitrate data for 1986 had been reported incorrectly and consequently the table listing that data in the 1986 Annual Report on Air Quality is inaccurate. A corrected table has been printed and is available on request from the Bureau of Air Quality.

TABLE 8-1

SULFATE THRESHOLDS FOR ADVERSE HEALTH EFFECTS

ADVERSE HEALTH EFFECT	THRESHOLD CONCENTRATION FOR SUSPENDED SULFATES
Aggravation of Asthma	6 to 10 Micrograms Per Cubic Meter for 24 Hours.
Aggravation of Heart and Lung Disease in the Elderly	9 Micrograms Per Cubic Meter for 24 Hours
Subtle Decreases in Childhood Lung Function	9 to 13 Micrograms Per Cubic Meter for 1 Year.
Increase in Acute Respiratory Disease in Children	13 Micrograms Per Cubic Meter for 1 Year.

TABLE 8 - 2 1990 SULFATE DATA SUMMARY (Micrograms Per Cubic Meter)

SITE	ADDRESS	NUMBER OF OBSERVATIONS	HIGHEST 24-HOUR	SECOND HIGHEST	THIRD <u>Highest</u>	ANNUAL ARITHMETRIC MEAN		
ANDROSCOGGIN INTERSTATE AIR QUALITY CONTROL REGION (107)								
Rumford	Taylor Mountain I	59	22.6	21.9	19.8	6.1		
METROPOLITAN PORTLAND AIR QUALITY CONTROL REGION (110)								
Bridgton	Upper Ridge Road	44	11.8	8.6	8.4	3.4		
South Portland	SMVTI	57	13.1	8.9	8.4	4.2		
South Portland	Jordan Marsh Auto Center	25	12.3	8.7	6.3	4.3		
Portland	Shelter Site	60	13.4	8.8	8.5	3.4		

TABLE 8 - 3
1990 NITRATE DATA SUMMARY
(Micrograms Per Cubic Meter)

SITE	ADDRESS	NUMBER OF OBSERVATIONS	HIGHEST 24-Hour	SECOND <u>Highest</u>	THIRD <u>Highest</u>	ANNUAL ARITHMETRIC MEAN		
ANDROSCOGGIN INTERSTATE AIR QUALITY CONTROL REGION (107)								
Rumford	Taylor Mountain I	59	3.4	3.1	1.6	.38		
METROPOLITAN PORTLAND AIR QUALITY CONTROL REGION (110)								
Bridgton	Upper Ridge Road	33	0.4	0.3	0.2	0.12		
South Portland	SMVTI	51	1.3	1.1	0.9	0.36		
South Portland	Jordan Marsh Auto Center	25	1.6	1.6	1.5	0.72		
Portland	Shelter Site	54	0.8	0.8	0.7	0.29		

9. ATMOSPHERIC DEPOSITION

9.1 Description and Sources

As a result of the combustion of tremendous quantities of fossil fuels such as coal and oil, the United States annually discharges approximately 50 million metric tons of sulfur and nitrogen oxides into the atmosphere. Through a series of complex chemical reactions these pollutants can be converted into acids, which may return to earth as components of either rain or snow. This atmospheric deposition, more commonly known as acid rain, may have severe ecological impacts on widespread areas of the environment.

9.2 Health and Welfare Effects

While direct health effects from acid rain have not been documented there are numerous indirect effects which could have definite effect on mankind. Atmospheric deposition is known to leach heavy metals such as mercury from rocks causing possible contamination of water supplies. Hundreds of lakes in North America and Scandanavia have become so acidic that they can no longer support fish life. The rain falling on forests and other non-farmlands could, in time, cause extensive changes in the soil chemistry. There is not enough information yet to make it possible to say exactly what the results might be, but there is no reason to think the changes will be beneficial.

9.3 Standards

There are no standards in effect or proposed for atmospheric deposition. The only permanent solution to the acid rain problem is to keep the acid levels low. The only practical way of achieving this is by reducing emissions at their sources.

9.4 Monitoring

During 1990 there were four sites collecting data on atmospheric deposition. Those four sites included two Bureau maintained sites in Bridgton and Acadia National Park, a University of Maine maintained site in Greenville and a National Weather Service maintained site in Caribou. The samples from these four sites are normally collected every Tuesday morning at 9:00 a.m.. Consequently, the samples are not necessarily a single storm event but are more likely to be a composite of all storm events during the previous week. The samples, if there was a significant storm, are used for field measurements of pH and conductivity and are then packaged up for shipment to the National Atmospheric Deposition Program central laboratory in Illinois. In the central laboratory they are also tested for pH and conductivity as well as additional components. Table 9-1 is a summary of the measurements taken at the central laboratory in Illinois from the DEP operated and/or maintained sites for the year 1990. The sulfate deposition figures were corrected for marine aerosol contribution.

TABLE 9 - 1
1990 ATMOSPHERIC DEPOSITION DATA SUMMARY

SITE	ADDRESS	MAXIMUM*	pH MINIMUM*	MEAN**	DEPOSITION (KG SO4***	g/ha) <u>NO3</u>	
DOWNEAST AIR QUALITY CONTROL REGION (109)							
Acadia National Park	McFarland Hill Ranger Station	5.2	3.7	4.5	23.0	15.0	
METROPOLITAN PORTLAND AIR QUALITY CONTROL REGION (110)							
Bridgton	Upper Ridge Road	5.8	3.7	4.5	16.0	12.0	
NORTHWEST MAINE AIR QUALITY CONTROL REGION (111)							
Greenville	Squaw Brook	6.5	3.9	4.6	14.0	11.0	

^{*} Lab measurements.

^{**} Precipitation weighted mean.

^{***} Corrected for marine aerosol and normalized to 52 weeks.

10. HYDROCARBONS (HC)

10.1 Description and Sources

Hydrocarbons are a class of compounds containing carbon and hydrogen in various combinations. They are found especially in petroleum, natural gas and coal. Some are gaseous, some liquid and some are solid. There are in fact over a thousand hydrocarbon compounds. Many of the polluting hydrocarbons are discharged into the A major source of air by incomplete combustion of organic materials. this kind of hydrocarbon emission is the burning of gasoline automobiles. Other major contributors are organic solvent evaporation, industrial processes, solid waste disposal and fuel combustion stationary sources. The control of hydrocarbon emissions accomplished by combustion process optimization, recovery by mass of evaporative loss and process transfer principles, restriction material and fuel substitution.

10.2 Health and Welfare Effects

Hydrocarbon air pollutants enter into and promote the formation of photochemical smog (ozone) and thus contribute to the development of eye irritation and respiratory tract problems. By themselves, hydrocarbons may induce adverse health effects, although there is relatively little quantitative data to relate individual hydrocarbons to the risk of human disease.

10.3 Standards

The present State Standard for non-methane hydrocarbons is a three hour average concentration of 160 ug/m3.

10.4 Monitoring

Hydrocarbons were not monitored as part of the state's continuous air monitoring program during 1990.