

1985 ANNUAL REPORT ON AIR QUALITY IN THE STATE OF MAINE

 $\chi = \frac{1}{1} \phi_{i}$

Prepared by Jeffrey C. Emery

> 1 4 1 1

Maine Department of Environmental Protection Bureau of Air Quality Control Division of Air Quality Services

Leighton E. Carver, Division Director John Bastey, Bureau Director Kenneth C. Young, Jr., Commissioner

381667

TABLE OF CONTENTS

٠

			PAGE
	TABLE (DF CONTENTS	i
	LIST OF	7 TABLES	iii
	LIST OF	7 FIGURES	v
1.	INTRODU 1.1 1.2 1.3 1.3.1 1.3.2 1.3.3	JCTION Purpose and Overview Monitoring Sites Document Organization Explanation of Data Summary Tables Explanation of Historical Comparison Tables Explanation of Trends Tables	1 1 7 8 8 8 8 8
2.	CARBON	MONOXIDE (CO)	18
	2.1	Description and Sources	18
	2.2	Health and Welfare Effects	18
	2.3	Standards	19
	2.4	Monitoring	19
3.	OZONE (O3)	21
	3.1	Description and Sources	21
	3.2	Health and Welfare Effects	22
	3.3	Standards	22
	3.4	Monitoring	22
4.	NITROGE	EN DIOXIDE (NO2)	26
	4.1	Description and Sources	26
	4.2	Health and Welfare Effects	26
	4.3	Standards	26
	4.4	Monitoring	26
5.	SULFUR	DIOXIDE (SO2)	28
	5.1	Description and Sources	28
	5.2	Health and Welfare Effects	28
	5.3	Standards	28
	5.4	Monitoring	28
б.	PARTICU	ULATES (TSP)	33
	6.1	Description and Sources	33
	6.2	Health and Welfare Effects	33
	6.3	Standards	34
	6.4	Monitoring	34
7.	LEAD (P	b)	42
	7.1	Description and Sources	42
	7.2	Health and Welfare Effects	42
	7.3	Standards	42
	7.4	Monitoring	42

i

TABLE OF CONTENTS (CON'T)

PAGE

8.	SULFATE	S (SO4) AND NITRATES (NO3)	46
	8.1	Description and Sources	46
	8.2	Health and Welfare Effects	46
	8.3	Standards	46
	8.4	Monitoring	46
9.	ATMOSPH	ERIC DEPOSITION	50
	9.1	Description and Sources	50
	9.2	Health and Welfare Effects	50
	9.3	Standards	50
	9.4	Monitoring	50
10.	HYDROCA	RBONS (HC)	53
	10.1	Description and Sources	53
	10.2	Health and Welfare Effects	53
	10.3	Standards	53
	10.4	Monitoring	53

LIST OF TABLES

·

TABLE	TITLE	PAGE
1-1	National Ambient Air Quality Standards	2
1-2	State of Maine Ambient Air Quality Standards	3
1-3	Number of Ambient Air Quality Violations by Regions	4
1-4	1985 Ambient Air Quality Monitoring Site Directory	9
2-1	1985 Carbon Monoxide Data Summary	20
2-2	Carbon Monoxide Historical Comparisons	20
2-3	Carbon Monoxide Trends	20
3-1	1985 Ozone Data Summary	23
3-2	Ozone Historical Comparisons	2.4
3-3	Ozone Trends	25
4-1	1985 Nitrogen Dioxide Data Summary	27
4-2	Nitrogen Dioxide Historical Comparisons	27
5-1	1985 Sulfur Dioxide Data Summary	30
5-2	Sulfur Dixode Historical Comparisons-Maximum 24-Hour Concentrations of Sulfur Dioxide	31
5-3	Sulfur Dioxide Historical Comparisons-Sites with Violations	32
6-1	1985 Total Suspended Particulates Data Summary	36
6-2	Total Suspended Particulates Historical Comparison-Ann Geometric Means	ual 38
6-3	Total Suspended Particulates Historical Comparisons-Sit With Violations	tes 40
6-4	1985 Fine Particulate Data Summary	41
7-1	1985 Lead Data Summary	43
7-2	1985 Lead Data Summary by Quarters	44
7-3	Lead Historical Comparisons	45

LIST OF TABLES (CON'T)

TABLE	TITLE	PAGE
8-1	Sulfate Thresholds for Adverse Health Effects	47
8-2	1985 Sulfate Data Summary	48
8-3	1985 Nitrate Data Summary	49
9-1	1985 Atmospheric Deposition Data Summary	52

.

LIST OF FIGURES

FIGURE	TITLE	PAGE
1-1	Five Year Trend - Total Suspended Particulates	5
1-2	Five Year Trend - Sulfur Dioxide	5
1-3	Five Year Trend - Ozone	6
1-4	State of Maine, Ambient Air Quality Control Regions	16

TABLE 1-1

NATIONAL AMBIENT AIR QUALITY STANDARDS

<u>Pollutant</u>	Averaging Time	<u>Concentration</u>
Particulates (TSP)	Annual Geometric Mean: Primary Secondary	75 ug/m3 60 ug/m3 *
	Twenty-Four Hour:** Primary Secondary	260 ug/m3 150 ug/m3
Lead (Pb)	Calendar Quarter	1.5 ug/m3
Carbon Monoxide (CO)	One Hour**	35 ppm
	Eight Hour**	9 ppm
Ozone (O3)	One Hour***	0.12 ppm
Nitrogen Dioxide (NO2)	Annual Arithmetic Mean	0.05 ppm
Sulfur Dioxide (SO2)	Annual Arithmetic Mean	0.03 ppm
	Twenty-Four Hour**	0.14 ppm
	Three-Hour** Secondary	0.50 ppm
Hydrocarbon	Three Hour**	160 ug/m3

* = Federal Guideline Only. ** = Not to be exceeded more than once per year. *** = Statistically estimated number of days with exceedances is not to be more than 1 per year. ppm = Parts of pollutant per million parts of air. ug/m3 = Micrograms of pollutant per cubic meter of air.

-2-

1. INTRODUCTION

1.1 <u>Purpose and Overview</u>

The purpose of this report is to present the air quality monitoring data generated by and for the Maine Department of Protection, Bureau of Air Quality Control, Environmental and to provide a historical perspective from which the significance of that interpreted. Air Quality monitoring measures the data can be concentrations of various pollutants in the ambient air. The monitoring is in response to State and Federal requirements to determine whether the air we breathe is attaining and maintaining National and State Ambient Air Quality Standards which are designed to protect the health and welfare of the public. Federal Primary Standards are intended to protect public health. Federal Secondary Standards are intended to protect public welfare. The State Standards are at least as strict as Federal Standards and in some cases are more strict. The reasoning behind establishing more stringent standards is that generally air quality in Maine is significantly cleaner than in other areas and should remain cleaner. The current Federal and State Standards are presented in Tables 1-1 and 1-2. Table 1-3 is a summary indicating all the violations of ambient air quality standards in the State by regions. Later on in this report those violations will be listed by the sites at which they occurred.

The majority of data now collected in the State is collected by industry. The Department has required industry to establish monitoring programs primarily when there are air quality problems associated with the industry, or when an industry is planning to build or expand causing potential increase in air emissions. The State is still collecting monitoring data for long term trends, special studies and for compliance determinations. Ambient air monitoring by both industry and the State will continue in various regions where necessary until such time as standards are being met.

Included in this section are some figures which depict some of the results of air quality monitoring and control in the State. Figures 1-1 through 1-3 display trends or the lack of a trend which have been occurring at several long term key sites around the State.

Figure 1-1, which depicts the annual geometric means for total suspended particulates at several long term sites, shows slight trends upwards or downwards at most sites. The two sites which show significant upward trends are the Research Building site in Westbrook and Kenduskeag Pump Station site in Bangor. Bangor appears to have reversed their earlier downward trend by the increased use of sand on downtown roads during the winter. The result being an annual geometric mean extremely close to the annual standard and seven exceedances of the short term standard. Westbrook is the result of

TABLE 1-2

STATE OF MAINE AMBIENT AIR QUALITY STANDARDS

<u>Pollutant</u>	Averaging Time	<u>Concentration</u>
Particulates (TSP)	Annual Geometric Mean	60 ug/m3
	Twenty-Four Hour	150 ug/m3
Lead (Pb)	Twenty-Four Hour*	1.5 ug/m3
Carbon Monoxide (CO)	One Hour*	35 ppm(40 mg/m3)
	Eight Hour*	9 ppm(10 mg/m3)
Ozone (O3)	One Hour*	.081 ppm(160 ug/m3)
Nitrogen Dioxide (NO2)	Annual Arithmetic Mean	.053 ppm(100 ug/m3)
Sulfur Dioxide (SO2)	Annual Arithmetic Mean	.022 ppm(57 ug/m3)
	Twenty-Four Hour	.088 ppm(230 ug/m3)
	Three Hour	.439 ppm(1150 ug/m3)
Hydrocarbon	Three Hour*	160 ug/m3

* = Not to be exceeded more than once per year.
PPM = Parts of pollutant per million parts of air.
ug/m3 = Micrograms of pollutant per cubic meter of air.
mg/m3 = Milligrams of pollutant per cubic meter of air.

TABLE 1-3

NUMBER OF AMBIENT AIR QUALITY VIOLATIONS BY REGIONS

	REGIONS*				
POLLUTANT	107	108	109	110	TOTALS
Total Suspended Particulates Annual Geometric Mean**					
State	0	0	0	2	2
Federal	Ō	Ō	Ō	Ō	$\overline{0}$
Twenty-four Hour					-
State	8	12	14	9	43
Federal	0	1	0	Ō	1
Lead					
Twenty-four Hour					
Ŝtate	0	0	0	0	0
Federal	0	0	0	0	0
Carbon Monoxide					
One Hour	n/a	n/a	n/a	0	0
Eight Hour	n/a	n/a	n/a	0	0
Ozone					
One Hour					
State	1 9 8	n/a	154	431	783
Days					
Federal	3	n/a	0	6	9
Nitrogen Dioxide					
Annual Arithmetic Mean	n/a	n/a	n/a	0	0
Sulfur Dioxide					
Annual Allumetic Mean	0	Δ	Δ	Δ	0
Dederal	0	0	0	0	0
reuelal Thionty four Hour	U	U	U	U	U
Iwency=lour hour	0	0	0	0	0
State	0	0	0	0	0
Teueral Mhroe Hour	U	U	U	U	U
	Δ	0	0	Δ	0
Dudle	0	U A	0	0	0
recetat	U	U	U	U	U

*Region lll has not been included because there was no monitoring in this region during 1985. **Annual Means generated by only a few samples are not included in this

summary.

-5-

ANNUAL GEOMETRIC MEAN (ug/m^3)

ANNUAL AVERAGE (PPM)

* In previous reports the state ozone standard was considered .080 ppm and any hourly values above .080 ppm were reported as violations. The state standard when converted to ppm is actually closer to .081 ppm and therefore only hourly concentrations greater than .081 ppm should be reported as violations. The above graph has been drawn to reflect only those hourly concentrations in previous years that were above .081 ppm. increased development, fugitive emissions from the S. D. Warren facility and a sweeping program that hasn't been comprehensive enough. Both areas will need increased control efforts to achieve compliance.

Presque Isle has continued to show improvement and for the first time in several years has not exceeded the annual standard. However, short term violations continue to occur and additional efforts will be needed to bring the area into compliance. Improvements are expected due to some street and sidewalk changes downtown and the use of a cleaner sand as well as pushing for a bypass for Presque Isle to keep through traffic out of the downtown area.

Figure 1-2 indicates the sulfur dioxide trends at three sites with a long term history. Madawaska continues to show a downward trend while Lewiston continues to be relatively constant. Millinocket does show an increase in annual concentrations but is still only about one third of the standard. Maximum short term concentrations in Millinocket showed little change from 1984 levels.

Figure 1-3 depicts the number of hourly violations of the State ozone standard. As can be seen from the graphs, the violations vary greatly from year to year. While there does not appear to be any trends, what is significant is the number of violations which continue to occur each year. Meteorological conditions are responsible for a lot of the variability from year to year so it does not appear as if existing state applied control strategies by themselves are having any significant effect on the basic ozone problem.

Data summarized in this report is available for review in the Department headquarters in Augusta and copies can be obtained from that office for a nominal fee.

1.2 Monitoring Sites

Air quality data are developed using two basic methods; 1) the continuous monitoring of gaseous pollutants and; 2) the periodic sampling of particulate and gaseous pollutants. In addition to pollutant monitoring there is also the continuous monitoring of meteorological parameters.

Continuous gaseous monitoring was done at thirty-seven sites in Maine during 1985. Carbon Monoxide was monitored at one of these stations, ozone at eight, sulfur dioxide at twenty-eight and nitrogen oxides at one.

Particulate sampling was done at fifty-seven sites in Maine during 1985. Fifty-three of these stations monitored total suspended particulates. Fourteen of these sites also collected fine particulate fractions. Also, lead monitoring was done at eight stations. Twelve of these sites were analyzed for sulfates although not all of them were on a regular basis. There were also three sites collecting acid rain data as part of the state monitoring network. In addition to pollutant monitoring, wind speed and direction was recorded at twenty sites around the State during 1985. Some of these sites also recorded other meteorological parameters such as sigma (stability) and temperature, precipitation and solar radiation.

Table 1-4 presents all the monitoring sites in Maine that operated during 1985 and indicates which parameters were monitored at each site. The map in Figure 1-4 shows the Air Quality Control Regions within the State.

1.3 Document Organization

This document is divided by pollutant into chapters. Each chapter contains: 1) a description of the nature and sources of that pollutant, 2) its health and welfare effects, 3) a discussion on the standards (current and proposed) for that pollutant, 4) a discussion of the monitoring methods for that pollutant, 5) a table presenting the 1985 monitored data, 6) in the case of some pollutants, historical tables presenting 1985 data along with data for previous years to show trends, effects of control strategy, or change in emission sources.

1.3.1 Explanation of Data Summary Tables

The Data Summary Tables were designed to facilitate comparing 1985 air quality monitoring data with the standards for each pollutant. Therefore, the data are presented for each averaging time for which standards exist for a pollutant.

An annual average concentration is presented for each pollutant that has a long-term, annual standard (NO2, SO2, TSP).

For pollutants that have short-term standards, the highest short-term values are presented. Some pollutants are allowed to exceed the standard once during the year so the second highest value would be used to determine whether there was a violation or not.

All of the data collected during 1985 has been presented in the Data Summary Tables. However, in making comparisons of the data, one should be aware that a site with only a few samples will not be a valid indicator of pollutant concentrations in the area.

1.3.2 Explanation of Historical Comparison Tables

The Historical Comparison Tables present air quality data for 1985 and those years prior to 1985 when the same pollutant was monitored at the same site. The purpose of the Tables are to indicate the variations in air quality from year to year. The Tables in some cases represent maximum concentrations for specific time periods and in others the number of days in each year that the standards were violated.

1.3.3 Explanation of Trends Tables

TABLE 1 - 4 1985 AMBIENT AIR QUALITY MONITORING SITE DIRECTORY

SITE	ADDRESS	OPERATOR	PARAMETERS MEASURED
ANDROSCOGGIN INTERS	TATE AIR QUALITY CONTROL REGION (107)		
Auburn (0060 005)	Lewiston-Auburn Airport Lewiston Junction Road	DEP	87./mD
Auburn {0060 008}	Lepaga Bakery 60 Second Streat	DEP	TEP,Pb,Sulfate
Augusta(DISC) (0080-001)	Cony High School Cony Circle	DEP	TSP,Pb,Sulfate
Augusta (0080 005)	Hartford Fire House Hartford Square	Statler/DEP	TSP,FP
Augusta (0080 008)	Governor's Hanger State Airport	DEP	815/10D
Augusta (DISC) (0080-009)	Modgking School Malta Strast	Statler	TSP, FP
Auguste (DISC) (0080 010)	Mussey School Gedney Straet	Statler	SD2
Augusta (0ISC) (0080-011)	Nap's Trading Post 185 Water Streat	Statler	SUZ
Auguste(DISC) (0080 012)	Bt, Augustine's Northern Avenus	DEP	512
Fermington (NEM) (0380 001)	Farmington Fairgrounds	LMF	T\$P,FP
Gerdinar (0450 D01)	Gerdiner High School West Hill Roed	DEP	Dzone(s)
Jay {0530 001}	Weather Lavel I Lagoon Hill	International Paper	WS/ND,Temperatura,Solar Radiation, Precipitation,TSP
Jey [0530-003]	Crash Road Gilbert Jewall Property	International Paper	TSP
Jay (0530 004)	Jay Hill	International Paper	Τ5₽,₽₽(n)
Jey (D530 007)	Water Trestmont Plant Site #2 International Paper	International Paper	TEP

SITE	ADDRESS	OPERATOR	PARAMETERS KEASURED	
Lawiston	Country Kitchen Parking Lot	DEP	502	
[0620 011]	Canal Etreat			
Wiscesset	Westport Island	DEP	Ozone[s]	
(0645 002)	Farry Road			
Mexico	Maxico Treatmont Plant	Boles Cescods	IS ^D , Sulfate, Nitrate(h)	
(0760 003)	Routa #2			
Maxico	Labonville's	20126 Lasco08	1.55	
(0780 008)	Route #2			
Movine	Provenia Peridenan	Roine Formade	CTG CTG	
[0/80 010]	FOURIN BIRGEL			
Maximo	Muntia Desserts	Soian Carceda	512	
(0760 044)	Boute #2		042	
[0/00 011]				
South Paris	Bailiy Property	Wilner Mond	TSP	
EDER5 (004)	Early Streat			
[0000 004]	Bully Deliver			
South Paris	Wilner Mond Weather	Wilner Wood	WS/WD	
(0885 005)		111111 1000		
(0000 000)				
South Paris(NEW)	Wostcomter Treatment Plant	DEP	TSP	
(0885 807)	South Paris			
(00-0 00.)				
South Paris[NEW]	Alpine Street	Wilner Wood/DEP	Tep	
(0885 00B)				
•••••				
Rumford	Boise Cascade Waather II	Boise Cascada	85/10	
(1020 002)	Smift Rivar Pump House			
Rumford	Taylor Mountain I	Scise Cascade	TSP, 502	
(1020 005)				
Rupford	Taylor Mountain II	Boise Cescede	Tep, 502	
(1020 006)	-			
-				
Runford	Village Sreen Site	DEP/Boiss Cascade	T3P, 502	
(1020 007)	Routs 0108			
Skowhegan	Minckløy	S. D. Warren	TSP	
(1100 001)	Minckley Ferm School			

TABLE 1 - 4 1985 ANDIENT AIR QUALITY MONITORING SITE DIRECTORY

SITE	ADDRESS	OPERATOR	PARAMETERS NEASURED
ikoehegan (1100 002)	Eston Ridge	S. D. Warren	TSP
homeston 1150 001]	Mitchell Property 2 Dexter Avenue	Dregon Products	TSP , 802
homeston 1150 003)	Senders Property Old County Road	Oragon Products	TSP
homaston 1150 004)	Poase Heirs Proparty Buttermilk Lana	Dragon Products	TSP
homaston 1150 DOS}	Dragon Coment Weather Route #1	Dragon Producta	NS/MD
homaston 1150 007)	Marsh Road	Dragon Producta	TSP, 802
earsport[NE₩) 1183 001}	Spaulding Property	DEP	502
nity(NEW) 1183 005)	Unity College	DEP	Dzone(a)
sarsport(NEW) 1183 DD6)	DOT Route £1	DEP	502, WS/MD
tockton Springe(NEW) 1183 007]	Cape Jellizon	DEP	502 .
aterville 1220 003]	Stern's Department Store Main Street	DEP	TSP
inalow(NEW) 1280 DO)		Scott Paper Company	TSP
ROOSTOOK AIR QUALITY	CONTROL REGION (108)		
adewaska	Madeweska High School	Fraser Paper/DEP	TSP.Poinl.Sulfate.902

WS/MD, Temperature

Fraser Paper

TABLE 1 - 4 1985 ANDIENT AIR DUALITY MONITORING SITE DIRECTORY

1

х

(8720 003)

Madewaska

(0720 006)

7th Avenue

Bridge Street

Freser Paper Company

SITE	ADDRESS	OPERATOR	PARAMETERS MEASURED
Hadawaska (0720 009)	Albert Street	Fraser Paper	502
Madewaake (0720 010)	Bewaga Trestment Plant South Main Street	Freser Paper	WS/ND , 602
Madawaska (0720 011)	St. Jerre's 11th Avenue	DEP	TSP, Sulfate, Witrate(n)
Nadawesks[NBY] (0720 012)	U. S. Post Office 430 E. Main Street	Frasar Papér	502, WS/WD
Madaweske (NEW) (0720 013)	Big Deddy's Restaurent 385 E. Main Streat	٥₽	PP
Presque Isle (0980-005)	Acrtheestland Hotel 436 Mein Street	DEP	TSP,Pb,Bulfste,FP
Presque Isie (0980-008)	Regional Office 528 Central Drive	DEP	WS/ND
Presque Isle(MEW) (0980-009)	City Dry Cleaners 636 Main Street	DEP	ff
DOWNEAST AIR QUALITY	CONTROL REGION (109)		
Acadia National Park (0010-003)	McFarland Hill Ranger Station Route #233	NPS/DEP	Ozone,TSP,Sulfste,Nitrate[n],FP,Acid Precipitation
Bangor (0100 001)	Regional Office 31 Central Street	DEP	TSP, Sulfate, Witrete[n]
Banger (0100 D02)	Kenduskeeg Pump Station Washington Street	DEP	Ĩ₽ ₽,₽ 5,₽₽(n)
Bengor (0100 009)	BIA-Building #487 Air Netional Guard	DEP	WS/ND
Browsr (0160-002)	Brewer Junior High School 5 Somerset Street	DEP	TEP
East Willinockst (8315 882)	Katahdin School School Street	Sreat Worthern Paper Company	T5P, 502 [1]

TABLE 1 - 4 1985 ANBIENT AIR QUALITY MONITORING SITE DIRECTORY

.

.

.

•

TABLE 1 - 4 1985 AMBIENT AIR DUALITY MONITORING SITE DIRECTORY

SITE	ADDRESS	OPERATOR	PARAMETERS MEASURED	
Dedham (MEM) (0485 003)	Beld Mountain	DEP	Dzone (a)	
L1ncoln (0640 002)	Vocational Education Building West Broadway	Lincoln Pulp & Paper Company	TSP	
Lincoln (0640 003)	Lincoln Post Office Building 60 Fleming Streat	Lincoln Pulp & Paper Compeny	TSP	.*
Lincoln (0640 007)	Thomas Notel Trailer Park 39 West Broadway	Lincoln Pulp & Paper Company	TBP, 502, FP	
Lincoln (0640 008)	Fish Hill Gase	Lincoin Pulp & Paper Company	802	
Lincoln (0640 009)	Fish Hill Peak	Lincoin Pulp & Paper Company	802	
Lincoln (0540 010)	Lincoln Airport	Lincoin Puip & Paper Company	¥r\$∕¥0	
Millinockøt (0780 006)	Westewater Treatmant Plant Great Northarn Papar Company	Great Northern Paper Company	802	
Millinocket (D780 D09)	York Street	Great Northern Paper Company	T59,502	
Millinocket (D760 011)	Great Northern Paper Co. Office	Great Northern Paper Company	#5./mD	
0ld Town (D840 003)	Marsh Island Apartments 100 South Main Streat	DEP	182	
01d Town (0840 005)	Panabecot Shoe Company 450 Morth Main Streat	DEP	T5P	
Newburgh (0907 005)	Newburgh School Route #9	DEP	TSP	
Milford (0907 007)	Shummay Field Route #178	Jamos River Corporation	159	
WoodLand(DISC) (1205 D06)	Georgia Pacific Mill	Georgie Pacific Corporation	ars/ad	

SITE	ADDRESS	OPERATOR	PARAMETERS MEASURED
₩oodland {1205 007}	Secondery Treetment Pipeline	Seorgia Pacific Corporation	TSP, 502
WoodLend (1205 008)	Woodland High School	Georgia Pacific Corporation	T39, FP(n)
Eastport (1205 D14)	Plassant Street	DEP	NS/ND
Roque Bluffs (1205 018)	Sreat Cove Roque Bluffe	DEP	Dzone[s],WS/MD[s]
METROPOLITAN PORTLAND	AIR QUALITY CONTROL REGION (110)		
Biddeford (0160 002)	Biddeford Treatment Plant Water Street	DEP	TSP
Bridgton (0190 002)	Upper Ridge Road	DEP	Acid Precipitation,TSP,Bulfate,Nitrate(n),FP
Brunewick (0200 001)	Coastal Savings Bank Meine Street	DEP	राइण्(1)
Cape Elizabeth (0250 003)	Bhelter Site Two Lights State Park	DEP	Dzona[s],WS/WD[n]
Kittery (0580-001)	Greenfield Drive	NH/DEP	15P, Po, Sulfate, 502
Kittery (0580 002)	Wentworth Dennst School Sovernment Street	NH/DEP	TEP
Kittery (0580 D03)	Masonic Templa Wallingford Squara	NH/DEP	802
Portland (0880 010)	Chevrus High School Ocean Avenue	DEP	85/10
Portland (0960 014)	Shalter Site (P.E.D.P.L.) Elm Streat	DEP	TSP,Pn,SO2,NOX(s),NO(s),Sulfate,FP
Portland	Tuksy's Bridge	DEP	Pro (1)

TABLE 1 - 4 1985 ANBIENT AIR QUALITY MONITORING SITE DIRECTORY

. -

٠

(0960 015)

Been Pot Circle

<u>AITE</u>	ADDRESS	OPERATOR	PARAMETERS MEASURED
Portland [0960 018]	529 Congress Street	DEP	æ
South Portland (1140 002)	SMVTI Vocational Driva	DEP	TSP, Sulfate, Nitrate
Westbrook (1260 002)	N. E. T.& T. Company Ash Street	S. D. Warren	TSP
Westbrook (1260 008)	Research Building S. D. Warren	S. D. Warren	TSP
Westbrook (1260 009)	6. D. Warren Company Wind S. D. Warren Property	S. D. Warren	WS/MD
Westbrook (1260 012)	S. D. Warren Warshouse #5 Main Strest	5. D. Warren	18P,FP

TABLE 1 - 4 1985 AMBIENT AIR DUALITY MONITORING SITE DIRECTORY

MORTHWEST MAINE AIR BUALITY CONTROL REGION (111)

Parson's Way

TEP - Total Suspended Particulates

WS/WD - Wind Speed and Direction FP - Fins Particulate NEWC - Monmethane Hydrocarbons

502 - Gulfur Dioxide NO - Nitric Oxida NOX - Oxides of Nitrogen CO - Carbon Monoxide Pb - Lead

Kannebunkport (1325 D02)

Greenville (0835-001)	Squae Brook Sreenville	DEP	Acid Precipitation
	MEW - Site established in 1985	n	- Instrument installed during 1985
	DISC - Site discontinued in 1985	d	- Instrument removed during 1985

DEP

s - Instrument operated measonally during 1885

1 - Instrument operated inteRmittently during 1985

Ozone(s)

-15-

The highest hourly concentration in a year is not the best indicator of long-term air quality trends because it is an erratic value. Therefore, special trend tables are presented for carbon monoxide and ozone. The trend tables present the loth, 50th, and 90th percentile values to represent the bulk of the air quality data for each year. Percentiles indicate the fraction, or percent, of the value that are below a particular level. For example, if the 90th percentile value for some set of CO observations is 5.0 ppm, it means that 90% of the time the concentrations of CO are less than 5.0 ppm. Conversely, it also means that 10% of the time the concentrations are above 5.0 ppm. Thus the existence or lack of long-term trends in overall air quality for CO and O3 can be more reliably determined using the Trends Tables, than by looking at just the Historical Comparison Tables.

2. <u>CARBON MONOXIDE (CO)</u>

2.1 Description and Sources

Carbon monoxide is colorless, odorless and tasteless gas. Therefore you do not even know you are breathing it until you feel its detrimental effects. It consititutes the largest single fraction of the pollutants found in urban atmospheres. It is produced primarily by the incomplete combustion of organic materials used as fuels for transportation and in the heating of buildings; it also results from industrial processes, refuse burning, and agricultural burning. Several natural sources of CO of both biological and non-biological origin have also been identified, but their contributions to urban atmospheric concentrations are thought to be small. Background levels of CO (resulting from natural and technological sources) found in relatively nonpolluted air range from 0.025 to 1.0 ppm. Urban carbon monoxide is produced primarily by motor vehicles.

Because motor vehicle traffic is the major source of CO, daily concentration peaks coincide with morning and evening rush hours. The worst carbon monoxide problems are found where large numbers of slow moving cars congregate. These problems are further aggravated when they occur in a "street canyon" situation. When there are large amounts of slow moving traffic in a street canyon situation, with the wind blowing perpendicular to the street, carbon monoxide can be trapped in the canyon and build up to unhealthful levels.

CO problems are usually worse in winter because: 1) cold weather makes motor vehicles run dirtier and requires more combustion for space heating; and 2) on winter nights a strong inversion layer develops in the atmosphere, that traps pollution near the ground, preventing it from mixing with cleaner air above.

2.2 Health and Welfare Effects

Carbon monoxide affects the central nervous system by depriving the body of the oxygen it needs. Tests of automobile drivers show exposure to carbon monoxide can impair driver's judgement and ability to respond rapidly in traffic. It can also impair vision and produce headaches.

Carbon monoxide enters the bloodstream by combining with the substance that carries oxygen hemoglobin, to the cells. Hemoglobin that is bound up with CO is called carboxyhemoglobin. This combination occurs 200 times more readily with CO than with oxygen, so the amount of oxygen being distributed throughout the body by the reduced in CO's presence. Blood laden with CO can bloodstream is weaken heart contractions, lowering the volume of blood distributed to various parts of the body. It can also significantly reduce a healthy person's ability to perform manual tasks, such as working, jogging and A life-threatening situation exists in patients with heart walking. who can't compensate for the oxygen loss. disease, The 4.2 million people in the U.S. suffering from angina pectoris (a heart disease characterized by brief spasmodic attacks of chest pain due to insufficient oxygen levels in the heart muscles) are especially susceptible. Carbon monoxide is also harmful to persons who have lung disease, anemia or cerebral-vascular disease. Others sensitive to carbon monoxide include the human fetus, and people exposed to long-term concentrations, such as traffic officers.

People who sit in idling cars over sustained periods risk harmful CO exposure, as do cigarette smokers. Since about two percent of cigarette smoke is carbon monoxide, if you or someone else smokes while driving in heavy traffic, you may both experience the harmful effects of CO from the cigarette smoke and the engine exhaust accumulated in streets. Even three or four hours after you're exposed, half the excess CO still remains in your bloodstream. Because it takes time for CO to build up in the bloodstream, the severity of health effects depends both on the concentration being breathed and the length of time the person is exposed.

2.3 Standards

The existing standards for carbon monoxide are currently set at 9 parts CO per million parts air (ppm), averaged over a period of 8 hours, and 35 ppm averaged over 1 hour, not to be exceeded more than As a result of a review and revision of the health once per year. criteria, EPA proposes to retain the existing primary 8-hour standard at 9 ppm and to lower the primary 1-hour standard to 25 ppm. The change in the 1-hour standard is being proposed because of the more rapid accumulation of blood carboxyhemoglobin in moderately exercising sensitive persons compared to resting individuals. The impact of exercise, which is greater for short-duration exposures, was not considered in the original standard.

2.4 Monitoring

Carbon monoxide was monitored at one site in Maine during 1985 using continuous monitoring equipment utilizing the non-dispersive infrared technique.

Table 2-1 is the 1985 Data Summary for CO. Tables 2-2 and 2-3 have been included for historical comparisons and trend analysis although there is little significance because of the small amount of data collected in 1984.

TABLE 2 - 1 1985 CARBON MONOXIDE DATA SUMMARY (Parts Per Million)

. -

SITE	ADDRESS	NUMBER OF OBSERVATIONS	1-HOUR C HIGHEST	CONCENTRATIONS SECOND HIGHEST	8-HOUR C HIGHEST	ONCENTRATIONS SECOND HIGHEST	ANNUAL ARITHMETIC MEAN
METROPOLITAN P	ORTLAND AIR QUALITY CONTROL REGION (110)					
Portland	529 Congress Street	8332	13.6	10.9	7.4	5.9	1.4

-20-

TABLE 2 - 2 CARBON MONOXIDE HISTORICAL COMPARISONS

.

POF	RTLAND	
Portland-529	Congress	Street

YEAR	SECOND HIGH*	NUMBER OF VIOLATIONS
1984	6.9	0
1985	5.9	0

* Eight hour concentrations in ppm.

TABLE 2 - 3 CARBON MONOXIDE TRENDS

PORTLAND Portland-529 Congress Street

,		Percentiles*	
YEAR	10%	50%	90%
1984	0.2	1.0	2.9
1985	0.4	1.1	2.9

* Percentiles are one hour concentrations in ppm.

.

3. <u>OZONE (03)</u>

3.1 <u>Description and Sources</u>

Ozone is highly reactive form of oxygen which, at very high concentrations, is blue unstable gas that has a characteristic pungent odor most commonly identified around an arcing electric motor, lightning storms, or other electrical discharges. However, at normal ambient concentrations, ozone is colorless and odorless. Ozone is the major component of photochemical "smog", but the haziness and odors of smog are primarily caused by other components.

Natural ground level ozone occurs in low concentrations (less than .05 ppm) due to natural physical and chemical phenomena. Occasionally, unique meteorological conditions can result in natural levels between .05 and .10 ppm.

Ozone is not emitted directly from a source as are other pollutants. It forms as secondary pollutant. Its precursors are hydrocarbons and nitrogen oxides, which chemically react in sunlight to form ozone. The hydrocarbons are emitted in automobile exhaust, from gasoline and oil storage and transfer, and from industrial use of paint solvents, degreasing agents, cleaning fluids, ink solvents, incompletely burned coal or wood and many other sources. Plants also give off hydrocarbons such as terpenes from pine trees. Nitrogen oxides are emitted by all combustion sources.

The highest ozone levels generally occur during summer afternoons when the high temperatures and strong sunlight promote photochemical reactions. Stagnant weather may cause smog to remain in an area for several days. The winds may also transport ozone many miles outside of the urban environment. For example, it is estimated that one-third of the ozone in the State of Maine is transported into the State from sources located outside the State. In addition one-third of the ozone is naturally occurring background concentrations, part of which is also transported into the State. The remaining one-third is assumed to be due to local sources within the State. Because of long-range transport, local control of emissions by itself may not solve the ozone problem. An effective national program may be necessary to achieve national compliance.

Ground-level ozone, discussed above, should not be confused with the stratospheric ozone layer, located about seven miles high in the atmosphere, which shields the earth from cancer-causing ultraviolet rays. Concentrations of ozone in this layer may reach as high as 10 ppm. Concern over potential reduction of the necessary levels of ozone in the stratosphere by reactions with fluorocarbons from aerosol cans has resulted in the removal of most of these propellants from the market. However, ozone at ground level, where it is breathed, is a pollutant.

3.2 <u>Health and Welfare Effects</u>

Ozone at low concentrations causes eye irritations and at higher concentrations difficulty in breathing for people with respiratory problems, the elderly, and children. Many plants, such as white pine, soybeans and alfalfa, are extremely sensitive to ozone, and O3 is known to weaken materials such as rubber and fabrics.

3.3 <u>Standards</u>

The existing National Ambient Air Quality Standards (NAAQS) for ozone is 0.12 ppm and will be attained when "the expected number of days per calender year with maximum hourly average concentrations above 0.12 ppm is equal to or less than one". This standard is new as of February 8, 1979 and replaces a more restrictive 0.08 ppm standard that was established April 10, 1971. The change was the result of a required assessment of existing NAAQS to include a review of new health effects data that have become available since 1970. As a result of this review and national public comments, the standard was changed to a level that is considered to be sufficient to protect the Since then additional research has public health and welfare. concluded that there is in fact damage being caused by ozone levels less than the existing Federal standard. Based on recent studies there appears to be significant vegetation damage at levels considerably below the Federal standard and some "adverse" health effects at the current Federal standard. As of the date this report compiled no proposals have been made for changing the Federal was standard. The current State Standard is .081 ppm. It was established at the same time the original Federal Standard was established and has In the past the state standard was interpreted to not been changed. be .080 ppm but a conversion of the actual 120 ug/m3 standard to ppm vields .081. Therefore, only hourly averages in excess of .081 ppm are considered exceedances of the state standard.

3.4 Monitoring

Ozone was monitored at eight sites in Maine during 1985 using continuous monitoring equipment of two kinds, either chemiluminescence or ultra-violet absorption analyzers. Maines' ozone monitoring season is limited to April through October due to the weather conditions which are not conducive to ozone formation at other times of the year.

Table 3-1 is the 1985 Data Summary for Ozone. Table 3-2 presents the Ozone Historical Comparisons and Table 3-3 presents the Ozone Trends.

	TABL 1985 OZONE (Parts P	E 3 - 1 DATA SUMMARY er Million)	
	NUMBER OF OBSERVATIONS	HOURLY C HIGHEST	ONCENTRATIONS SECOND HIGHEST
CONTROL REGION	(107)		
h School	4240	.142	.133

,

NUMBER OF VIOLATIONS STATE* FEDERAL**

3

ANDROSCOGGIN INTERSTAT	E AIR QUALITY CONTROL REGION (107)				•	
Gardiner	Gardiner High School	4240	.142	.133	84	2
Wiscasset	Westport Island	4251	.150	.127	85	1
Unity	Unity College	3126	.122	.110	29	0
DOWNEAST AIR QUALITY C	CONTROL REGION (109)					
Acadia National Park	McFarland Hill Ranger Station	8550	.120	.117	57	0
Dedham	Bald Mountain	3332	.127	.123	72	0
Roque Bluffs	Great Cove	4097	.099	.099	25	0
METROPOLITAN PORTLAND	AIR QUALITY CONTROL REGION (110)					
Cape Elizabeth	Shelter Site	40 00	.167	.165	141	3
Kennebunkport	Parson's Way	3 9 92	.170	.168	190	3

* Total number of hours minus one greater than .081 ppm. ** Number of days in violation.

ADDRESS

SITE

.

TABLE 3-2 OZONE HISTORICAL COMPARISONS (1-Hour Concentrations)

	CAPE ELIZA Shelter S	BETH ite		KENNEBUNKPC Parson's W	RT
<u>YEAR</u>	SECOND HIGH	# OF STATE VIOLATIONS	YEAR	SECOND HIGH	# OF STATE VIOLATIONS
1978 1979 1980 1981 1982	.160 PPM .155 PPM .178 PPM .122 PPM .140 PPM	202 116 141 98 117	1982 1983 1984 1985	.120 PPM .148 PPM .147 PPM .168 PPM	42 149 184 190
1983 1984 1985	.146 PPM .146 PPM .165 PPM	148 141			

GARDINER <u>Gardiner High School</u>

•

ACADIA McFarland Hill Ranger Station

<u>YEAR</u>	SECOND HIGH	# OF STATE <u>VIOLATIONS</u>	YEAR	SECOND HIGH	# OF STATE <u>VIOLATIONS</u>
1980	.117 PPM	54	1982*	.055 PPM	0
1981	.122 PPM	31	1983	.135 PPM	9 8
1982	.120 PPM	56	1984	.130 PPM	86
1983	.140 PPM	99	1985	.117 PPM	5 7
1984	.112 PPM	89			
1985	.133 PPM	84			

*NOT A COMPLETE YEAR

TABLE 3-3 <u>OZONE TRENDS</u> (1-Hour Concentrations)

CAPE ELIZABETH Shelter_Site

KENNEBUNKPORT Parson's Way

		PERCENTILES	
YEAR	10%	50%	90%
1978	.015	.035	.065
1979	.018	.036	.070
1980	.019	.035	.065
1981	.015	.032	.056
1982	.018	.036	.058
1983	.018	.034	.061
1984	.019	.040	.064
1985	.022	.038	.062

	PI	ERCENTILES	5
YEAR	10%	50%	908
1983	.008	.027	.058
1984	.012	.032	.064
1985*	.015	.037	.072

* Percentiles calculated using 70% of the data.

GARDINER Gardiner High School

.007

.012

.031

.034

<u>YEAR</u>

1980

1981

1**9**82

1983

1984 1985

PERCENTILES 10% <u> 90</u>8 _50% Y ٦ .008 .031 .056 1 .009 .029 .050 .009 .030 .053 .009 .031 .056

.055

.057

ACADIA McFarland Hill Ranger Station

	PI	S	
<u>YEAR</u>	108	50%	_908
L982*	.005	.020	.030
L983	.019	.032	.053
L 9 84	.020	.032	.050
L985	.022	.032	.048

*Not a Complete Year

4. NITROGEN DIOXIDE (NO2)

4.1 <u>Description and Sources</u>

In its pure state, nitrogen dioxide is a reddish-orange-brown gas with a characteristic pungent odor. It is corrosive and a strong oxidizing agent. Nitrogen dioxide comprises about 10% of the oxides of nitrogen (NOX) that are formed when nitrogen in the air combines with oxygen during high temperature combustion. Most of the rest of the NOX emitted by combustion sources is nitric oxide (NO). However, during the day most of the NO is photochemically transformed into NO2. Thus, essentially all the NOX emitted can be assumed to eventually become NO2.

4.2 <u>Health and Welfare Effects</u>

Exposure to NO2 affects the delicate structure of lung tissue. High levels cause lung irritation and potential lung damage. Lower levels have been associated with increased respiratory disease. Oxides of nitrogen can cause serious injury to vegetation, including bleaching or death of plant tissue, loss of leaves, and reduced growth rate. NOX also deteriorates fabrics and fades fabric dyes. Nitrate salts formed from nitrogen oxides have been associated with the corrosion of metals. Nitrogen oxides can also reduce visibility.

4.3 <u>Standards</u>

The current standard for NO2 is an annual arithmetic mean (average) value not to exceed .05 ppm. NO2 is the only gaseous pollutant for which only a long-term (annual average) standard has been established.

4.4 Monitoring

Nitrogen Dioxide was monitored at one site in Maine during 1985 using continuous monitoring equipment. The monitor was in operation for the ozone season only.

Table 4-1 is the 1985 Data Summary for NO2. Table 4-2 presents the NO2 Historical Comparison.

TABLE 4 - 1 1985 NITROGEN DIOXIDE DATA SUMMARY (Parts Per Million)

SITE	ADDRESS	NUMBER OF OBSERVATIONS	ANNUAL AVERAGE
METROPOLITAN	PORTLAND AIR QUALITY CONTROL REGION (110)	
Portland*	Shelter Site (P.E.O.P.L.)	2195	.017

* This site operated only during the ozone season in 1985.

TABLE 4 - 2 NITROGEN DIOXIDE HISTORICAL COMPARISONS (Annual Concentrations in PPM)

SITE	ADDRESS	1981	1982	1983	1984	1985
METROPOLITAN	PORTLAND AIR QUALITY CONTROL REGION (110)					
Portland*	Shelter Site (P.E.O.P.L.)	.029	.016	.025	.021	.017

* This site operated only during the ozone season from 1982 through 1985.

٠.

5. <u>SULFUR DIOXIDE (SO2)</u>

5.1 Description and Sources

Sulfur dioxide is a colorless irritating gas having the same pungent odor as a struck match. Most people can detect its taste at a level of about 0.3 to 1 part per million. SO2 is highly soluble in water, forming sulfurous acid. On a worldwide basis, SO2 is considered to be one of the major pollution problems. It is emitted mainly from stationary sources that utilize fossil fuels (coal, oil) such as power plants, ore smelters, and refineries.

5.2 <u>Health and Welfare Effects</u>

The health effects of sulfur dioxide appear to be always associated with high levels of particulates or other pollutants. The world's major recorded air pollution disasters have been associated with high levels of sulfur dioxide and particulates. The excess deaths attributed to these pollutants were due to respiratory failures and occurred predominantly, but not exclusively, in the elderly and Atmospheres containing high levels of sulfur dioxide are infirm. associated with elevated concentrations of other sulfur compounds such as sulfates and sulfuric acid mists, which are corrosive and potentially carcinogenic.

The corrosiveness of SO2 and its derivatives also causes crop and material damage. Its transport and transformation into sulfurous and sulfuric acids contribute to acid precipitation, causing soils and lakes to become seriously acidified.

5.3 Standards

There are two existing Primary National Ambient Air Quality Standards for sulfur dioxide. The first is a long-term one year arithmetic average of 0.03 parts per million (ppm). The second is a short-term 24-hour average standard where concentrations are not to exceed 0.14 ppm more than once per year. The current Secondary NAAQS for SO2 is a 3-hour average concentration of 0.5 ppm not to be exceeded more than once per year.

In addition there are three state standards for sulfur dioxide. The first is a long-term one-year arithmetic average of .022 parts per million. The second is a short-term 24-hour average standard of .088 ppm not to be exceeded. The third is a short-term 3-hour average concentration of .439 ppm not to be exceeded.

5.4 Monitoring

Sulfur dioxide was monitored at twenty-eight sites in Maine during 1985 using continuous monitoring equipment utilizing either the pulsed fluorescent or coulometric methods. Table 5-1 is the 1985 Data Summary for SO2. Tables 5-2 and 5-3 present the SO2 Historical Comparison Data.

.

•

	TABLE 5 - 1	
1985	SULFUR DIOXIDE DATA SUMMARY	
	(Parts Per Million)	

	NUMBER OF	HIGHEST	SECOND HIGHEST	HIGHEST	SECOND HIGHEST	ANNUAL
SITE ADDRESS	OBSERVATIONS	3-HOUR AVERAGE	3-HOUR AVERAGE	24-HOUR AVERAGE	24-HOUR AVERAGE	ARITHMETIC MEAN
ANDROSCOGGIN INTERSTATE AIR QUALITY CONTROL REGION (107)					
Augusta Hussey School	2045	.083	.070	.033	.030	.014*
Augusta Nap's Trading Post	2046	.051	.049	.023	.023	.012*
Augusta St. Augustines	1358	.049	.049	.022	.021	.010*
Lewiston Country Kitchen Parking Lot	7673	.104	.092	.043	.040	.008
Mexico Carver's Residence	8277	.098	.080	.044	.037	.007
Mexico Hunt's	8305	.121	.105	.070	.039	.009
Rumford Taylor Mountain I	8330	.141	.133	.066	.056	.010
Rumford Taylor Mountain II	8337	.143	.140	.050	.047	.008
Rumford Village Green Site	8295	.110	.093	.031	.031	.010
Thomaston Dexter Avenue	7888	.059	.056	.018	.016	.003
Thomaston Marsh Road	7991	.038	.027	.013	.012	.002
Searsport Spaulding Property	3873	. 300	.219	.082	.077	.012*
Searsport Searsport DOT	1263	.067	.039	.019	.015	.003*
Stockton Springs Cape Jellison	1165	.071	.069	.029	.028	.007*
AROOSTOOK AIR QUALITY CONTROL REGION (102)						
Madawaska Madawaska High School	8244	.104	.095	.037	.037	.004
Madawaska Albert Street	8339	.166	.139	.058	.055	.011
Madawaska Sewage Treatment Plant	4615	.109	.091	.038	.036	.006*
Madawaska U.S. Post Office	3784	. 153	.109	.061	.060	.007*
DOWNEAST AIR QUALITY CONTROL REGION (109)						
East Millinocket Katahdin School	800	. 095	090	026	019	007*
Lincoln Thomas Motel Trailer Park	8106	.104	.082	.051	-043	.003
Lincoln Fish Hill Base	8270	.049	.048	.023	.021	.003
Lincoln Fish Hill Peak	8223	.141	.139	.044	.039	.004
Millinocket Wastewater Treatment Plant	B217	.129	.120	.076	.060	.010
Millinocket York Street	8275	.174	.145	.046	.040	.007
Woodland Secondary Treatment Pipeline	7581	.119	.089	.027	.024	.002
METROPOLITAN PORTLAND AIR QUALITY CONTROL REGION (1)	0)					
Kittery Greenfield Drive	6702	- 058	- 057	. 034	.022	004
Kittery Masonic Temple	7823	.129	.100	.055	.045	.009
Portland Shelter Site	7794	.071	.065	.050	.045	.010

* Insufficient data collected for valid annual arithmetic mean.

			MAXIMUM 24-HOUR CONCENTRATIONS (PPM)					
SITE	ADDRESS	1980	1981	1982	1983	1984	1985	
ANDROSCOGGIN INTERST	TATE AIR QUALITY CONTROL REGION (107))				· ·		
Lewiston	Country Kitchen Parking Lot		.035	.056	.044	.060	.043	
Mexico	Carver's Residence			.042	.045	.040	-044	
Mexico	Hunt's			·	.061	.071	.070	
Rumford	Taylor Mountain I			.075	.077	.096	.066	
Rumford	Taylor Mountain II				.072	.071	.050	
Rumford	Village Green Site				.054	.049	.031	
Thomaston	Dexter Avenue	.017	.026	.030	.016	.050	.018	
Thomaston	Marsh Road	.017	.010	.016	.013	.017	-013	
AROOSTOOK AIR QUALIT	TY CONTROL REGION (108)					ĸ		
Madawaska	Madawaska Hiph School	.062	. 125	. 139	.049	.066	.037	
Madawaska	Albert Street	.132	135	152	.130	.078	-058	
Madawaska	Sewage Treatment Plant	.073	.085	.083	.060	.045	.038	
DOWNEAST AIR QUALITY	(CONTROL REGION (109)							
Fast Millinocket	Katabdin School	118	077	072	054	.025	.026	
Lincoln	Thomas Motel Trailer Park	.110	.0//	062	052	076	051	
lincoln	Fish Hill Base			.002	023	016	023	
Lincoln	fish Hill Peak				025	025	044	
Millipocket	Wastewater Treatment Plant	264	084	078	077	062	076	
Millinocket	York Street	149	092	063	065	.044	.046	
Woodland	Secondary Treatment Pipeline	.037	.103	.022	.058	.059	.027	
METROPOLITAN PORTLAN	D AIR QUALITY CONTROL REGION (110)							
Kittery	Greenfield Drive			.006	.043	.027	-034	
Kittery	Masonic Temple				.043	.046	.055	
Portland	Shelter Site				.056	.062	.050	

TABLE 5 - 2 SULFUR DIOXIDE HISTORICAL COMPARISONS (Maximum 24-Hour Concentrations of Sulfur Dioxide)

a

٠,

······································		······································	TOTAL NUMBER OF VIOLATIONS*				
SITE	ADDRESS	1980	1981	1982	1983	1984	1925
ANDROSCOGGIN INTERST	TATE AIR QUALITY CONTROL REGION (107)					
Rumford	Taylor Mountain I			0	0	1	۵
AROOSTOOK AIR QUALIT	TY CONTROL REGION (108)						
Madawaska Madawaska Madawaska	Madawaska High School Albert Street Sewage Treatment Plant	0 10 0	1 7 0	1 7 0	0 2 0	0	0 C 0
DOWNEAST AIR QUALITY	CONTROL REGION (109)					j.	
East Millinocket Millinocket Millinocket Woodland	Katahdin School Wastewater Treatment Plant York Street Secondary Treatment Pipeline	1 31 14 0	0 0 1	0 0 0	0 0 0	0 0 0 0	0 C C C

TABLE 5 - 3 SULFUR DIOXIDE HISTORICAL COMPARISONS (Sites With Violations)

Includes 3-Hour and 24-Hour Violations.

· .

.

•

.

.

6. PARTICULATES (TSP)

6.1 <u>Description and Sources</u>

Particulates is the term given to the tiny particles of solid or semi-solid material found in the atmosphere. It is this "dirt" in the air that is visible as a "Brown Cloud", haze or smog. The sources of particulates are many: wind-blown dust and sand from roadways, fields, and construction; coal dust, fly ash, and carbon black from various and automobile exhaust, combustion sources; to name a few. Particulates that range in size from less than 0.1 micrometer up to called "total approximately 45 micrometers are suspended particulates". Particles larger than that range tend to settle out of the air and not remain suspended, except in high winds.

6.2 <u>Health and Welfare Effects</u>

The human nose filters out 99 percent of the large and medium-sized particles. The rest enter the windpipe and lungs, where some, known as inhalable particulates, cling to protective mucous and are removed. Some of the smallest, called respirable particulates, are deposited in the lungs' tiny air sacs (alveoli).

In the lungs particulates slow down the exchange of oxygen with carbon dioxide in the blood, causing shortness of breath. The heart may be strained because it must work harder to compensate for oxygen loss. Usually the people most sensitive to these conditions have respiratory diseases like emphysema, bronchitis, asthma, or heart problems. The elderly and children are also sensitive.

Particles themselves may be poisonous if inhaled or absorbed, damaging remote organs like the kidneys or liver. Swallowed mucous that is laden with poisionous particulate matter may damage the stomach.

In addition, particulates may be carriers of poisonous liquid or gaseous substances. Sulfur dioxide, a major air pollutant in its own right, is frequently absorbed by particulates and can react with them to form sulfates. Sulfates react with moisture in the air or in the respiratory tract to form a corrosive liquid (sulfuric acid) that irritates delicate membranes and slows down the cleansing action of mucous. This effect can reduce the body's ability to remove harmful bacteria, increasing the possibility of infection.

Adverse health effects from particulate matter aren't always seen immediately. Particulates can accumulate in the lungs after repeated, long-term exposure, causing respiratory distress and other health problems that may be manifested later. Particles in the air block out and scatter sunlight, reducing visibility. Particulates soil and corrode metals, masonry, and textiles. Irritating odors are often associated with particulates, also.

6.3 <u>Standards</u>

Primary:

The current primary particulate standards are for total suspended particulates (TSP), independent of particle size or chemical composition. The long-term standard is an annual geometric mean not to exceed 75 micrograms of particulates per cubic meter of air (ug/m3). The short-term standard is a 24-hour average of 260 ug/m3 not to be exceeded more than once per year.

EPA has proposed revised particulate standards to account for the deeper inhalability of smaller particles. The new standards, rather than applying to TSP, would apply to inhalable or fine particulates. A particle size of 10 micrometers is being considered as the upper size limit with a 24-hour concentration in the range of 150-250 ug/m3 and an annual standard in the range of 50 to 65 ug/m3.

Secondary:

The current secondary TSP standard is a 24-hour average of 150 ug/m3 not to be exceeded more than once per year, designed to protect from soiling, corrosion, etc.

EPA is also considering replacing the current 24-hour secondary TSP standard with an annual TSP standard to be selected from a range of 70 to 90 ug/m3, expected annual arithmetric mean.

State Standards:

The current State Standards include an annual geometric mean of 60 micrograms per cubic meter and a 24-hour standard of 150 micrograms per cubic meter not to be exceeded.

6.4 Monitoring

Particulates were monitored at 57 sites in Maine during 1985 using High-Volume Particulate Air Samplers (Hi-Vols).

Hi-Vols operate on the same principle as a vacuum cleaner in that the air is drawn through a filter to "catch the dust". The difference is that a Hi-Vol draws a calibrated volume of air through a pre-weighed filter pad (rather than a bag) for a twenty-four hour period. The change in weight of the filter pad is recorded as total suspended particulate or TSP in micrograms of particulates per cubic meter of air. Table 6-1 is a summary of the TSP data collected in Maine during 1985. Table 6-2 is a historical comparison of the TSP Annual Geometric Means at sites which have been in existence over the last two years. Table 6-3 summarizes the number of TSP violations which have occurred over the last six years and the sites at which they occurred.

Fine particulate sampling increased again during 1985. The increased sampling has been conducted to obtain data to evaluate the proposed fine particulate standards and determine those areas which are likely to have problems meeting the proposed range of standards. sampling has been conducted with dichotomous samplers The and The dichotomous samplers collect particles size-selective hi-vols. smaller than either 15 or 10 microns in two different size classes. The two classes are summed to give total fine particulate. The size-selective hi-vols collect particles 10 microns and smaller or 15 microns and smaller.

The data collected and the sites which were in operation during 1985 have been summarized in Table 6-4.

SITE	ADDRESS	NUMBER OF OBSERVATIONS	HIGHEST 24-HOUR	SECOND HIGHEST	THIRD HIGHEST	ANNUAL GEOMETRIC MEAN
ANDROSCOGGIN INTERSTAT	E AIR QUALITY CONTROL REGION (10	7)				
Auburn	Lepage Bakery	114	150	139	115	44.8
Augusta	Cony High School	22	151	141	118	72.9*
Augusta	Hartford Fire House	179	143	124	121	44.3
Augusta	Hodgkins School	56	77	61	58	35.5*
Farmington	Farmington Fairgrounds	16	71	69	68	36.0*
Jay	Weather Level I	329	101	94	90	36.6
Jay	Crash Road	340	66	64	64	18.7
Jay	Jay Hill	348	106	105	100	24.5
Jay	Water Treatment Plant Site #2	315	119	118	89	22.9
Mexico	Mexico Treatment Plant	222	101	90	90	40.3
Mexico	Labonville's	223	206	142	127	50.7
Mexico	Larver's Residence	225	107	99	9/	38.3
South Paris	Keilly Property	93	219	174	1/3	50.4
South Paris	Wastewater Freatment Plant	20	63	58	55	32.2*
South Paris	Alpine Street	25	0/	51	39	19.4
Rumford	Taylor Mountain I	214	100	01 71	/9	35.8
Rumford	Nillago Groop Site	105	144	112	71 07	20.7
Skowbogan	Vindye breen site	135	144 E7	55	57	10 5
Skowhegan	Faton Didne	02	57	- 61	59 .	10.5
Thomaston	Dexter Avenue	204	122	117 ·	106	792 0
Thomaston	Sanders Property	204	73	73	71	22.0
Thomaston	Pease Property	200	103	79	76	2R A
Thomaston	Marsh Road	208	. 84	77	76 -	24 0
Waterville	Stern's Department Store	108	137	134	113	40.8
AROOSTOOK AIR QUALITY	CONTROL REGION (108)				-	
Madawaska	Madawaska High School	111	109	100	88	32.5
Madawaska	St. Jarres	107	155	127	122	46.9
Presque Isle	Northeastland Hotel	161	296	243	202	59.2
DOWNEAST AIR QUALITY C	ONTROL REGION (109)					
Acadia National Park	McFarland Hill Ranger Station	85	58	43	40	11.6
Bangor	Regional Office	116	183	151	119	44.8
Bangor	Kenduskeag Pump Station	111	186	184	183	59.9
Brewer	Brewer Junior High School	110	144	132	104	38.1
East Millinocket	Katahdin School	120	98	[*] 87	86	26.9
Lincoln	Vocational Education Building	358	133	121	106	37.1
Lincoln	Lincoln Post Office Building	357	156	121	118	39.2
Lincoln	Thomas Motel Trailer Park	358	195	157	156	41.4
Millinocket	York Street	194	176	136	114	46.1
Old Town	Marsh Island Apartments	117	165	117	115	33.8
Old fown	Penobscot Shoe Company	116	112	91	87	28.1
Newburgh	Newburgh School	337	56	53	50	15.1

.

TABLE 6 - 1 1985 TOTAL SUSPENDED PARTICULATES DATA SUMMARY (Micrograms Per Cubic Meter)

SITE	ADDRESS	NUMBER OF OBSERVATIONS	HIGHEST 24-HOUR	SECOND HIGHEST	THIRD HIGHEST -	ANNUAL GEOMETRIC MEAN
	••••••••••••••••••••••••••••••••••••••				-	-
Miltord	Shumway Field	33/	92	91	79	20.0
Woodland	Secondary Treatment Pipeline	56	182	87	84 -	36.9*
Woodland	Woodland High School	53	92	90	90	41.5*
METROPOLITAN PORTLA	AND AIR QUALITY CONTROL REGION (110))				
Biddeford	Biddeford Treatment Plant	111	106	77	75	35.8
Bridaton	Upper Ridge Road	136	52	48	44	14.6
Brunswick	Coastal Savings Bank	84	148	139	129	57.9*
Kittery	Greenfield Drive	99	76	66	61	26.9
Kittery	Wentworth Dennet School	83	89	77	69	32.8
Portland	Shelter Site	120	163	132	119	51.3
South Portland	SMVTI	110	86	84	68	30.7
Westbrook	N.E.T.&T. Company	119	148	146	139	- 44.7
Westbrook	Research Building	192	186	173	169	70.5
Westbrook	Warehouse #5	191	147	145	143	62.5

.

TABLE 6 - 1

* Insufficient data collected for valid annual geometric mean.

			······	ANNUAL G	EOMETRIC MEANS	(ug/m ³)		
SITE	ADDRESS	1979	1980	1981	1982	1983	1984	1985
ANDROSCOGGIN INTERSTAT	TE AIR QUALITY CONTROL REGION (107)							
Auburn	Lepage Bakery		73.0	53.5	47.4	39.3 -	43.5	44.8
Augusta	Conv High School	53.5	62.1	59.5	. 48.5	48.9	50.5	72.9*
Augusta	Hartford Fire House				46.9	48.1* -	45.9	44.3
Augusta	Hodakins School						29.4	35.5*
Jav	Weather Level I			33.3	40.0	33.0*	36.4	36.6
Jav	Crash Road	24.3	23.8	23.2	22.1	18.0* -	22.1	18.7
Jav	Jav Hill	27.8	28.0	27.5	28.5	25.2*	32.6	24.5
Jav	Water Treatment Plant Site #2				21.5	19.0* -	21.1	22.9
Mexico	Mexico Treatment Plant	43.3	48.7	42.0	42.3	39.1	39.9	40.3
Mexico	labonville's			48.3	53.5	50.6	51.6	50.7
Mexico	Carver's Residence				40.3	35.6 -	37.4	38.3
South Paris	Reilly Property	59.6	53.6	58 7	69.5	77 6*	102 3*	60 4
Rumford	Taylor Mountain I				37 9	34.8 .	37 5	35.8
Rumford	Taylor Mountain II				57.5	26.0	28.2	26.7
Rumford	Villano Green Site					2010	34 0	31 2
Skowbogan	Hincklov	10 7	16.5	16 1	18.5	17 3	21 3	18 5
Skowhogan	Eaton Ridge	24 3	16.5	16.6	13.5 17 A	35.4	20.2	18 4
Thomaston	Dexter Averue	24.3	22 5	25.7	25 5	22.0	24.2	22 0
Thomaston	Sandorn Dronorty	26.0	20.0	20.7	23.5	22.0	24.2	22.3
Thomaston	Banders Property	20.9	29.0	24.5	23.7	21.3	23.4	22.3
Thomaston	Mamph Dead	40.4	20.0	37.0	24.0	20.0	31.3	20.4
hater Alle	Marsh Kudu		20.4	30.8	20.3	22.1	25.9	24.0
wateryffle	Sterns Department Store		**		*=	· ·	35.51	40.0
ARODSTOOK AIR QUALITY	CONTROL REGION (108)							
Madawaska	Madawaska High School	39.1	47.1	43,7	47.1	44.1	34.3*	32.5
Madawaska	St. Jarres						50.7	46.9
Presque Isle	Northeastland Hotel		49.1	67.0	62.0	66.8	62.5*	59.2
DOWNEAST AIR QUALITY (CONTROL REGION (109)							
Acadia National Park	McFarland Hill Ranger Station					11.6*	12.9	11.6
Bangor	Regional Office	51.9	45.3	45 3	42.7	41.7	46.5	44.8
Bangor	Kenduskean Pump Station	68 4	58 3	53.8	52 1	49.8	56 5	59 9
Brewer	Brever Junior High School		41 4	43.6	36.4	37 0	41 5	38.1
Fast Millinocket	Katahdin School		21 2	26.3	30.8	27 4	25 3	26.9
lincoln	Vocational Education Building	48.6	46.9	44 8	41 5	36.2	35.3	37 1
Lincoln	lincoln Post Office Building	53 6	57 1	44.0	46.6	30.2	40 4	30 2
Lincoln	Themas Metal Trailor Barb	55.0	57.1	49.5	40.0	40.9	41 9	A1 A
Millinockot	Verk Street	50 5	A0 0	A2 7	47.7	40.5	40.1	46 1
Old Town	TOTA SLITEEL March Island Apartments	20.2	40.3	46.7	43.3	43.0	49.1	33 0
	marsh island Apartments	30.3	44.5	42.0	20.0	35.0	37.3	33.8
	renobscot Snoe Lompany	29.9	40.0	3/.1	32.1	20.0	31.0	20.1
Newburgh	Newburgh School		23.0	19.2	15.9	15.8	10.1	15.1
miltord	Shumway Field		32.9	29.1	31.0	25./~	29.1	20.0

		TABLE 6	- 2	
TOTAL	SUSPENDED	PARTICULATES	5 HISTORICAL	COMPARISON
	ANNUAL	GEOMETRIC M	1EANS (ug/m ³)	

A

.

. -

TABLE 6 - 2

			ANNUAL G	EOMETRIC MEANS	(ug/m ³)	/m ³)	
ADDRESS	1979	1980	1981	1982	1983	1984	1985
Secondary Treatment Pipeline Woodland High School	39.7	35.0 32.3	33.0 44.9	31.6* 36.6*			36.9* 41.5*
D AIR QUALITY CONTROL REGION (110)							
Biddeford Treatment Plant			47.2	43.0	37.8*	43.3*	35.8
Greenfield Drive Wentworth Dennet School			·	32.0	27.7 34.5*	27.2	26.9
Shelter Site SMVTI	30.9	53.5 40.5	50.4 37.2	48.2 32.5	45.6 33.5*	49.4 31.7*	51.3 30.7
N.E.T.&T. Company Research Building	43.7	42.4 55.7	38.8 52.0	44.0 55.3	36.5	40.8 63.4	44.7 70.5
	ADDRESS Secondary Treatment Pipeline Woodland High School D AIR QUALITY CONTROL REGION (110) Biddeford Treatment Plant Upper Ridge Road Greenfield Drive Wentworth Dennet School Shelter Site SMYTI N.E.T.&T. Company Research Building Warehouse #5	ADDRESS1979Secondary Treatment Pipeline39.7Woodland High SchoolD AIR QUALITY CONTROL REGION (110)Biddeford Treatment PlantUpper Ridge RoadGreenfield DriveWentworth Dennet SchoolShelter SiteSMYTI30.9N.E.T.&T. Company43.7Research BuildingWarehouse #5	ADDRESS19791980Secondary Treatment Pipeline39.735.0Woodland High School32.3D AIR QUALITY CONTROL REGION (110)Biddeford Treatment PlantUpper Ridge RoadGreenfield DriveShelter SiteShelter SiteSNYTI30.940.5N.E.T.&T. CompanyWarehouse #5	ADDRESS 1979 1980 1981 Secondary Treatment Pipeline 39.7 35.0 33.0 Woodland High School 32.3 44.9 D AIR QUALITY CONTROL REGION (110) 47.2 Biddeford Treatment Plant 47.2 Upper Ridge Road Greenfield Drive Wentworth Dennet School Shelter Site 53.5 50.4 SMYTI 30.9 40.5 37.2 N.E.T.&T. Company 43.7 42.4 38.8 Research Building 55.7 52.0	ADDRESS 1979 1980 1981 1982 Secondary Treatment Pipeline 39.7 35.0 33.0 31.6* Woodland High School 32.3 44.9 36.6* D AIR QUALITY CONTROL REGION (110) Biddeford Treatment Plant 47.2 43.0 Upper Ridge Road 32.0 Wentworth Dennet School 32.0 44.9 36.6* SMYTI 30.9 40.5 37.2 32.0	ADDRESS 1979 1980 1981 1982 1983 Secondary Treatment Pipeline 39.7 35.0 33.0 31.6* Woodland High School 32.3 44.9 36.6* D AIR QUALITY CONTROL REGION (110) Biddeford Treatment Plant 47.2 43.0 37.8* Upper Ridge Road Greenfield Drive 32.5 50.4 48.2 45.6 SMYTI 30.9 40.5 37.2 32.5 33.5* N.E.T.&T. Company 43.7 42.4 38.8 44.0 36.5 Research Building 33.5 51.3 52.2	ADDRESS 1979 1980 1981 1982 1983 1984 Secondary Treatment Pipeline 39.7 35.0 33.0 31.6* Woodland High School 32.3 44.9 36.6* D AIR QUALITY CONTROL REGION (110) 47.2 43.0 37.8* 43.3* Upper Ridge Road 17.1* Greenfield Drive 32.5 33.5* 35.5 Shelter Site 34.5* 35.5 SMYTI 30.9 40.5 37.2 32.5 33.5* 31.7* N.E.T.&T. Company 43.7 42.4 38.8 44.0 36.5 40.8 Research Building 55.7 52.0 55.3 52.2 63.6

.

.

٠

* Insufficient data collected for valid annual geometric mean.

.

				TOTAL NUMBER	V OF SHOKE FERM	I ATOFWLIO42		
SITE	ADDRESS	1979	1980	1981	1982	1983	1984	1985
ANDROSCOGGIN INTERSTATE	AIR QUALITY CONTROL REGION (107)							
• .				_				
Auburn	Lepage Bakery			0	4	1	0	0
Augusta	Cony High School	4	5	. 4	7	2	5	l
Augusta	Hartford Fire House				6	6	18	0
Jay	Weather Level I				0	1	2	0
Jay	Crash Road	0	0	1	2	0	0	0
Jay	Jay Hill	0	1	1	2	0	. 0	0
Mexico	Mexico Treatment Plant	1	1	0	0	0	0	0
Mexico	Labonville's			1	0	0	0	1
South Paris	Reilly Property	8	3	1	0	4	2	6
Rumford	Village Green					ı	1	0
Skowhegan	Eaton Ridge	1	0	0	0	0	0	0
Thomaston	Dexter Avenue			1	1	0 -	0	0
Thomaston	Pease Property	0	1	0	0	0	0	0
Thomaston	Marsh Road			1	3	Ō	õ	Ō
AROOSTOOK AIR QUALITY C	ONTROL REGION (108)							
Madawaska	Madawaska High School	ı	2	Q	13	8	0	n
Madawaska	St. Jarres						õ	ĩ
Presque Isle	Northeastland		0	10	12	11	12	บ่า
DOWNEAST AIR QUALITY CO	NTROL REGION (109)							
Panoor	Pagianal Office	1	0	2	0	,	0	•
Bangor	Keylonal Office Konduskong Rump Station	4	0	2	2	2	0	4
East Millinocket	Kenudskedg rump station Katabdin Sabaal	/	4 2	3	0	2	1	2
Lincoln	Natanuth School Education Ruilding	~~~	2	•	0	1	0	U
Lincoln	Vocational Education Bullding	2	2	4	4	2	U U	U
Lincoln	There Metal Turilan Daub	2	5	/	6	/		1
Lincoln Millingeket	Inomas Motel Irailer Park				10	4	2	3
	fork Street	Q	6	2	2	3	4	1
Old Town	Marsh Island Apartments		0		1	0	2	l
ula lown Maadlaad	Penobscot Shoe Company	0	3	1	2	0	Ō	0
Woodland	Secondary Treatment Pipeline	2	4	3	0	5	1	1
woodland	Woodland High School		0	3	0	8	11	0
METROPOLITAN PORTLAND A	IR QUALITY CONTROL REGION (110)		•					
Biddeford	Biddeford Treatment Plant	** **		0	1	0	0	0
Portland	Shelter Site		0	ō	Ó	ō	ō	ĩ
Westbrook	N.E.T. &T. Company		õ	ĩ	ō	õ	ĩ	n
Westbrook	Research Building		ŏ	ò	5	2	2	Ř
Westbrook	Warehouse ₹5			ŏ	4	ō	ī	õ

TABLE 6 - 3 TOTAL SUSPENDED PARTICULATES HISTORICAL COMPARISON (Sites With Violations)

.

SITE	ADDRESS	NUMBER OF OBSERVATIONS	HIGHEST 24-HOUR	SECOND HIGHEST	THIRD HIGHEST	ANNUAL ARITHMETIC MEA	ANNUAL N GEOMETRIC MEAN
ANDROSCOGGIN INTERSTAT	TE AIR QUALITY CONTROL REGION (10)7)					
Augusta Augusta Farmington Jay	Hartford Fire House Malta Street Farmington Fairgrounds Jay Hill	175 12 18 86	77 87 62 63	68 59 58 61	68 57 42 49	29.6 37.2 26.9 19.3	26.8 32.3* 23.6* 15.7
AROOSTOOK AIR QUALITY	CONTROL REGION (108)						
Madawaska Presque Isle Presque Isle	Big Daddy's Restaurant Northeastland Hotel City Dry Cleaners	58 201 23	76 137 77	74 127 55	69 125 52	33.4 39.8 32.6	30.7* 35.7 30.0*
DOWNEAST AIR QUALITY (CONTROL REGION (1D9)						
Acadia National Park Lincoln Bangor Woodland	McFarland Hill Ranger Station Thomas Motel Trailer Park Kenduskeag Pump Station Woodland High School	63 116 46 27	37 70 77 60	35 69 50 50	34 66 50 49	11.4 34.7 27.9 27.7	9.5 31.1 24.7* 23.8*
METROPOLITAN PORTLAND	AIR QUALITY CONTROL REGION (110))					
Bridgton Portland Portland Westbrook	Upper Ridge Road Shelter Site(Dichotomous) Shelter Site(SA-321A) Warehouse ≢5	28 42 12 98	86 120 99 135	73 113 51 73	73 102 43 72	32.4 44.7 38.9 32.0	25.9* 37.3* 35.0* 28.2

.

.

.

TABLE 6 - 4 1985 FINE PARTICULATE DATA SUMMARY (Micrograms Per Cubic Meter)

* Insufficient data collected for valid annual geometric mean.

7. <u>LEAD (Pb)</u>

7.1 Description and Sources

Lead in the ambient air exists primarily as particulate matter in the inhalable size range. The predominant source of atmospheric lead is from motor vehicles that burn "leaded" gasoline. The lead in gasoline is in the form of tetraethyl lead, an "anti-knock" compound. Other major sources of atmospheric lead are the extraction and processing of metallic ores.

7.2 <u>Health and Welfare Effects</u>

When atmospheric lead is breathed in, it is absorbed into the bloodstream and distributed throughout the body along with lead from contaminated food and drinking water. Lead accumulation in the body can impair the production of hemoglobin. Clinical lead poisoning occurs when the body's accumulation of lead becomes too high. Symptoms of lead poisoning range from loss of appetite, fatigue, cramps and constipation, and pains in the ankles and wrists to loss of in the arms and legs, anemia, kidney disease, mental power blindness and death. Lead concentrations in the ambient retardation, air are not sufficient to produce lead poisoning but they do increase the risk of harm when other sources of lead are present. And, indirectly, lead fallout from automotive exhaust onto soil and street surfaces can be ingested in considerable amounts by infants and young children.

7.3 <u>Standards</u>

The current National Ambient Air Quality Standard for lead is a 3-month (calendar quarter) average concentration not to exceed 1.5 micrograms of lead per cubic meter of air.

The current State Standard for lead is a 24-hour average concentration of 1.5 micrograms of lead per cubic meter of air not to be exceeded more than once per year.

7.4 Monitoring

Lead was monitored at eight sites in Maine during 1985 by taking samples of the Hi-Vol filters from those sites and analyzing the samples for lead content using an atomic absorption analyzer.

Tables 7-1 and 7-2 are the 1985 Data Summaries for Lead. Table 7-3 presents the Lead Historical Comparison Data.

SITE	ADDRESS	NUMBER OF OBSERVATIONS	HIGHEST 24-HOUR	SECOND HIGHEST	THIRD HIGHEST	ANNUAL ARITHMETIC MEAN
ANDROSCOGGIN INTER	RSTATE AIR QUALITY CONTROL REGION					
Auburn Augusta	Lepage Bakery Cony High School	58 10	. 40 . 31	. 30 . 28	.25 .25	.11 .19
AROOSTOOK AIR QUAL	ITY CONTROL REGION (108)					
Madawaska Presque Isle	Madawaska High School Northeastland Hotel	6 59	.26 .62	.23 .57	.18 .57	.13 .14
DOWNEAST AIR QUAL	ITY CONTROL REGION (109)					•
Bangor	Kenduskeag Pump Station	57	.64	.42	.33	.15
METROPOLITAN PORT	LAND AIR QUALITY CONTROL REGION (1	10)				
Kittery Portland Portland	Greenfield Drive Shelter Site Tukey's Bridge	39 95 64	.19 .53 .87	- 19 - 50 - 74	.15 .40 .70	.07 .19 .35

.

TABLE 7 - 1 1985 LEAD DATA SUMMARY (Micrograms Per Cubic Meter)

)

.

.

٠

.

			1985 QUARTERL	85 QUARTERLY AVERAGES	
SITE	ADDRESS	1ST	2ND	3RD	4TH
ANDROSCOGGIN INTE	RSTATE AIR QUALITY CONTROL REGION (10	7)			
Auburn	Lepage Bakery	.17	.09	.08	.09
Augusta	Cony High School	. 19			
AROOSTOOK AIR QUA	LITY CONTROL REGION (108)				
Madawaska	Madawaska High School	.13			
Presque Isle	Northeastland Hotel	24	.10	.12	.10
DOWNEAST AIR QUAL	ITY CONTROL REGION (109)				
Bangor	Kenduskeag Pump Station	.21	.13	.17	.09
METROPOLITAN PORT	LAND AIR QUALITY CONTROL REGION (110)				
Kittery	Greenfield Drive	.11	.06	.06	
Portland	Shelter Site	. 30	.15	.14	.15
Portland	Tukey's Bridge	.40	. 31	.31	

TABLE 7 - 2 1985 LEAD DATA SUMMARY BY QUARTERS (Micrograms Per Cubic Meter)

-

٠

.

			MAXIMUM 24-HOUR CONCENTRATION/AAM					
SITE	ADDRESS	1980	1981	1982	1983	1984	1985	
ANDROSCOGGIN INTER	STATE AIR QUALITY CONTROL REGION (107)						
Auburn Augusta	Lepage Bakery Cony High School	0.99/0.34	0.73/0.24	0.66/0.24	0.70/0.20	0.77/0.20 0.91/0.17	0. 4 0/0.11 0.31/0.19	
AROOSTOOK AIR QUAL	ITY CONTROL REGION (108)					-		
Presque Isle	Northeastland Hotel	0.52/0.21	0.93/0.22	0.89/0.24	0.93/0.19	0.54/0.13	0.62/0.14	
DOWNEAST AIR QUAL	ITY CONTROL REGION (109)							
Bangor	Kenduskeag Pump Station	0.85/0.30	0.62/0.22	0.70/0.24	0.59/0.18	0.53/0.14	0.64/0.15	
METROPOLITAN PORTI	AND AIR QUALITY CONTROL REGION (11	0)						
Kîttery Portland Portland	Greenfield Drive Shelter Site Tukey's Bridge		1.45/0.59	0.58/0.18 0.91/0.29 1.28/0.52	0.39/0.11 0.56/0.20 1.44/0.49	0.14/0.06 0.71/0.23 1.10/0.42	0.19/0.07 0.53/0.19 0.87/0.35	

TABLE 7 - 3 LEAD HISTORICAL COMPARISONS (Micrograms Per Cubic Meter)

.

.

•

8. SULFATES (SO4) AND NITRATES (NO3)

8.1 Description and Sources

Sulfates and Nitrates are compounds of varying harmfulness found everywhere in the atmosphere. They are produced by nature as well as man. Man-made sulfates have their origin in sulfur dioxide while nitrates have theirs in nitrogen oxides. Fine particulate compounds, including sulfates and nitrates are formed from chemical reactions between sulfur dioxide or nitrogen dioxide emitted into the air and other substances present there. These fine particulate compounds have a long atmospheric residence time, can be transported in the air for long distances, and are capable of penetrating deeply into the human respiratory tract.

8.2 <u>Health and Welfare Effects</u>

Epidemiological studies of populations exposed to particulate sulfates have shown that atmospheric sulfates, more than sulfur dioxide gas or total suspended particulates, are related to aggravation of asthma, aggravation of heart and lung disease in the elderly, and impairment of lung function in school children. This evidence was obtained from EPA's Community Health and Environmental Surveillance System (CHESS). From these studies, estimates of the sulfate threshold for adverse health effects have been derived, as shown in Table 8-1. However, these epidemiological studies have not been substantiated by laboratory studies.

Both sulfates and nitrates are considered to be contributors to the acid deposition problem.

8.3 Standards

There are currently no standards for levels of sulfates in ambient air. EPA is presently working on a standard and is expected to make a proposal in the future.

There are no standards for nitrates nor are there any proposed.

8.4 Monitoring

Sulfate levels were measured at twelve sites in Maine during 1985 by taking samples of the Hi-Vol filters from those sites and analyzing the samples for sulfates using the Automated Technicon II Methylthymol Blue Procedure. Some of the sites are analyzed for sulfates on a routine basis while others may only be analyzed if there has been a violation of an ambient air standard. There is no standard yet and the monitoring methodology is questionable but the data is being included in this report as an aid to those interested in further information about Maine's air quality. Table 8 - 2 summarizes the sulfate data collected during 1985.

Nitrate levels were measured at six sites in Maine during 1985 by also taking samples of the Hi-Vol filters from those sites and analyzing the samples using Method 353.1(Colorimetric, Automated, Hydrazine Reduction). This data, summarized in Table 8 - 3, is also being included in this report as an aid to those interested in further information about Maine's air quality.

TABLE 8-1

SULFATE THRESHOLDS FOR ADVERSE HEALTH EFFECTS

ADVERSE HEALTH EFFECT

Aggravation of Asthma

Aggravation of Heart and Lung Disease in the Elderly

Subtle Decreases in Childhood Lung Function

Increase in Acute Respiratory Disease in Children THRESHOLD CONCENTRATION FOR SUSPENDED SULFATES

6 to 10 Micrograms Per Cubic Meter for 24 Hours.

9 Micrograms Per Cubic Meter for 24 Hours

9 to 13 Micrograms Per Cubic Meter for 1 Year.

13 Micrograms Per Cubic Meter for 1 Year.

SITE	ADDRESS	NUMBER OF OBSERVATIONS	HIGHEST 24-HOUR	SECOND HIGHEST	THIRD HIGHEST	ANNUAL ARITHMETIC MEAN
ANDROSCOGGIN INTERSTAT	E AIR QUALITY CONTROL REGION (10)7)				
Auburn Augusta Mexico	Lepage Bakery Cony High School Mexico Treatment Plant	44 10 61	18.4 11.4 23.7	13.7 10.3 19.6	13.6 10.2 16.8	6.9 8.5 11.1
AROOSTOOK AIR QUALITY	CONTROL REGION (108)					
Madawaska Madawaska Presque Isle	Madawaska High School St. Jarres Northeastland Hotel	38 53 48	17.6 16.4 12.5	12.3 11.8 11.7	10.8 11.0 11.7	6.0 6.0 5.9
DOWNEAST AIR QUALITY C	CONTROL REGION (109)					
Acadia National Park Bangor	McFarland Hill Ranger Station Regional Office	49 58	14.0 21.2	13.5 15.5	8.5 12.6	5.0 7.7
METROPOLITAN PORTLAND	AIR QUALITY CONTROL REGION (110)	I				
Bridgton Kittery Portland South Portland	Upper Ridge Road Greenfield Drive Shelter Site SMVTI	112 39 64 110	19.5 17.2 17.2 22.5	17.B 16.1 17.1 21.3	15.1 15.6 15.6 18.1	5.6 6.9 8 .1 7.3

TABLE 8 - 2 1985 SULFATE DATA SUMMARY (Micrograms Per Cubic Meter)

1 c

. -

,

.

-.

TABLE 8 - 3 1985 NITRATE DATA SUMMARY (Milligrams Per Liter)

SITE	ADDRESS	NUMBER OF OBSERVATIONS	HIGHEST 24-HOUR	SECOND HIGHEST	THIRD HIGHEST	ANNUAL ARITHMETIC MEAN
ANDROSCOGGIN INTERSTAT	E AIR QUALITY CONTROL REGION (10	7)			• -	
Mexico	Mexico Treatment Plant	15	5.1	4 .D	3.5	1.9
AROOSTOOK AIR QUALITY	CONTROL REGION (108)					
Madawaska	St. Jarres	12	2.7	2.6	2.5	1.1
DOWNEAST AIR QUALITY C	ONTROL REGION (109)					• •
Acadia National Park Bangor	McFarland Hill Ranger Station Regional Office	13 15	2.9 4.5	2.7 2.3	1.5 2.1	-1.1 -1.3
METROPOLITAN PORTLAND	AIR QUALITY CONTROL REGION (110)					
Bridgton South Portland	Upper Ridge Road SMVTI	27 29	5.0 6.2	4.7 5.2	4.7 4.7	1.8 2.6

e e

• •

.

.

÷

.

9. ATMOSPHERIC DEPOSITION

9.1 <u>Description and Sources</u>

As result of the combustion of tremendous quantities of fossil fuels such as coal and oil, the United States annually discharges approximately 50 million metric tons of sulfur and nitrogen oxides into the atmosphere. Through a series of complex chemical reactions these pollutants can be converted into acids, which may return to earth as components of either rain or snow. This atmospheric deposition, more commonly known as acid rain, may have severe ecological impacts on widespread areas of the environment.

9.2 <u>Health and Welfare Effects</u>

While direct health effects from acid rain have not been documented there are numerous indirect effects which could have definite effect on mankind. Atmospheric deposition is known to leach heavy metals such as mercury from rocks causing possible contamination of water supplies. Hundreds of lakes in North America and Scandanavia have become so acidic that they can no longer support fish life. The rain falling on forests and other non-farmlands could, in time, cause extensive changes in the soil chemistry. There is not enough information yet to make it possible to say exactly what the results might be, but there is no reason to think the changes will be beneficial.

9.3 Standards

There are no standards in effect or proposed for atmospheric deposition. The only permanent solution to the acid rain problem is to keep the acid levels low. The only practical way of achieving this is by reducing emissions at their sources.

9.4 Monitoring

During 1985 there were four sites collecting data on atmospheric Those four sites included two Bureau maintained sites in deposition. Bridgton and Acadia National Park, a University of Maine maintained site in Greenville and a National Weather Service maintained site in The samples from these four sites are normally collected Caribou. every Tuesday morning at 9:00 a.m.. Consequently, the samples are not necessarily a single storm event but are more likely to be a composite of all storm events during the previous week. The samples, if there was a significant storm, are used for field measurements of pH and conductivity and are then packaged up for shipment to the National Atmospheric Deposition Program central laboratory in Illinois. In the central laboratory they are also tested for pH and conductivity as additional components. Table 9-1 is a well as summary of the measurements taken at the central laboratory in Illinois from the DEP operated sites for the year 1985. The sulfate deposition figures were corrected for marine aerosol contribution.

.

.

TABLE 9 - 1 ATMOSPHERIC DEPOSITION DATA SUMMARY (1984 & 1985)

i

		рН			DEPOSITION	(Kg/ha)
SITE	ADDRESS	MAXIMUM	MINIMUM	MEAN*	S04	N03
DOWNEAST AIR QUALITY CO	ONTROL REGION (109)					
Acadia National Park	McFarland Hill Ranger Station(198 (198	4) 5.4** 5) 5.6	3.2** 3.8	4.6 4.5	18.0*** 19.1***	11.0 11.9
METROPOLITAN PORTLAND A	AIR QUALITY CONTROL REGION (110)					
Bridgton	Upper Ridge Road(1984) (1985)	4.9** 5.3	3.4** 3.8	4.5 4.3	17.0*** 13.9***	10.4 9.7

-52-

* Precipitation weighted mean.** Field data measurements.

*** Corrected for marine aerosol and normalized to 52 weeks.

10. HYDROCARBONS (HC)

10.1 Description and Sources

Hydrocarbons are a class of compounds containing carbon and They are found especially in hydrogen in various combinations. petroleum, natural gas and coal. Some are gaseous, some liquid and There are in fact over a thousand hydrocarbon some are solid. compounds. Many of the polluting hydrocarbons are discharged into the air by incomplete combustion of organic materials. A major source of kind of hydrocarbon emission is the burning of gasoline in this automobiles. Other contributors major are organic solvent evaporation, industrial processes, solid waste disposal and fuel combustion in stationary sources. The control of hydrocarbon emissions are accomplished by combustion process optimization, recovery by mass transfer principles, restriction of evaporative loss and process material and fuel substitution.

10.2 <u>Health and Welfare Effects</u>

Hydrocarbon air pollutants enter into and promote the formation of photochemical smog (ozone) and thus contribute to the development of eye irritation and respiratory tract problems. By themselves, hydrocarbons may induce adverse health effects, although there is relatively little quantitative data to relate individual hydrocarbons to the risk of human disease.

10.3 <u>Standards</u>

The present State and Federal Standard for non-methane hydrocarbons is a three hour average concentration of 160 ug/m3.

10.4 Monitoring

Hydrocarbons were not monitored as part of the states continuous air monitoring program during 1985.