

1984 ANNUAL REPORT ON AIR QUALITY IN THE STATE OF MAINE

Prepared by Jeffrey C. Emery

Maine Department of Environmental Protection Bureau of Air Quality Control Division of Air Quality Services

Leighton E. Carver, Division Director John Bastey, Bureau Director Henry E. Warren, Commissioner

345609

TABLE OF CONTENTS

		PAGE
	TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES	i iii iv
1.	INTRODUCTION 1.1 Purpose and Overview 1.2 Monitoring Sites 1.3 Document Organization 1.3.1 Explanation of Data Summary Tables 1.3.2 Explanation of Historical Comparison Tables 1.3.3 Explanation of Trends Tables	1 1 6 15 15 15
2.	CARBON MONOXIDE (CO) 2.1 Description and Sources 2.2 Health and Welfare Effects 2.3 Standards 2.4 Monitoring	16 16 16 17 17
3.	OZONE (O ₃) 3.1 Description and Sources 3.2 Health and Welfare Effects 3.3 Standards 3.4 Monitoring	19 19 20 20 20
4.	NITROGEN DIOXIDE (NO ₂) 4.1 Description and Sources 4.2 Health and Welfare Effects 4.3 Standards 4.4 Monitoring	24 24 24 24 24 24
5.	SULFUR DIOXIDE (SO ₂) 5.1 Description and Sources 5.2 Health and Welfare Effects 5.3 Standards 5.4 Monitoring	26 26 26 26 26
6.	PARTICULATES (TSP) 6.1 Description and Sources 6.2 Health and Welfare Effects 6.3 Standards 6.4 Monitoring	30 30 30 31 31
7.	LEAD (Pb) 7.1 Description and Sources 7.2 Health and Welfare Effects 7.3 Standards 7.4 Monitoring	39 39 39 39 39

i

TABLE OF CONTENTS (CON'T)

			PAGE
8.	SULFATE	S (SO ₄)	42
	8.1	Description and Sources	42
	8.2	Health and Welfare Effects	42
	8.3	Standards	42
	8.4	Monitoring	42
9.	ATMOSPH	ERIC DEPOSITION	44
	9.1	Description and Sources	44
•	9.2	Health and Welfare Effects	44
	9.3	Standards	44
	9.4	Monitoring	44
10.	HYDROCA	RBONS (HC)	46
	10.1	Description and Sources	46
	10.2	Health and Welfare Effects	46
	10.3	Standards	46
	10.4	Monitoring	46

.

LIST OF TABLES

TABLE	TITLE	PAGE
1-1	National Ambient Air Quality Standards	2
1-2	State of Maine Ambient Air Quality Standards	3
1-3	Number of Ambient Air Quality Violations by Regions	4
1-4	1984 Ambient Air Quality Monitoring Site Directory	8
2-1	1984 Carbon Monoxide Data Summary	18
3-1	1984 Ozone Data Summary	21
3-2	Ozone Historical Comparisons	22
3-3	Ozone Trends	23
4-1	1984 Nitrogen Dioxide Data Summary	25
4-2	Nitrogen Dioxide Historical Comparisons	25
5-1	1984 Sulfur Dioxide Data Summary	27
5-2	Sulfur Dixode Historical Comparisons -Maximum 24-hour concentrations of Sulfur Dioxide	28
5-3	Sulfur Dioxide Historical Comparisons-Sites with Violations	29
6-1	1984 Total Suspended Particulates Data Summary	33
6-2	Total Suspended Particulates Historical Comparison-Annual Geometric Means	35
6-3	Total Suspended Particulates Historical Comparisons-Sites With Violations	37
6-4	1984 Fine Particulate Data Summary	38
7-1	1984 Lead Data Summary	40
7-2	1984 Lead Data Summary by Quarters	41
7-3	Lead Historical Comparisons	41
8-1	Sulfate Thresholds for Adverse Health Effects	43
9-1	1984 Atmospheric Deposition Data Summary	45

LIST OF FIGURES

,

FIGURE	TITLE	PAGE
1-1	Five Year Trend - Total Suspended Particulates	5
1-2	Five Year Trend - Sulfur Dioxide	5
1-3	Five Year Trend - Ozone	7
1-4	State of Maine, Ambient Air Quality Control Regions	14

1. INTRODUCTION

1.1 Purpose and Overview

The purpose of this report is to present the air quality monitoring data generated by and for the Maine Department of Environmental Protection, Bureau of Air Quality Control, and to provide a historical perspective from which the significance of that data can be interpreted. Air Quality monitoring measures the concentrations of various pollutants in the ambient air. The monitoring is in response to State and Federal requirements to determine whether the air we breathe is attaining and maintaining National and State Ambient Air Quality Standards which are designed to protect the health and welfare of the public. Federal Primary Standards are intended to protect public health. Federal Secondary Standards are intended to protect public welfare. The State Standards are at least as strict as Federal Standards and in some cases are The reasoning behind establishing more stringent standards is more strict. that generally air quality in Maine is significantly cleaner than in other areas and should remain cleaner. The current Federal and State Standards are presented in Tables 1-1 and 1-2. Table 1-3 is a summary indicating all the violations of ambient air quality standards in the State by regions. Later on in this report those violations will be listed by the sites at which they occurred.

The majority of data now collected in the State is collected by industry. The Department has required industry to establish monitoring programs primarily when there are air quality problems associated with the industry, or when an industry is planning to build or expand causing a potential increase in air emissions. The State is still collecting monitoring data for long term trends, special studies and for compliance determinations. Ambient air monitoring by both industry and the State will continue in various regions where necessary until such time as standards are being met.

Included in this section are some figures which depict some of the results of air quality monitoring and control in the State. Figures 1-1 through 1-3 display trends or the lack of a trend which have been occurring at several long term key sites around the State.

Figure 1-1, which depicts the annual geometric means for total suspended particulates, generally shows increased levels at all sites with the exception of Presque Isle. Presque Isle while showing a reduction, continues to have extremely elevated concentrations and may require further control measures to achieve the standards.

Figure 1-2 indicates the sulfur dioxide trends at three sites with a long term history. Millinocket, which was declared a non-attainment area in 1979, has shown a steady decline in the annual average due to control measures and process changes. Consequently, the State made a change in the designation of Millinocket during 1983 to attainment for sulfur dioxide. Levels during 1984 have remained very low. Madawaska appears to have made slight improvements over the last year while Portland appears to be maintaining a slight downward trend of sulfur dioxide over the last three years.

TABLE 1-1

NATIONAL AMBIENT AIR QUALITY STANDARDS

Pollutant	Averaging Time	Concentration
Particulates (TSP)	Annual Geometric Mean: Primary Secondary	75 ug/m ³ 60 ug/m ³ *.
	Twenty-Four Hour:** Primary Secondary	260 ug/m ³ 150 ug/m ³
Lead (Pb)	Calendar Quarter	1.5 ug/m ³
Carbon Monoxide (CO)	One Hour**	35 ppm
	Eight Hour**	9 ppm
Ozone (O ₃)	One Hour***	0.12 ppm
Nitrogen Dioxide (NO ₂)	Annual Arithmetic Mean	0.05 ppm
Sulfur Dioxide (SO ₂)	Annual Arithmetic Mean	0.03 ppm
	Twenty-Four Hour**	0.14 ppm
	Three-Hour** Secondary	0.50 ppm
Hydrocarbon	Three Hour**	160 ug/m ³

* = Federal Guideline Only.

- ** = Not to be exceeded more than once per year.
 *** = Statistically estimated number of days with exceedances is not to be more than 1 per year.
 ppm = Parts of pollutant per million parts of air.

 ug/m^3 = Micrograms of pollutant per cubic meter of air.

TABLE 1-2

STATE OF MAINE AMBIENT AIR QUALITY STANDARDS

Pollutant	Averaging Time	Concentration
Particulates (TSP)	Annual Geometric Mean	60 ug∕m ³
	Twenty-Four Hour	150 ug/m ³
Lead (Pb)	Twenty-Four Hour*	1.5 ug/m ³
Carbon Monoxide (CO)	One Hour*	35 ppm(40 mg/m ³)
	Eight Hour*	9 ppm(10 mg/m ³)
Ozone (0 ₃)	One Hour*	.08 ppm(160 ug/m ³)
Nitrogen Dioxide (NO ₂)	Annual Arithmetic Mean	.053 ppm(100 ug/m ³)
Sulfur Dioxide (SO ₂)	Annual Arithmetic Mean	:.022 ppm(57 ug/m ³)
	Twenty-Four Hour	.088 ppm(230 ug/m ³)
	Three Hour	.439 ppm(1150 ug/m ³)
Hydrocarbon	Three Hour*	160 ug/m ³

* = Not to be exceeded more than once per year.
PPM = Parts of pollutant per million parts of air.
ug/m³ = Micrograms of pollutant per cubic meter of air.
mg/m³ = Milligrams of pollutant per cubic meter of air.

TABLE 1-3

NUMBER OF AMBIENT AIR QUALITY VIOLATIONS BY REGIONS

POLLUTANT	107	REGIO	INS*	110	TOTALS
Total Suspended Particulates Annual Geometric Mean** State Federal Twenty-four Hour State	0 0 30	0 0 17	0 0 22	2 0 4	2 0 73
Federal Lead	4	2	1	0	7
Twenty-four Hour State Federal	0 0	0 0	0 0	0 0	0 0
Carbon Monoxide One Hour Eight Hour	n/a n/a	n/a n/a	0 0	0 0	0 0
Ozone One Hour State Days	203	n/a	160	348	717
Federal	0	n/a	0	16	16
Nitrogen Dioxide Annual Arithmetic Mean	n/a	n/a	n/a	0	0
Sulfur Dioxide Annual Arithmetic Mean State Federal Twenty-four Hour	0 0	0 0	0 0	0 0	0 0
State Federal	1 0	0 0	0 0	· 0 0	1 0
Three Hour State Federal	0 0	0 0	0 0	0 0	0 0

*Region III has not been included because there was no monitoring in this region during 1984. **Annual Means generated by only a few samples are not included in this summary.

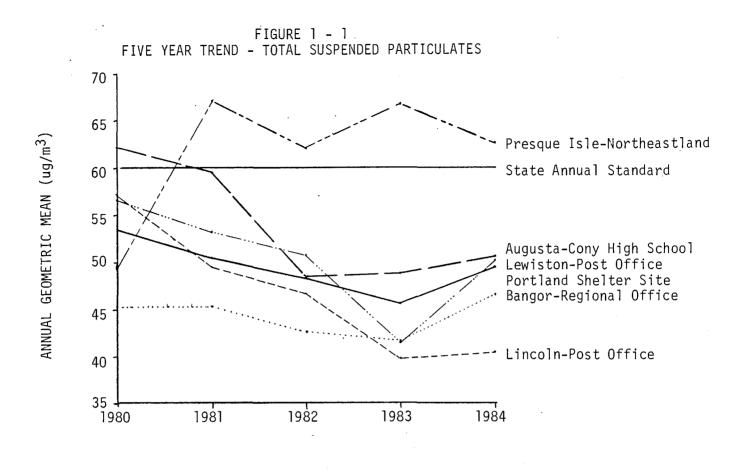
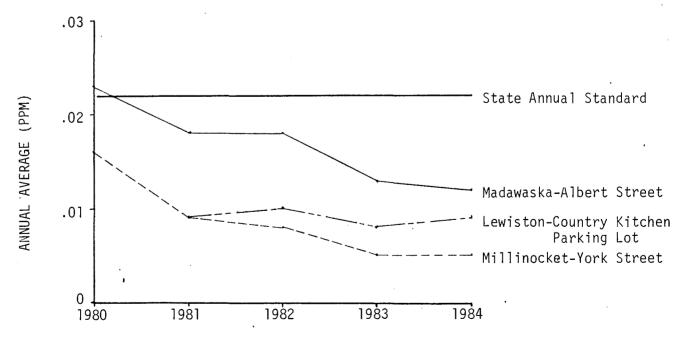



FIGURE 1 - 2 FIVE YEAR TREND - SULFUR DIOXIDE

-5-

Figure 1-3 depicts the number of hourly violations of the State ozone standard. As can be seen from the graphs, the two sites show no significant trends in the numbers of violations which are occurring. While there does not appear to be any trends, what is significant is the number of violations which continue to occur each year. meteorological conditions are responsible for a lot of the variability from year to year so it does not appear as if control strategies are having any significant effect on the basic ozone problem.

Data summarized in this report is available for review in the Department headquarters in Augusta and copies can be obtained from that office for a nominal fee.

1.2 Monitoring Sites

Air quality data are developed using two basic methods; 1) the continuous monitoring of gaseous pollutants and; 2) the periodic sampling of particulate and gaseous pollutants. In addition to pollutant monitoring there is also the continuous monitoring of meteorological parameters.

Continuous gaseous monitoring is done at thirty-three sites in Maine. Carbon Monoxide was monitored at two of these stations, ozone at six, sulfur dioxide at twenty-six, nitrogen oxides at one, and hydrocarbons at one.

Particulate sampling is done at fifty-eight sites in Maine. Fifty-seven of these stations monitor total suspended particulates. Ten of these sites also collect fine particulate fractions. Also, lead monitoring is done at eleven stations. Sixteen of these sites are analyzed for sulfates although not all of them are on a regular basis. There are also three sites collecting acid rain data which are part of the state monitoring network.

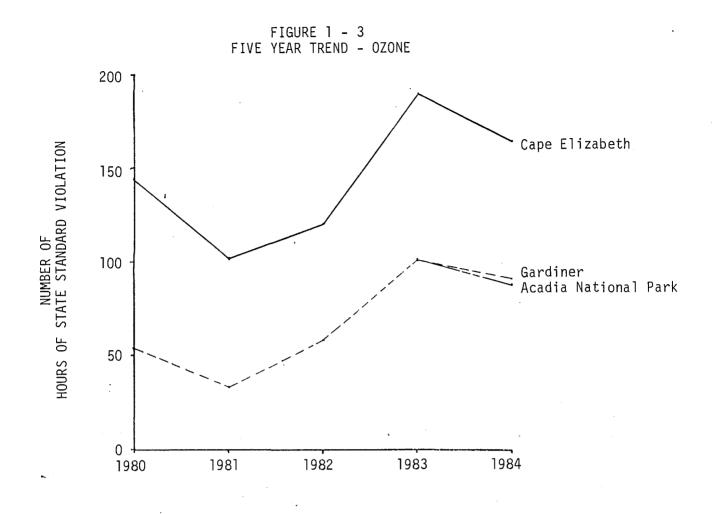

In addition to pollutant monitoring, wind speed and direction is recorded at seventeen sites around the State. Some of these sites also record other meteorological parameters such as sigma (stability) and temperature, precipitation and solar radiation.

Table 1-4 presents all the monitoring sites in Maine and indicates which parameters are monitored at each site. The map in Figure 1-4 shows the Air Quality Control Regions within the State.

1.3 Document Organization

This document is divided by pollutant into chapters. Each chapter contains: 1) a description of the nature and sources of that pollutant, 2) its health and welfare effects, 3) a discussion on the standards (current and proposed) for that pollutant, 4) a discussion of the monitoring methods for that pollutant, 5) a table presenting the 1984 monitored data, 6) in the case of some pollutants, historical tables presenting 1984 data along with data for

-6-

<u>n7</u>n

SITE	ADDRESS	OPERATOR	PARAMETERS MEASURED
ANDROSCOGGIN INTERSTA	TE AIR QUALITY CONTROL REGION (107)		
Auburn (0060 005)	Lewiston-Auburn Airport	DEP	WS/WD
Auburn (0060 008)	Lepage Bakery 60 Second Street	DEP	TSP,Pb,Sulfate
Augusta (0080 001)	Cony High School Cony Circle	DEP	TSP,Pb,Sulfate
Augusta (0080 005)	Hartford Fire House Hartford Square	DEP/Statler	TSP,FP
Augusta (0080 008)	Governor's Hangar State Airport	DEP	WS/WD
Augusta(NEW) (0080 009)	Hodgkins School Malta Street	Statler	TSP,FP
Augusta(NEW) (0080 010)	Hussey School Gedney Street	Statler	S0 ₂
Augusťa(NEW) (0080 011)	Nap's Trading Post 185 Water Street	Statler	so ₂
Augusta(NEW) (0080 012)	St. Augustine's Northern Avenue	DEP	s0 ₂
Fairfield(NEW-DISC) (0360 002)	Nutting Residence Cottage Street	DEP	TSP
Gardiner (0460 001)	Gardiner High School West Hill Road	DEP	Ozone ^s
Jay (0530 001)	Weather Level I Lagoon Hill	International Paper	WS/WD,Temperature,Solar Radiation, Precipitation,TSP
Jay (0530 003)	Crash Road Gilbert Jewell Property	International Paper	TSP
Jay (0530 004)	Jay Hill	International Paper	TSP .
Jay (0530 007)	Water Treatment Plant Site #2 International Paper	International Paper	T\$P
Lewiston(DISC) (0620 005)	Lewiston Post Office 49 Ash Street	DEP	TSP,Pb,Sulfate

TABLE] - 4 1984 AMBIENT AIR QUALITY MONITORING SITE DIRECTORY

		•	TABLI	E 1 – 4			
1984	AMBIENT	AIR	QUALITY	MONITORING	SITE	DIRECTORY	·

SITE	ADDRESS	OPERATOR	PARAMETERS MEASURED
Lewiston (0620 011)	Country Kitchen Parking Lot Canal Street	DEP	50 ₂
Wiscasset(NEW) (0645 002)	Westport Island Ferry Road	DEP	0zone ^s
Mexico (0760 003)	Mexico Treatment Plant Route #2	Boise Cascade	TSP,Sulfate
Mexico (0760 008)	Labonville's	Boise Cascade	TSP
Mexico (0760 010)	Carver's Residence Fourth Street	Boise Cascade	TSP,SO ₂
Mexico (0760 011) .	Hunt's Property Route #2	Boise Cascade	50 ₂
South Paris (0885 001)	Bessey Motor Company Railroad Street	Wilner Wood	TSPS
South Paris (0885 004)	Reilly Property Gary Street	Wilner Wood	TSPS
South Paris (0885 005)	Wilner Wood Weather	Wilner Wood	WS/WDS
Rumford (1020-002)	Boise Cascade Weather II Swift River Pump House	Boise Cascade	WS/WD
Rumford (1020 005)	Taylor Mountain I	Boise Cascade	TSP,SO ₂
Rumford (1020 006)	Taylor Mountain II	Boise Cascade	TSP,SO ₂
Rumford (1020 007)	Village Green Site Route #108	DEP/Boise Cascade	TSP,SO ₂
Skowhegan (1100 001)	Hinckley Hinckley Farm School.	S.D.Warren	TSP
Skowhegan (1100 002)	Eaton Ridge	S.D.Warren	TSP
Thomaston (1150 001)	Mitchell Property 2 Dexter Avenue	Cianbro	TSP,SO ₂
Thomaston (1150 0 03)	Sanders Property Old County Road	Cianbro	TSP

SITE	ADDRESS	OPERATOR	PARAMETERS MEASURED
Thomaston (1150 004)	Pease Heirs Property Buttermilk Lane	Cianbro	TSP
Thomaston (1150 005)	Dragon Cement Weather Route #1	Cianbro	WS/WD
Thomaston(DISC) (1150 006)	Swamp Site Marsh Road	Cianbro	so ₂
Thomaston (4150 007)	Marsh Road	Cianbro	TSP,SO ₂
Thomaston(DISC) (1150 008)	Route #1	Cianbro	so ₂
Thorndike(NEW) (1183 004)	Tweedie Residence Route #139	DEP	TSP
Waterville(DISC) (1220 002)	Al Corey's Music Store Main Street	DEP	TSP
Waterville(NEW) (1220 003)	Stern's Department Store Main Street	DEP.	TSP
AROOSTOOK AIR QUALITY	CONTROL REGION (108)	• · · ·	
Madawaska (0720 003)	Madawaska High School 7th Avenue	Fraser Paper/DEP	TSP,Sulfate,S0 ₂ ,FP ^d
Madawaska (0720 006)	Fraser Paper Company Bridge Street	Fraser Paper	WS/WD,Temperature
Madawaska (0720 009)	Albert Street	Fraser Paper	so ₂
Madawaska (0720 010)	Sewage Treatment Plant South Main Street	Fraser Paper	WS/WD,SO2
Madawaska(NEW) (0720 011)	St. Jarre's 11th Avenue	DEP	TSP,FP,Sulfate
Presque Isle (0980 005)	Northeastland Hotel 436 Main Street	DEP	TSP,Pb,Sulfate,FP
Presque Isle(DISC) (0980 007)	Creasey Ridge Road Lavaway Farm	DEP	TSP,Pb,Sulfate
Presque Isle (0980 008)	Regional Office 528 Central Drive	DEP	WS/WD

TABLE 1 - 4 1984 AMBIENT AIR QUALITY MONITORING SITE DIRECTORY

2

-10-

TABLE 1 - 4								
1984	AMBIENT	AIR	QUALITY	MONITORING	SITE	DIRECT O RY		

SITE	ADDRESS	OPERATOR	PARAMETERS MEASURED
DOWNEAST AIR QUALITY	CONTROL REGION (109)	•	· ·
Acadia National Park (0010 003)	McFarland Hill Ranger Station Route #233	NPS/DEP	Ozone,TSP,Sulfate,FP,Acid Precipitation
Bangor (0100 001) <u>-</u>	Regional Office 31 Central Street	DEP	TSP,Sulfate
Bangor (0100 002)	Kenduskeag Pump Station	DÉP	TSP,Pb
Bangor (0100 009)	BIA-Building #487 Air National Guard	DEP	WS/WD
Brewer (0180 002)	Brewer Junior High School 5 Somerset Street	DEP	TSP
East Millinocket (0315 002)	Katahdin School School Street	Great Northern Paper Company	TSP,SO ₂
Lincoln (0640 002)	Vocational Education Building .West Broadway	Lincoln Pulp & Paper Company	TSP
Lincoln (0640 0 03)	Lincoln Post Office Building 50 F leming Street	Lincoln Pulp & Paper Company	TSP
Lincoln (0640 007)	Thomas Motel Trailer Park 39 West Broadway	, Lincoln Pulp & Paper Company	TSP,SO ₂ ,FP ⁿ
Lincoln (0640 008)	Fish Hill Base	Lincoln Pulp & Paper Company	so ₂
Lincoln (0640 009)	Fish Hill Peak	Lincoln Pulp & Paper Company	so ₂
Lincoln(NEW) (0640 010)	Lincoln Airport	Lincoln Pulp & Paper Company	WS/WD
Millinocket (0780 006)	Wastewater Treatment Plant - Great Northern Paper Company	Great Northern Paper Company	\$0 ₂
Millinocket (0780 009)	York Street	Great Northern Paper Company	TSP,SO ₂ ,Sulfate
Millinocket (0780 011)	Great Northern Paper Co. Office	Great Northern Paper Company	WS/WD
01d Town (0840 003)	Marsh Island Apartments 100 South Main Street	- DEP	TSP

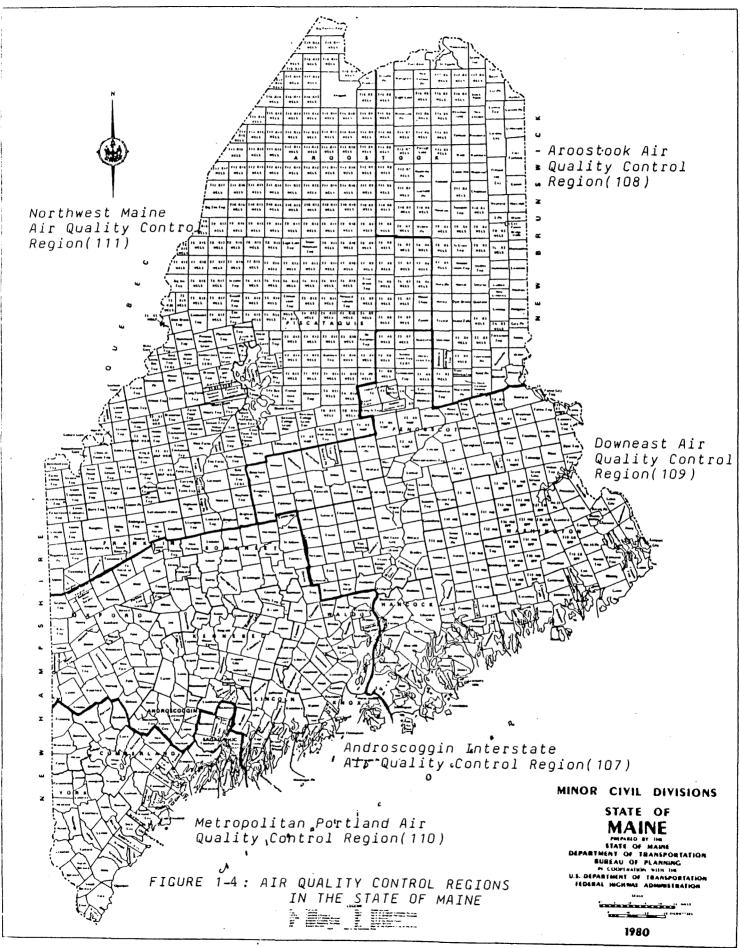

SITE	ADDRESS	OPERATOR	PARAMETERS MEASURED
01d Town (0840 005)	Penobscot Shoe Company * 450 North Main Street	DEP	TSP
Newburgh (0907 005)	Newburgh School Route #9	DEP	TSP
Milford (0907 007)	Shumway Field Route #178	James River Corporation	TSP
Woodland(DISC) (1205 004)	"D" Street	Georgia Pacific Corporation	TSP
Woodland (1205 006)	Georgia Pacific Mill	Georgia Pacific Corporation	WS/WD
Woodland (1205 007)	Secondary Treatment Pipeline	Georgia Pacific Corporation	TSP,SO ₂
Woodland (1205 008)	Woodland High School	Georgia Pacific Corporation	TSP
Eastport (1205 014)	Pleasant Street	DEP	WS/WD
Woodland(DISC) (1205 015)	Chip-N-Saw Waferboard Mill	Georgia Pacific Corporation	TSP
Rogue Bluffs(NEW) (1205 016)	Great Cove Rogue Bluffs	DEP	Ozone ^s ,WS/WD ^S
METROPOLITAN PORTLAND	AIR QUALITY CONTROL REGION (110)		
Biddeford (0160 002)	Biddeford Treatment Plant Water Street	DEP	TSP .
Bridgton (0190 002)	Upper Ridge Road	DEP	Acid Precipitation,TSP ⁿ ,Sulfate ⁿ ,FP ⁿ
Cape Elizabeth (0250 003)	Shelter Site Two Lights State Park	DEP	0zone ^s
Kittery (0580 001)	Greenfield Drive	NH/DEP	TSP,Pb,Sulfate,SO ₂
Kittery (0580 002)	Wentworth Dennet School Government Street	NH/DEP	TSP,Pb,Sulfate
Kittery (0580 003)	Masonic Temple Wallingford Square	NH/DEP	so ₂

TABLE 1 - 4 1984 AMBIENT AIR QUALITY MONITORING SITE DIRECTORY

SITE	ADDRESS	OPERATOR	PARAMETERS MEASURED
Portland (0960 010)	Chevrus High School Ocean Avenue	DEP	WS/WD
Portland (0960 014)	Shelter Site (P.E.O.P.L.) Elm Street	DEP	TSP,Pb,S0 ₂ ,N0 _x ^s ,N0 ^s ,NMHC ^s ,Sulfate,FP ⁿ
Portland (0960 015)	Tukey's Bridge Bean Pot Circle	DEP	РЬ
Portland(NEW) (0960 018)	529 Congress Street	DEP	CO
South Portland (1140 002)	SMVTI Vocational Drive	DEP	TSP,Sulfate
Westbrook (1260 002)	N.E.T.&T. Company Ash Street	S.D.Warren	TSP
Westbrook (1260 008)	Research Building S.D.Warren	S.D.Warren	TSP
Westbrook (1260 009)	S.D.Warren Company Wind S.D.Warren Property	S.D.Warren	WS/WD
Westbrook (1260 012)	S.D.Warren Warehouse #5 Main Street	S.D.Warren	TSP,FP
Kennebunkport (1325 002)	Parson's Way	DEP	Ozone ^s
NORTHWEST MAINE AIR G	UALITY CONTROL REGION (111)		
Greenville(NEW) (0935 001)	Squaw Brook Greenville	DEP	Acid Precipitation
: -	NEW - Site established in 1984 DISC - Site discontinued in 1984	Ð	n - Instrument installed during 1984 d - Instrument removed during 1984 s - Instrument operated seasonally during 1984
:	TSP - Total Suspended Particulates SO ₂ - Sulfur Dioxide NO - Nitric Oxide		s - instrument operated seasonally during 1964
	NO _x - Oxides of Nitrogen - CO - Carbon Monoxide		
	-Pb - Lead WS/WD - Wind Speed and Direction FP - Fine Particulate NMHC - Nonmethane Hydrocarbons		

TABLE 1 - 4 1984 AMBIENT AIR QUALITY MONITORING SITE DIRECTORY

-13-

previous years to show trends, effects of control strategy, or change in emission sources.

1.3.1 Explanation of Data Summary Tables

The Data Summary Tables were designed to facilitate comparing 1984 air quality monitoring data with the standards for each pollutant. Therefore, the data are presented for each averaging time for which standards exist for a pollutant.

An annual average concentration is presented for each pollutant that has a long-term, annual standard (NO₂, SO₂, TSP).

For pollutants that have short-term standards, the highest or the highest and second highest short-term values are presented. Some pollutants are allowed to exceed the standard once during the year so the second highest value would be used to determine whether there was a violation or not.

All of the data collected during 1984 has been presented in the Data Summary Tables. However, in making comnparisons of the data, one should be aware that a site with only a few samples will not be a valid indicator of pollutant concentrations in the area.

1.3.2 Explanation of Historical Comparison Tables

The Historical Comparison Tables present air quality data for 1984 and those years prior to 1984 when the same pollutant was monitored at the same site. The purpose of the Tables are to indicate the variations in air quality from year to year. The Tables in some cases represent maximum concentrations for specific time periods and in others the number of days in each year that the standards were violated.

1.3.3 Explanation of Trends Tables

The highest hourly concentration in a year is not the best indicator of long-term air quality trends because it is an erratic value. Therefore, special trend tables are presented for carbon monoxide and ozone. The trend tables present the 10th, 50th, and 90th percentile values to represent the bulk of the air quality data for each year. Percentiles indicate the fraction, or percent, of the value that are below a particular level. For example, if the 90th percentile value for some set of CO observations is 5.0 ppm, it means that 90% of the time the concentrations of CO are less than 5.0 ppm. Conversely, it also means that 10% of the time the concentrations are above 5.0 ppm. Thus the existence or lack of long-term trends in overall air quality for CO and O₃ can be more reliably determined using the Trends Tables, than by looking at just the Historical Comparison Tables.

-15-

2.1 Description and Sources

Carbon monoxide is a colorless, odorless and tasteless gas. Therefore you do not even know you are breathing it until you feel its detrimental effects. It consititutes the largest single fraction of the pollutants found in urban atmospheres. It is produced primarily by the incomplete combustion of organic materials used as fuels for transportation and in the heating of buildings; it also results from industrial processes, refuse burning, and agricultural burning. Several natural sources of CO of both biological and non-biological origin have also been identified, but their contributions to urban atmospheric concentrations are thought to be small. Background levels of CO (resulting from natural and technological sources) found in relatively nonpolluted air range from 0.025 to 1.0 ppm. Urban carbon monoxide is produced primarily by motor vehicles.

Because motor vehicle traffic is the major source of CO, daily concentration peaks coincide with morning and evening rush hours. The worst carbon monoxide problems are found where large numbers of slow moving cars congregate. These problems are further aggravated when they occur in a "street canyon" situation. When there are large amounts of slow moving traffic in a street canyon situation, with the wind blowing perpendicular to the street, carbon monoxide can be trapped in the canyon and build up to unhealthful levels. Such has been the case in Bangor.

CO problems are usually worse in winter because: 1) cold weather makes motor vehicles run dirtier and requires more combustion for space heating; and 2) on winter nights a strong inversion layer develops in the atmosphere, that traps pollution near the ground, preventing it from mixing with cleaner air above.

2.2 Health and Welfare Effects

Carbon monoxide affects the central nervous system by depriving the body of the oxygen it needs. Tests of automobile drivers show exposure to carbon monoxide can impair a driver's judgement and ability to respond rapidly in traffic. It can also impair vision and produce headaches.

Carbon monoxide enters the bloodstream by combining with hemoglobin, the substance that carries oxygen to the cells. Hemoglobin that is bound up with CO is called carboxyhemoglobin. This combination occurs 200 times more readily with CO than with oxygen, so the amount of oxygen being distributed throughout the body by the bloodstream is reduced in CO's presence. Blood laden with CO can weaken heart contractions, lowering the volume of blood distributed to various parts of the body. It can also significantly reduce a healthy person's ability to perform manual tasks, such as working, jogging and walking. A life-threatening situation exists in patients with heart disease, who can't compensate for the oxygen loss. The 4.2 million people in the U.S. suffering from angina pectoris (a heart disease characterized by brief spasmodic attacks of chest pain due to insufficient oxygen levels in the heart muscles) are especially susceptible. Carbon monoxide is also harmful to persons who have

lung disease, anemia or cerebral-vascular disease. Others sensitive to carbon monoxide include the human fetus, and people exposed to long-term concentrations, such as traffic officers.

People who sit in idling cars over sustained periods risk harmful CO exposure, as do cigarette smokers. Since about two percent of cigarette smoke is carbon monoxide, if you or someone else smokes while driving in heavy traffic, you may both experience the harmful effects of CO from the cigarette smoke and the engine exhaust accumulated in streets. Even three or four hours after you're exposed, half the excess CO still remains in your bloodstream. Because it takes time for CO to build up in the bloodstream, the severity of health effects depends both on the concentration being breathed and the length of time the person is exposed.

2.3 Standards

The existing standards for carbon monoxide are currently set at 9 parts CO per million parts air (ppm), averaged over a period of 8 hours, and 35 ppm averaged over 1 hour, not to be exceeded more than once per year. As a result of a review and revision of the health criteria, EPA proposes to retain the existing primary 8-hour standard at 9 ppm and to lower the primary 1-hour standard to 25 ppm. The change in the 1-hour standard is being proposed because of the more rapid accumulation of blood carboxyhemoglobin in moderately exercising sensitive persons compared to resting individuals. The impact of exercise, which is greater for short-duration exposures, was not considered in the original standard.

2.4 Monitoring

Carbon monoxide was monitored at one site in Maine during 1984 using continuous monitoring equipment utilizing the non-dispersive infrared technique.

Table 2-1 is the 1984 Data Summary for CO. There is not enough data from the Bangor site for 1984 to use for historical comparisons or trend analysis. Likewise there is insufficient data from the Portland site at this time to do any historical comparisons or trend analysis.

TABLE 2 - 1 1984 CARBON MONOXIDE DATA SUMMARY (Parts Per Million)

SITE	ADDRESS	<u> </u>	NUMBER OF OBSERVATIONS	1-HOUR HIGHEST	CONCENTRATIONS SECOND HIGHEST	8-HOUR HIGHEST	CONCENTRATIONS SECOND HIGHEST	ANNUAL ARITHMETIC MEAN
	LITY CONTROL REGI	N (109)						
Bangor	Regional (Office	58	3.8	2.8	1.9	0.9	0.6
METROPOLITAN POR	TLAND AIR QUALITY	CONTROL REGION (10)			•		
Portland	529 Congre	ess Street	584	8.3	8.2	7.9	7.9	2.4
•								
	-							
•								
	-							
		•						
-		· ·						
		•						
-	· · · -	•						
	. ·							
		•						
•		• •						
:	· · · ·							
-	-	; •		· · · · ·	×			
				,	•			
	-							
			5					
-	•	•						
: •								
: -	•	•			-			
		• *						
-		. *					ж.	

-]3-

.

3. OZONE (0_3)

3.1 Description and Sources

Ozone is a highly reactive form of oxygen which, at very high concentrations, is a blue unstable gas that has a characteristic pungent odor most commonly identified around an arcing electric motor, lightning storms, or other electrical discharges. However, at normal ambient concentrations, ozone is colorless and odorless. Ozone is the major component of photochemical "smog", but the haziness and odors of smog are primarily caused by other components.

Natural ground level ozone occurs in low concentrations (less than .05 ppm) due to natural physical and chemical phenomena. Occasionally, unique meteorological conditions can result in natural levels between .05 and .10 ppm.

Ozone is not emitted directly from a source as are other pollutants. It forms as a secondary pollutant. Its precursors are hydrocarbons and nitrogen oxides, which chemically react in sunlight to form ozone. The hydrocarbons are emitted in automobile exhaust, from gasoline and oil storage and transfer, and from industrial use of paint solvents, degreasing agents, cleaning fluids, ink solvents, incompletely burned coal or wood and many other sources. Plants also give off hydrocarbons such as terpenes from pine trees. Nitrogen oxides are emitted by all combustion sources.

The highest ozone levels generally occur during summer afternoons when the high temperatures and strong sunlight promote photochemical reactions. Stagnant weather may cause smog to remain in an area for several days. The winds may also transport ozone many miles outside of the urban environment. For example, it is estimated that one-third of the ozone in the State of Maine is transported into the State from sources located outside the State. In addition one-third of the ozone is naturally occurring background concentrations, part of which is also transported into the State. The remaining one-third is assumed to be due to local sources within the State. Because of long-range transport, local control of emissions by itself may not solve the ozone problem. An effective national program may be necessary to achieve national compliance.

Ground-level ozone, discussed above, should not be confused with the stratospheric ozone layer, located about seven miles high in the atmosphere, which shields the earth from cancer-causing ultraviolet rays. Concentrations of ozone in this layer may reach as high as 10 ppm. Concern over potential reduction of the necessary levels of ozone in the stratosphere by reactions with fluorocarbons from aerosol cans has resulted in the removal of most of these propellants from the market. However, ozone at ground level, where it is breathed, is a pollutant.

3.2 Health and Welfare Effects

Ozone at low concentrations causes eye irritations and at higher concentrations difficulty in breathing for people with respiratory problems, the elderly, and children. Many plants, such as white pine, soybeans and alfalfa, are extremely sensitive to ozone, and O_3 is known to weaken materials such as rubber and fabrics.

3.3 Standards

The existing National Ambient Air Quality Standards (NAAQS) for ozone is 0.12 ppm and will be attained when "the expected number of days per calender year with maximum hourly average concentrations above 0.12 ppm is equal to or less than one." This standard is new as of February 8, 1979 and replaces a more restrictive 0.08 ppm standard that was established April 10, 1971. The change was the result of a required assessment of existing NAAQS to include a review of new health effects data that have become available since 1970. As a result of this review and national public comments, the standard was changed to a level that is considered to be sufficient to protect the public health and welfare. The current State Standard is .08 ppm. It was established at the same time the original Federal Standard was established and has not been changed.

3.4 Monitoring

Ozone was monitored at six sites in Maine during 1984 using continuous monitoring equipment of two kinds, either chemiluminescence or ultra-violet absorption analyzers. Maines' ozone monitoring season is limited to April through October due to the weather conditions which are not conducive to ozone formation at other times of the year.

Table 3-1 is the 1984 Data Summary for Ozone. Table 3-2 presents the Ozone Historical Comparisons and Table 3-3 presents the Ozone Trends.

TABLE 3 - 1 1984 OZONE DATA SUMMARY (Parts Per Million)

	,	NUMBER OF	HIGHEST	SECOND HIGHEST	NUMBER OF	VIOLATIONS
SITE	ADDRESS	OBSERVATIONS	CONCENTRATION	CONCENTRATION	STATE*	FEDERAL**
ANDROSCOGGIN INTERSTAT	E AIR QUALITY CONTROL REGION ((107)				
Gardiner Wiscasset	Gardiner High School Westport Island	5008 4300	.124 .119	.112 .114	90 113	··· 0 -
DOWNEAST AIR QUALITY (CONTROL REGION (109)	<i>،</i>				
Acadia National Park Rogue Bluffs	McFarland Hill Ranger Static Great Cove	on 7878 4165	.140 .133	.130 .132	87 73	0 0
METROPOLITAN PORTLAND	AIR QUALITY CONTROL REGION (1)	10)				
Cape Elizabeth Kennebunkport	Shelter Site Parson's Way	4699 4006	.147 .149	.146 .147	155 185	5 10

.

.

.

,

* Total number of hours minus one greater than .080 ppm.
 ** Number of days in violation.

• •

:

.

2

.

TABLE 3-2 OZONE HISTORICAL COMPARISONS (1-Hour Concentrations)

.

ACADIA McFarland Hill Ranger Station

	CAPE ELIZA Shelter S	ite		KENNEBUNKPO Parson's Wa	
YEAR	SECOND HIGH	# OF STATE VIOLATIONS	YEAR	SECOND HIGH	# OF STATE VIOLATIONS
1978 1979 1980 1981 1982 1983 1983	.160 PPM .155 PPM .178 PPM .122 PPM .140 PPM .163 PPM .166 PPM	122 119 144 101 120 189 164	1983 1984	.148 PPM .147 PPM	155 186

GARDINER						
Gardiner	High	School				

.

YEAR	SECOND HIGH	# OF STATE VIOLATIONS	YEAR SECOND HIGH	# OF STATE VIOLATIONS
1980 1981 1983 1982 1983 1984	.143 PPM .122 PPM .140 PPM .122 PPM .140 PPM .112 PPM	54 33 116 58 101 91	*1982* .055 PPM *1983 .135 PPM *1984 .270	0 101 88

*NOT A COMPLETE YEAR

-22-

TABLE 3-3 OZONE TRENDS (1-Hour Concentrations)

	CAPE EL				KENNEBUI Parson's		-
	PE	ERCENTILES	S ·		PI	ERCENTILES	5
YEAR	10%	50%	90%	YEAR	10%	50%	90%
1978	.015	.035	.065	1983	.008	.027	.058
1979	.018	.036	.070	1984	.012	.032	.064
1980	.019	.035	.065				
1981	.015	.032	.056				
1982	.018	.036	.058				
1983	.018	.034	.061		-		
1984	.019	.040	.064				

GARDINER Gardiner High School

	PERCENTILES				
YEAR	10%	50%	90%		
1980	.008	.031	.056		
1981	.009	.029	.050		
1982	.009	.030	.053		
1983	.009	.031	.056		
1984	.007	.031	.055		

ACADIA					
McFarland	Hill	Ranger	Station		

		ERCENTILES	5
YEAR	10%	50%	90%
1982	.005	.020	.030
*1983	.019	.032	.053
*1984	020	.032	.050

*Not a Complete Year

-23-

4. NITROGEN DIOXIDE (NO_2)

4.1 Description and Sources

In its pure state, nitrogen dioxide is a reddish-orange-brown gas with a characteristic pungent odor. It is corrosive and a strong oxidizing agent. Nitrogen dioxide comprises about 10% of the oxides of nitrogen (NO_X) that are formed when nitrogen in the air combines with oxygen during high temperature combustion. Most of the rest of the NO_X emitted by combustion sources is nitric oxide (NO). However, during the day most of the NO is photochemically transformed into NO_2 . Thus, essentially all the NO_X emitted can be assumed to eventually become NO_2 .

4.2 Health and Welfare Effects

Exposure to NO_2 affects the delicate structure of lung tissue. High levels cause lung irritation and potential lung damage. Lower levels have been associated with increased respiratory disease. Oxides of nitrogen can cause serious injury to vegetation, including bleaching or death of plant tissue, loss of leaves, and reduced growth rate. NO_x also deteriorates fabrics and fades fabric dyes. Nitrate salts formed from nitrogen oxides have been associated with the corrosion of metals. Nitrogen oxides can also reduce visibility.

4.3 Standards

The current standard for NO₂ is an annual arithmetic mean (average) value not to exceed .05 ppm. NO₂ is the only gaseous pollutant for which only a long-term (annual average) standard has been established.

4.4 Monitoring

Nitrogen Dioxide was monitored at one site in Maine during 1984 using continuous monitoring equipment.

Table 4-1 is the 1984 Data Summary for NO_2 . Table 4-2 presents the NO_2 Historical Comparison.

TABLE 4 - 1 1984 NITROGEN DIOXIDE DATA SUMMARY (Parts Per Million)

SITE	ADDRESS	NUMBER OF OBSERVATIONS	ANNUAL AVERAGE
METROPOLITAN POR	TLAND AIR QUALITY CONTROL REGION (110))	
Portland*	Shelter Site (P.E.O.P.L.)	831	.021

* This site operated only during the ozone season in 1984

TABLE 4 - 2 NITROGEN DIOXIDE HISTORICAL COMPARISONS (Annual Concentrations in PPM)

SITE	ADDRESS	1980	1981	1982	1983	1984
METROPOLITAN	PORTLAND AIR QUALITY CONTROL REGION (110)					
Portland*	Shelter Site (P.E.O.P.L.)	.013	.029	.016	.025	.021

* This site operated only during the ozone season in 1982,1983 and 1984.

5. SULFUR DIOXIDE (SO₂)

5.1 Description and Sources

Sulfur dioxide is a colorless irritating gas having the same pungent odor as a struck match. Most people can detect its taste at a level of about 0.3 to 1 part per million. SO_2 is highly soluble in water, forming sulfurous acid. On a worldwide basis, SO_2 is considered to be one of the major pollution problems. It is emitted mainly from stationary sources that utilize fossil fuels (coal, oil) such as power plants, ore smelters, and refineries.

5.2 Health and Welfare Effects

The health effects of sulfur dioxide appear to be always associated with high levels of particulates or other pollutants. The world's major recorded air pollution disasters have been associated with high levels of sulfur dioxide and particulates. The excess deaths attributed to these pollutants were due to respiratory failures and occurred predominantly, but not exclusively, in the elderly and infirm. Atmospheres containing high levels of sulfur dioxide are associated with elevated concentrations of other sulfur compounds such as sulfates and sulfuric acid mists, which are corrosive and potentially carcinogenic.

The corrosiveness of SO_2 and its derivatives also causes crop and material damage. Its transport and transformation into sulfurous and sulfuric acids contribute to acid precipitation, causing soils and lakes to become seriously acidified.

5.3 Standards

There are two existing Primary National Ambient Air Quality Standards for sulfur dioxide. The first is a long-term one year arithmetic average of 0.03 parts per million (ppm). The second is a short-term 24-hour average standard where concentrations are not to exceed 0.14 ppm more than once per year. The current Secondary NAAQS for SO_2 is a 3-hour average concentration of 0.5 ppm not to be exceeded more than once per year.

In addition there are three state standards for sulfur dioxide. The first is a long-term one-year arithmetic average of .022 parts per million. The second is a short-term 24-hour average standard of .088 ppm not to be exceeded. The third is a short-term 3-hour average concentration of .439 ppm not to be exceeded.

5.4 Monitoring

Sulfur dioxide was monitored at twenty-six sites in Maine during 1984 using continuous monitoring equipment utilizing either the pulsed fluorescent or coulometric methods.

Table 5-1 is the 1984 Data Summary for SO_2 . Tables 5-2 and 5-3 present the SO_2 Historical Comparison Data.

TABLE 5 - 1 1984 SULFUR DIOXIDE DATA SUMMARY (Parts Per Million)

JALITY CONTROL REGION (1) Trading Post ugustines ry Kitchen Parking Lot r's Residence s r Mountain I r Mountain II ge Green Site	7947 8205 7439 8159 8321 8256 7907	.078 .080 .056 .131 .123 .397	.075 .069 .054 .094 .106	.050 .041 .027 .060	.041 .032 .020 .053	<u>ARITHMETIC MEAN</u> .009 .007 .004
Trading Post ugustines ry Kitchen Parking Lot r's Residence s r Mountain I r Mountain II ge Green Site	8205 7439 8159 8321 8256 7907	.080 .056 .131 .123 .397	.069 .054 .094	.041 .027 .060	.032	.007
ugustines ry Kitchen Parking Lot r's Residence s r Mountain I r Mountain II ge Green Site	7439 8159 8321 8256 7907	.056 .131 .123 .397	.054 .094	.027	.020	
ry Kitchen Parking Lot r's Residence s r Mountain I r Mountain II ge Green Site	8159 8321 8256 7907	.131 .123 .397	.094	.060		.004
ry Kitchen Parking Lot r's Residence s r Mountain I r Mountain II ge Green Site	8321 8256 7907	.123			052 -	
s r Mountain I r Mountain II ge Green Site	8256 7907	. 397	.106	.		.009
r Mountain I r Mountain II ge Green Site	7907			.040	.023	.003
r Mountain II ge Green Site			.183	.071	.060	.007
ge Green Site	0000	.232	.182	.096	.061	.012
	8338	.189	.177	.071	.066	.008
A	8067	.244	.195	.049	.046	.006
r Avenue	7377	.176	.120	.050	.045	.003
Site	3902	.045	.045	.025	.015	.003*
Road	8021	.026	.024	.017	.015	.002
#1	3806 .	.025	.024	.017	.014	.002*
REGION (108)						
aska High School	8365	.239	.135	.066	.060	.006
t Street	8325	.194	.171	.078	.069	.012
e Treatment Plant	8275	.129	.101	.045	.039	.007
REGION (109)					•	
din School	5495	106	.047	.025	.021	.003*
	8067					.006
						.004
						.004
						.007
					.037	.005
dary Treatment Pipeline	7982	.116	.116	.059	048	.005
LITY CONTROL REGION (110).					
	4646	.063	.055	.027	.025	.004*
field Drive						.010*
field Drive ic Temple			.088	.062		.010
s H H S d	Motel Trailer Park ill Base ater Treatment Plant treet ary Treatment Pipeline ITY CONTROL REGION ()10 ield Drive c Temple	Motel Trailer Park8067ill Base8096ill Peak7984ater Treatment Plant8214treet8192ary Treatment Pipeline7982ITY CONTROL REGION (110)110ield Drive4646c Temple4276	Motel Trailer Park 8067 .100 ill Base 8096 .046 ill Peak 7984 .176 ater Treatment Plant 8214 .170 treet 8192 .176 ary Treatment Pipeline 7982 .116 ITY CONTROL REGION (110) .063	Motel Trailer Park 8067 .100 .097 ill Base 8096 .046 .044 ill Peak 7984 .176 .173 ater Treatment Plant 8214 .170 .119 treet 8192 .176 .154 ary Treatment Pipeline 7982 .116 .116 ITY CONTROL REGION (110) .055 .055 .094	Motel Trailer Park 8067 .100 .097 .076 ill Base 8096 .046 .044 .016 ill Peak 7984 .176 .173 .025 ater Treatment Plant 8214 .170 .119 .062 treet 8192 .176 .154 .044 ary Treatment Pipeline 7982 .116 .116 .059 ITY CONTROL REGION (110) .063 .055 .027 c Temple 4276 .105 .094 .046	Motel Trailer Park 8067 .100 .097 .076 .061 ill Base 8096 .046 .044 .016 .015 ill Peak 7984 .176 .173 .025 .023 ater Treatment Plant 8214 .170 .119 .062 .050 treet 8192 .176 .154 .044 .037 ary Treatment Pipeline 7982 .116 .116 .059 .048 ITY CONTROL REGION (110)

* Insufficient data collected for valid annual arithmetic mean.

TABLE 5 - 2 SULFUR DIOXIDE:HISTORICAL COMPARISONS (Maximum 24-Hour Concentrations of Sulfur Dioxide)

				XIMUM 24-HOUR C	ONCENTRATIONS		
SITE	ADDRESS	1979	1980	1981	1982	1983	1984
NDROSCOGGIN INTERST	ATE AIR QUALITY CONTROL REGION (107)					
.ewiston	Country Kitchen Parking Lot			.035	.056	.044	.060
lexico ·	Carver's Residence				.042	.045	.040
lumford	Taylor Mountain I				.075	.077	.096
Thomaston	Dexter Avenue		.017	.026	.030	.016	.050
homaston	Swamp Site		.012	.022	.024	.011	.025
homaston	Marsh Road		.017	.010	.016	.011	.017
homaston	Route #1	·	.011	.011	.015	.011	.017
ROOSTOOK AIR QUALIT	Y CONTROL REGION (108)						
ladawaska	Madawaska High School	.124	.062	.125	.139	.049	.066
ladawaska	Albert Street	.174	.132	.135	.152	.130	.078
ladawaska	Sewage Treatment Plant	.108	.073	.085	.083	.060	.045
DOWNEAST AIR QUALITY	(CONTROL REGION (109)				•		
ast Millinocket	Katahdin School		.118	.077	.072	.054	.025
incoln	Thomas Motel Trailer Park				.062	.052	.076
incoln	Fish Hill Base					.023	.016
incoln	Fish Hill Peak					.025	.025
illinocket.	Wastewater Treatment Plant	.207	.264	.084	.078	.077	.062
lillinocket	York Street	.303	.149	.092	.063	.065	.044
loodland	Secondary Treatment Pipeline		.037	.103	.022	.058	.059
IETROPOLITAN PORTLAN	ND AIR QUALITY CONTROL REGION (110)						
littery	Greenfield Drive	 .			.006	.043	.027

الله المحلي ا المحلية المحلية المحلية المحلية المحلي الم المحلية المحلي المحلية المحلية المحلي الم

-28-

	TABLE 5 - 3
SULFUR	DIOXIDE HISTORICAL COMPARISONS
	(Sites With Violations)

	•			TOTAL NU	MBER OF VIOLA	TIONS*	•	
ITE	ADDRESS	1978	1979	1980	1981	1982	1983	1984
NDROSCOGGIN INTERS	STATE AIR QUALITY CONTROL REGION (107)			•				
umford	Taylor Mountain I					0	0	ı
ROOSTOOK AIR QUAL	ITY CONTROL REGION (108)							
adawaska adawaska adawaska	Madawaska High School Albert Street Sewage Treatment Plant	. 0 	1 5 2	0 10 0	1 7 0	1 7 0	0 2 0	0 0 0
OWNEAST AIR QUALIT	TY CONTROL REGION (109)							
illinocket illinocket oodland	Wastewater Treatment Plant York Street Secondary Treatment Pipeline	48 37 	32 22 	31 14 0	0 1 1	0 0 0	0 0 - 0	0 0 0
Includes 2 Hours	and 24-Hour Violations.	•		,		-		
includes p-nour a	and 24-hour Violations.		:					
				• •				
					• •			
	· · · ·		· ·					
			•					
					:			
		•		• •				
		Þ	,			-		
					•		• · ·	
				• •.				
			· .					
					•	-		
	,						-	
		-			•	-		
	ه .					,		
					-			

-29-

6. PARTICULATES (TSP)

6.1 Description and Sources

Particulates is the term given to the tiny particles of solid or semi-solid material found in the atmosphere. It is this "dirt" in the air that is visible as a "Brown Cloud", haze or smog. The sources of particulates are many: wind-blown dust and sand from roadways, fields, and construction; coal dust, fly ash, and carbon black from various combustion sources; and automobile exhaust, to name a few. Particulates that range in size from less than 0.1 micrometer up to approximately 45 micrometers are called "total suspended particulates". Particles larger than that range tend to settle out of the air and not remain suspended, except in high winds.

6.2 Health and Welfare Effects

The human nose filters out 99 percent of the large and medium-sized particles. The rest enter the windpipe and lungs, where some, known as inhalable particulates, cling to protective mucous and are removed. Some of the smallest, called respirable particulates, are deposited in the lungs' tiny air sacs (alveoli).

In the lungs particulates slow down the exchange of oxygen with carbon dioxide in the blood, causing shortness of breath. The heart may be strained because it must work harder to compensate for oxygen loss. Usually the people most sensitive to these conditions have respiratory diseases like emphysema, bronchitis, asthma, or heart problems. The elderly and children are also sensitive.

Particles themselves may be poisonous if inhaled or absorbed, damaging remote organs like the kidneys or liver. Swallowed mucous that is laden with poisionous particulate matter may damage the stomach.

In addition, particulates may be carriers of poisonous liquid or gaseous substances. Sulfur dioxide, a major air pollutant in its own right, is frequently absorbed by particulates and can react with them to form sulfates. Sulfates react with moisture in the air or in the respiratory tract to form corrosive liquid (sulfuric acid) that irritates delicate membranes and slows down the cleansing action of mucous. This effect can reduce the body's ability to remove harmful bacteria, increasing the possibility of infection.

Adverse health effects from particulate matter aren't always seen immediately. Particulates can accumulate in the lungs after repeated, long-term exposure, causing respiratory distress and other health problems that may be manifested later.

Particles in the air block out and scatter sunlight, reducing visibility. Particulates soil and corrode metals, masonry, and textiles. Irritating odors are often associated with particulates, also.

6.3 Standards

Primary:

The current primary particulate standards are for total suspended particulates (TSP), independent of particle size or chemical composition. The long-term standard is an annual geometric mean not to exceed 75 micrograms of particulates per cubic meter of air (ug/m^3) . The short-term standard is a 24-hour average of 260 ug/m³ not to be exceeded more than once per year.

EPA has proposed revised particulate standards to account for the deeper inhalability of smaller particles. The new standards, rather than applying to TSP, would apply to inhalable or fine particulates. A particle size of 10 micrometers is being considered as the upper size limit with a 24-hour concentration in the range of 150-250 ug/m³ and an annual standard in the range of 50 to 65 ug/m³.

Secondary:

The current secondary TSP standard is a 24-hour average of 150 ug/m³ not to be exceeded more than once per year, designed to protect from soiling, corrosion, etc.

EPA is also considering replacing the current 24-hour secondary TSP standard with an annual TSP standard to be selected from a range of 70 to 90 ug/m^3 , expected annual arithmetric mean.

State Standards:

The current State Standards include an annual geometric mean of 60 micrograms per cubic meter and a 24-hour standard of 150 micrograms per cubic meter not to be exceeded.

6.4 Monitoring

Particulates were monitored at 55 sites in Maine during 1984 using High-Volume Particulate Air Samplers (Hi-Vols).

Hi-Vols operate on the same principle as a vacuum cleaner in that the air is drawn through a filter to "catch the dust". The difference is that a Hi-Vol draws a calibrated volume of air through a pre-weighed filter pad (rather than a bag) for a twenty-four hour period. The change in weight of the filter pad is recorded as total suspended particulate or TSP in micrograms of particulates per cubic meter of air.

Table 6-1 is a summary of the TSP data collected in Maine during 1984. Table 6-2 is a historical comparison of the TSP Annual Geometric Means at sites which have been in existence over the last two years. Table 6-3 summarizes the number of TSP violations which have occurred over the last six years and the sites at which they occurred.

Fine particulate sampling increased again during 1984. The increased sampling has been conducted to obtain data to evaluate the proposed fine particulate standards. The sampling has been conducted with dichotomous samplers and size-selective hi-vols. The dichotomous samplers collect particles smaller than either 15 or 10 microns in two different size classes. The two classes are summed to give a total fine particulate. The size-selective hi-vols collect particles 10 microns and smaller or 15 microns and smaller.

The data collected and the sites which were in operation during 1984 have been summarized in Table 6-4.

TĄBLE 6 - 1 1984 TOTAL SUSPENDED PARTICULATES DATA SUMMARY (Micrograms Per Cubic Meter)

SITE	ADDRESS	NUMBER OF OBSERVATIONS	HIGHEST 24-HOUR	SECOND HIGHEST	THIRD HIGHEST	ANNUAL GEOMETRIC MEAN
ANDROSCOGGIN INTERSTAT	FE AIR QUALITY CONTROL REGION (10	7)		· .		
Auburn	Lepage Bakery	116	143	116	115	43.5
Augusta	Cony High School	112	280	208	1.84	50.5
Augusta	Hartford Fire House	262	536	314	295	45.9
Augusta	Hodgkins School	252	167	142	112	29.4
Fairfield	Nutting Residence	29	85	58	54	31.3*
lay	Weather Level I	320	187	160	149	36.4
lay	Crash Road	342	. 119	117	113	22.1
ay	Jay Hill	323	150	125	123	32.6
ay	Water Treatment Plant Site #2	324	135	90	87	21.1
ewiston	Lewiston Post Office	57	. 103	99	93	50.1*
lexico	Mexico Treatment Plant	229	136	123	120	39.9
lexico	Labonville's	229	148	146	139	51.6
lexico	Carver's Residence	228 ·	141	129	109	37.4
outh Paris	Bessey Motors	6	164	141	109	103.7*
outh Paris	Reilly Property	7	160	152	106	102.3*
lumford	Taylor Mountain I	221	126	118	111	37.5
lumford	Taylor Mountain II 🤷	222	135	102	89	28.2
umford	Village Green Site	198	153	144	117	34.0
kowhegan	Hinckley	111	68	64	61	21.3
kowhegan	Eaton Ridge		_64	62		20.2
homaston .	Dexter Avenue	205	111	90	87	24.2
Thomaston	Sanders Property	205	92	89	78.	25.4
Thomaston	Pease Property	198	97	· 90	89	31.3
Thomaston	Marsh Road	209	115	78	76	25.9
horndike	Tweedie Residence	10	· 113	89	61	48.2*
Vaterville	Al Corey's Music Store	57	95	81	81	44.5*
Waterville	Stern's Department Store	25	103	102	59	35.5*
AROOSTOOK AIR QUALITY	CONTROL REGION (108)					
ladawaska	Madawaska High School	89	120	114	98	34.3*
ladawaska	St. Jarres	72	205	192	183	50.7*
Presque Isle	Northeastland Hotel	140 🕨	327	316	273	62.5*
Presque Isle	Creasey Ridge Road	206	108	72	72	12.1*
DOWNEAST AIR QUALITY (CONTROL REGION (109)				•	
cadia National Park	McFarland Hill Ranger Station	48	72	37	32	12.9
Bangor	Regional Office	116	128	104	100	46.5
Bangor	Kenduskeag Pump Station	111	179	123	123	56.5
Brewer	Brewer Junior High School	117	132	126	106	41.5
ast Millinocket	Katahdin School	115	102	94	88	25.3
incoln	Vocational Education Building	348	149	9 8	93	35.3
incoln	Lincoln Post Office Building	357	166	141	128	40.4
incoln	Thomas Motel Trailer Park	342	166	153	128	41.8
lillinocket	York Street	341	167	164	164	49.1

-33-

TABLE	6	-	1
2			

NUMBER OF HIGHEST SECOND THIRD ANNUAL ADDRESS HIGHEST HIGHEST SITE OBSERVATIONS 24-HOUR GEOMETRIC MEAN 151 01d Town Marsh Island Apartments 117 153 120 37.3 111 91 01d Town Penobscot Shoe Company 113 85 31.8 Newburah 308 75 72 64 16.1 Newburgh School Milford Shumway Field 312 105 90 90 29.1 Woodland "D" Street 175 113 106 105 27.1* Woodland Secondary Treatment Pipeline 344 174 149 137 31.2 · . . Woodland Woodland High School 351 315 266 211 36.8 149 146 Woodland 146 Chip-N-Saw Waferboard Mill 126 34.5* METROPOLITAN PORTLAND AIR QUALITY CONTROL REGION (110) 43.3* Biddeford Biddeford Treatment Plant 64 112 111 94 Bridgton Upper Ridge Road 137 124 93 17.1* 95 Kittery Greenfield Drive 97 82 72 66 27.2 124 Kittery Wentworth Dennet School 96 101 95 35.5 Portland Shelter Site 105 135 109 111 49.4 South Portland 81 95 76 76 31.7* SMVTI N.E.T.&T. Company 216 195 142 137 Westbrook 40.8 Westbrook Research Building 229 183 151 144 63.4 Westbrook Warehouse #5 238 197 141 142 60.6

.

-34-

· . . .

* Insufficient data collected for valid annual geometric mean.

				ANNUAL GE	OMETRIC MEANS	(ug/m ³)		
SITE	ADDRESS	1978	1979	1980	1981	1982	1983	1984
ANDROSCOGGIN INTERSTAT	E AIR QUALITY CONTROL REGION (107)							
Auburn	Lepage Bakery			73.0	53.5	47.4	39.3	43.5
Augusta .	Cony High School	49.8	53.5	62.1	59.5	48.5	48.9	50.5
Augusta	Hartford Fire House					46.9	48.1	45.9
Jay	Weather Level I				33.3	40.0	33.0	36.4
Jay	Crash Road		24.3	23.8	23.2	22.1	18.0	22.1
Jay	Jay Hill		27.8	28.0	27.5	28.5	25.2	32.6
Jay	Water Treatment Plant Site #2					21.5	19.0	21.
Lewiston	Lewiston Post Office	51.7	48.0	56.7	53.1	50.8	41.5	50.1
Mexico	Mexico Treatment Plant	41.0	43.3	48.7	42.0	42.3	39.1	39.9
Mexico	Labonville's				48.3	53.5	50.6	51.6
Mexico	Carver's Residence				40.5	40.3	35.6	37.4
South Paris	Bessey Motors	69.6	56.4	57.4	52.6	66.1	64.8	103.7
South Paris	Reilly Property	73.3	59.6	53.6	- 58.7	69.5	77.6	102.
Rumford		•				37.9	34.8	37.
Rumford	Taylor Mountain I		*** ***				26.0	28.2
	Taylor Mountain II	10.0	10.7		16.1	18.5	17.3	20.
Skowhegan	Hinckley	19.8	19.7	16.5				21.
Skowhegan	Eaton Ridge	19.6	24.3	16.5	16.5	17.4	15.4	
Thomaston	Dexter Avenue	40.5	33.4	33.5	25.7	25.5	22.0	24.
Thomaston	Sanders Property		26.9	29.0	24.5	23.7	21.9	25.
Thomaston	Pease Property		40.4	50.0	37.8	. 34.0	28.0	31.
Thomaston	Marsh Road			26.4	30.8	28.3	22.7	25.
Waterville	Al Corey's Music Store				49.6	40.4	41.9	44.
AROOSTOOK AIR QUALITY	CONTROL REGION (108)							
Madawaska	Madawaska High School	37.3	39.1	47.1	43.7	47.1	44.1	34.
Presque Isle	Northeastland Hotel			49.1	67.0	62.0	66.8	62.
Presque Isle	Creasey Ridge Road				15.2	13.5	12.8	12.
DOWNEAST AIR QUALITY C	CONTROL REGION (109)							
Acadia National Park	McFarland Hill Ranger Station					·	11.6	12.
Bangor	Regional Office	54.1	51.9	45.3	45.3	42.7	41.7	46.
Bangor	Kenduskeag Pump Station	75.5	68.4	58.3	53.8	52.1	49.8	56.
Brewer	Brewer Junior High School			41.4	43.6	36.4	37.0	41
East Millinocket	Katahdin School			31.3	26.3	30.8	27.4	25
Lincoln	Vocational Education Building	43.6	48.6	46.9	44.8	41.5	36.2	35
Lincoln	Lincoln Post Office Building	52.4	53.6	57.1	49.5	46.6	39.8	40
Lincoln	Thomas Motel Trailer Park	52.4	55.0	57.1	45.5	40.0	40.9	40
Millinocket	York Street		50.5	48.9	42.7	44.4	43.8	49.
,,								49. 37.
01d Town	Marsh Island Apartments	40.2	38.3	44.5	42.6	38.6	35.8	
Old Town	Penobscot Shoe Company		29.9	40.0	37.1	32.1	28.0	31.
Newburgh	Newburgh School			23.6	19.2	15.9	15.8	16.
Milford	Shumway Field			32.9	29.1	31.6	25.7	29.
Woodland	"D" Street		29.9	31.7	26.6	25.3	23.5	27.

TABLE 6 - 2 TOTAL SUSPENDED PARTICULATES HISTORICAL COMPARISON ANNUAL GEOMETRIC MEANS (ug/m³)

. .

.

TABLE	6	-	2
2			

				ANNUAL GE	OMETRIC MEANS	(ug/m ³)		
SITE	ADDRESS	1978	1979	1980	1981	1982	1983	1984
Woodland	Secondary Treatment Pipeline		39.7	35.0	33.0	31.6	32.3	31.2
Woodland	Woodland High School			32.3	44.9	36.6	35.0	36.8
Woodland	Chip-N-Saw Waferboard Mill				38.2	32.8	30.0	34.5*
METROPOLITAN PORTLA	ND AIR QUALITY CONTROL REGION (110) Biddeford Treatment Plant				47.2	43.0	37.8	43.3 *
Kittery	Greenfield Drive					32.0	27.7	27.2
Kittery	Wentworth Dennett School						34.5	35.5
Portland	Shelter Site			53.5	50.4	48.2	45.6	49.4
South Portland	SMVTI	30.5	30.9	40.5	37.2	32.5	33.5	31.7*
Westbrook	N.E.T.&T. Company		43.7	42.4	38.8	44.0	36.5	40.8
	Research Building			55.7	52.0	55.3	52.2	63.4
Westbrook	Research burling							

.

* Insufficent data collected for valid annual geometric mean.

. • .

	TABLE 6 - 3		
TOTAL	SUSPENDED PARTICULATES HISTORICAL	COMPARISON	
	(Sites With Violations)		

		JSPENDED PAR (Site	TABLE 6 - 3 TICULATES HIST s With Violati	ORICAL COMPARIS	ON			
ITE	ADDRESS	1978	1979	TOTAL NUMBER 1980	OF SHORT TERM 1981	VIOLATIONS 1982	1983	1984
	TE AIR QUALITY CONTROL REGION (107			a				
uburn	Lepage Bakery				0	4	1	0
ugusta	Cony High School	2	4	5	4 .	7	2	5
ugusta	Hartford Fire House						6	าด้
ay	Weather Level I	~ ~				ñ	ĩ	1,8 2
ay	Crash Road			0	1	2	0	į
	Jay Hill		0	1		2	0	,0 0
ay			0	I	1	2	0	0
ewiston	Lewiston Post Office	0	U	0	2	3	2	•
exico	Mexico Treatment Plant	0	I	I	U	U	0	0
exico	Labonville's					0	0	0
outh Paris	Bessey Motors	2	3	4	0	1	0	· 1
outh Paris	Reilly Property	10	. 8	3	l	0	4	2
umford	Village Green		 .	° 			1	. 1
kowhegan	Eaton Ridge	0.	l	0	0	. 0	0	0
homaston	Dexter Avenue		···		1	1	0	0
homaston	Pease Property		0	1	Ó	Ó	0	0
homaston	Marsh Road				i	3	Ō	Ō
aterville	Al Corey's Music Store		:		2	ĩ	ĩ	Õ
ROOSTOOK AIR QUALITY	CONTROL REGION (108)			,				
adawaska	Madawaska High School	0	1	2	9	13	8	0
resque Isle	Northeastland Hotel		· · ·	0	10	12	້ຳ	0 12
OWNEAST AIR QUALITY		i.						
		0	,	0	2	2	1	0
angor	Regional Office	0 10	ן ל	U A	2	2 6	ו ס	U I
angor	Kenduskeag Pump Station	IU	1	4	-	-	2.	I
ast Millinocket	Katahdin School			2	0	0		Õ
incoln	Vocational Education Building	0	2	5	4	• 4	2	0
incoln	Lincoln Post Office Building	1	2	5	7	6	7	1
incoln	Thomas Motel Trailer Park		·			10	4	2
illinocket	York Street		0	6	2	2	3	4
ld Town	Marsh Island Apartments	0	1	0	1	1	0	2
ld Town	Penobscot Shoe Company	b	0 :	3	l	2	. 0	0
oodland	Secondary Treatment Pipeline		2	4	3	ō	5	1
oodland	Woodland High School .			Ŏ	3	Õ	8	11
ETROPOLITAN PORTLAND	AIR QUALITY CONTROL REGION (110)							•
iddeford	Biddeford Treatment Plant				0	1	0	0
estbrook	N.E.T.&T. Company			. 0	ĩ	ò	× Õ	ĩ
	meeters company				•	~	v	•
estbrook	Research Building			0	0	5	2	2

-37-

SITE	ADDRESS	NUMBER OF OBSERVATIONS	HIGHEST 24-HOUR	SECOND HIGHEST	THIRD HIGHEST	ANNUAL ARITHMETIC MEAN	ANNUAL N GEOMETRIC MEAN
ANDROSCOGGIN INTERSTAT	E AIR QUALITY CONTROL REGION (10)7)					
Augusta Augusta	Hartford Fire House Malta Street	81 87	126 77	97 58	92 56	29.5 22.3	24.1 19.4
AROOSTOOK AIR QUALITY	CONTROL REGION (108)						
Madawaska Madawaska Presque Isle	Madawaska High School St. Jarres Northeastland Hotel	1 24 84	23 107 202	96 157	 79 156	23.0 46.5 54.6	23.0 34.8 46.5
DOWNEAST AIR QUALITY C	ONTROL REGION (109)						
Acadia National Park Lincoln	McFarland Hill Ranger Station Thomas Motel Trailer Park	18 177	24 95	22 92	18 82	10.3 34.2	9.0 30.1
METROPOLITAN PORTLAND	AIR QUALITY CONTROL REGION (110)) .		• •			
Bridgton Portland Westbrook	Upper Ridge Road Shelter Site Warehouse #5	42 48 98	47 64 92	38 52 76	36 48 73	18.0 28.2 31.8	15.8 25.9 28.9

•

.

TABLE 6 - 4 1984 FINE PARTI**C**ULATE DATA SUMMARY (Micrograms Per Cubic Meter)

.

.

s · · ·

7. LEAD (Pb)

7.1 Description and Sources

Lead in the ambient air exists primarily as particulate matter in the inhalable size range. The predominant source of atmospheric lead is from motor vehicles that burn "leaded" gasoline. The lead in gasoline is in the form of tetraethyl lead, an "anti-knock" compound. Other major sources of atmospheric lead are the extraction and processing of metallic ores.

7.2 Health and Welfare Effects

When atmospheric lead is breathed in, it is absorbed into the bloodstream and distributed throughout the body along with lead from contaminated food and drinking water. Lead accumulation in the body can impair the production of hemoglobin. Clinical lead poisoning occurs when the body's accumulation of lead becomes too high. Symptoms of lead poisoning range from loss of appetite, fatigue, cramps and constipation, and pains in the ankles and wrists to loss of power in the arms and legs, anemia, kidney disease, mental retardation, blindness and death. Lead concentrations in the ambient air are not sufficient to produce lead poisoning but they do increase the risk of harm when other sources of lead are present. And, indirectly, lead fallout from automotive exhaust onto soil and street surfaces can be ingested in considerable amounts by infants and young children.

7.3 Standards

The current National Ambient Air Quality Standard for lead is a 3-month (calendar quarter) average concentration not to exceed 1.5 micrograms of lead per cubic meter of air.

The current State Standard for lead is a 24-hour average concentration of 1.5 micrograms of lead per cubic meter of air not to be exceeded more than once per year.

7.4 Monitoring

Lead was monitored at eleven sites in Maine during 1984 by taking samples of the Hi-Vol filters from those sites and analyzing the samples for lead content using an atomic absorption analyzer.

Tables 7-1 and 7-2 are the 1984 Data Summaries for Lead. Table 7-3 presents the Lead Historical Comparison Data.

-39-

TABLE 7 - 1 1984 LEAD DATA SUMMARY (Micrograms Per Cubic Meter)

SITE	ADDRESS	NUMBER OF OBSERVATIONS	HIGHEST 24-HOUR	SECOND HIGHEST	THIRD HIGHEST	ANNUAL ARITHMETIC MEAN
ANDROSCOGGIN INTER	STATE AIR QUALITY CONTROL REGION	(107)				
Augusta Lewiston Lewiston	Cony High School Lewiston Post Office Lepage Bakery	56 31 23	.91 .44 .77	. 56 . 24 . 48	. 45 . 24 . 33	.17 .14 .20
AROOSTOOK AIR QUAL	ITY CONTROL REGION (108)					
Presque Isle Presque Isle	Northeastland Hotel Creasey Ridge Road	45 39	.54 .07	.27 .05	.26 .05	.13 .02
DOWNEAST AIR QUALI	TY CONTROL REGION (109)					
Bangor Bangor	Regional Office Kenduskeag Pump Station) • 60 •	.45	. 35	.32	. 45
METROPOLITAN PORTL	AND AIR QUALITY CONTROL REGION ()	10)				
Kittery Kittery Portland Portland	Greenfield Drive Wentworth Dennet School Shelter Site Tukey's Bridge	44 3 79 74	.14 .09 .71 1.10	- 13 - 08 - 59 - 82	.13 .04 .57 .75	.06 .07 .23 .42

.

.

-40-

			1984 QUARTERLY AVERAGES					
SITE	ADDRESS	<u>1ST</u>	2ND	3RD	<u>4TH</u>			
ANDROSCOGGIN IN	TERSTATE AIR QUALITY CONTROL REGION (107	7)						
Auburn Augusta Lewiston	Lepage Bakery Cony High School Lewiston Post Office	.17 .19	.11	.12 .18 .12	.24 .24			
AROOSTOOK AIR Q	UALITY CONTROL REGION (108)	-						
Presque Isle Presque Isle	Northeastland Hotel Creasey Ridge Road	.16 .03	.11 .01	.11 .01				
DOWNEAST AIR QU	ALITY CONTROL REGION (109)							
Bangor	Kenduskeag Pump Station	,14	.09	.15	.20			
METROPOLITAN PO	RTLAND AIR QUALITY CONTROL REGION (110)							
Kittery Portland Portland	Greenfield Drive Shelter Site Tukey's Bridge	.06 .20 .39	.05 .14 .40	.08 .27 .41	.05 .30 .45			

TABLE 7 - 2 1984 LEAD DATA'SUMMARY BY QUARTERS (Micrograms Per Cubic Meter)

TABLE 7 - 3 LEAD HISTORICAL COMPARISONS (Micrograms∙Per Cubic Meter)

		MAXIMUM 24-HOUR CONCENTRATION/AAM						
SITE	ADDRESS	1979	1980	1981	1982	1983	1984	
ANDROSCOGGIN INTER	STATE AIR QUALITY CONTROL REGION (107)							
Augusta Lewiston	Cony High School Lewiston Post Office	1.46/0.48 J.23/0.40	0.99/0.34 0.90/0.28	0.73/0.24 1.11/0.29	0.66/0.24 0.97/0.24	0.70/0.20 0.54/0.16	0.91/0.17 0.44/0.14	
AROOSTOOK AIR QUAL	ITY CONTROL REGION (108)							
Presque Isle Presque Isle	Northeastland Hotel Creasey Ridge Road		0.52/0.21	0.93/0.22	- 0.89/0.24	0.93/0.19 0.08/0.03	0.54/0.13 0.07/0.02	
DOWNEAST AIR QUALI	TY CONTROL REGION (109)	,		;				
Bangor	Kenduskeag Pump Station	1.16/0.44	0.85/0.30	0.62/0.22	0.70/0.24	0.59/0.18	0.53/0.14	
METROPOLITAN PORTLA	AND AIR QUALITY CONTROL REGION (110)							
Kittery Port]and Portland	Greenfield Drive Shelter Site Tukey's Bridge			1.45/0.59	0.58/0.18 0.91/0.29 1.28/0.52	0.39/0.11 0.56/0.20 1.44/0.49	0.14/0.06 0.71/0.23 1.10/0.42	

8. SULFATES (SO₄)

8.1 Description and Sources

Sulfates are compounds of varying harmfulness found everywhere in the atmosphere. They are produced by nature as well as man. Man-made sulfates have their origin in sulfur dioxide. Fine particulate compounds, including sulfates are formed from chemical reactions between sulfur dioxide emitted into the air and other substances present there. These fine particulate compounds have a long atmospheric residence time, can be transported in the air for long distances, and are capable of penetrating deeply into the human respiratory tract.

8.2 Health and Welfare Effects

Epidemiological studies of populations exposed to particulate sulfates have shown that atmospheric sulfates, more than sulfur dioxide gas or total suspended particulates, are related to aggravation of asthma, aggravation of heart and lung disease in the elderly, and impairment of lung function in school children. This evidence was obtained from EPA's Community Health and Environmental Surveillance System (CHESS). From these studies, estimates of the sulfate threshold for adverse health effects have been derived, as shown in Table 8-1. However, these epidemiological studies have not been substantiated by laboratory studies.

8.3 Standards

There are currently no standards for levels of sulfates in ambient air. EPA is presently working on a standard and will be making a proposal in the near future.

8.4 Monitoring

Sulfate levels were measured at sixteen sites in Maine during 1984 by taking samples of the Hi-Vol filters from those sites and analyzing the samples for sulfates. Some of the sites are analyzed for sulfates on a routine basis while others may only be analyzed if there has been a violation of an ambient air standard. Because there are no standards and the monitoring methodology is still questionable the data has not been included in this report. As soon as the accuracy of the monitoring methodology is confirmed and a standard is proposed the data will be summarized in the annual reports.

-42-

TABLE 8-1

SULFATE THRESHOLDS FOR ADVERSE HEALTH EFFECTS

ADVERSE HEALTH EFFECT

Aggravation of Asthma

Aggravation of Heart and Lung Disease in the Elderly

Subtle Decreases in Childhood Lung Function

Increase in Acute Respiratory Disease in Children THRESHOLD CONCENTRATION FOR SUSPENDED SULFATES

6 to 10 Micrograms Per Cubic Meter for 24 Hours.

9 Micrograms Per Cubic Meter for 24 Hours

9 to 13 Micrograms Per Cubic Meter for 1 Year.

13 Micrograms Per Cubic Meter for 1 Year.

9. ATMOSPHERIC DEPOSITION

9.1 Description and Sources

As a result of the combustion of tremendous quantities of fossil fuels such as coal and oil, the United States annually discharges approximately 50 million metric tons of sulfur and nitrogen oxides into the atmosphere. Through a series of complex chemical reactions these pollutants can be converted into acids, which may return to earth as components of either rain or snow. This atmospheric deposition, more commonly known as acid rain, may have severe ecological impacts on widespread areas of the environment.

9.2 Health and Welfare Effects

While direct health effects from acid rain have not been documented there are numerous indirect effects which could have a definite effect on mankind. Atmospheric deposition is known to leach heavy metals such as mercury from rocks causing possible contamination of water supplies. Hundreds of lakes in North America and Scandanavia have become so acidic that they can no longer support fish life. The rain falling on forests and other non-farmlands could, in time, cause extensive changes in the soil chemistry. There is not enough information yet to make it possible to say exactly what the results might be, but there is no reason to think the changes will be beneficial.

9.3 Standards

There are no standards in effect or proposed for atmospheric deposition. The only permanent solution to the acid rain problem is to keep the acid levels low. The only practical way of achieving this is by reducing emissions at their sources.

9.4 Monitoring

During 1984 there were four sites collecting data on atmospheric deposition. Those four sites included two Bureau maintained sites in Bridgton and Acadia National Park, a University of Maine maintained site in Greenville and a National Weather Service maintained site in Caribou. The samples from these four sites are normally collected every Tuesday morning at 9:00 a.m.. Consequently, the samples are not necessarily a single storm event but are more likely to be a composite of all storm events during the previous week. The samples, if there was a signficant storm, are used for field measurements of pH and conductivity and are then packaged up for shipment to the National Atmospheric Deposition Program central laboratory in Illinois. In the central laboratory they are also tested for pH and conductivity as well as additional components. Table 9-1 is a summary of the measurements taken at the central laboratory in Illinois from the DEP operated sites for the year 1984. The sulfate deposition figures were corrected for marine aerosol contribution.

TABLE 9 - 1

1984 ATMOSPHERIC DEPOSITION DATA SUMMARY

	naan - ann an ann an Ann ann an Ann ann ann an		РН			DEPOSITION (Kg/ha)		
SITE	ADDRESS	MAXIMUM	MINIMUM	MEAN*	S04	NŐ3		
DOWNEAST AIR QU	ALITY CONTROL REGION (109)							
Acadia National	Park McFarland Hill Ranger Station							
METROPOLITAN PO	RTLAND AIR QUALITY CONTROL REGION (110)							
Bridgton	Upper Ridge Road	DATA NOT A	VAILABLE AT	TIME OF PR	INTING			
		~						
	· · ·							

-45-

10. HYDROCARBONS (HC)

10.1 Description and Sources

Hydrocarbons are a class of compounds containing carbon and hydrogen in various combinations. They are found especially in petroleum, natural gas and coal. Some are gaseous, some liquid and some are solid. There are in fact over a thousand hydrocarbon compounds. Many of the polluting hydrocarbons are discharged into the air by incomplete combustion of organic materials. A major source of this kind of hydrocarbon emission is the burning of gasoline in automobiles. Other major contributors are organic solvent evaporation, industrial processes, solid waste disposal and fuel combustion in stationary sources. The control of hydrocarbon emissions are accomplished by combustion process optimization, recovery by mass transfer principles, restriction of evaporative loss and process material and fuel substitution.

10.2 Health and Welfare Effects

Hydrocarbon air pollutants enter into and promote the formation of photochemical smog (ozone) and thus contribute to the development of eye irritation and respiratory tract problems. By themselves, hydrocarbons may induce adverse health effects, although there is relatively little quantitative data to relate individual hydrocarbons to the risk of human disease.

10.3 Standards

The present State and Federal Standard for non-methane hydrocarbons is a three hour average concentration of 160 ug/m³.

10.4 Monitoring

Hydrocarbons were monitored at only one site in the State during 1984. This monitoring was conducted as part of the ozone program operated in Portland during the ozone season. However, insufficient data was collected during the summer to summarize in a meaningful form.