

PHASE I REPORT

LAW & LEGISLATIVE REFERENCE LIBRARY 43 STATE HOUSE STATION AUGUSTA, ME 04333

GROUND-WATER MONITORING AT THE GREENBUSH DISPOSAL FACILITY

GREENBUSH, MAINE

DRAFT

. • .

October 1992

PREPARED BY STONE & WEBSTER ENVIRONMENTAL SERVICES INC. FOR UNIVERSITY OF MAINE SYSTEM, OFFICE OF FACILITIES

TABLE OF CONTENTS

	<u>Paqe</u>			
EXECUTIVE SUMMARY				
1.0 INTRODUCTION	2			
2.0 MONITORING WELL INSTALLATION	3			
3.0 SITE HYDROGEOLOGY	6			
4.0 SAMPLING PROTOCOL	7			
5.0 ANALYTICAL RESULTS	8			
6.0 CONCLUSIONS	13			
7.0 RECOMMENDATIONS	14			
8.0 REFERENCES	15			
ATTACHMENT 1 LABORATORY DATA SHEETS				

ATTACHMENT 2 SITE INVESTIGATION SAFETY PLAN

LIST OF FIGURES

Figure	1	SITE	LOCATION	MAP
--------	---	------	----------	-----

- Figure 2 OBSERVATION WELL LOCATIONS
- Figure 3 NORTH-SOUTH PROFILE
- Figure 4 PROFILE WELL B TO WELL D
- Figure 5 PROFILE WELL C TO WELL A
- Figure 6 INSTALLATION DETAIL WELL A
- Figure 7 INSTALLATION DETAIL WELL B
- Figure 8 INSTALLATION DETAIL WELL C
- Figure 9 INSTALLATION DETAIL WELL D

EXECUTIVE SUMMARY

On November 6, 1991 drilling began for the construction of four monitoring wells, one on each side and adjacent to the Greenbush Disposal Facility boundary. Monitoring well construction was completed December 18, 1991 by All Terrain Drilling of Greenland, NH, using a mobile B-47 rotary drilling rig. Full time supervision, direction, and health and safety monitoring were provided by Stone & Webster Environmental Services, Inc. of Boston.

The monitoring wells were installed in borings advanced through soil by driving and cleaning out 6 inch and 4 inch casing. Borings were advanced through rock by spinning a standard H size core barrel. Monitoring wells were constructed of 2 inch ID PVC standpipes and 2 inch ID Type 304 Stainless Steel, continuous slot well screens. The screens were placed across the water table in each well in order to facilitate detection of light, non-aqueous, immiscible liquids ("floaters") that might reside on top of the ground water, and to assure that only stainless steel would remain permanently in contact with ground water. Approximately 40 feet of screen was placed in the first well in order to assure proper placement across the watertable. This well was monitored for several days until general depth-to-water at the site could be confidently determined. Shorter well screen sections were then placed in each of the remaining three wells.

All wells were purged and sampled on May 7 and 8, 1992 using transparent teflon bailers. Depths to water measurements were also made, and a preliminary transit survey of the well heads was conducted to determine relative locations and elevations. In addition, a vapor sample was taken from immediately beneath the hypalon and soil cap overlying the landfill. This was accomplished by inserting and sealing a plastic tube through a small incision made in the hypalon and pulling the vapor through the tube into a sorbant cylinder using a battery powered vacuum pump. Approximately 2.2 liters per minute of vapor were pumped through the cylinder for a period of approximately one hour.

All samples were shipped to C.E.P. Laboratories of Santa Fe, New Mexico for analysis of organic volatiles (EPA Method 624) and radioactivity (gross Alpha, gross Beta, and Gamma Spectral Analysis).

The results of the sampling and testing showed no elevated level of organic \checkmark volatiles or radioactivity in the ground water and no detectible organic vapors beneath the hypalon liner.

Based on the data collected to date, there is no evidence of contaminant leakage from the landfill. The addition of four new monitoring wells plus a continuous sampling and testing program will complete the monitoring system and provide a reasonable level of confidence that future sampling and analysis will reflect the landfill performance.

1.0 INTRODUCTION

This report presents the results of the hydrogeologic studies including the results of ground-water sampling and testing at the University of Maine's disposal facility at Greenbush, Maine. The work reported in this document covers the activities completed during the October 1991 and September 1992 period.

Stone & Webster originally proposed (June 27,1989) a scope of work that included eight well nests with each nest consisting of one shallow well and one deep well. Water samples collected from the well were to be subjected to a comprehensive analytical testing program. Following discussions with the University, the work was divided into phases. The first phase, the results of which are reported in this document, consisted of four wells located adjacent to the disposal facility followed by one round of ground water sampling and a limited analytical testing program. As work on Phase II is completed and as additional analytical data is collected, this report will be updated.

The work reported in this document was authorized by the University of Maine System, Office of Facilities on October 1, 1991 as part of the Agreement For Consulting Services with Stone & Webster Environmental Services Inc. (Stone & Webster) dated March 20, 1989.

2.0 MONITORING WELL INSTALLATION

The Greenbush Disposal Facility is located approximately 26 miles north-northeast of Bangor, Maine in a wooded area on State Tree Nursery property, approximately 0.6 miles north of Scotts Corner, on the west side of Goulds Ridge Road. The 40' X 40' site is located on a late Wisconsinan esker at approximate elevation 250'. There is an irrigation pond 0.3 miles to the southwest of the site at elevation 170'. Olamon stream is located 1.0 mile southwest at approximate elevation 125' (U.S. Geological Survey, 1988) (Figure 1).

Four monitoring wells were installed around the site perimeter during the period November 6 to December 18, 1991 (Figure 2). The wells ranged in depth from 80.5' to 110.1'. Monitoring well B was advanced to 60.8' by driving 6" casing with a 300 lbs. hammer after cleaning out ahead of the casing with a 5 5/8" rollerbit. After refusal at 60.8' a spinning shoe was installed on the 6" casing and the hole was advanced utilizing spinning techniques until refusal at 70.0'. At 70.0' 4" casing with a spinning shoe was telescoped down through the 6" casing. The hole was then advanced spinning the 4" casing down to bedrock using a 3 5/8" rollerbit ahead of the casing.

Monitoring wells A, C, and D were all installed by advancing the hole with a 3 5/8" rollerbit and driving 4" casing until refusal. After refusal the casing was advanced utilizing spinning techniques. While advancing C and D through the till layer, water loss was 100%.

In all of the monitoring wells the holes were advanced through the bedrock using a standard 4" H rock core barrel. Drilling was smooth during each core run with rock core recoveries approaching 100%. While coring C and D drilling fluid (water) loss was 100%.

To avoid contaminating the wells during installation the use of petroleum-based lubricants was not permitted. The only lubricant used during the installation of the wells was a vegetable oil based lubricant that was used on the 6" casing in B. Water used to wash the cuttings out of the hole was continuously monitored for both volatile organic carbon and Y radiation to avoid introducing any contaminants into the well.

All material used to install the wells including casing, rods, driving shoes, spinning shoes, and rollerbits were monitored for volatile organic carbon and Υ radiation. All equipment used to develop the wells, including a Watera pump and a teflon bailer, were new, having not been used on other sites.

While drilling a half barrel and a T-adapter were utilized to recirculate the drilling fluids. This was done to prevent drilling fluid from moving off the site. Any drilling fluid that spilled during the drilling process or circulated to the surface while spinning down the casing was absorbed by the formation in close proximity to the hole. In addition, all fluid that was used to flush the hole before installing the wells was disposed of in close proximity to the hole and also was absorbed by the formation.

Below the watertable, 2.0" ID, type 304, stainless steel, 10 slot, continuous slot, wire wound screens were used in all wells with a 2.7" stainless steel silt

trap. Above the well screen the inner casing consisted of 10.0' of 2.0" ID, type 304, stainless steel, riser pipe. From the stainless steel riser pipe to the top-of-well the inner casing was made of 2.0" ID, PVC pipe. A filter pack composed of well-graded filter sand was placed from the bottom of each well to a minimum depth of 10.0' above the well screens. Above the filter pack a 5.0' minimum thickness bentonite seal was installed in each well. Cuttings or filter sand was placed above the bentonite seals to the base of the stand-up guard pipes where an additional bentonite seal was placed. Cuttings or filter sand was then placed on top of the surface seal to permit water to drain out below the stand-up guard pipes. The 5.0' long, 6.25' ID, steel, stand-up guard pipes with locking caps were installed at least 2.3' above ground surface, and were secured in place .with bentonite (Figures 6-9).

The four monitoring wells installed on the site are all seated in bedrock. Based on readings taken shortly after well construction, the depth of the water table ranges from 72.6' on the north side of the site, to 69.7' on the west. The water table is located within the till layer anywhere from 2.9' to 16.5' above the bedrock. The maximum difference in the elevation of the water table between all four wells was 2.9'. This indicates that the water table is not influenced by the more extreme dip of the bedrock (Figures 6-9).

In order to confirm the depth of the water table, monitoring well B was bailed. Approximately 5 gallons of water were removed from the well, drawing down the water level 0.5' to a depth of 76.5'. The water level in the well fully recovered in 105 seconds. To further confirm the depth of the water table a daily record was kept of the ground-water levels in the completed wells during the drilling program. Over a period of 21 days, the water level in B fluctuated 0.15'. In A, over a 7 day period, the depth to the water table fluctuated 0.10', in D over a 3 day period it fluctuated 0.25'. As Well C was completed last, flictuations could not be measured in this well over a meaningful time period.

While drilling through the till and coring the bedrock in C and D, drilling fluid loss was 100%. This, and the rapid recovery noted while bailing B, indicates good transmissivity of the aquifer medium.

During the monitoring well installation and during the sampling activities an HNu volatile organic carbon vapor monitor and a Υ radiation indicator were present on the site at all times. The HNu was calibrated daily and no unusual drift was observed. Background levels with the HNu and the Υ indicator were established each day prior to the commencement of work activities and averaged approximately 0.4 ppm on the HNu and 0.1 mR/h on the Υ indicator. Measurements were taken every 0.5 hour or every 5.0' during rapid advancement of the hole. During prolonged periods of inactivity on the site, measurements were taken less frequently as deemed appropriate. Monitoring with the HNu was performed in the breathing zone, while monitoring with the Υ indicator was also performed at the well head.

Throughout the drilling program there was only one reading on the HNu exceeding the 5 ppm action level. This occurred in B at 57.5', on 11-8-91 at 0715. After advancing the casing to 59.0', the driller was washing the cuttings at 57.5' when it was noted that the drilling fluid was effervescing. A reading of

approximately 20.0 ppm was observed at the wellhead on the HNu at this time, while only background levels were noted in the breathing zone. Background levels were also observed with the Υ indicator in both the breathing zone and at the well head. The drillers were subsequently instructed to move off the site and drilling activities were suspended.

At 0830 Dick Skryness, Larry Picking, and Larry Cohen were contacted and it was decided to return to the site and monitor the breathing zone and the well head. Upon returning, the breathing zone and the well head were at background levels on both the HNu and the Υ indicator. At 0920 drilling activities resumed and effervescing was again noted in the drilling fluid. At this point the drillers were instructed to again move off the site and drilling activities were suspended.

At 1000 Dick Skryness and Jim Skrabak were contacted and it was decided to resume drilling and to monitor the breathing zone and the well head every 15 minutes, and avoid skin contact with the drilling fluid. Upon the resumption of drilling, background levels were observed in the breathing zone with both the HNu and the Υ indicator. At the well head, while washing out the cuttings at 59.0', readings on the HNu were observed to be 2.0 ppm at 1050. At 1105 readings of 10.0 ppm were noted. After advancing to 60.8' a reading of 2.0 ppm was noted at 1150. Background levels were observed with the Υ indicator at the well head throughout. At 1215, while monitoring the cuttings from 55.0'-60.0', readings of 20.0+ ppm were noted with the HNU and background levels were observed with the Υ indicator. After casing off the hole to 60.8', no unusual readings were noted on the HNU or the Υ indicator.

The effervescing observed in the drilling fluid plus the absence of exlevated (gamma) readings indicates the presence of a naturally occuring gas. The response was detected at 57.5' near the gradational interface between the upper sand and the lower till. Therefore, it could be the result of an organic-rich silt deposit present at this depth, too small to be identified in the drill cuttings. This response also appears to be locally isolated and was not observed in any of the other monitoring wells.

Background levels were observed with the Υ indicator in all borings throughout the drilling program.

3.0 SITE HYDROGEOLOGY

Surficial deposits in the site area are dated by Thompson and Borns (1989) as late Wisconsinan in age and range in thickness from 73.6' along the east side of the site, to 86.2' along the west, reflecting the local dip of the bedrock. These deposits are composed of two units - an upper sand with traces of gravel and boulders, and a lower till (Figures 2-5).

The upper sand with traces of gravel and boulders is an esker deposit and ranges in thickness from 60.8' on the north side of the site, to 51.5' on the south. This unit is composed primarily of interbedded well-graded and poorly graded brown to gray sands with 0-5% nonplastic fines and occasional rounded, fine gravel (to 0.5") and boulders.

The lower unit is a till that ranges from 14.7' along the north side of the site, to 34.2' along the west. This unit is composed of interbedded well-graded and poorly graded gray sands with 0-5% nonplastic fines, and widely graded sandy gravels with 0-5% nonplastic fines. Boulders are abundant throughout the interval.

Bedrock in the area is composed of slates and sandstones of the Silurian Allsbury Formation (Osberg et al., 1989). The Allsbury Formation is part of the Maine Slate Belt, which forms the core of the Kearsarge-Central Maine synclinorium. The Allsbury Formation is dominated by intervals of slate and quartz-rich graywackes (Roy, 1981; Osberg et al., 1989). Fossils contained within the Slate Member of the formation collectively indicate an age in the Silurian between Late Llandoverian to Early Ludlovian and mineral assemblages indicate a low greenschist grade of metamorphism (Roy, 1981).

Bedrock is at a depth of 73.6' on the east side of the site, and at 86.2' on the west, indicating a general east to west dip (Figure 5). Rock cores retrieved while drilling monitoring wells at the site confirm the presence of green to gray slate in the area. The slate was generally found to be moderately fractured to sound with both steeply dipping close, tight, planar, smooth joints along foliation and steeply dipping, close, open, irregular, rough joints at an angle to foliation. Quartz veins are prominent throughout the cores, as are healed joints. Oxidized joints are also present throughout the cores.

The geologic profile described above plus the depths to ground water noted in Section 2.0 of this report, and later confirmed during sampling of the monitoring wells (Section 4.0), indicate that the esker deposits are unsaturated, and the esker upon which the site is located is not an aquifer. At the site and within the immediate region, ground water in usable quantities occurs only in the uppermost fractured zone of bedrock and in the lowermost zone of the overlying till.

4.0 SAMPLING PROTOCOL

On May 7 & 8, 1992, samples were taken for laboratory testing, static water depths were measured, and relative evevations of the well heads were measured using a transit and stadia rod.

The objective of this task was primarily to obtain samples from the monitoring wells for analysis of ground water volatile organic content and radioactivity.

Prior to sampling, the wells were monitored at the wellhead and in the breathing zone for vapors and gases using an HNu volatile organic compound detector. In addition, the wellhead and immediate area approximately 4 ft. above the ground surface (waist level) was monitored for Υ radiation with a Υ detector.

After checking for vapors and gases, the depth to water was measured using a decontaminated water level indicator. The decontamination procedure for the water level indicator was as follows: Wipe the water level indicator dry with a paper towel. After the water level indicator is dry, thoroughly rinse it with deionized water and again wipe dry.

While determining the depth to water, the probe was not lowered below the water surface any further than necessary, and the depth was determined with as little physical disturbance to the water in the well as possible.

Sampling was performed using sampling kits prepared in advance and supplied by the analytical laboratory. A dedicated one-liter, transparent teflon bailer was used to purge nad sample each well. The bailer was decontaminated at the factory and sealed in a protective cover. The bailer was equipped with polyethylene line.

An initial sample was obtained using the bailer by gently lowering the bailer down the well until contact with the well fluid was made. The bailer was lowered approximately one-half its length and retrieved. The purpose of the initial bail was to capture any immiscible, lighter-than-water fluids that may have been floating at the ground-water surface.

The next step in the sampling procedure was to evacuate the standing water inside the well casing. The depth from the top of the casing to the bottom of the well (total depth of the well) was measured, and the height and volume of the standing water was determined. A minimum of 3 to 5 well volumes, was removed, using the dedicated purging bailer.

After purging, the well was not disturbed for a period of time sufficient to allow settling of fines from the uppermost portion of the water column.

Fluid from the initial bail after purging was used to prepare samples for laboratory analysis of volatile organic compounds. The remaining sample jars were then filled for transport to the laboratory.

Field sampling techniques for radionuclides were in accordance with EPA 901.1 for Gamma Spectralanalysis and 900.0 for Gross Alpha and Gross Beta. These each.

require 1 liter of fluid sample in a plastic container. Field sampling techniques for volatile organic compounds were in accordance with SW846 Series for Method 624. This requires two 40 ml VOA Septum Vials with zero head space.

A total of 8 water samples including 4 quality control (2 duplicate samples and 2 equipment blanks) were collected for laboratory analysis. A duplicate sample is a repeat sample taken from an identified well and is used to determine laboratory/sampling precision (repeatability of results). An equipment blank is a sample prepared by using the same sampling equipment as was used to sample the wells (ie, the sampling bailer) to obtain a sample of distilled water transported to the wellhead vicinity by the sampling team from an offsite commercial source. The equipment blank is prepared, containerized, preserved, shipped to the laboratory and otherwise treated in the same manner as the ground-water samples, and analyzed at the laboratory with the ground-water samples. Any contaminant detected in both a ground-water sample and an equipment-blank sample in more-orless similar concentrations would be suspected of having been introduced by the sampling/preparation/shipping/testing procedures, rather than occuring as an actual contaminant in the ground-water.

For shipment, sample containers were packed in insulated coolers containing ice and foam packing material. Shipment to the laboratory was by a commercial overnight delivery service.

SOIL GAS SAMPLING

The objective of this task was to sample and measure volatile organic gases that may be present in the soil underlying the landfill cover.

One soil gas sample was obtained beneath the impervious cover of the disposal facility. One sample was collected outside the disposal facility area prior to penetrating the hypalon liner and was used as a sample blank.

Prior to collecting the soil gas sample the breathing area was monitored for vapors and gasses using an HNu volatile organic compound detector. In addition, the area approximately 4 ft above the ground surface was monitored for γ radiation.

The soil gas sampling location was prepared by removing approximately 6" of sand ' that covers the hypalon liner. A small incision was made to insert a plastic tube below the hypalon. The tube was sealed to the liner with duct tape. A battery operated vacuum pump with built in flowmeter extracted soil gas from beneath the liner through a TENAX filled glass tube. Any organic gas present would be adsorbed onto the TENAX. The organic gasses can be desorbed and quantified by the loaboratory. The flow rate on the pump was set at 2.2 l/min and monitored periodically. The pump was operated for 1 hour. HNu readings were taken immediately after penetrating the cover and during the sample collection. Area radiation measurements were taken during the sampling period. No levels above off site background were detected. After sampling, the hypalon liner was sealed with several layers of duct tape and covered with sand. The sample location was marked with a stack of cobbles for future reference. The gas samples were labeled, packed and shipped with the ground-water samples for overnight delivery to the CEP laboratory for analysis.

5.0 ANALYTICAL RESULTS

All four monitoring wells were sampled in accordance with the sampling protocol discussed in section 4.0. Ground-water samples were collected for radioactivity and volatile organic compound analyses. A soil gas sample was collected from beneath the hypalon liner in order to determine if volatile compounds have accumulated in the soil overlying the disposal site. Laboratory analysis of all samples was performed by Controls for Environmental Pollution (CEP) located in Santa Fe, New Mexico.

The test results indicate that no man-made gamma emitting isotopes and no gross alpha or beta activity are present in the ground water collected from Wells A,B,C,and D. A very low concentration of alpha and beta activity was initially detected in Wells C and D, the two wells that were noticably turbid when sampled. Upon instructions from Stone & Webster, the laboratory filtered the remaining sample water from Well C and Well D. Filtering the sample water significantly reduces the concentration of suspended solids and the naturally occurring radioactivity that is present in soil particles that constitute the suspended solids. Gross alpha and beta analysis performed on the filter residue and the filtered water (filtrate) show that all detectible alpha and beta activity is removed by filtration. The analysis of filtered and unfiltered ground-water samples indicate that ground water at the site contains no measurable levels of alpha or beta radioactivity from suspended soil particle in the turbid water. laboratory analysis for radioactivity are summarized on Table 1.

The results of the organic analysis are shown on TABLE 2. Trace concentrations of methylene chloride were reported in all samples including the equipment blank. Trace concentrations of chloroform were detected in Well B (DUP), WELL D and in the equipment blank. The presence of these two analytes in the equipment blank at essentially the same concentrations as reported in the wells, (refer to Section 4 for a description of the equipment blank) clearly shows the source of these analytes as being other than the ground water. All other analytes, including toluene, are reported as non-detected.

TABLE 1 LABORATORY ANALYSIS-RADIOACTIVITY

SAMPLE No.	01	02	03	04	05.	06
WELL	WELL A	WELL B	WELL B (DUP)	WELL C	WELL D	WELL A (BLANK)
PHYSICAL DESCRIPTION	CLEAR	CLEAR	CLEAR	TURBID	TURBID	CLEAR
GROSS ALPHA (pCi/l)	<2	<2	. <2	14±6	13±6	<2
GROSS BETA (pCi/l)	<3	<3	<3	38±6	38±6	<3
GAMMA SPEC (pCi/l)	ND	ND	ND	ND ·	ND	ND
SUSPENDED SOLIDS (gm/1)	(-)	(-)	(-)	1.0060	1.2880	(-)
FILTER GROSS ALPHA ACTIVITY (pCi/gm)	(-)	(-)	(-)	1.25±0.58 ¹	1.71±0.69 ¹	(-)
FILTER GROSS BETA ACTIVITY (pCi/gm)	(-)	(-)	(-)	2.39±0.74 ¹	4.46±0.83 ¹	(-)
FILTRATE GROSS ALPHA ACTIVITY (pCi/l)	(-)	(-)	(-)	<2	<2	(-)
FILTRATE GROSS BETA ACTIVITY (pCi/l)	(-)	(-)	(-)	<3	<3	(-)

¹ Activity on filter does not equate to original activity probably due to attempting to measure activities in the lower end of the quantification limit, decay, filter interference or a combination thereof.

(-) No analysis performed

ND No man-made nuclides detected

TABLE 2 LABORATORY ANALYSIS-ORGANICS

.

SAMPLE No.	01B	02B	03B ·	04B	05B	06B
WELL	WELL A	WELL B	WELL B (DUP)	WELL C	WELL D	WELL A (BLANK)
PHYSICAL DESCRIPTION	CLEAR	CLEAR	CLEAR	TURBID	TURBID	CLEAR
Chloromethane	ND	ND	ND	ND	ND	ND
Bromomethane	ND	ND	ND	ND	ND	ND
Vinyl Chloride	ND	ND	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND	ND	ND
Methylene Chloride	3.6	3.2	3.0	3.0	3.8	3.6
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND
trans-1,2 -Dichloroethene	ND	ND	ND	ND	ND	ND
Chloroform	ND	ND	3.7	ND	3.5	3.5
1,2-Dichloroethane	ND	ND	ND	ND	ND ·	ND
Trichlorofloromethane	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND
Bromodichloromethane	ND	ND	ND	ND	ND	ND
1,1,2,2 -Tetrachloroethane	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND
trans-1,3 -Dichloropropene	ND	ND	ND	ND	ND	ND
Trichlorethene	ND	ND	ND	ND	. ND	ND
Dibromochloromethane	ND	ND	ND	ND	ND	ND
1,1,2 -Trichloroethane	ND	ND	ND	ND	ND	ND
Benzene	ND	ND	ND	ND	ND	ND
cis-1,3 -Dichloropropene	ND	ND	ND	ND	ND	ND

11

.

2-Chloroethyl Vinly Ether	ND	ND	ND	ND	ND	ND
Bromoform	ND	ND	ND	ND	ND	ND
Tetrachlorethene	ND	ND	ŃD	ND	ND ·	ND
Toluene	ND	ND	ND	ND	ND	ND
Chlorobenzene	ND	ND	ND	ND	ND	ND
Ethyl Benzene	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND

ND Below the quanitification limit

6.0 RESULTS AND CONCLUSIONS

The additional knowledge gained from this phase of the work at Greenbush can be summarized as follows:

1) There is no evidence of ground water or soil vapor contamination in the immediate vicinity of the landfill.

The four new monitoring wells that were drilled and sampled represent the closest and most comprehensive sampling and testing conducted at the site to-date. These plus the soil vapor sample taken beneath the liner showed no evidence of either radiation above background or of any of the volatile organic scintillation fluids known to have been disposed of in the landfill.

2) Depths to ground water are greater than originally expected. \swarrow

Measured depths to ground water taken both in the late fall-early winter, 1991 and spring, 1992 indicate a watertable approximately 70 feet below ground surface. This places the watertable beneath the base of the esker deposits and close to the bedrock surface, and indicates the esker is not an aquifer. While the saturated portions of the upper bedrock-lower till are an important local and near-regional ground-water resource for domestic, livestock, and limited commercial use, the site is not located over a major esker-aquifer system such as commonly occur elsewhere in Maine. Potential regional well yields and related radii-of-influences will be low, and the possibility for existing or future ground-water exploitation to induce gradients and ground-water movement that would alter or enhance contaminant migration away from the site are minimal.

The greater than expected ground-water depths also means that at least 50 feet of unsaturated soil exists between the base of the landfill and the watertable, and any contaminant leaking from the landfill must traverse this material before it can contaminate the ground water and be transported away from the site. As this soil will have both absorbing and cation-exchange capability, this large thickness will greatly retard contaminant migration to the ground water.

These factors lead to two conclusions, namely; 1) the risk of offsite groundwater contamination due to the landfill is less than originally expected, and 2) in the event that it did occur, it could be detected by a properly designed monitoring system in time so that remedial measures could be taken before it/ presented a significant threat to the accessible environment (ie; wells, springs, surface water bodies).

The nearness of the watertable to the bedrock surface also permits adequate monitoring for potential floating contaminant and dissolved and heavy contaminant in a single well, as opposed to the two-well "nests" originally proposed. This cuts the required number of wells in half and will save construction as well as maintenance and sampling cost.

7.0 RECOMMENDATIONS

Based on the observations made during monitoring well installation and groundwater sampling, and analysis of the laboratory test results of the ground-water samples, the follownig recommendations are made.

- Four additional outer perimeter monitoring wells should be installed at the Greenbush facility. The well design should be similar to the inner perimeter wells.
- Following the installation of the outer perimeter wells, a long-term sampling and testing program should be initiated. Ground-water samples should be taken and analyzed annually. Sampling protocol and analytical testing should be similar to the sampling and testing performed on the inner perimeter wells. Water-levels should be measured quarterly.
- A soil vapor sample should by taken from beneath the hypalon cap and analyzed on an annual basis.
- All sampling and testing should be conducted according to procedures prepared as part of a formal Sampling and Testing Program Plan.
- An Action Plan should be prepared to describe actions to be taken if testing data indicate landfill contamintion of ground water.

These recommendations are subject to change based on additional data that will result from constructing the additional wells and future sampling and testing.

D Neces a course

FIGURE 1 SITE LOCATION MAP

FIGURE 6 WELL A

*NOTE: 4' CASING BROKE OFF IN THE HOLE FROM 40.0'-75.5'

FIGURE 7 WELL B

.

8.0 REFERENCES

Osberg, P.H., A.M. Hussey, II, G.M. Boone, editors, 1985. Bedrock Geologic Map of Maine, Dept. of Conservation, Maine Geological Survey, Augusta, ME., Scale 1:500,000.

Roy, D.C., 1981. Reconnaissance Bedrock Geology of the Sherman, Mattawamkeag, and Millinocket 15' Quadrangles, Maine, Open-File Report 81-46, Dept. of Conservation, Maine Geological Survey, Augusta, ME., 18 p.

Thompson, W.B. and H.W. Borns, Jr., editors, 1985. Surficial Geologic Map of Maine, Dept. of Conservation, Maine Geological Survey, Augusta, ME., Scale 1:500,000.

U.S. Geological Survey, 1988. Passadumkeag 15' Quadrangle, Maine-Penobscot Co., 7.5 Minute Series, Topographic Map, Dept. of the Interior, U.S. Geological Survey, Reston, VA., Scale 1:24,000. LOCATION

ATTACHMENT 1 LABORATORY DATA SHEETS

. .**.**.

Client Name:	ston	占着	Web	bster	Ċ,		•		Proje	ect Na	ame:							
Address:	245	Sun	nme	rs	T 107							Gr	ccr	160	15	4	Disposal Fa	.cil
Contact: Telephone No.:	Bost R.S	kry	MA ness	، یر ن 6	17-589-2	074	/		Ргоје	ct N	D.:	/8	90	<u></u> }£	₹. (D,		
Company: (Signature)						Ι		· .			7		$\overline{7}$	7.	7	7	1111	
•						act [ner	Ed.		[],				[]	' /		
Remarks:							1	nta	lest			1/	' /		/			
Preserved in field	yes_ <u>/</u> 00					eals	}	ပိ	Kequ	/!			/ ./	[]	[]	[]		
Sampler (Signature)	Lan	A Pa		·/h	chard Stryne	4)	No. o			$\mathbb{Y}_{/}$				/ /	/ /	REMARK	S
Sample No.	Daté	Time	Comp.	Grab	Sample Location	yes	ьо		Vİ	14			//					
A	5/8/91	10:28			WEIL A	2		42		X							Graindwate	
B	5/8/92	11:14			Well B	V		4		X							د ر	
B-DUP	5/8/92	11:14			WellB	4		4		X							ر ,	
C	5/8/92	11:45			Well C	~	,	4		X							, ,	
P	5/8/92	12:14			Well D	r		4		γ							, ,	
Equip/Blnk	5/8/92	:0:04			Well A	-		4		X							. ,	
Blank	5/8/92	9:40			Inside fence	re 41				X							* Flow Rate = 2.	2
Sample 1	5/8/92	10:47			Inside fence	"M				x							* 1 - = 2	.2
						HO Stal											* Gas (vapor)	
Relinquished by: (Sign	nature)		5/8/92	Recciv	ed By: (Signature)			Date S//Gx	Reling	uished	by: (Si	gnature)			Dai	te Received By: (Signature)	
Richard Sk	upres.	1	1300	\square	in Pl	,	1	9:20								75-		
	alurel		Date	Receiv	Celline The	Luza	54-	Date	Reling	uished	DY: (Si	gnature	,			- Dai	le Received By: (Signature)	

Controls for Environmental Pollution, Inc. INSTATE 505/982/98411 P.O. BOX 5351 • Santa Fe, New Mexico 87502 OUT OF STATE 800/545-2188 • FAX- 505-982-9289

> Controls for Environmental Pollution, Inc. P.D. Box 5351 Santa Fe, NM 87502

Phone: (505) 982-9841/(800) 545-2188

Stone & Webster 245 Summer St. Boston, MA 02107

Attn: Richard Skyrness Invoice Number: Order #: 92-05-211 Date: 06/15/92 10:55 Work ID: Water (NR) Date Received: 05/11/92 Date Completed: 06/12/92 Client Code: STONE_WEB

ND - No man-made nuclides detected.

SAMPLE IDENTIFICATION

Sample	Sample	Sample	Sample
Nu <u>mbe</u> r	Description	Number	Description
01	A Well A	04	C Well C
02	B Well B	05	D Well D
03	B-DUP Well B	06	Equip/Blank Well A

Remainder of sample(s) for routine analysis will be disposed of three weeks from final report date. Sample(s) for bacteria analysis only, will be disposed of immediately after analysis. This is not applicable if other arrangements have been made.

Controls for Environmental Pollution, Inc. IN STATE 505, 982 9841 P.O. BOX 5351 • Santa Fe, New Mexico 87502 out of State 800/545-2188 • FAX • 505-982-9289

Order # 92-05-211 06/15/92 10:55	Controls for E TEST RESULT	nvironmental <u>S BY SAMPLE</u>		Page 2	
Sample: O1A A Well A	Co	llected: 05/08/92	Category:	WATER	
Te <u>st Description</u> Gamma Spectral Analysis	<u>Result</u> ND	<u>D.L.</u>	<u>Units</u> pCi/liter	<u>Analyzed</u>	By
Gross Alpha Gross Beta	<2 <3		pCi/liter pCi/liter	05/20/92 05/20/92	CD CD
Sample: O2A B Well B	Co	llected: 05/08/92	Category:	WATER	
Te <u>st Description</u> Gamma Spectral Analysis	<u>Result</u> ND	<u>D</u> .L.	<u>Units</u> pCi/liter	Analyzed	Ðц
Gross Alpha Gross Beta	(2 (3		pCi/liter pCi/liter	05/20/92 05/20/92	CD CD
Sample: O3A B-DUP Well B	. Co	llected: 05/08/92	Category:	WATER	
Te <u>st Description</u> Gamma Spectral Analysis	<u>Result</u> ND	<u>D.</u> L	<u>Units</u> pCi/liter	<u>Analyzed</u>	<u>В</u> ц
Gross Alpha Gross Beta	<2 <3		pCi/liter pCi/liter	05/20/92 05/20/92	CD CD
Sample: O4A C Well C	Co	llected: 05/08/92	Category:	WATER	
Te <u>st Description</u> Gamma Spectral Analysis	<u>Result</u> ND	<u>_D. L.</u>	<u>Units</u> pCi/liter	<u>Analyzed</u>	ធ្លាវ
Gross Alpha Gross Beta	14+/-6 38+/-8		pCi/liter pCi/liter	05/20/92 05/20/92	CD CD
Sample: 05A D Well D	Co	llected: 05/08/92	Category:	WATER	
Te <u>st Description</u> Gamma Spectral Analysis	<u>Result</u> ND	<u>D</u> L	<u>Units</u> pCi/liter	Analyzed	Вч
Gnoss Alpha Gross Beta	13+/-7 38+/-8		pCı/liter pCi/liter	05/20/92 05/20/92	CD CD

 Controls for Environmental Pollution, Inc.
 INSTAL
 505/98/98-11

 P.O. BOX 5351 • Santa Fe, New Mexico 87502
 out of state 800/545-2188 • Fax - 505-982-9289

Drder # 92-05-211	Controls for Environmental	Page 3
06/15/92 10:55	TEST RESULTS BY SAMPLE	

Sample: O6A Equip/Blank Well A	Collected: 05/08/92	Category:	WATER	
Test Description	Result D.L.	Units	Analyzed	By
Gamma Spectral Analysis	ND	pCi/liter		
Gross Alpha	<2	pCi/liter	05/20/92	CD
Gross Beta	<3	pCi/liter	05/20/92	CD

Controls for Environmental Pollution, Inc. (August 505, 982,983)

P.O. BOX 5351 • Santa Fe, New Mexico 87502 OUT OF STATE 800/545-2188 • FAX - 505-982-9289

Controls For Environmental Pollution, Inc. P D. Box 5351 Santa Fey NM 87502

Phone: (505) 982-9841/(800) 545-2188

Stone & Webster 245 Summer St. Jaston, MA 02107

1

Order #. 92-05-502 Date 07/01/92 15 09 Work 1D: Filter (NR) Date Received: Gar23/92 Date Completed: 07/01/92 Client Code STONE WEB

Attn. Richard Sigmess luvoice Nomber

H Amount of suspended solute in 1000ml of water

SAMPLE IDENTIFICATION

Sanole Sample Number Description 51 C Well C

Samola Samola Number Description OP D Well D

Remainder of sample(s) for routine analysis will be disposed of three weeks from final report date. Sample(s) for pacteria analysis only will be disposed of immediately after shelysis. This is not applicable if other arrangements have been made

I.

 Controls for Environmental Pollution, Inc.
 Instate 505/982/98/11

 P.O. BOX 5351 • Santa Fe, New Mexico 87502
 out of state 800/545-2188 • Fax - 505-982-9289

Curden # 92-06-502 07/01/92 16 09	Controls for Environmental TEST REQUETS BY SAMPLE	Page 2'
Sample, CIA - C Well C	Collected 05/08/92	Category FILTER
Te <u>st Description</u> Suspended Solids	<u>Result</u> <u>D</u> .L 1.0050*	<u>Units Analyzed By</u> grams
Sample O2A D Well D	Collected 05/08/92	Category: FILTER
Te <u>st Description</u> Suspended Solids	<u>Result</u> 1. 2980+	<u>Units Analyzed Bu</u> grams

1

 Controls for Environmental Pollution, Inc.
 Instant 505 1982 9841

 P.O. BOX 5351 • Santa Fe, New Mexico 87502
 OUT OF STATE 800/545-2188 • FAX- 505-982-9289

Grder # 92-06-502 07/01/92 15:09	Controls IEST	for Environmen RESULTS BY SAMP	n <u>tal</u>	Page 3	
Sample Description Test Description: Collected:	C Well C Gross Alpha.Bets 05/06/92 11 43	Lab Neth Catego	No: 01A rod: rg: FILTER	Test Code:	AB_E
Type of An	alysıs	RESUL	. T		
Gross Alph	à		1.25+7-0.58		
Gross Beta	All results r	epurted am	<u> </u>		
	E-01173	<u>pül/gram</u>			
Sample Description Test Description Collected	D Well D Gross Alpha/Beta 05/03/92 12 14	Lan Mein Catego	NG: O2A God. (Ty. FILTEP	Test Code	-:되수
Type of An	alys::s	RESUL	.т		
Gross Alph	Э		1 71+1-0 59		
Gross Beta	411 results r	eported in	<u>+.46+7-0 83</u>		
	UNITS	pC1/1ram			
:			·		

Controls for Environmental Pollution, Inc.

au STATE 5057982 9841

. P.O. BOX 5351 • Santa Fe, New Mexico 87502 OUT OF STATE 800/545-2188 • FAX • 505-982-9289

Controls for Environmental Pollution: Int P.D. Box 5351 Santa Fe, NM 87502

Phone, (505) 982-90417(800) 545-2188

itone & Webster 245 Sommer St. Soston: MA - 02107

1

Attn. Richard Skyrness Invoice Number: Drden #. 92-05-501 Date: 07/01/92 10:49 Work JD: Water: (NR) Date Received: 05/23/92 Date Completed: 07/01/92 Client Code: STONE_WEB

SAMPLE IDENTIFICATION

Sample Sample Number Description Ci C Well C Sample Sample Number Description O2 D Well D

Remainder of sample(s) for rootine analysis will be disposed of three weeks from final report date. Sample(s) for bacteria analysis only, will be disposed of immediately after analysis. This is not applicable if other arrangements have been made

Controls for Envir	onmental Pollu	tion, Inc.		ILLEIAIL 505	57988298411
P.O. BOX 5351 ● Santa Fe	New Mexico 87502	OUT OF BTATE	800/545-211	38 • FAX - 50	5-982-9289
67 101 /92 10:49	TEST RESULTS BY	SAMPLE		геде с	
Sample CIA C Well C	Collect	ed 05/08/92	Category:	WATER	
<u>isst Destription</u>	<u>Result</u>	<u>D</u> 1.	Units	<u>Analyzed</u>	Bu
Gross Alpha (discolved)	<2		pC1/liter	06/25/92	LH
Prose Beta (dissolved)	< 3		pCi/liter	06/25/92	ĹН
Cample: OFA - 0 Well D	Collect	ed: 05/08/92	Category:	WATER	
fest Description	Result	<u>D</u> L	<u>Units</u>	<u>Analyzed</u>	Bu
Gross Alpha (dissolved)	-12		pCi/liter	06/25/92	LH
Gross Reta (dissolved)	· :3		pCi/liter	06/25/92	LH

.

.

;

ł

.

 Controls for Environmental Pollution, Inc.
 INSTALL 505/982/98411

 P.O. BOX 5351 • Santa Fe, New Mexico 87502
 out of State 800/545-2188 • Fax- 505-982-9289

Grder # 92-06-502 07/01/92 16:09	Controls f TEST_RE	or Environmental SULTS BY SAMPLE		Page 3
Sample Description: (Test Description: (Collected: (C Well C Gross Alpha/Beta)5/08/92 11 45	Lab No: Method: Category	01A FILTER	Test Code. AB_S
Type of Anal	lysis	RESULT		
Gross Alpha		1.	25+/-0_58	
Gross Beta	All results rep	urted on	39+/-0.74	
	UNITS	Cı/qram		
Sample Description Test Description (Collected () Well D Snoss Alpha/Beta 95/08/92/12:14	Lab No: Nethod: Category:	02A Filter	Test Code. AR_5
Type of Ana	ן אב ז בי	. RESULT		
Gross Alpha		1	71+/-0:59	
Gross Beta	All results rep	arted in 4.	46+/-0 83	
		<u>Cı/gram</u>		

Controls for Environmental Pollution, Inc. IN STATE 505/982 98-11 P.O. BOX 5351 • Santa Fe, New Mexico 87502 out of state 800/545-2188 • Fax - 505-982-9289

Order # 92-05-211 Contr 06/15/92 10:55T	rols for Environmental EST RESULTS BY SAMPLE	Page 4
Sample Description: A Well A Test Description: EPA - method & Collected: 05/08/92 10:26	Lab No: 01B 524 Method: 3 Category: WATER	Test Code: 624_1
PARAMETER	RESULT LIMIT	
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride 1, 1-Dichloroethene 1, 1-Dichloroethane trans-1, 2-Dichloroethene Chloroform 1, 2-Dichloroethane Trichlorofluoromethane 1, 1, 1-Trichloroethane Carbon Tetrachloride Bromodichluromethane 1, 1, 2, 2-Tetrachloroethane 1, 2-Dichloropropane trans-1, 3-Dichloropropene Trichloroethene Dibromochloromethane 1, 1, 2-Trichloroethane Benzene cis-1, 3-Dichloropropene 2-Chloroethyl Vinyl Ether Bromoform Tetrachloroethene	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
<pre>Ioluene Chlorobenzene Ethyl Benzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene</pre>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

 Controls for Environmental Pollution, Inc.
 IN STATE 505/982 9841

 P.O. BOX 5351 • Santa Fe, New Mexico 87502
 out of state 800/545-2188 • Fax- 505-982-9289

Order # 92-05-211	Controls f	or Environmental	Page 5
06/15/92 10:55	TEST_RE	SULTS BY SAMPLE	
Sample Description:	A Well A	Lab No: 01B	Test Code: 624_1
Test Description:	EPA - method 624	Method:	
Collected:	05/08/92 10:28	Category: WATER	
1,4-Dichlorobe	nzene	<5.05.0	
	Notes and Defin	itions for this Report:	

·•

DATE RUN 05/22/92 ANALYST DVM UNITS <u>ug/liter</u>

Controls for Environmental Pollution, Inc. INSTATE 505/982 98-11 P.D. BOX 5351 • Santa Fe, New Mexico 87502 out of state 800/545-2188 • Fax - 505-982-9289

Order # 92-05-211 Control 06/15/92 10:55 <u>TEST</u>	s for Environmental RESULTS BY SAMPLE	Page 6
Sample Description: B Well B Test Description: EPA - method 624 Collected: 05/08/92 11:14	Lab No: O2B Method: Category: WATER	Test Code: 624_1
	RESULT LIMIT	
Chloromethane	<10 10	
Bromomethane	<u> </u>	
Vinyl Chloride	<10 10	
Chloroethane	<10 10	
Methylene Chloride	<u> </u>	
1, 1-Dichloroethene	<u><2.8</u> <u>2.8</u>	
1,1-Dichloroethane	<u>4.7</u> <u>4.7</u>	
trans-1,2-Dichloroethene	<u>(1.6</u> <u>1.6</u>	
Chloroform	<1.6 1.6	
1,2-Dichloroethane	<2.8 2.8	
Trichlorofluoromethane	<u><5.0</u> <u>5.0</u>	
1,1,1-Trichloroethane	<u><3.8</u> <u>3.8</u>	
Carbon Tetrachloride	<2.8 2.8	
Bromodichloromethane	<2.2 2.2	
1, 1, 2, 2-Tetrachloroethane	<u><6.9</u> <u>6.9</u>	
1,2-Dichloropropane	<6.0 6.0	
trans-1,3-Dichloropropene	<u><5.0</u> <u>5.0</u>	
Trichloroethene	<u><1.9</u> <u>1.9</u>	· · · · ·
Dibromochloromethane	<u><3.1</u> <u>3.1</u>	
1, 1, 2-Trichloroethane	< <u>5.0</u> <u>5.0</u>	
Benzene	<4.4 4.4	
cis-1,3-Dichloropropene	<5.0 5.0	
2-Chloroethyl Vinyl Ether	<5.0 5.0	
Bromoform	<u><4.7</u> <u>4.7</u>	
Tetrachloroethene	<4.1 4.1	
Toluene	<6.0 6.0	
Chlorobenzene	<6.0 6.0	
Ethyl Benzene	<7.2 7.2	
1,3-Dichlorobenzene	<5.0 5.0	
1,2-Dichlorobenzene	<5.0 5.0	

 Controls for Environmental Pollution, Inc.
 INSTATE 5057982 9841

 P.O. BOX 5351 • Santa Fe, New Mexico 87502
 out of state 800/545-2188 • Fax - 505-982-9289

ûrder # 92-05-211 06/15/92 10:55	Controls for TEST RESU	Page 7	
Sample Description: Test Description: Collected:	B Well B EPA — method 624 05/08/92 11:14	Lab No: O2B Method: Category: WATER	Test Code: .624_1
1,4-Dichlorobe	nzene	<u><5.0</u> <u>5.0</u>	
	Notes and Definit	ions for this Report:	
	DATE RUN ANALYST <u>DVM</u> UNITS <u>uq</u> /	<u>05/22/92</u> liter	

CC C. Controls for Environmental Pollution, Inc. (1914) 505/98/98-11 P.O. BOX 5351 • Santa Fe, New Mexico 87502 out of state 800/545-2188 • Fax - 505-982-9289

Order # 92-05-211 06/15/92 10:55	Controls TEST R	for Envir ESULTS BY	onmental SAMPLE	Page 8	
Sample Description: B-DUP Test Description: EPA - Collected: 05/08	Vell B method 624 /92 11:14	c	Lab No: O3B Method: ategory: WATER	Test Code: ø	624_1
PARAMETER	· R	ESULT	LIMIT		
Chloromethane	_	<10	10		
Bromomethane		<10	10		
Vinyl Chloride	_	<10	10		,
Chloroethane	_	<10	10		
Methýlene Chloride		3.0	2.8		
1, 1-Dichloroethene	_	<u><2. 8</u>	2.8		
1,1-Dichloroethane	· _	<4.7	4.7		
trans-1,2-Dichloroet	hene _	<u><1.6</u>	<u> </u>		
Chloroform		3.7	<u> 1. 6</u>		
1,2-Dichloroethane		<u> <2. 8</u>	2.8		
Trichlorofluorometha	ine _	<u><5. 0</u>	5.0		
1,1,1-Trichloroethan	e	<u><3. 8</u>	3 <u>. 8</u>		
Carbon Tetrachloride		<2.8	2.8		
Bromodichloromethane	<u> </u>	<u><2. 2</u>	2.2		
1, 1, 2, 2-Tetrachloroe	thane	<u><6. 9</u>	<u> </u>		
1,2-Dichloropropane	_	<u><6. 0</u>	6.0		
trans-1,3-Dichloropr	opene _	<u><5. 0</u>	<u> </u>		
Trichloroethene	_	<1.9	<u> </u>		
Dibromochloromethane	-	<u><3. 1</u>	<u> </u>		
1,1,2-Trichloroethan	.e _	<u><5. 0</u>	<u> </u>		
Benzene		<u><4. 4</u>	<u> </u>		
cis-1,3-Dichloroprop	ene _	<u><5. 0</u>	<u> </u>		
2-Chloroethyl Vinyl	Ether _	<u><5. 0</u>	<u> </u>		
Bromoform	_	<u> </u>	<u> </u>		
Tetrachloroethene	-	<u><4. 1</u>	<u> </u>		
Toluene		<6. 0	<u> </u>		
' Chlorobenzene	_	<u><6. 0</u>	<u> </u>		
Ethyl Denzene	-	<u><7. 2</u>	<u> </u>		
1,3-Dichlorobenzene	_	<u><5.0</u>	5 <u>_0</u>		
1,2-Dichlorobenzene	_	<5.0	5.0		

Controls for Environmental Pollution, Inc.

IN STATE 5057988 98411

P.O. BOX 5351 • Santa Fe, New Mexico 87502 out of state 800/545-2188 • Fax - 505-982-9289

 Drder # 92-05-211
 Controls for Environmental
 Page 9

 06/15/92 10:55
 TEST RESULTS BY SAMPLE
 Page 9

 Sample Description: B-DUP Well B
 Lab No: 03B
 Test Description: EPA - method 624
 Method:
 Test Code: 624_1

 Collected: 05/08/92 11:14
 Category: WATER
 Test Code: 624_1

 1, 4-Dichlorobenzene
 <5.0</td>
 5.0

Notes and Definitions for this Report:

DATE RUN <u>05/22/92</u> ANALYST <u>DVM</u> UNITS <u>ug/liter</u>

.

Controls for Environmental Pollution, Inc. IN STATE 5057982 9841 P.O. BOX 5351 • Santa Fe, New Mexico 87502 OUT OF STATE 800/545-2188 • FAX- 505-982-9289

Urder # 92-05-211 Controls 06/15/92 10:55 TEST	r # 92-05-211 Controls for Environmental 5/92 10:55 TEST RESULTS BY SAMPLE		
Sample Description: C Well C Test Description: EPA - method 624 Collected: 05/08/92 11:45	Lab No: O4B Method: Category: WATER	Test Code: 624_1	
PARAMETER	RESULT LIMIT		
Chloromethane	<10 10		
Bromomethane	<u>1010</u>		
Vinyl Chloride	<10 10		
Chloroethane	<10 10		
Methylene Chloride	<u>× 3, 0</u> <u>2, 8</u>		
1,1-Dichloroethene	<u><2.8</u> <u>2.8</u>		
1,1-Dichloroethane	<u> </u>		
trans-1,2-Dichloroethene	<u></u>		
Chloroform	<u><1.6</u> <u>1.6</u>		
1,2-Dichloroethane	<u><2.8</u> <u>2.8</u>		
Trichlorofluoromethane	<u><5.0</u> <u>5.0</u>		
1, 1, 1-Trichloroethane	<u><3.8</u> <u>3.8</u>		
Carbon Tetrachloride	<u> </u>		
Bromodichloromethane	<u><2.2</u> <u>2.2</u>		
1, 1, 2, 2-Tetrachloroethane	<u><6.9</u> <u>6.9</u>		
1,2-Dichloropropane	<u><6.0</u> <u>6.0</u>		
trans-1,3-Dichloropropene	<u></u>		
Trichloroethene	<u><1.9</u> <u>1.9</u>		
Dibromochloromethane	<u><3.1</u> <u>3.1</u>		
1,1,2-Trichloroethane	<u><5.0</u> <u>5.0</u>	•	
Benzene	<u><4.4</u> <u>4.4</u>		
cis-1,3-Dichloropropene	<u><5.0</u> <u>5.0</u>		
2-Chloroethyl Vinyl Ether	<5.0 5.0		
Bromoform	<4.7 4.7		
Tetrachloroethene	<u><4.1</u> <u>4.1</u>		
Toluene	<6.0 6.0		
Chlorobenzene	<u><6.0</u> <u>6.0</u>		
Ethyl Benzene .	<u><7.2</u> <u>7.2</u>		
1, 3-Dichlorobenzene	<u>5.0</u> 5.0		
1,2-Dichlorobenzene	<u><5.0</u> <u>5.0</u>		

CED

 Controls for Environmental Pollution, Inc.
 IN STATE
 505/982
 98-11

 P.O. BOX 5351 • Santa Fe, New Mexico 87502
 out of state
 800/545-2188 • Fax- 505-982-9289

Order # 92-05-211 06/15/92 10:55	Controls f TEST RE	or Environmental SULTS BY SAMPLE		Page 11
Sample Description: Test Description:	C Well C FPA - mathad 624	Lab No: Method	04B	Test Code: 624 1
Collected:	05/08/92 11:45	Category:	WATER	
1,4-Dichlorobe	nzene	<5.0 5.	<u>o</u>	
	Notes and Defin	itions for this	Report:	

DATE RUN 05/22/92 ANALYST DVM UNITS uq/liter

.

Controls for Environmental Pollution, Inc. IN STATE 505/98/29801 P.O. BOX 5351 • Santa Fe, New Mexico 87502 OUT OF STATE 800/545-2188 • FAX • 505-982-9289

Order # 92-05-211 Control 06/15/92 10:55 TEST		for Environmental RESULTS BY SAMPLE		Page 12	
Sample Description: D Test Description: EPA Collected: 05/	Well D - method 624 08/92 12:14	· c	Lab No: 05B Method: ategory: WATER	Test Code: 624_1	
PARAMETER	RE		LIMIT		
Chloromethane		<10	10		
Bromomethane ·		<10	10		
Vinyl Chloride		<10	10		
Chloroethane		<10	10		
Methylene Chloride		3.8	2.8		
1,1-Dichloroethene		<2.8	2.8		
1,1-Dichloroethane	—	<4.7	4.7		
trans-1,2-Dichloro	ethene	<1.6	1.6	·	
Chloroform		3.5	1.6		
1,2-Dichloroethane		<2.8	2.8		
Trichlorofluoromet	hane	<5. 0	5.0		
1,1,1-Trichloroeth	ane	<3.8	<u>3. 8</u>		
Carbon Tetrachlorí	de	<2.8	2.8	· · · ·	
Bromodichlorometha	ne	<2, 2	2.2		
1, 1, 2, 2-Tetrachlor	oethane	<6. 9	6.9		
1,2-Dichloropropan	e	<u><6. 0</u>	<u> </u>		
trans-1,3-Dichloro	propene	<u><5. 0</u>	5.0		
Trichloroethene		<u><1. 9</u>	<u> 1. 9</u>		
Dibromochlorometha	ne	<3.1	<u> </u>		
1,1,2-Trichloroeth	ane	<u><5.0</u>	5.0		
Benzene		<4.4	4.4		
cis-1,3-Dichloropr	opene	<u><5.0</u>	<u> </u>		
2 Chloroethyl Viny	1 Ether	<5.0	5.0		
Bramaform		<u><4. 7</u>	4.7		
Tetrachloroethene		<u><4. 1</u>	4.1		
Toluene		<u><6. 0</u>	<u> </u>		
Chlorobenzene		<6.0	<u> </u>		
Ethyl Benzene		<7.2	7.2		
1,3-Dichlorobenzen	e	< 5, 0	<u> </u>		
1,2-Dichlorobenzen	e	<u><5. 0</u>	<u> </u>		

 Controls for Environmental Pollution, Inc.
 IN STATE 505/982 98411

 P.O. BOX 5351 • Santa Fe, New Mexico 87502
 out of state 800/545-2188 • Fax - 505-982-9289

Order # 92-05-211 06/15/92 10:55	Controls for Environmental TEST RESULTS BY SAMPLE		Page 13
Sample Description: Test Description: Collected:	D Well D EPA — method 624 05/08/92 12:14	Lab No: 05B Method: Category: WATER	Test Code: 624_1
1,4-Dichlorobe	nzene	<5.0 5.0	•
	Notes and Defini	itions for this Report:	

DATE RUN 05/22/92 ANALYST DVM UNITS ug/liter

Controls for Environmental Pollution, Inc. IN STATE 505/982 9841 P.O. BOX 5351 • Santa Fe, New Mexico 87502 OUT OF STATE 800/545-2188 • FAX- 505-982-9289

Drder # 92-05-211 06/15/92 10:55	Controls for Environmental TEST RESULTS BY SAMPLE	Page 14
Sample Description: Equip/ Test Description: EPA - Collected: 05/08/	Blank Well A Lab No: 06B method 624 Method: (92 10.04 Category: WATE	Test Code: 624_1 ER
PARAMETER	RESULT LIMIT	
Chloromethane	<10 10	
Bromomethane	<10 10	
Vinyl Chloride	<10 10	
Chloroethane	<10 10	
Methylene Chloride	3.1 2.8	
1,1-Dichloroethene	<2.8 2.8	
1,1-Dichloroethane	<u> </u>	
trans-1,2-Dichloroeth	nene <u><1.6</u> 1.6	
Chloroform	<1.6 1.6	
1,2-Dichloroethane	<u>2.8</u> 2 <u>.8</u>	
Trichlorofluoromethan	ne <u><5.0</u> <u>5.0</u>	
1,1,1-Trichloroethane	- <u><3.8</u> <u>3.8</u>	
Carbon Tetrachloride	<2.8 2.8	· ·
Bromodichloromethane	<2.2 2.2	
1, 1, 2, 2-Tetrachloroet	thane <u>(6.9</u> <u>6.9</u>	
1,2-Dichloropropane	<u> </u>	
trans-1,3-Dichloropro	opene <u><5.0</u> <u>5.0</u>	
Trichloroethene	<1.9 1.9	
Dibromochloromethane	<u>(3, 1</u> <u>3, 1</u>	
1,1,2-Trichloroethane	<u><5.0</u> <u>5.0</u>	
Benzene	<u><4.4</u> <u>4.4</u>	
cis-1,3-Dichloroprope	ene <u><5.0</u> <u>5.0</u>	
2-Chloroethyl Vinyl E	Ether <5.0 5.0	
Bromoform	<u><4 7</u> <u>4.7</u>	
Tetrachloroethene	<u>4.1</u> <u>4.1</u>	-
Toluene	<u> </u>	
Chlorobenzene	<u> </u>	
Ethyl Benzene	<u> </u>	
1,3-Dichlorobenzene	<u>5 0</u> <u>5 0</u>	
1,2-Dichlorobenzene	<u>5.0</u> <u>5.0</u>	

.

Controls for Environmental Pollution, Inc. IN STATE 505/982 9841 P.O. BOX 5351 • Santa Fe, New Mexico 87502 out of State 800/545-2188 • Fax - 505-982-9289

Drder # 92-05-211 06/15/92 10:55	Controls for TEST RESU	Environmental LTS BY SAMPLE	Page 15
Sample Description: Test Description: Collected:	Equip/Blank Well A EPA - method 624 05/08/92 10:04	Lab No: O6B Method: Category: WATER	Test Code: 624_1
1,4-Dichlorobe	nzene	<5.05.0	
	Notes and Definit	ions for this Report:	
	DATE RUN ANALYST <u>DVM</u>	05/22/92	

UNITS ____ <u>ug/liter</u> Controls for Environmental Pollution, Inc.

Barris Material Constraints and the providence of the

. P.O. BOX 535 L. Santa Fe, New Mexico 87502 out of BTATE 800/545-2188 • FAX - 505-982-9289

Controls for Environmental Pollution, Inc. P.O. Box 5351 Santa Fe, NM 87502

Phone: (505) 982-9841/(800) 545-2188

Stone & Webster 245 Summer St. Bastan, MA 02107

1

Order #: 92-05-212 Date: 07/15/92 11:25 Work ID: Soil Gas Vapor (NR) Date Received: 05/11/92 Date Completed: 07/14/92 Client Code: STONE_WEB

Attn: Richard Skyrness Invoice Number:

SAMPLE IDENTIFICATION

Sample	Sample	Sample	Sample
Number	Description	Number	Description
01	BLANK Inside Fence	02	SAMPLE 1 Inside Fence

Remainder of sample(s) for routine analysis will be disposed of three weeks from final report date. Sample(s) for bacteria analysis only, will be disposed of immediately after analysis. This is not applicable if other arrangements have been made.

Approved By

:

Order # 92-05-212 07/15/92 11:25	Controls for E TEST RESULT	nvironmental <u>S BY SAMPLE</u>		Page 2		
Sample Description: BLANK In Test Description: EPA - me Collected: 05/08/92	nside Fence thod 8240 09:40	Lab No: Method: Category:	01A SOIL_GAS_VAP	Test Code:	8240_5	
PARAMETER	RESULT	LIMIT .				
Chloromethane	<0.	075 0.07	5			
Bromomethane	<0.	075 0.07	5			
Vinyl Chloride	<0.	015 0.01	5			
Chloroethane	<0.	075 0.07	5			
Methylene Chloride	<0.	021 0.02	1			
Acetone	<0.	075 0.07	5			
Carbon Disulfide	<0	. 04 0. 0	4			
1,1-Dichloroethene	<0.	021 0.02	1			
1,1-Dichloroethane	<0	. 04 0. 0	4			
trans-1,2-Dichloroethene	e <0.	012 0.01	2			
Chloroform	<0.	012 0.01	2 .			
1,2-Dichloroethane	<0.	021 0.02	1		•	
2-Butanone	<0.	075 0.07	5			
1,1,1-Trichloroethane	<0.	029 0.02	9			
Carbon Tetrachloride	<0.	021 0.02	ī			
Vinul Acetate	<0.	075 0.07	5			
Bromodichloromethane	<0.	017 0.01	7			
1, 1, 2, 2-Tetrachloroethar	ne <0.	051 0.05	1			
1,2-Dichloropropane	<0.	045 0.04	5			
trans-1,3-Dichloroproper	1e <0.	038 0.03	8			
Trichloroethene	<0.0	014 0.01	4 .			
Dibromochloromethane	<0.	023 0.02	3			
1, 1, 2-Trichloroethane	<0. (0.038 0.03	B			
Benzene	<0.	033 0.03	3			
cis-1,3-Dichloropropene	<0.	0.038 0.03	8			
2-Chloroethul Vinul Ethe	er <0. (075 0.07	5			
Bromoform	<0.0	035 0.03	5			
2-Hexanone	<0	075 0 07	5			

<0.075

0.075

÷

:

Controls for Environmental Pollution, Inc. P.O. BOX 5351 • Sonta Fe, New Mexico 87502 out of State 800/545-2188 • FAX • 505-982-9289

• .

Order # 92-05-212 07/15/92 11:25	Controls f TEST_RE	or Environmental SULTS BY SAMPLE		Page 3
Sample Description: Test Description: Collected:	BLANK. Inside Fence EPA — method B240 05/08/92 09:40	Lab No: Method: Category:	01A SOIL_GAS_VAP	Test Code: 8240_5
4-Methyl-2-Pen Tetrachloroeth Toluene Chlorobenzene Ethyl Benzene Styrene Total Yulepac	tanone ene 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 15 15 15 18	

Notes and Definitions for this Report:

DATE RUN		05/22/92
ANALYST	DVM	
UNITS		<u>mq/m3</u>

Drder # 92-05-212 Co D7/15/92 11:25	ntrols for Envi TEST RESULTS B	ronmental Y_SAMPLE		P	age 4	
Sample Description: SAMPLE 1 I Test Description: EPA - metho Collected: 05/08/92 10	nside Fence d 8240 :47	Lab No: (Method: Category: S	D2A. SDIL_GAS_'	Test VAP	Code:	8240_5
PARAMETER	RESULT	LIMIT				
Chloromethane	<u> </u>	0.075				
Bromomethane	<u> (0. 075 </u>	0.075				
Vinyl Chloride	<u><0.015</u>	0.015				
Chloroethane	<0.075	<u> 0. 075</u>				
Methylene Chloride	<0.021	0.021				
Acetone	<0.075	<u> 0. 075</u>				
Carbon Disulfide	0.04	0.04				
1,1-Dichloroethene	<0. 021	0 021				
1,1-Dichloroethane	<0.04	0.04				
trans-1,2-Dichloroethene	<0.012	0.012				
Chloroform	<0.012	0.012				
1,2-Dichloroethane	<0. 021	0.021				
2-Butanone	<0.075	0. 075				
1,1,1-Trichloroethane	<0. 029	0.029				
Carbon Tetrachloride	<0. 021	0.021				
Vinul Acetate	<0.075	0.075				
Bromodichloromethane	<0.017	0.017				
1, 1, 2, 2-Tetrachloroethane	<0.051	0.051				
1,2-Dichloropropane	<0.045	0.045				
trans-1,3-Dichloronronene	<0.038	0,038	-			
Trichloroethene	<0.014	0 014				
Dibromochlonomethane	<0.023	0.023				
1.1.2-Trichloroethane	(0.038	0.038				
Banzana						
cis-1.3-Dichloropropene	<u> </u>	0.038				
2-Chloroethul Vinul Ether	<0.075	0.075		•		
Brownform		0 035				
2-Hayanana	<u> </u>	0.075				
4-Mathul-2-Pentanona	<u> </u>	0.075				
Tetrachlorgethane		0.071				
retrachiorsennene						

Controls for Environmental Pollution, Inc.

.

.

Controls for Environmental Pollution, Inc. P.O. BOX 535 L • Santa Fa, New Mexico 82502 out of state 800/545-2188 • Fax - 505-982-9289

Order # 92-05-212	Controls for Environmental	Page 5
07/15/92 11:25	TEST RESULTS BY SAMPLE	
		,

Sample Description: SAMPLE 1 Inside Fence Test Description: EPA - method 8240 Collected: 05/08/92 10:47

ł

.

Lab No: 02A Method: Category: SOIL_GAS_VAP

Test Code: 8240_5

Toluene	•	<u>(0. 045</u>	0,045
Chlorobenzene		<0.045	0.045
Ethyl Benzene		<u><0. 05</u>	0.05
Styrene		<u><0. 038</u>	0.038
Total Xylenes		<0.038	10.0

Notes and Definitions for this Report:

DATE RUN	05/22/92
ANALYST	DVM
UNITS _	Em/pm

Date Analyzed: 5-22-92 Data Reviewed By Reference Page: TLIST - 156 5241 9 4065 - 071 614

Procedure: 6-4 water 8245 Fither

CEP Surrogate Standard Log Number: _____/31/C

Œ * Recovery | * Recovery | * Recovery | Total 1,2-DOE-d4 Sample Number To1-d8 BFB Out -----........ ---------. 82 SPEC/LEL 91 103 0 Blank MS Blank MSD 91 86 10 1 0 85 92 104 0 89 Blank 77 155 0 55 965211-01 90 111 ð 77 9605211-02 93 113 0 960211-33 50 95 11 ы 82 965211.34 96 114 0 85 9625211-25 96 128 Ο 9205211-06 83 95 112 α 965212-01 77 89 105 0 94 905212-02 95 110 o Surrogate Compound Recovery: _____ out of _____ outside limits QC LIMITS (76 - 114)1,2-DCE-d4 = 1,2-Dichloroethane-d4Tol-d8 = Toluene-d8 (88 - 110)BY: BFB = Bromofluorobenzene (86-115) DATE C-M * Value outside of required QC limit Comments:

Analyst: Dvr

Q. A. APPROVED

WATER WEATTLE SURROGATE RECOVERY

Client Name: 5+ore-

Analyst: Dvn

Procedure: 61.4 with 8245 Fith

Reference P

Data Reviewed By 72 Reference Page: 71195-156 5243 9665-071 624

Date Analyzed: 5-22-92

CEP Surrogate Standard Log Number: /32/6

• . : .

CEP Sample Number	* Recovery 1,2-DCE-d4	* Recovery Tol-d8	Recovery BFB	Total Out	
SILC/LOL	82	91			
Blank MS	86	91	101		
Blank MSD	89	92	104	0	
Blank	. 77	89	105	0	
96:5211-01	54	90	///	ð	
9605211-02	77	93	113	0	
960211-03	50	99		<u> </u>	
945211.34	82	- 96		o	
9657211-35		92			
21652/1-01			<u></u>	<u> </u>	
<u>-1/23 (2/2 -0/</u>	<u></u>				
10,010-	·····			<u>0</u>	
	I		·		
[/				
	/				
· · · · · ·					
······································					
	i				
	I	I			
					•
			[
I	l	l		I	
Surrogate Compou	nd Recovery: _	<u>ා</u> out of	<u>36</u> out	ide limits	
1,2-DCZ-d4 = Tol-d8 =	1,2-Dichlarce Toluene-d8	th ana d4 ((C LIMITS 76-114) 88-110)). A. APPROV	'EI
2F3 =	Bromofluorobe	nzace (86-115) BY:	4 Maltin	6
* Value outside	of required QC	limit	DA'	TE: 0749	2_
Comments:	•		- <u> </u>		

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Client Name: Stone	Date Analyzed: 5-22.92
Analyst:	Data Reviewed By
Procedure: 8240 in Filter / 624 with	Reference Page: 94151-156 824
CEP Matrix Spike Standard Log Number: 13218	42265 - 17 624
CEP Sample # on this report: <u>965211.51</u>	9635211-25
	700/9

CEP Sample # Used For Matrix Spike:_____

Compound	Spike Added (ug/L)	Sample Concentration (ug/L)	MS Concentration (ug/L)	MS * REC	QC LIMITS * REC
1,1-Dichlorœthene Trichlorœthene	2	<u>v</u>	<u>57</u> 52		61-145 71-120
Benzene	\$	0	47	-78	76-127
Toluene	50	<u> </u>	51	102	76-125
Chlorobenzene	52		<u>دی</u>	ر در ا	75-130

Compound	Spike Added (ug/L)	MSD Concentration (ug/L)	MSD * REC	t RFD	QC I RPD	LIMITS
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	2 2 2 2 2	50 55 57 57 57 57 57	100 113 102 102 104	13 5.6 4 0 3.7	14 14 11 13 13	61-145 71-120 76-127 76-125 75-130

* Values outside of QC limits

Spike & Recovery: 0 out of 10 outside limits RPD: 0 out of 5 outside limits

Comments:____

Q. A. APPROVED DATE:_

Client Name: 5401-2	Date Analyzed: 5-22.94
Analyst:	Data Reviewed By
Procedure: 8240 in Filter/ 624 with	Reference Page: 94151-156 5240
CEP Matrix Spike Standard Log Number: 13218	42265 - 171 624
CEP Sample # on this report: <u>965211.21</u>	9657211-25-7
	965212-01
- 24	70019

CEP Sample # Used For Matrix Spike:_____

Compound	Spike Added (ug/L)	Sample Concentration (ug/L)	MS Concentration (ug/L)	MS * REC	C LIMITS * REC
1,1-Dichloroethene Trichloroethene	2		57	114	61-145 71-120
Benzene	52	0	47	-78	76-127
Toluene	<u></u>	<u>v</u>	5/	10:0	76-125
uniorobenzene					/5-130

Compound	Spike Added (ug/L)	MSD Concentration (ug/L)	MSD * REC	* RPD	QC 1 RPD	LIMITS & REC
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	223	55 55 57 57 57 57 57	100 110 102 102 104	13 5.6 4 0 3.7	14 14 11 13 13	61-145 71-120 76-127 76-125 75-130

* Values outside of QC limits

Comments:_____

O. A. APPRO)VED DATE:-

RADIOCHEMISTRY ACCEPTANCE

Laboratory No .: 92-05-207 No. Samples on This Lab No. on This Report Client: Ford Chem QA Report 10 92-05-207 01 92-05-210 101-03 Matrix: H25 92-05-211/01-06 C. Deiner Date: 5 Technician's Name: Date Reviewer's Initials: QA Approval: Date: Units: pCi (gr./l)_ RUSH [. PRIORITY EMERGENCY

ILS Results at 10%

Test		ILS Value	Tech Value	<u>Tech Value</u> ILS Value	Resolution	Pass NRC Y/N	RPD %
	ILS	13.5 = 2.5	11.90 = 0.99	0.9	5	4	/
\varkappa	ILS DUP		11.14 = 0.96	0,8	5	af.	6.61
0	ILS	42.6 \$ 5.3	44.87- 2.04	1.0	8	ĊĮ	/
P	ILS DUP		39.55 ± 1.93	0,9	8	an	12,6
	REC	•					
ير ا	Metl	nod Blank 0.4	4				
6	Metl	nod Blank 2.04	2	•			
Comme	ents:_						
	-	······					

ATTACHMENT 2 SITE INVESTIGATION SAFETY PLAN

STONE & WEBSTER SITE INVESTIGATION SAFETY PLAN

PLAN REVIEW AND APPROVAL	
On-site Supervisor <u>Dick Skryness</u> , Larry Picking Date: $5/6/9.2$	-
Corp. Health & Safety Larry Cohen, James Skrabak Date: 5/6/92	
1.0 SITE DESCRIPTION JOB NO. 18988.01	
1.1 Location <u>Greenbush, Maine</u> (Attach Map or Diagram)	
1.2 Surrounding Population <u>Rural approximately 20 people within a 1 mile radius.</u>	\checkmark
Next to a tree nursery.	
1.3 Topography and Accessibility <u>Rural, wooded.</u>	
1.4 Site History <u>A 40 X 40 ft. controlled landfill with a 65 X 65 ft. fence</u>	·
around the perimeter. The site contains laboratory waste including chemical	
compounds and low-level radioactive waste. The site operated for approximately	
<u>18 years from 1960-1978.</u>	
1.5 Planned Duration of Site Activity <u>1 day.</u>	
1.6 Anticipated Weather Conditions During Activity Cool to cold, mostly dry,	
possible showers or flurries.	
1.7 Will this Job Truelus "Confined Space" Work (is indeer drilling)?	
Yes No _X	
If Yes, explain:	
1.8 Are Utility Notifications Needed for Subsurface Work? Yes No X	
If yes, specify clearance dates, clearance I.D. #, and other relevant information.	

. .

2.0 ENTRY OBJECTIVES- Describe planned activities covered by the plan and their objectives.

Groundwater sampling for water quality and passive soil gas sampling.

3.0 ON-SITE ORGANIZATION- Identify persons involved in the project and their job functions.

Team	Leader	Dick Skryness, Larry Picking
Site	Safety Office	r_Same
Team	Members	Same
	· •.	

4.0 HAZARD ANALYSIS- For each task or operation describe the potential hazards.

4.1 List Source and Location of Potential Contamination: Landfill containing

low-level radioactive waste and laboratory chemical constituents. Waste is

buried at a depth of approximately 10 ft. in an esker deposit.

4.2 List Characteristics of Representative Contaminants:

Representative Chemicals
<u>H-3</u>
<u>C-14</u>
Pb-210
Co-60
Cs-134
Н-3
Ra-Be
Toluene
Polyethylene glycol
Dioxane
Methanol
Naphthalene
Xylene
Propylene glycol
Ethylene glycol

Medium	
Unsealed	_
Unsealed	_
Unsealed	
Unsealed	_
Unsealed	_
Plated	_
Sealed in bronze	_
Pl. Btl./Steel Drum	_
	~

Exposure Limits Exposure limit for all
the radioactive isotopes
combined is 0.5mR/h.
PEL or TLV whichever is
lower:
100ppm-TWA 150ppm-STEL
N/A
25ppm-TWA
200ppm-TWA 250ppm-STEL
10ppm-TWA 150ppm-STEL
100ppm-TWA 150ppm-STEL
N/A
50ppm-C

4.3 Identify Unique Chemical Characteristics (ie. odor, warning properties): Toluene - aromatic odor like benzene.

<u>Polyethylene glycol - hard, water soluble, waxlike solid.</u>

Dioxane - colorless liquid with a mild etherlike odor.

<u>Methanol - colorless liquid with a characteristic pungent odor.</u>

Naphthalene - colorless to brown solid with an odor of mothballs.

Xylene - colorless liquid with aromatic odor.

Propylene glycol - colorless, almost odorless, slightly viscous liquid with a

slightly acrid taste.

4.4 Additional Site-Specific Hazard Information: <u>Previous drilling program</u> to install monitoring wells did not detect any volatile organic compounds or <u>radioactivity above background levels</u>. <u>Methane</u> gas was present during well installation

4.5 List Potential Physical Hazards:

5.0 AIR MONITORING- Describe frequency and types of air monitoring to be done and the equipment and calibration procedures to be used.

A HNu and radiation survey meter will be present onsite. Measurements will be taken when a well is initially opened, when samples are collected from the well, and when passive soil gas collectors are being placed beneath the landfill cover. Background levels will be measured prior to the commencement of work activities each day. If any measurement exceeds action levels, work activity will stop and personnel will move off the site. HNu measurements will be taken in the breathing zone, at the wellhead, and at ground surface when placing passive soil gas collectors Radiation measurements will be made

Combustion gas indicator will be used to detect Methane in the well rapor space prior to sampling. If levels above action bevels are noted, personnel at waist level, at the wellhead, and at ground surface when placing passive soil gas collectors Action levels will be: HNu-5ppm in the

breathing zone. radiation survey meter-2 X background. Background levels will

be deemed as being exceeded if a sustained reading above action levels lasts for

longer than two minutes. All readings will be recorded in the field notebook

including background levels. At 10% of the LEL personnel will leave the. Immediate area and allow the well to verit.

6.0 PERSONAL PROTECTIVE EQUIPMENT- Describe the levels of protection to be used and under what conditions they will be upgraded or work stopped.

Work will be performed at level D protection including surgical inner gloves

and protective outer gloves.

7.0 SITE CONTROLS

7.1 Work Zones <u>Will be established</u>, <u>if necessary</u>, <u>by the site safety officer</u> (Attach Map or Diagram) onsite.

7.2 Site Communications <u>Will be verbal</u>.

7.3 Work Practices Standard safety precautions will be taken regarding

groundwater sampling procedures (refer to section 5.0), and skin contact with

the well fluid or soil will be avoided.

8.0 TRAINING- Describe the training requirements of the project and how the personnel named to the project meet those requirements.

All personnel will receive an onsite briefing. The site safety officer will be OSHA trained (40 hr Hazardous Waste) and familiar with the use and maintenance of monitoring equipment. **9.0 DECONTAMINATION-** Describe what materials will need to be decontaminated, how they will be decontaminated and how other materials will be classified and disposed.

Personal clothing and footware will be brushed off every day before leaving
the job site. Gloves will be disposed of on site.
· ·
10.0 EMERGENCY RESPONSE
10.1 First Aid- Identify location and individual responsible for first aid kit
Site safety officer will be responsible for providing.
·
· · · ·
10.2 Telephone Numbers
Local Fire Department <u>1-800-432-7911</u>
Police Department <u>1-800-432-7911</u>
Ambulance Service (207)-827-5551
10.3 Nearest Hospital
Name <u>Eastern Medical Center</u>
Address <u>489 State Street</u>
Bangor, Maine
Directions
(Attach Map)
11.0 OTHER The nearest telephone is located in the Greenbush Town Hall, or at
the Olamon Supermarket in Olamon, Maine.

LOCATION OF SITE