

State of Maine

Department of Environmental Protection

Kennebunk River, Maine

2008 Integrated Water Quality Monitoring and Assessment Report

Document Number: DEPLW0895

Table of Contents

Chapter 1 Preface	9
Data Sources and Acknowledgements	
Sources of River and Stream Assessment Data	
Sources of Lake Assessment Data	10
Sources of Marine Assessment Data	11
Sources of Wetlands Assessment Data	11
Chapter 2 Executive Summary and Response to Comments	12
Executive Summary	
Surface Waters	
Wetlands	
Ground Water	14
Response to Comments	16
Process to Solicit Public Comments	16
Summary of Public Comments and Responses	19
Chapter 3 Background	28
State Atlas and Water Quality Standards	
Water Quality Standards Program	
Highlights for Point Source Pollution Control Programs	
Technical Assistance / Pollution Prevention Program	
Construction of Wastewater Treatment Facilities	
Maine Combined Sewer Overflow Program	32
Small Community Facilities Program	33
Licensing of Wastewater Discharges	
Overboard Discharge Grant Program	34
Compliance Evaluation	
Enforcement of Water Quality Laws	37
Nature & Extent of Nonpoint Sources of Pollutants and Pro	
Recommendations	
Recommendations The Maine NPS Water Pollution Control Program	37 37
Recommendations The Maine NPS Water Pollution Control Program Coastal Nonpoint Source Priority Watersheds	37 37 38
Recommendations The Maine NPS Water Pollution Control Program Coastal Nonpoint Source Priority Watersheds Watershed Management for Stormwater Programs	37 37 38 39
Recommendations The Maine NPS Water Pollution Control Program Coastal Nonpoint Source Priority Watersheds Watershed Management for Stormwater Programs Land Use and Growth Management	37 37 38 39 40
Recommendations The Maine NPS Water Pollution Control Program Coastal Nonpoint Source Priority Watersheds Watershed Management for Stormwater Programs Land Use and Growth Management Education and Outreach	37 37 38 39 40 41
Recommendations The Maine NPS Water Pollution Control Program Coastal Nonpoint Source Priority Watersheds Watershed Management for Stormwater Programs Land Use and Growth Management Education and Outreach The Environmental Impact and Economic & Social Costs/Benef	37 37 38 39 40 41 its of
Recommendations The Maine NPS Water Pollution Control Program Coastal Nonpoint Source Priority Watersheds Watershed Management for Stormwater Programs Land Use and Growth Management Education and Outreach The Environmental Impact and Economic & Social Costs/Benef Effective Water Quality Programs	37 37 38 39 40 41 its of 42
Recommendations The Maine NPS Water Pollution Control Program Coastal Nonpoint Source Priority Watersheds Watershed Management for Stormwater Programs Land Use and Growth Management Education and Outreach The Environmental Impact and Economic & Social Costs/Benef Effective Water Quality Programs Nonpoint Source Management	37 37 38 39 40 41 its of 42 42
Recommendations The Maine NPS Water Pollution Control Program	37 37 38 39 40 41 its of 42 42 42 42
Recommendations The Maine NPS Water Pollution Control Program	37 37 38 39 40 41 its of 42 42 42 43
Recommendations The Maine NPS Water Pollution Control Program Coastal Nonpoint Source Priority Watersheds Watershed Management for Stormwater Programs Land Use and Growth Management Education and Outreach The Environmental Impact and Economic & Social Costs/Benef Effective Water Quality Programs Nonpoint Source Management Economic Contribution of Maine Great Ponds The Pollution Prevention (P2) Program Chapter 4 Surface Water Monitoring & Assessments	37 37 38 40 41 its of 42 42 43 43 45
Recommendations The Maine NPS Water Pollution Control Program Coastal Nonpoint Source Priority Watersheds Watershed Management for Stormwater Programs Land Use and Growth Management Education and Outreach The Environmental Impact and Economic & Social Costs/Benef Effective Water Quality Programs Nonpoint Source Management Economic Contribution of Maine Great Ponds The Pollution Prevention (P2) Program Chapter 4 Surface Water Monitoring & Assessments Assessment Methodology	37 37 38 40 41 its of 42 42 43 43 45
Recommendations	37 37 38 40 41 its of 42 42 43 43 45 45 45
Recommendations The Maine NPS Water Pollution Control Program	37 37 38 39 40 41 its of 42 42 42 43 45 45 45 45 50
Recommendations The Maine NPS Water Pollution Control Program Coastal Nonpoint Source Priority Watersheds Watershed Management for Stormwater Programs Land Use and Growth Management Education and Outreach The Environmental Impact and Economic & Social Costs/Benef Effective Water Quality Programs Nonpoint Source Management Economic Contribution of Maine Great Ponds The Pollution Prevention (P2) Program Chapter 4 Surface Water Monitoring & Assessments Assessment Methodology Listing Methodology for the 2008 305b / 303d Integrated Report List Rivers and Streams	37 37 38 39 40 41 its of 42 42 43 43 45 45 45 50 50
Recommendations The Maine NPS Water Pollution Control Program Coastal Nonpoint Source Priority Watersheds Watershed Management for Stormwater Programs Land Use and Growth Management Education and Outreach The Environmental Impact and Economic & Social Costs/Benef Effective Water Quality Programs Nonpoint Source Management Economic Contribution of Maine Great Ponds The Pollution Prevention (P2) Program Chapter 4 Surface Water Monitoring & Assessments Assessment Methodology Listing Methodology for the 2008 305b / 303d Integrated Report List Rivers and Streams Lakes and Ponds	37 37 38 39 40 41 its of 42 42 42 43 45 45 45 50 50 51
Recommendations The Maine NPS Water Pollution Control Program Coastal Nonpoint Source Priority Watersheds Watershed Management for Stormwater Programs Land Use and Growth Management Education and Outreach The Environmental Impact and Economic & Social Costs/Benef Effective Water Quality Programs Nonpoint Source Management Economic Contribution of Maine Great Ponds The Pollution Prevention (P2) Program Chapter 4 Surface Water Monitoring & Assessments Assessment Methodology Listing Methodology for the 2008 305b / 303d Integrated Report List Assessment Criteria Rivers and Streams Lakes and Ponds Estuarine and Marine Waters	37 37 38 39 40 41 its of 42 42 43 43 45 45 45 50 51
Recommendations The Maine NPS Water Pollution Control Program Coastal Nonpoint Source Priority Watersheds Watershed Management for Stormwater Programs Land Use and Growth Management Education and Outreach The Environmental Impact and Economic & Social Costs/Benef Effective Water Quality Programs Nonpoint Source Management Economic Contribution of Maine Great Ponds The Pollution Prevention (P2) Program Chapter 4 Surface Water Monitoring & Assessments Assessment Methodology Listing Methodology for the 2008 305b / 303d Integrated Report List Rivers and Streams Lakes and Ponds Estuarine and Marine Waters Data Interpretation	
Recommendations The Maine NPS Water Pollution Control Program Coastal Nonpoint Source Priority Watersheds Watershed Management for Stormwater Programs Land Use and Growth Management Education and Outreach The Environmental Impact and Economic & Social Costs/Benef Effective Water Quality Programs Nonpoint Source Management Economic Contribution of Maine Great Ponds The Pollution Prevention (P2) Program Chapter 4 Surface Water Monitoring & Assessments Assessment Methodology Listing Methodology for the 2008 305b / 303d Integrated Report List Rivers and Streams Lakes and Ponds Estuarine and Marine Waters Data Interpretation Integrated Report Lists of Categories 1 Through 5	37 37 38 40 41 its of 42 42 42 43 45 45 45 45 50 51 51 52 54
Recommendations	37 37 38 39 40 41 its of 42 42 42 42 43 45 45 50 51 51 52 54 59
Recommendations The Maine NPS Water Pollution Control Program	37 38 39 40 41 its of 42 43 45 50 51 51 52 54 59
Recommendations The Maine NPS Water Pollution Control Program	37 37 38 39 40 41 its of 42 42 43 45 50 51 52 52 59 61
Recommendations The Maine NPS Water Pollution Control Program	37 37 38 39 40 41 its of 42 43 45 45 50 51 52 54 59 64

	Aquatic Life Monitoring	
	Reports of Fish Kills	65
	Achieving Comprehensive Assessment of All Streams: Probability-based	
	Design Monitoring	65
	Lakes / Ponds	65
	Attainment of Classification	
	Invasive Aquatic Plants	
	Estuaries / Ocean	
	Background	
	Sources of Monitoring Data	
	Summary of Statewide Status	
	Protection of Marine Life (Designated use: Habitat for fish and estuarine /	
	marine life)	
	Casco Bay Estuary Partnership	
Chapter 5		
Chapter 5	Wetlands	
	Background	
	Federal Regulation	
	Wetlands Regulatory Program in Maine's Organized Towns	
	Wetlands Regulatory Program in Unorganized Territories	
	Development of Wetland Water Quality Standards	78
	Integrity of Wetland Resources	
	Wetland Monitoring and Assessment	
	Extent of Wetland Resources	
	Wetland Loss Tracking in Maine's Organized Towns	
	Wetland Loss Tracking in Maine's Unorganized Territories	
Chaptor 6	Groundwater Monitoring & Assessments	
Chapter 0		
	Overview	
	Background	
	Assessment of Ground Water Quality	
	Aquifer Characterization Activities	
	Overview of Ground Water Contamination Sources	84
	Petroleum Storage Tanks and Product Spills	85
	Underground Tanks	
	Above Ground Storage Tanks	
	Oil or Hazardous Materials Spills	
	Agriculture	
	Maine's Nutrient Management Law	
	Pesticides	
	Landfills	
	Active Landfills	
	Inactive Landfills	
	Road Salt	
	Federal Facilities, Superfund and Hazardous Substance Sites	
	Resource Conservation and Recovery Act (RCRA) Sites	92
	Septic Systems	93
	Nitrates and Septic Systems	
	Bacteria	
	Shallow Well Injection and the Underground Injection Control	
	Program	. ,
	•	
	Other Programs	
	Stormwater Infiltration	
	Salt-Water Intrusion	
	Metallic Mining	95

Gravel Pits	95
Radioactive Waste Storage and Disposal Sites	95
Summary of Ground Water Quality	96
Groundwater Trends	100
Chapter 7 Public Health – Related Assessments	100
Beach Program Monitoring & Assessements	100
Maine Healthy Beaches Program	100
Swimming Beach Closures	
Shellfish Program Monitoring & Assessments	104
Shellfish Harvest Area Closures	104
Toxic Algae (Red Tide)	
Ocean Fish and Shellfish Consumption Advisories	
Advisory Overview	106
Specific Ocean Fish Consumption Advisories	
Freshwater Fish Consumption Monitoring, Assessments and	Advisories
Mercury Statewide Fish Consumption Advisory	
Dioxin	
River and Stream Specific Fish Consumption Advisories	
Ground Water and Public Health Concerns	
Public Health and Environmental Concerns	
Drinking Water Programs and Groundwater Contaminant Assessme	
MTBE	
Radon	
Arsenic	
Chapter 8 Summary of Impaired Waters	
Chapter 9 Accessing and Managing Data Used in Making Decisions on	
Waters	
Maine DEP Quality Management System	
Environmental and Geograpic Analysis Database (EGAD)	146
Listings on Individual Waters	147

Index of Figures

Figure 4-1 Percentage of Estuarine and Marine Waters in Each Classification.72	2
Figure 6-1 Active and Inactive Landfills in Maine90)
Figure 6-2 Distribution of Sole Source Public Water Supply Wells for the	
Ambient Water Quality Monitoring Network by Aquifer Type. Wells shown are	
those which were sampled96	3
Figure 6-3 Ambient Water Quality Monitoring Network Well Location Map97	7

Index of Tables

Table 2-1 Summary of Changes to Surface Water Assessment Categories –
2006 to 2008
Table 3-1 The 2008 305(b) Report State of Maine Atlas
Table 3-2 CSO Program Summary Statistics 33
Table 3-3 Yearly Summary of SCGP Activities 34
Table 3-4 Shellfish Areas Opened from 1991 to 200735
Table 3-5 Section 319(h) Clean Water Act Grant Awards to Maine 43
Table 4-1 Maine Designated Uses and Criteria for Rivers and Streams
Table 4-2 Maine Designated Uses and Criteria for Lakes and Ponds
Table 4-3 Maine Designated Uses and Criteria for Estuarine and Marine Waters
51
Table 4-4 Lake Trophic State Parameters and Guidelines 52
Table 4-5 Summary of State Waters Attaining and Not Attaining Standards54
Table 4-6 Individual Use Support Summary for Maine Rivers and Streams *54
Table 4-7 Individual Designated Use Support Summary for Maine Lakes
Table 4-8 Individual Designated Use Support Summary for Estuarine and Marine
Waters55
Table 4-9 Total Sizes of Category 4 and 5 Impaired Rivers and Streams by
Listing Causes/Stressors *
Table 4-10 Total Sizes of Category 4 and 5 Lakes Impaired by Listing
Causes/Stressors (total acreage)
Table 4-11 Total Sizes of Category 4 and 5 Lakes Impaired by Listing
Causes/Stressors (by Category)
Table 4-12 Total Sizes of Category 4 and 5 Impaired Estuarine and Marine
Waters by Causes/Stressors
Table 4-13 Total Sizes of Category 4 and 5 Waters Impaired by Source for
Rivers and Streams
Table 4-14 Total Sizes of Waters Impaired by Sources for Maine Lakes
Table 4-15 Total Sizes of Waters Impaired by Sources for Maine Lakes by Listing
Category58
Table 4-16 Total Sizes of Waters Impaired by Sources for Estuarine and Marine
Waters
Table 4-17 Maine Water Quality Criteria for Classification of Fresh Surface
Waters (38 MRSA §465)60
Table 4-18 Percent Distribution of River/Stream Water Classes 60
Table 4-19 Summary of Changes to Surface Water Assessment Categories –
2006 to 2008
Table 4-20 "All" and "Significant" Lake Category Information
Table 4-21 Summary of Listing Categories and Subcategories used in the 2008
Assessment of Maine lakes
Table 4-22 Individual Use Support Summary for Lakes & Ponds (acres) in
Category 5a (TMDL Needed)
Table 4-23 Trophic Status of Maine Lakes 69
Table 4-24 Lake Rehabilitation Technique Summary (Section 319 Projects)69
Table 4-25 Acid Effects on Maine Lakes

Table 4-26 General Sources of Acidity in Acidic Maine Lakes	70
Table 4-27 Maine's Estuarine and Coastal Waters Classification Standards7	71
Table 4-28 Area and Percentage of Marine and Estuarine Waters in Each	
Classification	71
Table 5-1 Wetland Mitigation Totals in the Organized Townships	30
Table 5-2 Permitted Wetland Mitigation Totals in the Organized Townships	31
Table 6-1 LUST Remediation Priority Sites – Number of Sites as of Feb 20088	35
Table 6-2 Current (February 2008) LUST Remediation Priority Sites –	
Contamination Summary	85
Table 6-3 Oil and Hazardous Materials Spills – January 2006 to December 200	6
8	37
Table 6-4 Hexazinone Monitoring - 1994 through 2006	39
Table 6-5 Numer of sites in various Division of Remediation programs	91
Table 6-6 Nitrate-N Frequency Distributions	
Table 6-7 Wells testing positive for E. coli or total coliform	
Table 6-8 Underground Injection Control Program Information	
Table 6-9 Ambient Aquifer Monitoring Data*	
Table 7-1 Beaches Participating in the MHBP 10	
Table 7-2 2006 Beach Closure or Advisory Information 10	
Table 7-3 2007 Beach Closure or Advisory Information 10	
Table 7-4 Classification of Shellfish Harvesting Areas 10)4
Table 8-1 Status of Category 5a / TMDL Rivers and Streams: 2002 through	
2008. Bold text indicates listing changes for the 2008 cycle1	15
Table 8-2 Status of Category 5a / TMDL Lakes: 2000 through 2008 ¹ 12	23
Table 8-3 2004 Category 5/TMDL Estuarine/Marine Waters not on 2006	
Category 5/TMDL List	25
Table 8-4 Causes of River and Stream impairment for which a Total Maximum	
Daily Load Report (TMDL) must be (or has been) prepared	
Table 8-5 Lake TMDL Current Project Update	
Table 8-6 Estuarine/Marine Current TMDL Project Update 14	45

Notice to Readers: Anti-SPAM Measure

It is no secret that recent trends in junk e-mail (a.k.a. SPAM) indicate that these nuisance solicitations are finding their way into e-mail accounts with ever increasing frequency. Studies indicate that one of the leading ways spammers obtain legitimate e-mail addresses is through the use of "spam-bots", which are specialized computer programs that automatically search, ferret out, harvest and amass e-mail addresses from web pages and other documents that are posted online (just like this report). Once a valid e-mail address has been located, generally it will be added to a spammer's list and/or sold to other spammers, which is sure to dramatically increase the amount of spam received by that e-mail address.

With this report, a measure has been taken to help protect those individuals whose e-mail addresses are listed inside from having their legitimate e-mail addresses discovered and automatically spammed. Basically, the text "SPAM-ZAP" (without quotation marks) will be inserted directly after the "@" symbol in each e-mail address found in this report – an example of this format follows: <u>steve.harmon@SPAM-ZAPmaine.gov</u>. Inserting this "SPAM-ZAP" text creates a bogus e-mail address that will cause any automatically generated SPAM e-mail to be sent to the bogus, invalid address instead of to the real e-mail address. <u>Ultimately, any e-mail messages that are sent to that bogus address will not make it through to the intended recipient – this is true of both legitimate messages as well as SPAM.</u>

Instructions for readers who wish to e-mail a contributor to this report:

1) Click on the desired e-mail address or copy the address into a new message inside your e-mail client.

2) Remove the capitalized words "SPAM-ZAP" (there will be no quotation marks) from the email address.

3) Write your message and send it out as you normally would.

Thank you for your understanding of this issue and for your willingness to work with any minor inconveniences associated with our use of this anti-spam method. We hope that readers will support our efforts towards eliminating this document as an inadvertent source of e-mail addresses that could be used by spammers, while still providing a means by which to contact individual contributors to this report.

Sincerely,

Marianne DuBois and Susan Davies

CHAPTER 1 PREFACE

Contact: Susan Davies, DEP BLWQ, Division of Environmental Assessment (DEA)

Tel: (207) 287-7778 email: <u>Susan.p.davies@SPAM-ZAPmaine.gov</u>

The following report is submitted to simultaneously fulfill requirements of the Clean Water Act (CWA) particularly the Section 305(b) Report, Section 303(d) List, and information requested under Section 314, and, also to serve as a biennial report to the Maine Legislature as required under 38 MRSA Section 464.3.A. The Maine Department of Environmental Protection (The Department or MDEP) assembles these reports with input from many sources and recognizes that the Section 305(b) Report and Section 303(d) List are important ways of regularly communicating information on the health, current status and trends of the State's waters.

For the 2008 Integrated Report the Department has updated tabular summaries of water quality status (Appendices; Chapter 4 and Chapter 8) that appeared in the 2006 Integrated Report but reduced narrative content. Programmatic descriptions and summaries are greatly reduced unless a major programmatic change has occurred since the 2006 Integrated Report. For background information about specific water quality programs please refer to the 2006 Integrated Water Quality Report, available on the web at:

http://www.maine.gov/dep/blwq/docmonitoring/305b/index.htm

Maine waterbodies are assigned to one of five categories (or sub-categories) that describe water quality status in the Integrated Report (Executive Summary, page 10 and Ch 4). Those waters that are currently listed under category 5 represent U.S. Clean Water Act (CWA) §303d list "impaired waters" and require development and submission of Total Maximum Daily Load (TMDL) report to the United States Environmental Protection Agency.

The 2008 Integrated Report provides:

- Delineation of water quality assessment units (AUs), identified by their 10-digit HUC (Hydrologic Unit Code) followed by a waterbody-specific code (Appendices II-IV);
- Water quality attainment status for every Assessment Unit (Appendices II-IV);
- Progress toward achieving comprehensive assessment of all waters (Chapter 4),
- Basis for the water quality standard attainment determinations for each Assessment Unit (Chapter 4 and Appendices);
- Schedules for additional monitoring planned for certain Assessment Units (Appendices II-IV);
- Identification of Assessment Units requiring Total Maximum Daily Load (TMDL) determinations and a schedule (priority) for those waters (Chapter 8 and Appendices II-IV);

The 2008 Integrated Report presents State of Maine water quality assessment summaries for rivers, streams and lakes that have been generated by the Assessment Database (ADB). ADB is public domain software developed by EPA to improve states' ability to track and document water quality assessment results. Though marine assessment data and information is not currently stored in Maine's ADB assessment results are reported in the 2008 Appendices, as in previous versions of the Integrated Report.

Data Sources and Acknowledgements

Sources of River and Stream Assessment Data

The Department generates much of the data for the assessment through the various monitoring programs it conducts, notably the Biomonitoring Program, Surface Water Ambient Toxics Monitoring Program, the Dioxin Monitoring Program, and the Atlantic Salmon Recovery Plan, Additionally, data is provided from a variety of professional and volunteer monitoring groups. These include other state agencies and resources (Department of Inland Fisheries and Wildlife, Atlantic Salmon Commission, Department of Health and Human Services, University of Maine System), federal agencies (U.S. Environmental Protection Agency, U.S. Geological Survey, National Park Service), other governmental agencies (Saco River Corridor Commission, St. Croix International Waterway Commission), tribes (Penobscot Indian Nation, Houlton Band of Maliseets) and a number of volunteer watershed groups / conservation organizations that are working cooperatively with Department staff and that follow an EPA approved Quality Assurance Project Plan or that follow monitoring practices specifically approved by MDEP (Watershed councils of the Dennys, East Machias, Machias, Pleasant, Narraguagus, Ducktrap and Sheepscot Rivers, Presumpscot River Watch, Royal River Conservation Trust, Sheepscot Valley Conservation Association, The Nature Conservancy).

Sources of Lake Assessment Data

The Department's Lake Assessment Section manages much of the data collected from lakes within the state. A strong partnership with the Maine Volunteer Lakes Monitoring Program (VLMP, Inc.) assures the quality and comparability of the data collected through numerous regional entities and local lake associations. Regional entities include Cobbossee Watershed District, Lakes Environmental Association, St. Croix International Waterway Commission, Allagash Wilderness Waterway, Penobscot Indian Nation, Portland Water District, Auburn Water District, Acadia National Park, and Rangelev Lakes Heritage Trust. Data has also been acquired from private consultants (such as Lake and Watershed Resource Management Assoc., Biodiversity Research Institute, Florida Power and Light as part of regulatory requirements) and water utilities that belong to the Maine Water Utility Association. Additional data is acquired through the Maine Department of Inland Fisheries & Wildlife (DIF&W) and through cooperative projects with the University of Maine System, Colby College, Unity College, Soil and Water Conservation Districts and similar entities. Future lake assessments will include evaluation of data collected under probability based studies conducted within EPA Region I and as part of the National Lake Assessment Study being conducted by EPA Headquarters.

Sources of Marine Assessment Data

The Maine Department of Environmental Protection, the Department of Marine Resources (DMR), the Casco Bay Estuary Project (CBEP) and a variety of volunteer monitoring groups monitor Maine's coastal waters. DMR monitors for indicators of human pathogens (fecal coliforms) and biotoxins (Paralytic Shellfish Poisoning). The purpose of the DMR monitoring is to protect human health by managing shellfish harvest areas. DEP monitors toxic contaminants in tissues and assesses water quality using data collected by DEP, especially the Surface Water Ambient Toxics program, and others. DEP participates in the Gulf of Maine Council's Gulfwatch Project that surveys toxic contamination in mussel tissue in the Gulf of Maine. Friends of Casco Bay monitors water quality in Casco Bay. The Casco Bay Estuary Project (CBEP), funded by EPA's National Estuary Program, also monitors and supports monitoring in Casco Bay and coordinates the National Coastal Assessment for the entire Maine coast.

SOURCES OF WETLANDS ASSESSMENT DATA

The Department generates most of its assessment data for wetlands through the Biological Monitoring Program (see Chapter 5 for additional information). Wetland biomonitoring is coordinated with the State's river and stream biomonitoring program using a 5-year rotating basin schedule. Although DEP does not currently report attainment status for wetlands, the Biomonitoring Program is working to clarify how existing water quality standards apply to wetlands, and is also developing wetland-specific biological criteria. This will enable the Department to report wetland attainment status in future years. Data for permitted wetland gains and losses is provided through the DEP Wetland Loss Tracking System by the Division of Land Resource Regulation.

CHAPTER 2 EXECUTIVE SUMMARY AND RESPONSE TO COMMENTS

Executive Summary

SURFACE WATERS

This report continues to base assessments of streams & rivers, lakes & ponds, and marine & estuarine waters on the five main listing categories that were initially established for these waters in the 2002 305b Report. These five main assessment categories are as follows:

Category 1: Attaining all designated uses and water quality standards, and no use is threatened.

Category 2: Attains some of the designated uses; no use is threatened; and insufficient data or no data and information is available to determine if the remaining uses are attained or threatened (with presumption that all uses are attained).

Category 3: Insufficient data and information to determine if designated uses are attained (with presumption that one or more uses may be impaired).

Category 4: Impaired or threatened for one or more designated uses, but does not require development of a TMDL (Total Maximum Daily Load) report.

Category 5: Waters impaired or threatened for one or more designated uses by a pollutant(s), and a TMDL report is required.

Section 4-1 on Assessment Methodology contains more detailed information on the listing categories and sub-categories.

The results from the 2002 through 2008 Integrated Reports are not exactly comparable but they can give an idea of changes in the approximate amounts of waters in each category. This information is displayed in Table 2-1.

Table 2-1 indicates that there has been little change since the close of the last reporting period for rivers and streams. An error was corrected in reach length for a mainstem river segment so Total Miles Assessed has decreased since the 2006 report. Small increases in Category 2 waters occurred due to new data that confirmed that certain segments are now attaining some uses. Confirmed attainment of standards or Completion of Total Maximum Daily Loads caused a decrease in 17 miles of Category 5 with an increase in Category 2 and 4 rivers and streams. This table also reveals that the lakes and ponds of Maine were relatively stable (as a percent of total assessed waters) with respect to their listing categories during the 2006 to 2008 time frame. This period saw reductions in categories 3 and 5a and an increase in category 2 and 4a waters.

For marine and estuarine waters the 2008 Report relies on the same assessment data as that used to report on status in 2006.

Note: Thes	se figures do not in	clude waters listed ur	der Category 4A	for atmospheric depos	sition of mercu	ry
		Riv	ers and Strea	ms		
		31,224	= Total Miles As	sessed in 2006		
			=Total Miles As			6 U.I. (11)
	2006 Miles in	% of Total 2006	2008 Miles in	% of Total 2006	% Change	Change in
	Category*	Assessed Miles	Category**	Assessed Miles	'06-'08	Miles '06 - '08
Category 1	4,347	14	4,347	14	0	0
Category 2	25,283	81	25,288	81	0	+5
Category 3	380	1	379	1	0	-1
Category 4	209	<1	216		0	+7
Category 5	1005	3	988	3	0	-17
			Lakes			
				ssessed in 2006		
		A REAL PROPERTY AND A REAL	13.10. Or rest to the set of a set of the	ssessed in 2008		
	2006 Acres in Category	% of Total 2006 Assessed Acres	2008 Acres in Category	% of Total 2006 Assessed Acres	% Change '06-'04	Change in Acres '08-'06
Category 1	295,443	29.9	295,443	29.9	0	0
Category 2 *	596,087	60.4	596,474	60.5		387
Category 3	18, <mark>16</mark> 4	1.8	17,777	1.8		-387
Category 4	72,288	7.3	73,600	7.5		1,312
Category 5	4,970	0.5	3,658	0.4		-1,312
		Mari	ne Waters (Ac	res)		
		1,821,433.6	= Total Acres A	ssessed in 2006		
		1,821,433.6	= Total Acres A	ssessed in 2008		
	2006 Acres in	% of Total 2006	2008 Acres in	% of Total 2008	% Change	Change in
	Category	Assessed Acres	Category	Assessed Acres	'06 - '08	Acres '06 - '08
Category 1	0.00	0.00	0.00	0.00	0.00	0.00
Category 2	1,722,079.30	94.55	1,718,509.09	94.35	-0.20	-3,570.21
Category 3	3,986.00	0.22	2,835.00	0.16	-0.06	- <mark>1</mark> ,151.00
Category 4	697.00	0.04	0.00		-0.04	-697.00
Category 5	94,671.30	5.20	100,089.50	5.50	0.30	5,418.20
		Marine V	Vaters (Squar	e Miles)		
		2,846.0	= Total Square	Miles Assessed in	2006	
		2,846.0	= Total Square	Miles Assessed in	2008	
	2006 Square	% of Total 2006	2008 Square	% of Total 2008	% Change	Change in
	Miles in	Assessed	Miles in	Assessed	'06 - '08	Square Miles
	Category	Square Miles	Category	Square Miles		'06 - '08
Category 1	0.00	0.00	0.00	0.00	0.00	0.00
Category 2	2,690.75	94.55	2685.17	94.35	-0.20	-5.58
Category 3	6.23	0.22	4.43	0.16	-0.06	-1.80
Category 4	1.09	0.04	0.00	0.00	-0.04	-1.09
Category 5	147.92	5.20	156.39	5.50	0.30	8.47

Table 2-1 Summary of Char	iges to Surface Water Assessme	ent Categories – 2006 to 2008
---------------------------	--------------------------------	-------------------------------

*Single-Category Reporting miles as generated by final 2006 cycle ADB

** Single-Category Reporting miles as generated by final 2008 cycle ADB

Since the 2004 Integrated Water Quality Report, waters that are listed in nonattainment, caused solely by bacteria either from Combined Sewer Overflows (CSOs) or other sources, are in Sub-Category 5B. The DEP deems that the CSO Master Plans and associated enforcement controls provide fully adequate mechanisms for control of this cause of bacterial impairment and thus they are a low priority for Total Maximum Daily Load (TMDL) development. All freshwaters in Maine are listed for an impaired Fish Consumption Use caused by mercury from sources beyond the region; miles affected by this statewide listing are not recorded in Table 2-1. These waters were listed in Sub-Category 5C in the 2006 Integrated Report. These waters have now been moved to Category 4A because of US EPA's approval, on December 20, 2007, of a Regional Mercury Total Maximum Daily Load. The New England States and New York developed the regional mercury TMDL to address mercury impairments that are caused by sources beyond the Region. The State of Maine has already taken aggressive action to reduce sources of mercury within the State's jurisdiction. Further mercury reductions will be required from sources outside the State's boundaries to provide the desired reduction of mercury in Maine's waters. Category 5D, Legacy Pollutants, includes many mainstem river segments that are listed for non-attainment of the Fish Consumption use due to PCBs in fish tissue.

WETLANDS

Maine DEP began development of a biological monitoring and assessment program for freshwater wetlands in 1998 as part of the biomonitoring program. The Biological Monitoring Program provides water quality information for a wide array of programs, and includes ambient monitoring, evaluation of water quality classification attainment, and assessment of risks and impacts.

The wetlands initiative currently focuses on aquatic macroinvertebrates as indicators of wetland ecological integrity, and plans to build capacity to assess multiple biological assemblages including algae (needed for development of nutrient criteria) and plant communities. Key wetland related activities include (1) ambient monitoring and assessment of wetland condition, (2) development of biological criteria for wetlands, (3) inclusion of wetlands in comprehensive State water quality monitoring strategy, (4) development of Internet Mapping Project to provide public access to biomonitoring data, and (5) development of landscape-level assessment tool to predict threats to wetlands.

Starting September 1, 2007, *significant vernal pool habitat* is protected by law under the State of Maine Natural Resources Protection Act (NRPA). For more information, see Chapter 5, Wetlands or visit the DEP's NRPA page at:

www.maine.gov/dep/blwq/docstand/nrpapage.htm.

GROUND WATER

The Groundwater Program is described in chapter 6. Responsibility for ground water resource assessment and protection is shared among the Department of Environmental Protection, the Department of Health and Human Services' Division of Environmental Health, the Maine Geological Survey in the Department of Conservation and the U. S. Geological Survey. Several other agencies, particularly the Department of Transportation, Department of Agriculture, and State Planning Office may investigate ground water contamination problems in certain areas and they also contribute to ground water protection through development of ordinances and management practices that are designed to reduce the risk of harming ground water quality.

A significant portion of Maine's ground water may be threatened by contamination, particularly in unforested areas, which comprise approximately 11% of the State.

Drinking water quality is an issue that carries significant public concern for both private and public well supplies. Public interest in ground water is primarily focused on its use as a drinking water supply (ground water provides 60% of all human demand and 75% of livestock demand statewide) and on its use as a source of process water for industry. Numerous wells in Maine have been made unpotable by pollution from specific point sources and also from nonpoint source pollution. Important sources of ground water contamination in Maine include disposal activities such as septic systems and landfills, leaking storage facilities, agriculture, spilled hazardous materials or previously unregulated activities.

Monitoring of ground water in Maine is either site-specific or generalized. Monitoring at a particular site is typically done to gather data on water quality impacts of particular activities, and may or may not be research-related. Most of the ground water data collected in Maine is the result of permit conditions, enforcement agreements or impact assessments. With the advent of the Environmental Geographic Analysis Database (EGAD) at the DEP, many of these data which are potentially useful for research purposes are now readily made available to the public or other agencies in report or map form. This effort enhances the ability of the DEP to communicate and report groundwater and other data to the EPA and other state or federal agencies.

Ambient monitoring refers to large area, long-term monitoring conducted to obtain trend information on ground water quality or quantity. The MGS and the USGS carry out these types of monitoring projects under several cooperative agreements. The USGS and MGS maintain a statewide network of ground water observation wells to track changes in water quality and quantity. For the purpose of this report, data derived from the DHHS Public Water Supply Monitoring Program are used as ambient ground water quality data. These water tests are from single-source untreated public water supply wells.

Major impediments to effective ground water protection in Maine include; the lack of data to quantify the impact of some nonpoint pollution sources and general public unfamiliarity with key groundwater concepts and issues. Public misconception about groundwater is probably the major factor contributing to degradation of this resource. The development of a comprehensive and accessible database for water data (EGAD) has increased the accessibility of the wide variety of data collected on water quality by various state agencies. Continuing use of this database will improve operations at the agencies responsible for groundwater protection and assessment, and provide a resource for increasing the general public's awareness of groundwater issues. Relative to groundwater protection the principal uses of this database are to (1) help design clean-up strategies in areas of known contamination; (2) plan future development that better provides for protection of public health and safety; (3) assist in prioritizing protection of sensitive ground water and surface water bodies, wetlands, and other resources; (4) enhance understanding of the spatial relationships between water resources and population as they relate to potential or known pollution sources; and (5) assess the flow and transport interrelationships between surface and ground water quality, in order to evaluate groundwater impacts on surface water bodies and on groundwater-dependent habitat.

Response to Comments

PROCESS TO SOLICIT PUBLIC COMMENTS

The following subsections detail the actions taken by the Department of Environmental Protection to promote the public's knowledge of the existence and availability of the draft version of the 2008 Integrated Water Quality Monitoring and Assessment Report (commonly known as the 305b Report). This process was undertaken in order to gain comments from the public on the contents and conclusions of the draft report. The official period of time that the Report was available for public comment was from March 10, 2008 to the close of business on March 31, 2008.

In addition to the public comment process outlined below, the draft version of the 2008 305b Report was reviewed internally by Department staff as well as by US EPA staff in order to produce the final version of the Report.

REPORT POSTING ON THE DEPARTMENT'S WEBSITE:

On March 10, 2008 the Department posted the draft 2008 305b Report as two digital files in the Adobe® Portable Document Format (PDF) on the public comments section of its Bureau of Land and Water Quality website. Hardcopies of the draft report are made available to the public on request.

POSTAL MAILING TO THE AGENCY RULEMAKING SUBSCRIPTION SERVICE LIST:

The Department offers a subscription service that provides notification of both rulemaking changes and rule adoption for all department rules. Subscribers to this service include both individual citizens and representatives of organizations that wish to be contacted when the DEP releases rulemaking information. During the week of March 10, 2008 the Department mailed out approximately 150 letters to people and entities on the Agency Rulemaking Subscription Service List, including all other natural resource agencies within state government. The text of that letter follows and is italicized in order to differentiate it from other text contained in this Report.

Maine's 2008 Integrated Water Quality Monitoring and Assessment Report

Available for Public Comment until March 31, 2008

The Department of Environmental Protection has prepared a draft 2008 Integrated Water Quality Monitoring and Assessment Report for submission to the U.S. Environmental Protection Agency as required of Sections 305(b) and 303(d) of the Clean Water Act, and in fulfillment of the reporting requirements of 38 M.R.S.A. Section 464.3.A of the State of Maine's Water Classification Program.

This report is available for public comment until March 31, 2008. Reviewers of the document should pay particular attention to the categories and listing methods required by the USEPA for the surface water assessments in this report. These methods are described in Chapter 4. Specific surface waterbody attainment and impairment assignments can be found in the Appendices (a separate file). The appendices are broken into three waterbody types: rivers/streams, lakes, and estuarine/marine waters. Categories 1-3 are for waters that are not impaired, categories 4 and 5 are for water segments that are impaired for one or more uses.

The draft documents (pdf files) can be found on the Department's website at: www.maine.gov/dep/blwq/docmonitoring/305b/draft.htm

We encourage you to review the document and provide comment on this year's report. Comments become part of the public record and are published in the final version of the Report. Comments should be sent to:

Email: 305b.Comments@maine.gov Fax: 207-287-7826

Contact: Susan Davies, Maine Department of Environmental Protection State House #17 Augusta, ME 04333 susan.p.davies@maine.gov

LEGAL NOTICE:

During the week of March 10, 2008 the Department prepared a legal notice that ran in four daily newspapers located around the state. Those newspapers (and current weekday circulations) were as follows: The Bangor Daily News (62,730), The Kennebec Journal (14,877), The Lewiston Sun Journal (34,278), and The Portland Press Herald (75,577). The text of that legal notice follows and is italicized in order to differentiate it from other text contained in this Report.

Legal Notice

Maine Department of Environmental Protection

Notice of Public Comment for the "2008 Integrated Water Quality Monitoring and Assessment Report"

The Department of Environmental Protection has prepared the "2008 Integrated Water Quality Monitoring and Assessment Report" for submission to the U.S. Environmental Protection Agency as required of Sections 303(d) and 305(b) of the Clean Water Act, and in fulfillment of the reporting requirements of 38 M.R.S.A. Section 464.3.A of the State of Maine's Water Classification Program. This report is available for public comment until 5:00 PM, March 31, 2008. Reviewers of the document should pay particular attention to the listing methods required by the USEPA for surface water assessments for this report. These methods are described in Chapter 4 of the document. Specific waterbody attainment and impairment assignments can be found in the Appendices.

The report (pdf files) may be found on the Department's website at: www.maine.gov/dep/blwq/docmonitoring/305b/draft.htm

Comments become part of the public record and are published in the final version of the Report. All comments should be sent to: by fax: 207-287-7826 by email: 305b.Comments@maine.gov

Susan P. Davies Maine Department of Environmental Protection State House #17 Augusta, ME 04333

PRESS RELEASE:

On March 10, 2008 the Department of Environmental Protection issued a press release designed to inform the public of the availability of the draft 2008 305b Report. This release also described how the DEP was seeking public comment on water quality listings in the Report. Between fifteen and eighteen radio, television and print outlets around the state received the press release and it was also linked to a news headline on the Department's homepage. The release also went to the Associated Press, which places the release on its "wire" for other media outlets to run, if they so choose. The text of that press release follows and is italicized in order to differentiate it from other text contained in this Report.

DEP Seeks Comment on Water Quality

(AUGUSTA)—The Maine Department of Environmental Protection (DEP) wants feedback on its latest review of the health of Maine's lakes, streams, rivers, estuaries and coastal waters. Once the review receives final Environmental Protection Agency approval, the water quality ratings in the 2008 Integrated Water Quality Monitoring and Assessment Report help to determine planning and funding priorities for water quality improvements. The DEP is asking the public to comment on the draft report now posted on the web:

http://www.maine.gov/dep/blwq/docmonitoring/305b/draft.htm

Comments become part of the public record and are printed in the final version of the report. The comment deadline is 5:00 PM, March 31, 2008.

"Feedback from the public on the accuracy of our evaluations is important to this process", says Dr. David Courtemanch, director of the DEP's Division of Environmental Assessment. "These assessments drive decisions as to how particular public waters will be managed into the future, that's why we encourage citizens to review the ratings."

The report, also known as the "305b Report", a requirement of the federal Clean Water Act, is a water quality snapshot. Prepared every two years, the public can look back to see if and how the assessment of their favorite lake or stream has changed. One section lists waters considered to be "impaired" due to problems that affect one or more officially assigned "uses" of the waterbody, such as 'Recreation' or 'Fishing'.

"An 'impaired' listing can set into motion specific management activities designed to bring a water body back into full-use compliance," notes Courtemanch. "Those activities can range from more vigilant monitoring to complete abatement of a pollutant."

The 2008 Integrated Water Quality Monitoring and Assessment Report is based on information gathered by the DEP along with other state, federal, tribal, local agencies, non-government organizations and volunteer monitoring groups. DEP analyzes the data to assess the capacity of Maine waters to support drinking, fishing, recreation (such as swimming) and their ability to sustain aquatic life as defined in Maine's water classification laws. The report also provides extensive information on the status of Maine's groundwater and wetland resources.

SUMMARY OF PUBLIC COMMENTS AND RESPONSES

The Department received public comments from the parties listed below. Issues raised by comments from these organizations or individuals are either quoted or paraphrased and are presented in italic typeface. The DEP response to that comment follows the comment and summarizes any actions taken by the Department in response to the comment. If the text does not indicate that any changes were made to the Draft Integrated Report, then none were made.

POLLUTION IN THE PENOBSCOT RIVER

Paraphrased Comments from:

• Bernard Madden, resident of Millinocket, Maine

Stormwater runoff is a major water quality problem. I observe it during the spring runoff when Millinocket Stream turns brown. If an individual dumped this amount of pollution into one of Maine's rivers they would be arrested. Our government should take action to prevent stormwater from running off into our rivers. It eventually gets into the ocean and could disrupt the ecological balance there and jeopardize important human food supplies. The State's effort at Atlantic salmon restoration is inadequate. The Department should be more proactive and urge lawmakers to tighten the standards for municipal discharges.

MDEP Response:

MDEP agrees that stormwater is a major water quality problem. The Maine Stormwater Program within the Bureau of Land and Water Quality includes the regulation of stormwater under three core laws: The Site Location of Development law (Site Law), Stormwater Management Law, and Waste Discharge Law (MEPDES). Aspects of stormwater are also addressed under industry specific laws such as the borrow pit and solid waste laws, and the rules administered by the Land Use Regulation Commission. Detailed information about the array of MDEP programs designed to minimize the negative effects of stormwater runoff may be found at :

http://www.maine.gov/dep/blwq/docstand/stormwater/

Millinocket Stream is on the 303d list due to impairment of the primary and secondary contact recreation uses due to bacteria (3 miles) and stormwater runoff is a major contributing cause of the impairment. A Total Maximum Daily Load report is scheduled for 2008.

PLUM CREEK

Paraphrased Comments from:

• Mr. James Lavertu, lawyer practicing in Madawaska, Maine

I am concerned that southern Maine is opposing development in northern Maine; in particular I am concerned with the widespread southern Maine opposition to Plum Creek. Plum Creek and the extension of Interstate 95 through the northern tip of Maine could bring some measure of prosperity to the Millinocket area. MDEP should totally ignore anti-development attitudes when applied to Northern Maine, especially if they come from other parts of Maine.

MDEP Response:

MDEP reviews proposals and applications for development to ensure that all State and federal environmental laws and regulations are met and will continue to be met for any projects that go forward. MDEP does not take a position on development in northern Maine but rather reviews each application on its own merit. MDEP supports the public's right to appropriately express opinions during the Public Review Process.

Water Quality Concerns from Overboard Discharges (OBDs) in Sheepscot River, Cross Point to Route 1 Bridge, Edgecomb Paraphrased Comments from:

• Byron Johnson, Edgecomb, Maine

1. At the time of the latest report available to me (May 2007), there were 27 licensed overboard discharges (OBDs) in Edgecomb, of which 26 are on the Sheepscot (one mistakenly attributed to "Wiscasset Harbor") and one on the Cross River (understood from the owner be in the process of abatement). Clamming is prohibited in this portion of the Sheepscot (Pollution Closed Area 22 A.(1)) "because of pollution."

Note: Commenter Johnson next inserted text from what he reported was a "typical OBD permit", including comments from the Department of Marine Resources noting closure of a shellfish harvesting area due to OBDs, and language from the Department of Environmental Protection that concludes:

"Under Maine's water classification standards, shellfish harvesting is a designated use of all estuarine and marine waters of the State. The presence of overboard discharges prevents this waterbody from meeting its designated use for shellfish harvesting.

<u>C. Based on the preceding conclusions and in accordance with CMR 596, a waste discharge license cannot be issued. The Department must issue a conditional discharge permit when the renewal of an overboard discharge license is denied."</u>

MDEP Response:

The Department's OBD Licensing and Removal Grant Programs exist because we agree with Mr. Johnson's basic premise. However, the cited permit language is outdated and predates *Overboard discharges: licenses and abandonment* 06-096 CMR 596(effective November 24, 2004) and the affected statutes. The current language is more comprehensive and the findings differ according to the results of the site evaluation, the water quality category at the location of the OBD, and the OBD inspection

compliance rating. Currently the Department is making both license and removal grant decisions based on the OBDs present in the given closure area, the feasibility of replacing the OBDs, the water quality category at that site and the potential to open shellfish areas.

From a water quality standards perspective, the closure is administrativebased and precautionary due to proximity to a wastewater outfall. MDEP does not have data documenting the presence of criteria violations. The purpose of the Integrated Report is to report water-quality based conditions and impairments. Regulatory policies and requirements that might prohibit an activity are not considered impairments (just as a closed fishing season does not mean a waterbody is impaired for the designated use of fishing).

2. On Davis Island there are 5 OBDs. Connections for water and sewer have recently been installed across the Sheepscot, from Wiscasett, eliminating the formerly largest OBD. Development including sanitary sewers has been started within 200 feet of the nearest site having an OBD (there are two more OBD sites within 300 feet of the first OBD site, and another at about 200 feet further). There are complaints of quantity and quality problems with water wells in the vicinity. The owners of three Davis Island OBD sites have a recorded agreement with the developer wherein he agrees to not allow utility connections via the shortest distance(!)

MDEP Response:

OBDs which pass more than 75% of the inspections in the previous fiveyear period may be licensed. The Department inspects these facilities twice yearly and will not relicense the OBD until a scheduled plan of compliance is submitted for any OBD which passes less than 75% of the inspections. MDEP shares Mr. Johnson's concern and is pursuing enforcement action against repeat violators, especially with regard to disinfection. A scheduled plan of compliance is required. The Department can only compel owners of facilities which abut a municipal sewer to connect. If the sewer is private, or there is a privately-owned parcel between the OBD facility and the sewer, and the facility owner holds no right, title or interest to that parcel, we cannot compel, but can only encourage people to gain the necessary easements to connect. The developer's side agreement may or may not have any legal standing depending on the above. The Department would need more information.

Regarding water well complaints, the Integrated Report does not assess and report on groundwater quality in the report except in a general way. While OBDs will not cause a quantity problem, the commenter provides insufficient information about the nature of the "wellwater quality" issues for the MDEP to make any comments. 3. There are clusters of OBDs: Eddy Road/Clifford Road, Shore Road, and Cross Point Road. Additional OBDs are scattered. In one or more cases there is land in the same ownership that could be used for individual or collective on-land disposal (probably with pumping). Isolated sites might lend themselves to alternative black-water disposal systems (with little or no water added to the waste, reducing water consumption). [example: "EcoJohn" (www.ecojohn.com), perhaps more common in the states of Washington and Oregon]. I would urge that the annual inspection program consider changes in site context and "Best Practicable Treatment(s)" that would directly address factors preventing attainment of adopted water quality goals, particularly where permitees actively frustrate full compliance.

MDEP Response:

The Department agrees. Since September 13, 2003, OBD owners have been required to hire a Licensed Site Evaluator (LSE) to determine whether there is a technologically feasible replacement for existing OBD systems, prior to transfer of the property or license renewal, if one has not been done in the five years previous. If the property is being transferred (sale, inheritance, gift, trust, etc.) the parties to the sale must install the replacement within 90 days [38 MRSA §413 (3)]. We will continue to renew licenses to the original licensees until such time as the Department offers grant money for the removal [38 MRSA §414-A(1-B)(A)]. Subsurface systems are subject to approval by the Dept of Health and Human Services' Division of Environmental Health pursuant to the Maine Subsurface Waste Water Disposal Rules, 10-144 CMR 241. They can allow alternative systems, but require that a full-system design be submitted concurrently. Most people will install the full system. OBD #w002323 in Edgecomb was removed last year pursuant to 38 MRSA §413 (3).

4. If the water is not safe for clams I suspect it is not safe for human body contact!

MDEP Response:

We agree, and we hold that this is why the DMR closure areas, the OBD licensing program, and the OBD removal grant programs exist. MDEP appreciates Mr. Johnson's concerns and his recognition of the importance of the OBD program. MDEP is requiring new site evaluations prior to license renewal and/or property transfer and expediting whatever removals the law and Department resources allows, in order to protect shellfishing and recreational uses, improve the water quality and reopen shellfishing areas.

5. Your "Category 2: Estuarine and Marine Waters Attaining Some Designated Uses – Insufficient Information for Other Uses" comments on Waterbody ID 730-4 Sheepscot River (that there are) OBDs, detrimental to a designated use.

The vast majority of OBDs are in either Category 2 or Category 5B-1 waters. Waterbody 730-4 is listed in Category 2 since data on all uses is incomplete, however for those uses measured it is in attainment. The

presence of the OBDs does not necessarily cause a violation of water quality standards. Category 5B-1 waters usually have other sources of bacteria besides OBDs including the presence of sewage tereatment plants, boats, nonpoint source elevated fecals, etc. For example Wiscasset Wastewater Treatment Plant outfall (0.62 million gallons per day), the FPL outfalls, and the Wiscasset snowdump are all located in the vicinity of the Route #1 bridge, upriver from Edgecomb.

FISHING IN MAINE

Paraphrased Comments:

• Pam Letalien, Maine citizen

Maine people should be able to safely eat fish in Maine's lakes and rivers. Not long ago we were cautioned to only eat small amounts of wild-caught fish (due to contamination). It seems incompatible to be promoting Maine lakes as a great vacation spot when you can't eat the fish. We could ruin our reputation as vacationland.

MDEP Response:

MDEP agrees that contamination of fish tissue from human-generated toxicants is a serious problem. MDEP monitors lakes, rivers and streams and marine waters for evidence of toxic levels of contaminants in fish and shellfish tissue through the Surface Waters Ambient Toxics Program (SWAT) and through the Dioxin Monitoring Program and reports findings to the Legislature. This past year Maine has been part of a regional Total Maximum Daily Load analysis that has set targets for regional reduction of mercury. Maine has already implemented significant reductions in mercury sources, however, larger sources lie outside our boundaries and will be controlled through these regional strategies. This report also delists certain waters previously impaired by dioxin because of progress made in removing this contaminant from some industrial processes. Detailed information about the SWAT Program may be found at: http://www.maine.gov/dep/blwg/docmonitoring/swat/

Detailed information about the Dioxin Monitoring Program may be found at:

http://www.maine.gov/dep/blwq/docmonitoring/dioxin/

GENERAL RIVER AND STREAM WATER QUALITY

Paraphrased Comments:

Joan Bowles, Benton, Maine

As a concerned citizen I would like to share that I feel the water quality is a very important investment in Maine. I live along the Kennebec and I personally do not concur that the quality is a B for a river. I would not swim, fish or have my dog drink the water. I hope that our water supply is one area that money is appropriated for.

MDEP Response:

Standards for both Class B and C are more stringent than Clean Water Act standards and are quite suitable for swimming and fishing. A portion of the Kennebec River between the Fairfield-Skowhegan boundary and the confluence with Messalonskee Stream is Class C (Benton area). Some of the Class B portions of the Kennebec do not attain all the standards of Class B, mostly due to bacteria from combined sewer overflows, and legacy effects of some pollutants (e.g. PCBs), but Class B has been deemed by MDEP and the Maine State Legislature to be an attainable goal condition for those sections. The MDEP is working to bring all sections of the river into compliance with its classification.

REPORT FORMAT AND LISTING CONCERNS

Paraphrased Comment:

- Nick Bennett, Natural Resources Council of Maine
- 1. The Maine DEP Integrated Report is difficult to follow and not very useful to the public. MDEP should produce a simpler version of the report.

MDEP Response:

We agree that the Integrated Report (IR) format is cumbersome and that a simpler version is desirable. MDEP follows the Integrated Report format established by the US EPA.

2. MDEP incorrectly implies that the bleaching process used in Maine's kraft pulp mills "eliminates dioxin". This is untrue. Chlorine dioxide bleaching has been documented to leave significant residual and the process is not "chlorine-free". Residual chlorine produces dioxins and MDEP should not state that "Maine kraft mills have eliminated dioxin discharges".

MDEP Response:

MDEP agrees that absolute elimination of the production of dioxin secondary to the bleaching process has probably not been accomplished and is impossible to measure. Results of DEP's Above/Below test documented (by 2004 for 4 of 5 bleached kraft pulp and paper mills, and by 2005 for the last mill) that there was no *measurable* difference in dioxin concentrations in fish above and below each mill. If a small unmeasurable discharge is still occurring, it is not significant with respect to bioaccumulation in fish compared to the MCDC's Fish Tissue Action Level. We have modified the language to reflect the finding that there is no *measurable* discharge.

3. The "above/below" test is fatally flawed as described in detail in the January 13, 2005 letter to Commissioner Dawn Gallagher from members of the Surface Water Ambient Toxics Technical Advisory Group). It is untrue that "new sources of dioxin have been removed.

MDEP Response:

MDEP disagrees that the above/below test is fatally flawed. While it is not as precise as NRCM may prefer, it provides a reasonable test with

statistical confidence as required in the dioxin law and within the resources of the Department to conduct. Methods and results of the test are reviewed and approved by a technical advisory committee. Despite the arguments made in the January 13, 2005 letter, MDEP holds that the mills would have passed the Above/Below test within a year, even if the test had been as suggested in the letter.

4. The "Expected to Attain" date of 2020, by rivers are supposed to be free of dioxin, has no basis.

MDEP Response:

MDEP agrees that the date of 2020 by which certain segments will be free from dioxin" does not have a scientific basis. US EPA requires that MDEP provide an "Expected to attain" date for all Category 4B listings. The date of 2020 represents MDEP's best estimate of when certain segments will be free from dioxin. Based on past experience with toxics monitoring, and in the absence of scientific data on fish tissue recovery rates for various species of fish in Maine, 2020 represents a time beyond the next several 303d reporting cycles, and MDEP does not judge that these segments will be free of dioxin before that date. Monitoring and assessment of dioxin levels will continue.

5. The Category 2 listing for the Androscoggin River at Livermore Falls is confusing. Why is that impoundment not listed for algae blooms in the same way that Gulf Island Pond is listed?

MDEP Response:

There is no documentation of any algae blooms in the Livermore Falls impoundment. This segment was listed for non-attainment of aquatic life and it now attains applicable aquatic life uses of Class C.

6. The Penobscot River listing is confusing. Why does MDEP state that more monitoring data is needed when the river is obviously not attaining for dissolved oxygen and nutrients?

MDEP Response:

MDEP agrees that certain Penobscot River segments are impaired and they are listed in Category 5A for non-attainment of aquatic life uses due to dissolved oxygen and excess nutrients. Additional monitoring data is needed to determine the best restoration actions to address the impairments.

7. Why is the TMDL completion date for the Penobscot River 2009? Why is MDEP waiting until 2009 to complete the TMDL?

MDEP Response:

The TMDL is currently in progress. 2009 is a reasonable target completion date; though it is possible it will be completed prior to 2009.

ACIDIFICATION OF MARINE WATERS

• Center for Biological Diversity, San Francisco, CA

Paraphrased comment:

Maine should include all of its marine waters on the 303(d) List of Impaired waters (Category 5) as a result of past, ongoing and projected absorption of anthropogenic carbon dioxide pollution. Maine's pH standard is inadequate to protect life in marine waters.

MDEP Response:

The Maine DEP disagrees that a listing of its marine waters as impaired for pH due to ocean acidification is appropriate at this time. The evidence for ocean acidification does not fall within the State's listing methodology or indicate factual impairment of Maine's water quality standards has occurred, or that Maine's marine waters are threatened with an impairment within the listing cycle. While the Maine DEP agrees that ocean acidification is an issue of growing long-term and global concern, and something to be followed in years ahead, a listing according to CWA 303(d) would not be appropriate for the following reasons:

- There has been no detected impairment of any designated use or characteristic of any classified coastal water in Maine's jurisdiction due to pH. CBD provides no documentation of impairment for Maine waters.
- While an inference of water quality change might be used to determine our waters are "threatened", there is no evidence presented that any impairment will occur within the next 2 year listing cycle. The rate of change shown from the literature would not cause a violation of Maine's pH criteria for many decades.
- Ocean acidification is an issue of global scope, however, information from one area cannot be readily extrapolated to another. The information provided by CBD comes from areas outside of Maine's jurisdictional waters, and mostly from areas quite remote from Maine. Following review of the extensive list of references provided by CBD, Maine DEP did not find any of the references refer to information collected in Maine, the Gulf of Maine, or northwestern Atlantic waters. While the mechanisms of ocean acidification may be similar, the effects in different ecosystems will vary. Nearshore waters may be less affected than offshore waters due to land export of buffering substances.
- A 303(d) listing is an inappropriate tool to manage the issue. 303(d) listings put a state on a course of developing TMDLs. Maine has neither the information, resources, nor jurisdictional authority to address the causes and sources attributed to ocean acidification
- The Maine DEP considers that a 303(d) listing could prevent the ocean acidification issue from gaining appropriate national/global attention by inferring that it is an issue of the coastal states that can be addressed through TMDLs. Even if this were the case, the result would be a patchwork of strategies of differing purpose, effect, and efficacy that could defeat the intent of reversing ocean acidification.

Maine's pH criteria for estuarine and marine waters (7.0-8.5) were established in the 1970s and have been approved by USEPA. This Integrated Report does not review adequacy of criteria. That process is left to the State's triennial review (38§464.2). If evidence is shown that Maine's pH standard is inadequate to protect designated uses and characteristics of its waters, the criteria would need to be changed in the statute.

TOTAL MAXIMUM DAILY LOAD (TMDL) REPORT TARGET DATES

Paraphrased Comment:

• MDEP Internal Staff comments

Several dates in the posted Draft 2008 Integrated Report Appendices should be changed to more accurately reflect the likely completion date.

MDEP Response:

Sixteen TMDL target dates in were changed in the Appendix for River and Stream Category 5A in response to staff recommendations.

CHAPTER 3 BACKGROUND

State Atlas and Water Quality Standards

Contact: Vicki Schmidt, DEP BLWQ, Division of Environmental Assessment (DEA)

Tel: (207) 287-3901 email: <u>vicki.l.schmidt@SPAM-ZAPmaine.gov</u>

The State of Maine 2008 Atlas has not been revised since the 2006 Integrated Report. Please refer to the 2006 Report for background information on methods used to compile the State of Maine Water Atlas. (http://www.maine.gov/dep/blwg/docmonitoring/305b/index.htm)

The State of Maine has a total surface area of over 35,000 square miles, the most in New England; with dry land occupying almost 31,000 square miles and the larger surface waters occupying about 4,500 square miles. With a population of about 1.3 million people, Maine also is the least densely populated state in New England. However, since most of the population is concentrated in the southern and coastal portions of the State and into bands on both sides of Interstate 95, regional population densities may vary considerably from the state's average population density.

Maine's 5,780 lakes and ponds cover 986,508 acres, an area that is somewhat larger than the State of Rhode Island. There are over 7,000 perennial brooks, streams and rivers in Maine, ranging in length from less than two miles to nearly 200 miles, with an estimated total length of 31,227 miles.

The current version of the Geographic Information System (GIS) boundary data layer indicates a value of 5,261 miles of coastline. As with many of the other data sets, this value differs slightly from earlier reports due to advances in GIS technology and reporting accuracy.

Although there are no definitive inventories of inland and coastal wetlands and marshes in Maine, this year's atlas estimated a total wetland area of almost 3,200,000 acres. This conservative estimate does not include over 7,500 known wetlands of less than 3 acres. Also noteworthy is that at least 1,281 square miles of the state are underlain by significant sand and gravel aquifers (up from 1,241 square miles as reported in 2004).

Table 3-1 The 2008 305(b) Report State of Maine Atlas; Note- large difference in landcover values between 2004 and	
2006 are due to use of different data summary methods as explained in footnote #4.	

Population or Natural Resource Category	Value Reported for 2006 ¹	Percent	Value Reported in 2004 ²
State Population (July 1, 2005 US Census Estimate)	1,321,505	100%	1,305,728
Total State Area (square miles) ³	35,236.4	100.0%	29,699.2 ⁴
Total Fields (square miles) ³	1,546.5	4.4%	2,297.9 ⁴
Blueberry Fields	100.9	0.3%	50.7 ⁴
Grassland / Herbaceous	57.9	0.2%	not reported
Pastureland / Hayland	644.8	1.8%	1,768.9 ⁴
Cultivated Crops	742.9	2.1%	405.5 ⁴
Total Forest (square miles) ³	24,666.9	70.0%	26,519.8 ⁴
Recent Clearcut	163.6	0.5%	448.7 4
Regenerating Forest (Post 1995)	720.3	2.0%	3131.7 4
Light Partial Cut (Post 1995)	2,285.1	6.5%	430.0 ⁴
Heavy Partial Cut (Post 1995)	1,199.9	3.4%	577.5 ⁴
Deciduous Forest	4,745.5	13.5%	5,326.9 ⁴
Mixed Forest	8,899.4	25.3%	11,923.6 4
Evergreen Forest	6,653.0	18.9%	4,666.5 4
Total Scrub-Shrub (square miles) ³	1,186.4	3.4%	725.4 4
Total Wetlands (square miles) ³	2,376.9	6.7%	not reported
Wetlands	816.1	2.3%	806.3 ⁴
Forested Wetland	1,560.8	4.4%	not reported
Total Open Water Surface Area (square miles) ³	4,210.7	11.9%	4,123.0 4
Total Saltwater Surface Area (square miles) ⁴	not reported	n/a	2,273.4 ⁴
Total Unconsolidated Earth-Material Shorelines (square miles) ³	225.3	0.6%	152.0 ⁴
Total Developed Lands and Paved Ways (square miles) ³	972.0	2.8%	404.4 ⁴
Developed - Open Space	175.1	0.5%	not reported
Developed - Low Intensity	169.1	0.5%	261.2 ⁴
Developed - Med Intensity	95.4	0.3%	134.5 ⁴
Developed - High Intensity	98.5	0.3%	5.7 ⁴
Road / Runway	433.9	1.2%	3.0 ⁴
Total Alpine / Tundra (square miles) ³	10.3	0.0%	8.0 ⁴
Total Bare Ground (square miles) ³	41.5	0.1%	17.2 ⁴
Total Miles of Coastline (including tidal rivers & shorelines of islands) ⁵	5261.0	100%	n/c
Total Miles of Border Coast, Lakes & Rivers Shared with CN and NH ⁵	338.9	100%	n/c
Maine – Canadian Border (coastal water miles out to the "3 mile" limit)	39.4	12%	n/c
Maine – Canadian Border (lake miles)	33.0	10%	n/c
Maine – Canadian Border (river miles)	206.2	61%	n/c
Maine – Canadian Border (total water miles) ⁵	278.6	82%	n/c
Maine – Canadian Border (total land and water miles)	608.7	N/A	n/c
Maine - New Hampshire Border (coastal water miles out to the "3 mile" limit)	17.3	5%	n/c
Maine – New Hampshire Border (lake miles)	17.7	5%	n/c

	ew Hampshire	Border (river miles	5)		25.4	7%	n/c
Maine – New Hampshire Border (total water miles) ⁵					60.3	18%	n/c
Maine – New Hampshire Border (total land and water miles)				188.8	N/A	n/c	
Total Miles of	Rivers and St	treams in Maine ⁵			45,176.8	100%	45,149.0
Miles of pere	nnial streams	(subset)			25,643.2	57%	25,617.1
Miles of intern	mittent [nonpe	erennial] streams (s	streams (subset) 13,463.0 30%	13,461.3			
Miles of rivers	s (subset)				6,070.6	13%	6,070.6
Miles of Rivers and Streams by Water Class ⁵					Miles	Percent	
Water Class	Streams (S	% of Stream Miles)	Rivers	(% of River Miles)	Class Totals	n/a	n/a ⁷
Class AA	1,664	4.26%	1,274	20.99%	2,938.0	6%	n/a ⁷
Class A	18,216	46.58%	2,540	41.85%	20,756.0	44%	n/a ⁷
Class B	19,093	48.82%	1,782	29.36%	20,875.0	48%	n/a ⁷
Class C	134	0.34%	474	7.81%	608.0	2%	n/a ⁷
Totals	39,486	100%	6,070	100%	45,177.0	100%	n/a ⁷
Number of Lak	ke, Pond and	Reservoir Feature	es in DEP'	s GIS Datalayer ⁵	33,119	100%	33,114
		dies assigned a M	ON A RANGE LINES OF A		6,088	18%	6,082
		icly Owned Water			2,314	7%	n/c
Total Areas of	the Waterbor	dies Described Be	elow:		Square Miles	Acres	
Lake, Pond a	& Reservoir F	eatures the Main	e DEP's G	IS Datalayer ⁵	1,563.3	1,000,527.2	n/c
Lakes, Ponds & Reservoirs with an assigned MIDAS Number (subset;				1,518.6	971,885.6	n/c	
acreage from (ad Labor Danda I		ine (authorat) 5			
		ed Lakes, Ponds &		irs (subset)	1,477.4	945,506.2	n/c
	CONTRACTOR OF THE OWNER OF THE OWNER OF THE	atons and Tidal B		5	500 X 100 100	CONCERNMENT STOCK	
Total Aroa of	Dave Ectuari		ivers (squ	are miles and acres) ⁵	2,846.1	1,821,473.9	n/c
		es and Harbors	ivers (squ	are miles and acres) 5	2,717.3	1,739,051.0	n/c
Total Area of	Tidal Rivers	es and Harbors			2,717.3 128.8	1,739,051.0 82,422.9	n/c
Total Area of Total Area of N	Tidal Rivers				2,717.3 128.8 Square Miles	1,739,051.0 82,422.9 Acres	n/c n/c
Total Area of Total Area of N SeaClass A	Tidal Rivers	es and Harbors			2,717.3 128.8 Square Miles 211.0	1,739,051.0 82,422.9 Acres 135,009.0	n/c n/c n/c
Total Area of Total Area of N SeaClass A SeaClass B	Tidal Rivers	es and Harbors			2,717.3 128.8 Square Miles 211.0 2,606.3	1,739,051.0 82,422.9 Acres 135,009.0 1,668,047.8	n/c n/c n/c n/c
Total Area of Total Area of N SeaClass A SeaClass B SeaClass C	Tidal Rivers Near Shore W	es and Harbors			2,717.3 128.8 Square Miles 211.0 2,606.3 28.8	1,739,051.0 82,422.9 Acres 135,009.0 1,668,047.8 18,417.1	n/c n/c n/c n/c n/c
Total Area of Total Area of N SeaClass A SeaClass B SeaClass C Total Area of V	Tidal Rivers Near Shore W	es and Harbors			2,717.3 128.8 Square Miles 211.0 2,606.3 28.8 4,972.8	1,739,051.0 82,422.9 Acres 135,009.0 1,668,047.8 18,417.1 3,182,563.4	n/c n/c n/c n/c n/c
Total Area of Total Area of N SeaClass A SeaClass B SeaClass C Total Area of V Total Area of	Tidal Rivers Near Shore W	es and Harbors			2,717.3 128.8 Square Miles 211.0 2,606.3 28.8 4,972.8 404.3	1,739,051.0 82,422.9 Acres 135,009.0 1,668,047.8 18,417.1 3,182,563.4 258,739.3	n/c n/c n/c n/c n/c n/c n/c
Total Area of Total Area of N SeaClass A SeaClass B SeaClass C Total Area of V Total Area of Estuarine	Tidal Rivers Near Shore W	es and Harbors			2,717.3 128.8 Square Miles 211.0 2,606.3 28.8 4,972.8 404.3 239.8	1,739,051.0 82,422.9 Acres 135,009.0 1,668,047.8 18,417.1 3,182,563.4 258,739.3 153,462.2	n/c n/c n/c n/c n/c n/c n/c
Total Area of Total Area of N SeaClass A SeaClass B SeaClass C Total Area of V Total Area of Estuarine Marine	Tidal Rivers Near Shore W Netlands ⁶ f Saltwater W	ies and Harbors /aters and Tidal Ri /etlands ⁶			2,717.3 128.8 Square Miles 211.0 2,606.3 28.8 4,972.8 404.3 239.8 164.5	1,739,051.0 82,422.9 Acres 135,009.0 1,668,047.8 18,417.1 3,182,563.4 258,739.3 153,462.2 105,277.1	n/c n/c n/c n/c n/c n/c n/c n/c
Total Area of Total Area of N SeaClass A SeaClass B SeaClass C Total Area of V Total Area of Estuarine Marine Total Area of	Tidal Rivers Near Shore W	ies and Harbors /aters and Tidal Ri /etlands ⁶			2,717.3 128.8 Square Miles 211.0 2,606.3 28.8 4,972.8 404.3 239.8 164.5 4,568.5	1,739,051.0 82,422.9 Acres 135,009.0 1,668,047.8 18,417.1 3,182,563.4 258,739.3 153,462.2 105,277.1 2,923,824.1	n/c n/c n/c n/c n/c n/c n/c n/c n/c
Total Area of Total Area of M SeaClass A SeaClass B SeaClass C Total Area of W Total Area of Estuarine Marine Total Area of Lacustrine	Tidal Rivers Near Shore W Netlands ⁶ f Saltwater W	ies and Harbors /aters and Tidal Ri /etlands ⁶			2,717.3 128.8 Square Miles 211.0 2,606.3 28.8 4,972.8 404.3 239.8 164.5 4,568.5 1,466.6	1,739,051.0 82,422.9 Acres 135,009.0 1,668,047.8 18,417.1 3,182,563.4 258,739.3 153,462.2 105,277.1 2,923,824.1 938,621.7	n/c n/c n/c n/c n/c n/c n/c n/c
Total Area of Total Area of N SeaClass A SeaClass B SeaClass C Total Area of V Total Area of Estuarine Marine Total Area of	Tidal Rivers Near Shore W Netlands ⁶ f Saltwater W	ies and Harbors /aters and Tidal Ri /etlands ⁶			2,717.3 128.8 Square Miles 211.0 2,606.3 28.8 4,972.8 404.3 239.8 164.5 4,568.5	1,739,051.0 82,422.9 Acres 135,009.0 1,668,047.8 18,417.1 3,182,563.4 258,739.3 153,462.2 105,277.1 2,923,824.1	n/c n/c n/c n/c n/c

1 These figures were the most current that were available to the DEP in early 2006. And 2. These figures were the most current available to the DEP in early 2004. The summary has not been updated for the 2008 Report.

3. Derived from the 2004 MeLCD (Maine LandCover Dataset) that has a 25 square meter (5m X 5m) spatial resolution.

4. Derived from the Maine GAP Landcover Analysis Dataset (based on the 1991 NLCD – National LandCover Dataset) that has a 900 square meter (30m X 30m) spatial resolution. Some categories were combined to allow a more direct comparison with figures derived from the 2004 MeLCD. 2006 report figures are derived from the higher resolution Maine Landcover Dataset (MELCD) 2004

Derived from MeDEP's GIS hydrography, geology and state boundary datasets (Source: Digitized 1:24,000 USGS 7.5" Quadrangles and Digital Raster Graphics).
 Significant Lakes are defined as publicly owned, have bathymetric/morphometric surveys, vulnerability modeling was performed or some trophic data has been gathered.
 Derived from the National Wetland Inventory (NWI) dataset – based on polygons only, figures do not include a point dataset hat indicates loca ions of small wetlands.

7. A draft dataset was used to generate figures for the 2004 report; this dataset underwent significant revisions, so as not to be comparable to data in the 2006 report.

WATER QUALITY STANDARDS PROGRAM

Contact: Susan P. Davies, DEP BLWQ, Division of Environmental Assessment (DEA)

Tel: (207) 287-3901 email: <u>Susan.P.Davies@SPAM-ZAPmaine.gov</u>

Related Website: www.maine.gov/dep/blwg/docmonitoring/classification/index.htm

The water quality of Maine is described in terms of physical, chemical and biological characteristics associated with the state's water classification program. As established in Maine statute (38 MRSA Sections 464-470), the classification program consists of designated uses (e.g. drinking water supply, recreation in and on the water, habitat for fish and other aquatic life), criteria (e.g. bacteria, dissolved oxygen and aquatic life), and characteristics (e.g. natural, free flowing) that specify levels of water quality necessary to maintain the designated uses. All State waters have a classification assignment (Lakes: GPA. Rivers and streams: AA, A, B, C. Marine and estuarine: SA, SB, SC).

The classification program is reviewed every three years by the Department and the Board of Environmental Protection (Board). The Department will initiate the next round of water classification reviews in 2008. The Board may, after opportunity for public review and hearing, make recommendations to the Legislature for changes in standards or reclassification of selected waters.

Highlights for Point Source Pollution Control Programs

Contact: Brian Kavanah, DEP BLWQ, Division of Water Quality Management (DWQM)

Tel: (207) 287-7700 email: Brian.W.Kavanah@SPAM-ZAPmaine.gov

Related Website: www.maine.gov/dep/blwg/docstand/wastepage.htm

Maine uses multiple approaches to ensure that point source discharges of wastewater receive adequate treatment prior to their release to waters of the State including: licensing, compliance inspections coupled with technical assistance in operations and maintenance, and enforcement where necessary. A number of financial assistance programs support new facility construction, elimination of discharges, as well as upgrades or additions to existing facilities. Highlights for 2006 - 2007 for these programs are summarized below or referenced by links to other documents.

TECHNICAL ASSISTANCE / POLLUTION PREVENTION PROGRAM

Contact: Sterling Pierce, DEP BLWQ, Division of Water Quality Management (DWQM)

Tel: (207) 287-4868 email: <u>Sterling.Pierce@SPAM-ZAPmaine.gov</u>

Related Website: www.maine.gov/dep/blwq/engin.htm

Department staffers participate in both industrial and municipal based technical assistance and pollution prevention projects.

Highlight for 2006-2007

Technical Assistance was provided to the operators of the St. Agatha wastewater treatment facility. The facility had violated permit limits for two straight months after the operator resigned. Department staff members visited the facility, helped the new operators diagnose the problems and recommended solutions which brought the facility back into compliance. Department staff members conducted a follow-up visit during which the new operators worked with the staff to develop an operations and maintenance manual for the facility to help insure continued permit compliance.

CONSTRUCTION OF WASTEWATER TREATMENT FACILITIES

Contact: Steve McLaughlin, DEP BLWQ, Division of Water Quality Management (DWQM)

Tel: (207) 287-7768 email: <u>Steve.A.Mclaughlin@SPAM-ZAPmaine.gov</u>

Related Website: www.maine.gov/dep/blwq/grants.htm

Clean Water State Revolving Fund and Maine Construction Grants Program: SRF program monies are used to provide low-interest loans (2% below market rates) to communities and sanitary districts to upgrade treatment facilities. The program depends on a yearly Federal Capitalization Grant which must be matched with a 20% State Grant. Construction grants help fund wastewater projects in communities where user charges are too high to borrow money.

Between January 2006 and May 2007, the Maine DEP Construction Grants Program provided grants to 8 projects and the Clean Water State Revolving Fund (SRF) funded 18 projects, some with assistance from the United States Department of Agriculture (USDA) Rural Development program grants/loans and Community Development Block Grant (CDBG) grant money. These projects included new facilities, upgrades, additions, modifications, abatement of combined sewer overflows and refinancing for a total cost of approximately \$216,098 in State grants and \$23,411,441 in SRF loans.

MAINE COMBINED SEWER OVERFLOW PROGRAM

Contact: John True, DEP BLWQ, Division of Water Quality Management (DWQM)

Tel: (207) 287-7808 email: <u>John.N.True@SPAM-ZAPmaine.gov</u>

Related Website: http://www.maine.gov/dep/blwq/doceng/csotech.htm

Thirty-seven Maine communities are served by combined sewer systems, which convey a combination of sanitary and storm water flows to wastewater treatment facilities. During dry weather, all of the sewage in a combined system is conveyed to the treatment plant for adequate treatment. However, during rainstorms or snow-melt periods, stormwater mixes with the sanitary sewage, causing flows that exceed the capacity of the sewer system. This results in combined sewer overflows (CSOs), which vary extensively in pollutant types, concentrations and loads, as well as in volume of overflow and severity of impact to the receiving waterbodies. Maine has established an aggressive program, coordinated with EPA's CSO program, to assist

communities in evaluating the design, condition, activity, and effects of combined sewer systems and overflows.

Highlights for 2006

 Two of Maine's CSO communities, Fort Kent and Kittery, have completed their CSO abatement projects since the last Integrated Report and no longer have permitted CSO's.

Table 3-2CSO Program Summary Statistics

Parameter	End of Report Year 2005	End of Report Year 2006	Increase/(Decrease)
Number of CSO Communities	39	37	(2) or (5%)
Number of CSO Discharge Points	205	193	(12) or (6%)
Total of Annual Discharge Days for Communities	1074	816	(258) or (24%)
Total Annual Volume of CSOs (Billion Gallons)	3.8	3.2	(0.6) or (16%)
Yearly Precipitation (Inches)	65	57	(8) or (12%)
Million Gallons Discharged per Inch of Yearly Precipitation (MG/Inch)	59	56	(3) or (5%)

SMALL COMMUNITY FACILITIES PROGRAM

Contact: Tim MacMillan, DEP BLWQ, Division of Water Quality Management (DWQM)

Tel: (207) 287-7765 email: <u>Tim.A.Macmillan@SPAM-ZAPmaine.gov</u>

Related Website: www.maine.gov/dep/blwg/docgrant/scgpara2.htm

From its inception in 1982, the Small Community Grant Program (SCGP) has disbursed \$24.4 million dollars in grant monies and is estimated to have cumulatively eliminated the discharge of over 1.2 million gallons of untreated wastewater every day.

Although state bond issues usually fund this grant program, in the past it has also received some funding directly from state appropriations. These funds have been used to assist municipalities with the construction of individual or cluster-type wastewater treatment systems that were designed to eliminate heavily polluted discharges from either already malfunctioning systems or non-existing system ("straight pipes"). This amount of funding has resulted in the construction of new wastewater treatment facilities in over 300 communities throughout the state. The total estimated value of the facilities built with Small Community Grants is approximately \$28 million dollars.

Currently, requests for assistance outweigh available funding. Between 2006-2007, we disbursed grants in excess of \$1.1 million dollars to 86 communities to replace 138 systems as detailed below. Table 3-3 provides a summary of information about the program on a year-by-year basis.

Highlights 2006 - 2007

2006 - 72 systems were replaced removing 19,440 gallons of untreated discharges.

2007 - 66 systems were replaced removing 17,820 gallons of untreated discharges.

Small Community Grant Program: Year-by-Year Summary								
Calendar Year	Grant Amount Disbursed	Total Facility Value	Systems Installed	Wastewater Treated (Gal/Day)*				
2000	\$1,370,528	\$1,651,238	251	67,770				
2001	\$1,142,009	\$1,375,914	167	45,090				
2002	\$1,354,130	\$1,631,482	208	56,160				
2003	\$1,086,265	\$1,308,753	183	49,410				
2004	\$795,327	\$958,225	136	36,720				
2005	\$399,078	\$480,817	64	17,280				
2006	\$587,517	\$707,852	72	19,440				
2007	\$547,262	\$637,039	66	17,820				

Table 3-3Yearly	Summary	of SCGP	Activities
rubic c c reuri	y countrienty	0,000,	/ 1001111000

* These figures are based on calculations derived from the Maine Plumbing Code.

1. Total Facility Value is based on an assumed average grant funding of 83% of total value of facilities installed.

2. Wastewater treated is based on # systems x270 gallons/system/day

3. Data prior to 2004 has not been revised.

4. Systems installed for 2004 and 2005 have been determined from correlating payments made to the requisitions for payment.

Please refer to page 32 of the 2006 Integrated Water Quality Monitoring and Assessment Report for further discussion of the Small Community Grant Program and yearly summaries for years 1982-1999. http://www.state.me.us/dep/blwg/docmonitoring/305b/index.htm

LICENSING OF WASTEWATER DISCHARGES

Contact: Gregg Wood, DEP BLWQ, Division of Water Quality Management

Tel: (207) 287-7693 email: <u>Gregg.Wood@SPAM-ZAPmaine.gov</u>

Related Website: www.maine.gov/dep/blwg/docstand/wastepage.htm

The Division of Water Quality Management is responsible for the licensing and relicensing of all surface wastewater discharges, whether industrial, commercial, municipal or residential. In Maine, the vast majority of wastewater discharge sources have previously been licensed. Therefore, the licensing program is focused largely upon renewal of existing licenses, rather than development of new licenses.

Please refer to pages 32-33 of the 2006 Integrated Water Quality Monitoring and Assessment Report for further discussion of Water Discharge Licensing Program. http://www.state.me.us/dep/blwg/docmonitoring/305b/index.htm

OVERBOARD DISCHARGE GRANT PROGRAM

Contact: Tim MacMillan, DEP BLWQ, Division of Water Quality Management (DWQM)

Tel: (207) 287-7765 email: <u>Tim.A.Macmillan@SPAM-ZAPmaine.gov</u>

Related Website: www.maine.gov/dep/blwq/docgrant/obdpara.htm

As of December 31, 2007 Maine has 1,435 licensed overboard discharges (OBDs). OBDs are discharges of wastewater from individual homeowners or businesses to

surface waters (typically marine waters) where existing lots are unsuitable for subsurface disposal and no municipal system is available. OBDs typically lead to closures of shellfish growing and harvesting areas.

In 1989 an OBD Removal Grant Program was established. The priorities of the grant program are to eliminate discharges that either causes the closure of shell fishing areas or that cause a public nuisance. Since the beginning of the program, approximately \$6.3 million dollars have been spent in the process of removing 532 systems. The total acreage opened to shellfish harvesting since the start of the OBD Grant Program is over 17,000 acres. According to the DMR, opening and fully utilizing this much shellfish harvesting area has the potential to release a harvest with a retail value of over \$4.4 million dollars annually.

Highlight 2006 - 2007

A total of 90 OBD systems were removed in 2006-2007. The Maine Department of Marine Resources indicates that 345 acres of shellfish habitat were re-opened to shellfish harvesting in 2005-2006. (Table 3-4).

-	Name of Shellfish Area	1991- 1999 Acres Opened	2000- 2004 Acres Opened	2005 Acres Opened	2006 Acres Opened	2007 Acres Opened
Town	Name of Sheilfish Area					
Addison	Cape Split Hrbr, Eastern Hrbr	135				
Bar Harbor	Indian Point	49				
Beals	Black Duck Cove, Flying Place	107				8
Blue Hill	Bragdon Brook Cove		198			÷
Bremen	Greenland Cove		100		52.	
Brooklin	Naskeag Point, Center Hrbr, Eggemogin Reach	10	36			
Brooksville	Seal Cove, Weir Cove, Orcutt Harbor	1,549				
Cushing	Pleasant Point		189		12.	14
Deer Isle	Sylvester Cove, Dunham Point	241				
Eastport	Carrying Place Cove	400				
Freeport	Cousins River	87			1	
Friendship	Hatchet Cove	86				
Gouldsboro	Prospect Harbor	1,076				
Hancock	Jellison Cove, Hancock Point	749			2	i.
Harpswell	Quahog Bay	1,627	2	ĺ	91.7	18.9
Isle au Haut	Thorofare	240				
Kennebunkport	Marshall Point		803			5
Kittery	Spruce Creek		478			ŝ.
Milbridge	Pigeon Hill Bay, Back bay	443			12.	174
Mount Desert	Indian Pt., Mill Cove, Somes Sound, SW Hrbr- Western Way	290	1,896		4	
Ogunquit	Oarweed Cove		120			6
Owls Head	Otter Point	50				
Robbinston/Perry	Mill Cove/Lewis Cove	()		196		
Scarborough	Plummers Island		4			

Table 3-4Shellfish Areas Opened from 1991 to 2007

Searsport	Stockton Springs	51				
Sedgwick	Billings Cove	9				
S. Thomaston	Waterman's Beach		59			
Steuben	Pigeon Hill Bay, Pinkham Bay	344				
Sullivan	Sullivan River	167				
Swans Island	Round Island, Mackerel Cove	99				
Tremont	Moose Island	965				
Trenton	MDI Narrows	69				
Vinalhaven	Arey Cove, Seal Cove	1,178	2,278			
W. Bath & Phippsburg	Bringham's Cove (New Meadows)		1,020		57.5	
Yarmouth	Cousins River	7				
York	York River		141			
Tota	I Acreage Opened	10,028	7,324	196	149.2	18.9
Cı	10,028	17,352	17,548	17,697.2	17,716.1	

Please refer to pages 33-34 of the 2006 Integrated Water Quality Monitoring and Assessment Report for further discussion of Water Discharge Licensing Program. http://www.state.me.us/dep/blwg/docmonitoring/305b/index.htm

COMPLIANCE EVALUATION

Contact: Sterling Pierce, DEP BLWQ, Division of Water Quality Management (DWQM)

Tel: (207) 287-4868 email: Sterling.Pierce@SPAM-ZAPmaine.gov

Related Website: www.maine.gov/dep/blwg/docstand/wastepage.htm

The Department uses a three-part program to evaluate the compliance of wastewater treatment facilities. The compliance evaluation program involves on-site inspections of wastewater treatment facilities, occasional sampling of their effluent quality on a selective basis, and monthly evaluation of the licensees' self-monitoring reports. Discharge licenses also require immediate reporting of any major malfunctions, bypasses or exceedences of license limits to DEP inspectors.

Highlight for 2006 - 2007

A new compliance initiative in 2006 and 2007 intensified the focus on inspections at wastewater treatment facilities. The Department staff have identified 5 inspection categories and developed more intensive inspection checklists to assist in the evaluation of these operational aspects. Department staff will focus on one of these categories each year of the 5-year permit cycle. The inspection categories are: process control, operations and maintenance, laboratory procedures, collection system, data management. This approach will create a more comprehensive evaluation of the facility each permit life cycle, giving a more balanced and thorough evaluation of the facility operations.

ENFORCEMENT OF WATER QUALITY LAWS

Contact: Dennis Merrill, DEP BLWQ, Division of Water Quality Management (DWQM)

Tel: (207) 287-7788 email: <u>Dennis.L.Merrill@SPAM-ZAPmaine.gov</u>

Related Website: www.maine.gov/dep/blwg/enforcement.htm

The general philosophy of the DEP, BLWQ is to gain compliance and resolve problems at the least formal level that is appropriate, and to maximize the spirit of cooperation between the DEP and the regulated community. By fostering voluntary compliance with Maine's water pollution control laws, the overall effectiveness of the enforcement program is maximized and unnecessary litigation is avoided. Formal enforcement actions become necessary when violations of environmental laws are severe enough to warrant action regardless of the remediation effort, or when the violator is not responsive in preventing violations or refuses to cooperate with the DEP.

Highlights for 2006 - 2007

A total of 23 water discharge enforcement formal cases were settled in 2006 and 2007. In addition to the penalties collected that provide a deterrent to violation of water quality laws and recover any economic benefit that may have been gained, the enforcement actions also included a variety of corrective actions that will improve water quality such as: upgrades to wastewater treatment facilities, elimination of discharges, environmental remediation, and three Supplemental Environmental Projects.

Nature & Extent of Nonpoint Sources of Pollutants and Program Recommendations

THE MAINE NPS WATER POLLUTION CONTROL PROGRAM

Contact: Norm Marcotte, DEP BLWQ, Division of Watershed Management (DWM)

Tel: (207) 287-7727 email: <u>Norm.G.Marcotte@SPAM-ZAPmaine.gov</u>

Related Website: www.maine.gov/dep/blwq/docwatershed/npscontrol.htm

Maine's Nonpoint Source (NPS) Water Pollution Management Program (38 M.R.S.A. §410-I) helps restore and protect water resources from NPS pollution. The basic objective of the NPS program is to promote the use of state agency-defined "best management practice guidelines" (BMPs) to prevent water pollution. DEP administers the NPS program in coordination with state, federal, and local governments as well as non-government organizations. State agencies conduct programs that: (1) implement state laws or rules that require people to comply with performance standards governing certain land use activities to protect water quality; and (2) promote voluntary usage of best management practices.

Maine's BMP guidance manuals are available online: www.maine.gov/dep/blwq/training/index.htm

To help protect Maine's threatened waters and restore NPS impaired waters, DEP administers Maine's Nonpoint Source Management Program. DEP helps watershed groups assess water quality problems and take action to reduce or remove nonpoint sources of water pollution. In 2006 - 2007, there were more than 60 active projects funded, in part, by the NPS Grant Program. DEP receives federal funds under Section 319 of the Clean Water Act from EPA. Under the NPS Grant Program, DEP issued grants to local project sponsors who provide a minimum of a 40% match to the grant funds. These projects help communities improve watersheds to restore or protect lakes, streams, or coastal waters that are impaired or considered threatened.

DEP also uses 319 funding for other programs designed to identify, prevent or reduce NPS water pollution problems. Staff provides technical assistance to local watershed groups and run education and outreach programs for a variety of target audiences - developers, building contractors, municipal officials, lakeshore landowners, teachers and the general public. Funds support assessment work, such as the Maine Volunteer Lake Monitoring Program, StreamTeams and stream sampling for benthic macro-invertebrates. Funds are used to develop Total Maximum Daily Load (TMDL) assessment reports for waters impaired primarily by NPS pollution.

The 2006 NPS Management Program Annual Report (May 2007) and the 2007 NPS Management Program Annual Report (April 2008) summarize the highlights and accomplishments of DEP's Nonpoint Source Program activities. Both reports are available at the following URL:

http://www.maine.gov/dep/blwq/docgrant/319_files/reports/index.htm

PRIORITY WATERBODIES

Please refer to pages 37-38 of the 2006 Integrated Water Quality Monitoring and Assessment Report for the Maine NPS Priority Waters lists for marine waters, rivers and streams, and lakes.

http://www.state.me.us/dep/blwq/docmonitoring/305b/index.htm

COASTAL NONPOINT SOURCE PRIORITY WATERSHEDS

Contact: David Courtemanch, Director, DEP BLWQ, Division of Environmental Assessment (DEA)

Tel: (207) 287-3901 e-mail: <u>Dave.L.Courtemanch@SPAM-ZAPmaine.gov</u>

Please refer to page 39 of the 2006 Integrated Water Quality Monitoring and Assessment Report for information on the Maine coastal nonpoint source priority watersheds.

Related Website: http://www.state.me.us/dep/blwq/docmonitoring/305b/index.htm

WATERSHED MANAGEMENT FOR STORMWATER PROGRAMS

Contact: Don Witherill, DEP BLWQ, Division of Watershed Management (DWM) Tel: (207) 287-7725 email: <u>Donald.T.Witherill@SPAM-ZAPmaine.gov</u> Related Website: www.maine.gov/dep/blwg/docstand/stormwater/index.htm

STORMWATER STANDARDS FOR DEVELOPMENT AND CONSTRUCTION

Maine's approach to managing impacts to water quality due to stormwater runoff underwent significant change in 2005, and the rules were subsequently revised in 2006. Changes that occurred in 2005 can be read on page 40 of the 2006 Integrated Water Quality Monitoring and Assessment Report

Related Website: http://www.state.me.us/dep/blwg/docmonitoring/305b/index.htm

The changes in 2006 included the following:

- **Developed Area:** Narrowed the definition of developed area to no longer include areas that are changed from forest to meadow. This allows a project (such as an airport) to clear trees and still qualify under Permit by Rule as long as they keep the area in natural vegetation mowed no more than once per year.
- Linear Project: Changed definition of a "linear project" to "linear portion of a project" so that the term matches its usage in the rule, and allows subdivision roads to fall under the definition so that reduced, but still appropriate, treatment standards will apply to them.
- **BMP Standards**: Dropped the term "BMP standards" due to confusion over multiple meanings (regulatory and non-regulatory) of the term. Those standards are referred to as "general standards" in the rule.
- **General Standards required treatment area**: Added flexibility to general standards so that treatment of impervious area can be reduced from 95% of the impervious area to 90%, provided that overall treatment on the site will remain equivalent.
- Wetpond requirements: Revised the technical requirements for use of a wet pond under the general standards section.
- **Redevelopment**: Changed the language on redevelopment of existing impervious area so that it applies to impervious area in place as of November 16, 2005 (the effective date of the rule revisions). This closes a loophole whereby a developer could pave just under an acre prior to coming in for a permit and have it treated as "existing" in order to avoid treatment of it.
- **Redevelopment Site Projects**: Changed the language on redevelopment for Site Location projects under the general standards section so that the project must "meet the general standards to the extent practicable as determined by the department." The date of November 16, 2005 is used as cut-off date for "redevelopment" sites. This provides flexibility to the applicant and the Department, so that a very expensive treatment technology with high maintenance needs, such as an under parking lot manufactured system is not unrealistically required for a redevelopment site.
- Redevelopment in urban impaired stream watersheds: Dropped the requirement for redevelopment projects to meet the urban impaired stream standard if there will be no increase in impacts due to stormwater runoff.

- **Flooding standard:** In the standard that governs flooding, the revision allows the department to grant a variance for discharges to rivers other than "major river segments" if the department determines there will be no adverse impact.
- **Permit by rule:** Changes Permit by Rule language to add clarity and greater consistency with current PBR practices under the Natural Resources Protection Act (NRPA).
- **Permit shield**: Revised Permit shield language to make it clearer and to emphasize that a project cannot get an exemption from a standard required under the Site Law by breaking the project into pieces and first complying with a lesser standard under the Stormwater Law.
- **Appendix E**: Changed language in Appendix E to include under-drained soil filter beds, with specifications consistent with language in our new Stormwater BMP Manual.
- **Ch. 502, Appendix A: Lakes Most at Risk** From Development: The following lakes were added to this list: Abrams Lake in Eastbrooke; Androscoggin Lake in Wayne; Long Pond in Belgrade; Messalonskee Lake in Belgrade; Great Moose Lake in Hartland. Cobbossee Lake is removed from the "severely blooming" category.
- Ch. 502, Appendix B: Urban Impaired Streams: Bobbin Mill Brook in Auburn was removed from the list.

For more information about the Maine Stormwater Management Law and Rules, including a brochure that has further information about the changes to the rules, go to the stormwater program website:

www.maine.gov/dep/blwq/docstand/stormwater/index.htm

STORMWATER STANDARDS FOR MUNICIPAL SEPARATE STORM SEWER SYSTEMS (MS4s) AND INDUSTRIAL STORMWATER DISCHARGES

Maine DEP issued a general permit for 28 municipalities and 7 other state or federal facilities with regulated MS4s in 2003. Please refer to page 41 of the 2006 Integrated Water Quality Monitoring and Assessment Report for information on stormwater standards for MS4 communities.

Related Website: http://www.state.me.us/dep/blwq/docmonitoring/305b/index.htm

LAND USE AND GROWTH MANAGEMENT

Contact: Jeff Madore, DEP BLWQ, Division of Land Resource Regulation (DLRR)

Tel: (207) 287-7848 email: <u>Jeff.G.Madore@SPAM-ZAPmaine.gov</u>

Related Websites: Site Law www.maine.gov/dep/blwg/docstand/sitelawpage.htm

NRPA www.maine.gov/dep/blwq/docstand/nrpapage.htm

Shoreland Zoning Act www.maine.gov/dep/blwg/docstand/szpage.htm

Please refer to page 41 of the 2006 Integrated Water Quality Monitoring and Assessment Report for other information on the Shoreland Zoning Act, Site Location of Development Law, and the Natural Resources Protection Act. <u>http://www.state.me.us/dep/blwq/docmonitoring/305b/index.htm</u>

Education and Outreach

Contact: Barbara Welch, DEP BLWQ, Division of Environmental Assessment

Tel: (207) 287-7682 email: <u>Barb.Welch@SPAM-ZAPmaine.gov</u>

Related Website: www.maine.gov/dep/blwg/education.htm

Since much of the degradation to the environment comes from individual actions, public education is vital to the mission of the Maine DEP. The Department has a responsibility to educate the public about the environment, requirements of environmental laws, and how to protect Maine's natural resources. To accomplish these goals, the Department must help to foster and encourage greater stewardship. In order to affect the behavior changes we need from our citizens, some programs are adopting social marketing principles including: determining target audiences and message, gathering research data on target audiences, determining effective outreach tools, and assessing the effectiveness of campaigns.

Target Audiences:

Youth and Teachers- The DEP conducts 50-70 classroom visits (over 1,500 students), Envirothon, field days (over 1,200 students), Bug Mania and Earth Science Day (both with about 2,000 students). In addition DEP funds 3 watershed grants per year to students and their teachers who partner with local organizations to protect a local water resource. The DEP also sponsors and organizes Water Festivals for 800 students and their teachers in the southern part of the state each year and every other year in northern Maine. The DEP conducts teacher training, both pre-service and inservice training. The DEP hires AmeriCorps interns to assist with these programs.

General Public- The DEP divides the public into categories based on the message of the campaign: homeowners for yard care practices, businesses for better commercial practices, etc. For example, the MS4 (Municipal Separate Storm Sewer System) communities conducted pilot projects to encourage targeted BMPS (i.e., yard care in some communities and pet waste pick-up in others) in targeted neighborhoods with evaluation as part of their permits. In addition the DEP is partnering with the MS4s and other NGOs on a mass media campaign, "ThinkBlue; Clean Water Starts with You". Assessment shows that the campaign has been very effective. LakeSmart is another example of reaching out to a subsection of the public. LakeSmart is an educational program that offers free opportunities for lakeshore homeowners to learn how to manage their home and yard to protect the water quality of their lake.

Contractors, Municipal Officials, and Other Targeted Groups- Through the NonPoint Source Training Center, the DEP reaches out to contractors, landscapers, and code enforcement officers to bring technical assistance, certification, and new training. DEP staff also train wastewater treatment plant operators, planning boards, realtors, CEO code enforcement and other audiences as needed.

Assessment:

We continue to include assessment in our projects to be sure we are using our resources where we can have measurable results. We evaluate programs (the number of workshops held or number of brochures handed out) but we also consider impact - what did we accomplish on the ground (or in the water) and context – who is doing what and why. This assessment makes us more effective and efficient and we

know whether we are making concrete changes on the ground. Assessing whether our programs actually impact water quality will be the next step.

The Environmental Impact and Economic & Social Costs/Benefits of Effective Water Quality Programs

Contact: Marianne DuBois, DEP BLWQ, Division of Environmental Assessment (DEA)

Tel: (207) 287-2115 email: marianne.s.dubois@SPAM-ZAPmaine.gov

Assessment of the many types of costs and benefits associated with water quality changes is usually a very difficult task. While it is usually possible to determine that an improvement in water quality has been gained and to indicate a qualitative sense of the benefits observed; usually there is no easy way to directly assign a dollar figure to the changes and quantify this information in terms of the monetary value of benefits to human health or the environment.

The economic tools that would be useful in helping to estimate the costs and benefits of improvement in water quality have not yet been fully developed. As future environmental problems grow in complexity (and in cost) and as public budgets tighten, justifying the expense or demonstrating the true benefit of water quality related programs are likely to be cause for delay of support for continued improvement of water resources. Continued development of sophisticated economic tools for measuring the benefits of environmental projects and methods is essential part of "doing business".

The following sections contain brief summaries of selected water quality programs.

NONPOINT SOURCE MANAGEMENT

Contact: Norm Marcotte, DEP BLWQ, Division of Watershed Management (DWM)

Tel: (207) 287-7727 email: Norm.G.Marcotte@SPAM-ZAPmaine.gov

Related Website: www.maine.gov/dep/blwq/docwatershed/npscontrol.htm

Table 3-5 summarizes costs for NPS (non-point source) pollution programs involving Federal grants under section 319 of the Clean Water Act in addition to non-federal matching funds. This summary does not include other State agency funding of personnel or programs conducting NPS control activities. Table 3-5 is a summary of Section 319(h) Clean Water Act Grant Awards to Maine DEP for Federal Fiscal Years (FFY) 2003 to 2007.

Grant Year (FFY)	Federal 319 Award	Base	Incremental	Non-Federal Match	Total
2003	\$2,740,732	\$1,572,554	\$1,168,178	\$1,827,155	\$4,567,887
2004	\$2,670,204	\$1,502,081	\$1,168,123	\$1,780,890	\$4,451,094
2005	\$2,318,844	\$1,151,519	\$1,167,325	\$1,546,669	\$3,856,513
2006	\$2,303,829	\$1,136,597	\$1,167,232	\$1,545,896	\$3,849,725
2007	\$2,256,543	\$1,077,063	\$1,167,066	\$1,504,362	\$3,760,905

Table 3-5 Section 319(h) Clean Water Act Grant Awards to Maine

ECONOMIC CONTRIBUTION OF MAINE GREAT PONDS

Contact: Roy Bouchard, DEP BLWQ, Division of Environmental Assessment (DEA)

Tel: (207) 287-7798 email: <u>Roy.Bouchard@SPAM-ZAPmaine.gov</u>

Related Website: www.maine.gov/dep/blwg/doclake/research.htm

In addition to providing valuable natural habitat for fish and wildlife communities, Maine lakes are an integral part of Maine's economy. Lake-related uses contribute more than \$2.3 billion into the State's economy each year. In fact, lakes support over 52,000 jobs statewide. The total net economic value of Maine's Great Ponds (lakes and ponds 10 or more acres in surface area) is at least \$8.5 billion dollars annually (1996 research updated to 2005 dollars). Surveys show that water clarity, quality of swimming, and scenic beauty are important to most people when they choose which lake to visit or where to buy property. A noticeable gain or loss in water quality could change statewide use rates by up to 13% (1.6 million user-days) each year. If water clarity declines, the potential loss in property value could be as much as \$30,000 per property based on mid-1990s property values. These dramatic estimates make lake protection a priority for the entire state.

THE POLLUTION PREVENTION (P2) PROGRAM

Contact: Julie Churchill, P2 Program Manager, DEP Commissioner's Office, Office of Innovation and Assistance (OIA)

Tel: (207) 287-2812 email: julie.m.churchill@SPAM-ZAPmaine.gov

Related Website: http://www.state.me.us/dep/innovation/p2/

The Pollution Prevention (P2) Program is based on the practical notion that it is far more protective of the environment (in addition to being far more cost-effective) to eliminate or reduce pollution at its source rather than to clean up pollution that has already been released into an ecosystem. The P2 Program engages in a proactive approach that utilizes the common ideals of increased efficiency, conservation of resources, reduced waste (and costs), etc. to identify those points in a process that generate pollution. Once identified, the P2 Program also utilizes many approaches like forming good habits, purchasing new products and implementing new technologies to analyze, zero in on and help to correct those portions of a process that generate preventable pollution. Then the Program uses some or all of these tools to reduce or eliminate that source of pollution. Please refer to pages 45-48 of the 2006 Integrated Water Quality Monitoring and Assessment Report for information on costs/benefits of the Pollution Prevention Program. <u>http://www.state.me.us/dep/blwq/docmonitoring/305b/index.htm</u>

CHAPTER 4 SURFACE WATER MONITORING & ASSESSMENTS

Assessment Methodology

Contact: Susan P. Davies, DEP, BLWQ, Division of Environmental Assessment (DEA)

Tel: (207) 287-3901 email: <u>Susan.P.Davies@SPAM-ZAPmaine.gov</u>

LISTING METHODOLOGY FOR THE 2008 305B / 303D INTEGRATED REPORT LIST

Determination of water quality attainment is based on a water meeting all standards and criteria established for its assigned classification (38 MRSA Section 465, 465-A, 465-B). Waters are listed by Assessment Unit (HUC) and/or waterbody segment in one of five categories of attainment (see category descriptions below). All freshwaters in Maine in previous cycles were listed in a narrative Category 5-C "Impairment caused by atmospheric deposition of mercury" due to the Statewide fish consumption advisory due to mercury. All freshwaters are now moved to Category 4A "Total Maximum Daily Load (TMDL) is completed", as a result of US EPA approval, on December 20, 2007, of a Regional Mercury TMDL. Other category listings are established independently from the statewide mercury advisory listing, thus all waters are listed in Category 4-A for mercury and in at least one other category.

All marine waters are listed by narrative in Category 5-D "Legacy Pollutants" as well as in one other category, (see Marine explanation below[†]). Each listing provides the Assessment Unit, Waterbody Number, Name, Size, Classification, Monitored Date, and depending on assessment determination, information on impairment, notes on previous listings, or other information. Listings for all surface waters are found in Appendices II-IV.

LISTING CATEGORIES (1-5)

Category 1:

Attaining all designated uses and water quality standards, and no use is threatened.

Highest level of attainment, waters in the assessment unit attains all applicable standards. Assessment is based on combined evaluation of the following information.

1. Current data (collected within five years) indicates attainment, with no trend toward expected non-attainment within the listing period.

2. Old data (greater than five years) indicates attainment and no change in any associated conditions.

3. Water quality models predict attainment under current loading, with no projected change in loading that would predict non-attainment.

[†] All estuarine and marine waters in Maine have an advisory for the consumption of shellfish (lobster tomalley) due to the presence of PCBs and dioxins presumed to be from atmospheric deposition or historical sources. The advisory is based on probability data that shellfish (lobster tomalley) inhabiting estuarine or marine waters may exceed the advisory action level for these substances. This Integrated Water Quality Monitoring and Assessment Report does not consider this statewide advisory in establishing other category listings.

4. Qualitative data or information from professional sources indicating attainment of standards and showing no identifiable sources (e.g. detectable points of entry of either licensed or unlicensed wastes) of pollution, low impact land use (e.g. intact riparian buffers, >90% forested watershed, little impervious surface), watershed within state or federal reserve land, park, wilderness area or similar conservation protection, essentially unaltered habitat, and absence of other potential stressors.

5. Determination that the direct drainage area has a human population of <0.1 per square mile according to U.S. Census data obtained in 2000 and watershed conditions as described in item 4, above. For lakes, determinations are based on census data at the town level and consider all towns in the direct drainage of larger (referred to in previous 305(b) reports as "significant") lakes. Populations for the remaining lakes (generally less than ten acres) are determined for the town listed as the point-of-record for the water according to the Department of Inland Fisheries and Wildlife Lake Index database.

Category 2:

Attains some of the designated uses; no use is threatened; and insufficient data or no data and information is available to determine if the remaining uses are attained or threatened (with presumption that all uses are attained).

Assessment is based on combined evaluation of the following information.

1. Current data (collected within five years) for some standards indicating attainment, with no trend toward expected non-attainment within the listing period, or an inadequate density of data to evaluate a trend.

2. Old data (greater than five years) for some standards indicating attainment, and no change in associated conditions.

3. Water quality models that predict attainment under current loading for some standards, with no projected change in loading that would predict non-attainment.

4. (For lakes) Probabilistic-based monitoring that indicates a high expectation of use attainment for certain classes of waters based on random monitoring of that class of waters.

5. Insufficient data for some standards, but qualitative data/information from professional sources indicate a low likelihood of impairment from any potential sources (e.g. high dilution, intermittent/seasonal effects, low intensity land use).

Category 3:

Insufficient data and information to determine if designated uses are attained (with presumption that one or more uses may be impaired).

Assessment is based on combined evaluation of the following information. Monitoring schedules are assigned to these waters.

1. Insufficient or conflicting data that does not confirm either attainment or nonattainment of designated uses.

2. Qualitative data or information from professional sources showing the potential presence of stressors that may cause impairment of one or more uses; however, no quantitative water quality information confirms the presence of impairment-causing stressors.

- 3. Old data, with:
 - a. low reliability, no repeat measurements (e.g. one-time synoptic data),
 - b. a change of conditions without subsequent re-measurement; or

c. no evidence of human causes or sources of pollution to account for observed water quality condition (natural conditions that do not attain water quality standards are allowed by 38 M.R.S.A. Section 464.4.C).

4. (For lakes) Current data indicates a return to (or a trend towards) attainment standards over the past few years but requires confirmation; or conversely, that trophic or dissolved oxygen profile evaluation suggests deteriorating conditions requiring further study and verification. (Since lakes respond over a longer period of time and can be highly influenced by weather attributes, it is appropriate to recommend additional monitoring before attainment is determined.)

Category 4:

Impaired or threatened for one or more designated uses, but does not require development of a TMDL.

A water body is listed in Category 4 when impairment is not caused by a pollutant; or, if impairment is caused by a pollutant, but where a TMDL has already been completed, or where other enforceable controls are in place. An impaired waterbody will be listed in Category 5 if both a pollutant and a non-pollutant are involved that would independently cause an impaired or threatened condition. Waters are listed in one of the following Category 4 sub-lists when:

1. Current or old data for a standard indicates either impaired use, or a trend toward expected non-attainment within the listing period, but also where enforceable management changes are expected to correct the condition,

2. Water quality models that predicted impaired use under loading for some standard, also predict attainment when required controls are in place, or,

3. Quantitative or qualitative data/information from professional sources indicates that the cause of impaired use is not from a pollutant(s) (e.g. habitat modification).

4-A: TMDL is completed. A TMDL is complete but insufficient new data exists to determine that attainment has been achieved.

Note: For the 2008 cycle the 4A category now includes all freshwaters in Maine that were listed in previous cycles in a narrative Category 5-C "Impairment caused by atmospheric deposition of mercury" due to the Statewide fish consumption advisory due to mercury. On December 20, 2007 US EPA approved a Regional Mercury TMDL for the Northeast.

4-B: Other pollution control requirements are reasonably expected to result in attainment of standards in the near future. Waterbodies where enforceable controls have a reasonable expectation of attaining standards, but where no new data are available to determine that attainment has been achieved. (Enforceable controls may include: new wastewater discharge licenses issued without preparation of a TMDL, other regulatory orders, contracts for nonpoint source implementation projects, regulatory orders or contracts for hazardous waste remediation projects).

4-C: Impairment is not caused by a pollutant. Waters impaired by habitat modification that is a result of human activity.

Note: Natural conditions that do not attain water quality standards and criteria are allowed by 38 M.R.S.A. Section 464.4.C. Waters that show impairment due to natural phenomena are listed in Categories 1 through 3.

Category 5:

Waters impaired or threatened for one or more designated uses by a pollutant(s) and a TMDL is required.

Waters are listed in one of the Category 5 sub-lists when:

1. Current data (collected within five years) for a standard either indicates impaired use, or a trend toward expected impairment within the listing period, and where quantitative or qualitative data/information from professional sources indicates that the cause of impaired use is from a pollutant(s),

2. Water quality models predict impaired use under current loading for a standard, and where quantitative or qualitative data/information from professional sources indicates that the cause of impaired use is from a pollutant(s), or,

3. Those waters have been previously listed on the State's 303(d) list of impaired waters, based on current or old data that indicated the involvement of a pollutant(s), and where there has been no change in management or conditions that would indicate attainment of use.

5-A: Impairment caused by pollutants (other than those listed in 5-B through 5-D). A Total Maximum Daily Load is required and will be conducted by the State of Maine. TMDL schedules are assigned based on the value of a particular water (considering size, public use, proximity to population centers, and level of public interest for water quality improvement), the nature of the impairment and the source(s) of the problem, available information to complete the TMDL, and availability of staff and contractual resources to acquire information and complete the TMDL study. Projected schedules for TMDL completion are included in Chapter 8 as well as in the Appendices.

5-B: Impairment is caused solely by bacteria contamination. A TMDL is required. Certain waters impaired only by bacteria contamination may be high priority resources, such as shellfish areas, but a low priority for TMDL development if other actions are already in progress that will correct the problem in advance of TMDL development (e.g. better compliance). Certain small streams that are impaired solely by bacteria contamination but where recreation (swimming) is impractical because of their small size are listed in 5-B. Relative to other, more ecologically detrimental causes of impairment these waters are considered a lower priority for TMDL completion. A projected schedule of TMDL completion is included where applicable. Waterbodies impaired only by Combined Sewer Overflows, where current CSO Master Plans (Long-Term Control Plan) are in place, will be monitored to demonstrate that water quality standards are attained and that provisions are in place for both funding and compliance timetables.

5-C: Impairment caused by atmospheric deposition of mercury and a regional scale TMDL is required. Due to EPA approval of a regional scale TMDL for the control of mercury all of Maine's Category 5C waters have been administratively moved to Category 4A.

5-D: Impairment caused by a "legacy" pollutant. This sub-category includes:

1. waters impaired only by PCBs, dioxins, DDT, or other substances already banned from production or use. It includes waters impaired by contaminated sediments where there is no additional extrinsic load occurring. This is a low priority for TMDL development since there is no controllable load.

2. coastal waters that have a consumption advisory for the tomalley (hepato-pancreas organ) of lobsters due to the presence of persistent bioaccumulating toxics found in that organ. This is a low priority for TMDL development since there is no identifiable and controllable load.

DELISTING FROM AN IMPAIRED TO AN UNIMPAIRED CATEGORY.

Because there are a number of listing options available in the integrated list, some waterbodies may be removed from the previous 303(d) list, however, only under certain circumstances. The State must provide new information, to EPA's satisfaction, as a basis for not listing specific waters that had been previously included on a 303(d) list. Acceptable reasons for not listing previously listed waters as provided in 40 CFR 130.7(b) may include situations where:

- The assessment and interpretation of more recent or more accurate data demonstrates that the applicable water quality standard(s) is being met (list in Category 1, 2, (3 for lakes).
- The results of more refined water quality modeling demonstrate that the applicable water quality standard(s) is being met (list in Category 1 or 2).
- It can be demonstrated that errors or insufficiencies in the original data and information led to the water being incorrectly listed (list in Category 3).
- It can be documented that there are changes in the conditions or criteria that originally caused the water to be impaired and therefore originally led to the listing. For example, new control equipment has been installed, a discharge has been eliminated, or new criteria adopted (list in Category 1, 2, 3, or 4-B).
- The State has demonstrated pursuant to 40 CFR 130.7(b)(1)(ii), that there are effluent limitations required by State or local authority, which are more stringent than technology-based effluent limitations, required by the Clean Water Act, and that these more stringent effluent limitations will result in the attainment of water quality standards for the pollutant causing the impairment within a reasonable time (list in Category 4-B).
- The State has demonstrated pursuant to 40 CFR 130.7(b)(1)(iii), that there are other pollution control requirements required by State, local, or federal authority that will result in attainment of water quality standards for a specific pollutant(s) within a reasonable time (list in Category 4-B).
- The State included on a previous Section 303(d) list some Water Quality Limited Segments beyond those that are required by EPA regulations, e.g., waters where there is no pollutant associated with the impairment (list in Category 4-C).
- A TMDL has been approved or established by EPA since the last 303(d) list (list in Category 4-A).

Chapter 8 Tables 8-1, 8-2 and 8-3 present waters that have been delisted from Maine's 2006 impaired waters (303d) list.

Assessment Criteria

Tables 4-1 through 4-3 provide the designated use categories and the criteria (with references) used to assess a water's attainment of the use. A determination of nonattainment is only made when there is documented evidence (e.g. monitoring data) indicating that one or more criteria are not attained. Such data are also weighed against evidence that there are plausible human-caused factors that may contribute to the violation of criteria (38 MRSA Section 464.4.C).

Table 4-1 Maine Designated Uses and Criteria for Rivers and Streams

Designated Use	Criteria for Attainment
Drinking water supply after disinfection / treatment	 Ambient Water Quality Criteria (Maine DEP Chapter 530) General provisions: floating/settleable solids, pH, radioactive substances, (38 MRSA Section 464.4.A) Maine CDC's Maximum Exposure Guidelines (MEGs)
Aquatic life use support	 Biomonitoring numeric criteria (Maine DEP Rule Chapter 579) Habitat suitability (38 MRSA Section 464.13, 465.1-4) Dissolved oxygen (38 MRSA Section 464.13, 465.1-4) Ambient Water Quality Criteria (Maine DEP Chapter 530.5) Support of indigenous species Wetted habitat (Maine DEP Chapter 581) General provisions: floating/settleable solids, pH, radioactive substances, (38 MRSA Section 464.4.A)
Fishing/Fish Consumption	 Support of indigenous fish species Absence of fish consumption advisory (instituted by Maine CDC) General provisions: floating/settleable solids, pH, radioactive substances, (38 MRSA Section 464.4.A)
Recreation in and on the water	 <i>E. coli</i> bacteria (38 MRSA Section 465, geometric mean) Water color (38 MRSA Section 414-C) General provisions: floating/settleable solids, pH, radioactive substances, (38 MRSA Section 464.4.A)
Navigation, hydropower, agriculture / industrial supply	 General provisions: floating/settleable solids, pH, radioactive substances, (38 MRSA Section 464.4.A)

RIVERS AND STREAMS

Table 4-2 Maine Designated Uses and Criteria for Lakes and Ponds

LAKES AND PONDS

Designated Use	Criteria for Attainment			
Drinking water supply after disinfection / treatment	 Ambient Water Quality Criteria (Maine DEP Rule Chapter 530.5) General provisions: floating/settleable solids, pH, radioactive substances, (38 MRSA Section 464.4.A) 			
Aquatic life use support	 Trophic state (38 MRSA Section 465-A, DEP Chapter 581) Ambient Water Quality Criteria (Maine DEP Chapter 530.5) Aquatic life (38 MRSA Section 465-A, 464.9); General provisions: floating/settleable solids, pH, radioactive substances, (38 MRSA Section 464.4.A) 			
Fishing	 Support of indigenous fish species No fish consumption advisory (instituted by Maine CDC) General provisions: floating/settleable solids, pH, radioactive substances, (38 MRSA Section 464.4.A) 			
Recreation in and on the water	 <i>E. coli</i> bacteria (38 MRSA Section 465-A, geometric mean) Trophic state (38 MRSA Section 465-A, DEP Rule Chapter 581) General provisions: floating/settleable solids, pH, radioactive substances, (38 MRSA Section 464.4.A) 			
Navigation, hydropower, agriculture / industrial supply	 General provisions: floating/settleable solids, pH, radioactive substances, (38 MRSA Section 464.4.A) 			

Table 4-3 Maine Designated Uses and Criteria for Estuarine and Marine Waters

ESTUARINE AND MARINE WATERS

Designated Use	Criteria for Attainment
Marine life use support	 Ambient Water Quality Criteria (Maine DEP Chapter 530.5) Dissolved oxygen (38 MRSA Section 465-B) Narrative biological standards (38 MRSA Section 465-B) General provisions: floating/settleable solids, pH, radioactive substances, (38 MRSA Section 464.4.A)
Shellfish propagation and harvest	 National Shellfish Sanitation Program (as assessed by DMR) No shellfish consumption advisory (instituted by Maine CDC) General provisions: floating/settleable solids, pH, radioactive substances, (38 MRSA Section 464.4.A)
Aquaculture	 General provisions: floating/settleable solids, pH, radioactive substances, (38 MRSA Section 464.4.A)
Fishing	 Support of indigenous fish species No fish consumption advisory (instituted by Maine CDC) General provisions: floating/settleable solids, pH, radioactive substances, (38 MRSA Section 464.4.A)
Recreation in and on the water	 Enterococcus bacteria (38 MRSA Section 465-B, geometric mean) General provisions: floating/settleable solids, pH, radioactive substances, (38 MRSA Section 464.4.A)
Navigation, hydropower, industrial supply	General provisions: floating/settleable solids, pH, radioactive substances, (38 MRSA Section 464.4.A)

DATA INTERPRETATION

It is not common to have complete and consistent water quality data; therefore, some interpretation of data is required in making a final assessment. Data from unique events such as a spill, an accident, a short-duration license exceedence, or a drought or flood are not used in an assessment determination. The following general principles for each criteria type are used in making an assessment:

Biomonitoring Criteria: For samples collected in accordance with the Biomonitoring Program Quality Assurance Project Plan, assessments are based on probability results of the numeric biocriteria models for tiered aquatic life Classes AA/A, Class B and Class C Criteria (Maine DEP Rule Chapter 579: Classification Attainment Evaluation Using Biological Criteria for Rivers and Streams). Aquatic life criteria are deemed to be attained when the applicable biocriterion is met with probability greater than 60%. Final determination of attainment may in some cases be made by professional judgment, applied in accordance with the procedures described in Maine DEP Chapter 579.

Lake Trophic State: Assessment is based on measures of transparency, chlorophyll a, total phosphorus and color (Table 4-4). When lakes lack this information, a trophic determination made by DIF&W is used, if available. Their determination is more subjective and generally applies to the lake system as a whole including adjacent wetlands and fisheries productivity. Trophic determination is tracked by source (DEP or DIF&W) in the assessment database.

Numerical	Guidelines for Ev	aluation of Tro	phic Status in Maine *
(Note: Dystrophy is no	ot often evaluated as	a trophic category	separately from categories below.)
		Troph	nic Status
Parameter ¹	Oligotrophic	Mesotrophic ²	Eutrophic
SDT ³	> 8 meters	4-8 meters	< 4 meters
CHL a	< 1.5 ppb	1.5 – 7 ppb	> 7 ppb
Total Phosphorus ³	< 4.5 ppb	4.5 - 20 ppb	>20 ppb
TSI ^{3,4}	0-25	25-60	>60 and/or repeated algal blooms

Table 4-4 Lake Trophic State Parameters and Guidelines

SDT, CHL a, and Total Phosphorus based on long-term means.

² No repeated nuisance algal blooms.

³ If color is > 30 Standard Platinum Units (SPU) or not known, chlorophyll a concentration (CHL a), dissolved oxygen and best professional judgment used to assign trophic category.

⁴ TSI = Trophic State Indices are calculated when adequate data exists and color is at or below 30 SPU.

* This table is a duplicate of Table 4-26 in the Lakes Section of this Chapter (appears twice for convenience).

Support of Indigenous Species: Assessment based on the known absence of a species that previously was documented as indigenous to a waterbody in historical records collected by state or federal agencies or through published scientific literature; or based on non-attainment of water quality criteria necessary to support indigenous species.

Dissolved Oxygen: Assessment of dissolved oxygen is based on the results of repeated measurements, collected over time. Single excursions of the criterion or excursions within the range of sampling or instrument error (as established in a Quality Assurance Project Plan) may not be used in every case unless there is corroborating evidence of reasonable potential for impairment of a use. Assessment

may also be based on the use of water quality models (e.g. QUAL2E) based on present or expected loadings. New legislation provides that dissolved oxygen in the thermocline and deeper waters of a riverine impoundment will not be used for measurement of water quality attainment.

Ambient Water Quality Criteria: Assessment is based on measured exceedance of Statewide Water Quality Criteria (or Site-specific criteria where they may exist), or reasonable potential to exceed the criteria following EPA's Principle of Independent Applicability and Technical support document. Single excursions of the criterion or excursions within the range of sampling or instrument error (as established in a Quality Assurance Project Plan) may not be used in every case unless there is corroborating evidence of reasonable potential for impairment of a use. Assessment may also be based on the use of water quality models (e.g. dilution models) based on present or expected loadings.

Nutrient/Eutrophication Biological Indicators: Non-numeric listing criteria for this cause of Aquatic Life Use impairment consist of documentation of abnormal biological findings that indicate nutrient enrichment in rivers and streams. Excess nutrients impair Aquatic Life Use through alteration of habitat from excessive growths of plants and algae, changes in dissolved gases like oxygen, caused by excess algal growth, resulting in diurnal dissolved oxygen sags, and alteration of benthic macroinvertebrate assemblage structure.

Bacteria: Assessment is based on repeated measurements to establish an annual geometric mean. Instantaneous (single sample) criteria are not used for water quality assessment due to the high variability associated with a single measurement. There must be a plausible human or domestic animal source of the bacteria for an impairment determination to be made (38 M.R.S.A Section 465, 465-A, 465-B).

Water Color: Assessment based on repeated measurements of discharge performance data (pulp and paper discharges only).

General Provisions: pH based on repeated measurement (between 6.0 and 8.5 for freshwaters; 7.0 and 8.5 for marine waters), however, certain naturally occurring waterbody types (e.g. bogs, aquifer lakes, high elevation lakes) or events may naturally have low pH and affect downstream waters. Use impairment from solids is subjectively determined. Radioactivity in surface water is not presently monitored.

Integrated Report Lists of Categories 1 Through 5

Table 4-5 Summary of State Waters Attaining and Not Attaining

Waterbody Type	Total Assessed for Attaining of WQ Standards – Assessed for Designated Uses	Total with Insufficient Data for Assessment - Not Assessed for Any Designated Uses (Category 3)	Total Attaining All WQ Standards Supporting All Designated Uses (Category 1)	Total Attaining At Least One Standard 	Total Not Attaining One or More WQ Standards - Not Supporting One or More Uses – But Not Needing a TMDL (Category 4)	Total Not Attaining One or More WQ Standards - Not Supporting One or More Uses – and TMDL is Needed (Category 5)
River & Stream Miles‡	31,218	379	4,347	25,288	216**	988
Number of Lakes/Ponds	5,780 *	10	2,857	2,881 *	28	4 **
Lake & Pond Acres	986,508 *	17,777	295,443	596,474 *	73,600	3,658 **
Estuarine/Ocean Square Miles	2,846.0	4.4	0.0	2,685.2	0.0	156.4 [°]
Estuarine/Ocean (Acres)	1,821,433.6	2,835.0	0.0	1,7 <mark>18</mark> ,509.1	0.0	100,089.5 [°]
Freshwater/Tidal Wetland Acres	N/A ¹	N/A ¹	N/A ¹	N/A ¹	N/A ¹	N/A ¹

‡River and Stream mile summaries for each reporting category were generated by the Maine Assessment Database (ADB)

* Includes 6 Category 2 lakes (22 acres) on coastal islands, all 6 lakes are not assigned to mainland HUCs.

** These figures do not include those waters listed under Category 4A for atmospheric deposition of Mercury.

^o All estuarine and marine waters (2,846 square miles) are affected by a shellfish (lobster tomalley) consumption advisory due to the presence of PCBs and dioxins. These Category 5 totals do not include coastal waters under the statewide consumption advisory. ¹ "N/A" means "Not Assessed".

Table 4-6 Individual Use Support Summar	v for Maine Rivers and Streams *

USE	Total Size	Size Assessed	Size Fully Supporting	Size Fully Supporting and Threatened	Size Not Supporting	Size with Insufficient Info
Drinking Water Supply After Disinfection	20,083.27	4,400.05	<mark>4,400.05</mark>	0	0	15,683
Drinking Water Supply After Treatment	10,944.84	969.17	965.95	0	3.22	9,980
Fish and Other Aquatic Life	31,033.41	30,647.4	30,031.64	0	615.76	299
Fish Consumption **	31,216.16	5,550.77	4,908.25	0	642.52	25,550
Fishing	31,029.41	5,366.52	5,358.33	0	8.19	25,550
Hydroelectric Power Generation	20,816.88	1,581.17	1,581.17	0	0	19,122
Industrial Process and Cooling Water Supply	20,816.88	1,581.17	1,581.17	0	0	19, <mark>12</mark> 2
Navigation	31,029.41	5,358.9	5,354.66	0	4.24	25,548
Primary Contact Recreation	31,029.41	5,364.18	5,142.35	0	221.83	25,361
Secondary Contact Recreation	31,029.41	5,364.18	5,160.79	0	203.39	25,361

*River and stream mile summaries were generated by the Maine Assessment Database (ADB)

** All freshwaters are listed for a fish consumption advisory due to mercury (Category 4A-EPA approved Regional Mercury TMDL). The fish consumption (other) listing is for additional consumption advisories beyond than that caused by mercury (these waters also have a mercury advisory).

CWA Goals	Designated Use	Size Fully Supporting – Attaining WQ Standards (Acres)	Size Not Supporting – Not Attaining WQ Standards (Acres)	Size Not Attainable – UAA Performed
Protect & Enhance Ecosystems	Aquatic Life Support	900,090	77,258	9,160
Protect & Enhance Public Health	Fish Consumption (Hg) Swimming Secondary Contact Drinking Water Source Water	0 962,144 986,508 986,508	986,508 24,364 0 0	
Social & Economic	Agricultural Industrial Cultural or Ceremonial State Defined: 1. Hydropower & Navigation	986,508 986,508 986,508 986,508	0 0 0	

Table 4-7 Individual Designated Use Support Summary for Ma	aine Lakes
--	------------

Table 4-8 Individual Designated Use Support Summary for Estuarine and Marine Waters

CWA Goals	Designated Use	Size Fully Supporting – Attaining WQ Standards (square miles)	Size Not Supporting – Not Attaining WQ Standards (square miles)	Size Not Attainable – UAA Performed (square miles)
Protect & Enhance Ecosystems	Aquatic Life	2,842.83	3.16	0
Protect &	Fish Consumption ¹ Shellfish Consumption ² (excluding lobster tomalley)	0 2,692.44	2,845.99 153.55	0
Enhance Public Health	Shellfish Consumption ³ (lobster tomalley)	0	2,845.99	0
	Swimming (primary and secondary contact)	2,845.97	0.02	0
	Aquaculture	2,845.99	0	0
Social &	Navigation	2,845.99	0	0
Economic	Industrial supply water	2,845.99	0	0
	Hydropower	2,845.99	0	0

¹ Based on a statewide fish/shellfish consumption advisory
 ² Does not include statewide advisories for PCBs or dioxin in lobster tomalley.
 ³ Based on a statewide consumption advisory for lobster tomalley.

Table 4-9 Total Sizes of Category 4 and 5 Impaired Rivers and Streams by Listing Causes/Stressors *

Cause/Stressor Type	Size Impaired (miles)	
Pathogens (E. coli)	201.39	
CSO-source	variable miles	
Aquatic Life Criteria	332.15	
(integrated effects including biocriteria, habitat and nutrient biological indicators)		
Oxygen depletion	398.5	
Dissolved oxygen	377.02	
BOD	32.02	
Altered flow regime	32.16	
Nutrients	194.26	
Nutrient-eutrophication, biological indicators	137.85	
Toxic inorganics	38.78	
Metals	29.85	
Toxic organics	431.53	
Dioxin	379.04	
Polychlorinated biphenyls	391.82	
Pesticides	217.43	
pH/Acidity/Caustic conditions	1	
Sedimentation	8.19	
Cause Unknown	0.63	

* River and stream mile summaries were generated by the Maine Assessment Database (ADB)

Table 4-10 Total Sizes of Category 4 and 5 Lakes Impaired by Listing Causes/Stressors (Total acreage)

Cause/Stressor Type	Size Impaired (acres)	
Habitat Assessment (Lakes)	48,964	
Methylmercury	986,952	
Oxygen, Dissolved	634	
Phosphorus (Total)	28,294	
Secchi Disk Transparency	27,660	
Turbidity	7,865	

Listing Category	Cause/Stressor Type	Size Impaired (acres)	Number Impaired
	Oxygen, Dissolved	634	1
4A	Phosphorus (Total)	24,636	23
	Secchi disk transparency	24,000	23
4C	Habitat Assessment (Lakes)	48,964	5
40	Turbidity	7,865	1
5A	Secchi disk transparency	3,658	4
JA	Phosphorus (Total)	3,658	4
5C	Methylmercury	986,508	5780

Table 4-11 Total Sizes of Category 4 and 5 Lakes Impaired by Listing Causes/Stressors (by Category)

Table 4-12 Total Sizes of Category 4 and 5 Impaired Estuarine and Marine Waters by Causes/Stressors

Cause/Stressor Type	Size Impaired (square miles)
Bacteria	153.55
Bacteria (CSOs)	Variable
Dissolved Oxygen	0.3
Sediment Oxygen Demand	0.3
Toxics	-1
Metals-copper	0.9
PAHs	0.5
PCBs	2,845.99
Dioxins	2,845.99
Aquatic Life	3.16

Table 4-13 Total Sizes of Category 4 and 5 Waters Impaired by Source for Rivers and Streams

Source Category	Size Impaired (miles)	
Agriculture	330	
aquaculture	9	
Atmospheric depostion (mercury depostion)	31,218	
Habitat modification- non-hydromodification	52	
Hydromodification- dams and impoundments	82	
Industrial permitted discharges	120	
Land application waste sites- RCRA, illegal dumps, abandoned mines	37	
Legacy pollutants-dioxin, PCBs, DDT	364	
Municipal discharges, permitted	201	
Other municipal discharges, including stormwater Airports	167 2.5	
Post-development erosion and sedimentation	58	
Wet weather discharges	49	
CSOs	(variable miles)	
Upstream source	26	
Urban runoff, non-regulated	109	

* River and stream mile summaries were generated by the Maine Assessment Database (ADB)

Source Category	Size Impaired (acres)
Atmospheric Deposition – Toxics	986,952
Crop Production (Crop Land or Dry Land)	7,491
Flow Alterations from Water Diversions	30
Impacts from Hydrostructure Flow Regulation/modification	48,964
Industrial Land Treatment	1,820
Internal Nutrient Recycling	11,490
Landfills	29
Livestock (Grazing or Feeding Operations)	5,093
Natural Sources	10,195
Non-irrigated Crop Production	10,532
Residential Districts	5,119
Rural (Residential Areas)	22,580
Unspecified Unpaved Road or Trail	3,296
Unspecified Urban Stormwater	3,296
Upstream/Downstream Source	83

Table 4-14 Total Sizes of Waters Impaired by Sources for Maine Lakes

Listing Category	Source	Source Size Impaired (acres)	
	Crop Production (Crop Land or Dry Land)	7,030	7
	Flow Alterations from Water Diversions	30	1
	Industrial Land Treatment	1,420	1
	Internal Nutrient Recycling	11,490	7
	Landfills	29	1
	Livestock (Grazing or Feeding Operations)	5,093	5
4A	Municipal Point Source Discharges	4288	1
	Natural Sources	1,869	2
	Non-irrigated Crop Production	10,532	5
	Residential Districts	2,405	2
	Rural (Residential Areas)	22,119	18
	Unspecified Unpaved Road or Trail	582	1
	Unspecified Urban Stormwater	582	1
4C	Impacts from Hydrostructure Flow Regulation/modification	48,964	5
	Natural Sources	7,865	1
	Crop Production (Crop Land or Dry Land)	461	1
	Industrial Land Treatment	400	1
	Natural Sources	461	1
F A	Non-irrigated Crop Production	0	1
5A	Residential Districts	2,714	1
	Rural (Residential Areas)	461	1
	Unspecified Unpaved Road or Trail	2,714	1
	Unspecified Urban Stormwater	2,714	1
	Upstream/Downstream Source	83	1

Listing	Source	Size Impaired	Number of	
Category		(acres)	Lakes	
5C	Atmospheric Deposition – Toxics	986,508	5780	

Table 4-16 Total Sizes of Waters Impaired by Sources for Estuarine and Marine Waters

Source Category (examples)	Size Impaired (square miles)
Legacy Pollutants	2,845.99
Municipal Point Sources / Overboard Discharge	143.95
Combined Sewer Overflows	Variable
Urban Runoff/Storm Sewers	51.70
Sediment Oxygen Demand	0.30
Nonpoint Source	153.55

Rivers / Streams

WATER CLASSIFICATION PROGRAM

Contact: Susan P. Davies, DEP BLWQ, Division of Environmental Assessment (DEA) Tel: 207-287-3901 email: Susan.P.Davies@SPAM-ZAPmaine.gov Related Website: www.maine.gov/dep/blwg/docmonitoring/classification/index.htm

Maine has four water quality classes of rivers and streams: AA, A, B, and C (38 M.R.S.A. Section 465). Each classification assigns designated uses and water quality criteria (narrative and numeric), and may place specific restrictions on certain activities (Table 4-1 and 4-16) such that the goal conditions of each class may be achieved or maintained. Definitions of terms used in the classification are provided in 38 M.R.S.A. Section 466.

Class AA waters are managed for their outstanding natural ecological, recreational, social, and scenic qualities. Direct discharge of wastewater, dams, and other significant human disturbances are prohibited. Tiered aquatic life use goals in water quality standards direct that the biological condition of this classification be approximately Tier 1-2 on the Biological Condition Gradient (Davies and Jackson 2006; USEPA 2005)

Class A waters are managed for high quality with limited human disturbance allowed; aquatic life use goal approximately Tier 1-2 on the Biological Condition Gradient. Direct discharges are allowed but highly restricted.

Class B waters are general-purpose waters and are managed to attain good quality water; aquatic life use goal approximately Tier 3 on the Biological Condition Gradient. Well-treated discharges with ample dilution are allowed.

Class C waters are managed to attain at least the swimmable-fishable goals of the federal Clean Water Act and to maintain the structure and function of the biological community; aquatic life use goal approximately Tier 4 on the Biological Condition Gradient.

л	Dissolved Oxygen Numeric Criteria	Bacteria (<i>E. coli</i>) Numeric Criteria	Habitat Narrative Criteria	Aquatic Life (Biological) Narrative Criteria
Class AA	as naturally occurs	as naturally occurs	Free flowing and natural	No direct discharge of pollutants; as naturally occurs **
Class A	7 ppm; 75% saturation	as naturally occurs	Natural	as naturally occurs **
Class B	7 ppm; 75% saturation	64/100 ml (g.m. [*]) or 236/100 ml (inst. [*])	Unimpaired	Discharges shall not cause adverse impact to aquatic life in that the receiving waters shall be of sufficient quality to support all aquatic species indigenous to the receiving water without detrimental changes to the resident biological community. **
Class C	5 ppm; 60% saturation 6.5 ppm (monthly average) at 22° and 24°F	126/100 ml (g.m. [*]) or 236/100 ml (inst. [*])	Habitat for fish and other aquatic life	Discharges may cause some changes to aquatic life, provided that the receiving waters shall be of sufficient quality to support all species of fish indigenous to the receiving waters and maintain the structure and function of the resident biological community. **

Table 4-17 Maine Water Quality Criteria for Classification of Fresh Surface Waters (38 MRSA §465)

* "g.m." means geometric mean and "inst." means instantaneous level

** Numeric criteria in Chapter 579, Classification Attainment Evaluation Using Biological Criteria for Rivers and Streams

Maine law requires that at least once every three years, the Department review the classification system and make recommendations to the Board of Environmental Protection for changes. The last triennial review occurred in 2002-03 when the Department conducted statewide workshops to obtain public input and proposals to change the management classification assigned to specific waterbodies. The Board held hearings that resulted in recommendations to the Maine Legislature for the upgrade of part or all of 75 rivers and streams. Sixty one segment upgrades were passed by the 2003 Legislature (P.L. 2003 Chapter 317) and the 14 remaining segments were passed in the next session. The next review of water quality classifications is currently underway (2008) for presentation to the Legislature in 2009. The current distribution of waters assigned to these four water quality classes is summarized in Table 4-18:

Class	Percent of Major* Mainstem River Miles	Percent of Total River and Stream Miles
AA	27.5 %	5.8 %
A	22.3 %	44.1 %
B	29.6 %	47.9 %
С	20.6 %	2.2 %

Table 4-18 Percent Distribution of River/Stream Water Classes

* Major mainstem rivers are rivers that have a watershed of 500 or greater square miles.

SUMMARY OF STATEWIDE RIVER AND STREAM ATTAINMENT STATUS

Contact: Susan P. Davies, DEP BLWQ, Division of Environmental Assessment (DEA)

Tel: 207-287-3901 email: <u>Susan.P.Davies@SPAM-ZAPmaine.gov</u>

The Integrated Assessment report to Congress requires the assignment of each Assessment Unit into one of five categories (Section 4-1, Assessment Methodology). A water is determined to be impaired if one or more of the uses assigned by its classification in not attained, as determined by the criteria assigned to that water class. An overall use attainment summary is provided in Tables 4-6 and 4-19. The 2008 use attainment assessment reports on assessment units amounting to 31,218 miles of rivers and streams that are tracked in the Assessment Database (ADB). Information on the status of individual assessment units may be found in Listings on Individual Waters, Appendix II, Categories 1-5.

		River	rs and Strea	ms		
		31,224	=Total Miles A	ssessed in 2006		
		31,218	=Total Miles A	Assessed in 2008		
	2006 Miles in Category*	% of Total 2006 Assessed Miles	2008 Miles in Category**	% of Total 2008 Assessed Miles		Change in Miles '06 - '08
Category 1	4,347	14	4,347	14	0	0
Category 2	25,283	81	25,288	81	0	+5
Category 3	380	1	379	1	0	-1
Category 4	209	<1	216	<1	0	+7
Category 5	1005	3	988	3	0	-17

Table 4-19 Summary of Changes to Surface Water Assessment Categories - 2006 to 2008

*Single-Category Reporting miles, as generated by final 2006 cycle Maine ADB; note: miles may not compare exactly to miles recorded in the posted Final 2006 Integrated Report due to calculation differences

** Single-Category Reporting miles as generated by 2008 cycle Maine ADB

Category 1 (*Appendix II Category 1*). The 2008 assessment assigned 4,347 miles (14%) of rivers and streams to Category 1 (fully attaining all uses other than statewide mercury advisory as explained in Category 5C below). There has been no change in the amount of Category 1 waters since 2006. The Department has determined through monitoring and evaluation that large areas of the state should be included in this category where there is significant protection afforded by either state or private conservation efforts. Maine is fortunate to have entire sub-watersheds where there is no human habitation, few roads and only minimal disturbance (typically well managed forestry operations that are well buffered to protect water quality) or significant conservation ownership.

Category 2 (*Appendix II Category 2*). The 2008 assessment assigned 25,288 (81%) miles of rivers and streams to Category 2 (fully attaining all uses other than statewide mercury advisory as explained in Category 5C below). The increase was due to confirmation that some previously impaired waters are now attaining uses.

Category 3 (Appendix II Category 3). The 2008 assessment assigned 379 (1%) miles of rivers and streams to Category 3 (attainment undetermined except for statewide

mercury advisory as explained in Category 5C below). Most of these segments have been assigned to Category 3 because of inconclusive or conflicting monitoring data and the rest are in Category 3 because an initial evaluation of non-attainment requires re-sampling to confirm.

Category 4 (*Appendix II Category 4*). Category 4 impaired waters do not require the development of a Total Maximum Daily Load (TMDL). Category 4 has been administratively increased by 31,218 miles in 2008 because all freshwaters in Maine were moved from Category 5C (statewide mercury impairment) to Category 4A (TMDL approved) due to US EPA approval, on December 20, 2007, of a Regional Mercury TMDL for the Northeastern States. The 2008 assessment also assigned 216 (1.5%) miles of rivers and streams to Category 4 for non-mercury reasons. The approval of TMDLs for 3 impaired segments has increased the recorded miles in Category 4 by 7 miles as compared to 2006. Waters in Category 4 are placed into one of three subcategories:

- 4-A for waters that already have a TMDL that has been approved by EPA
 - 3 new segments and 5 Causes have been added to 4-A as compared to the 2006 Category 5,
 - 2 causes of non-attainment have been moved from 4A to Category 2- Fully Attaining
 - 1 new cause of impairment has been added to a previously 4A listed segment
- 4-B for waters where there is an enforceable mechanism in place to bring the water into attainment (e.g. new hatchery wastewater discharge license)
 - No new segments have been moved into Category 4-B from 2006 Category 5 waters ,
- 4-C for waters where there is no pollutant involved in the impairment problem
 - No new segments have been added to 4-C since 2006

Category 5 (*Appendix II Category 5*). Impaired waters that require the development of a Total Maximum Daily Load (TMDL) determination. The 2008 assessment assigned 988 miles (3%) of rivers and streams to Category 5 (impaired for one or more uses as well as statewide mercury advisory as explained in Category 5C below). This is a net decrease of 7 miles in Category 5.

Waters in Category 5 are placed into one of four subcategories:

- 5-A waters impaired by pollutants; a priority for TMDL development,
 - 1 new cause of impairment listing, occurring in 1 previously listed segment (1.2 miles) has been added since the 2006 reporting cycle
 - **final draft TMDLs** for 16 impaired segments are scheduled to be submitted to EPA in fiscal year 2008. Additionally, reports on 4 impaired segments are in preparation to indicate that TMDL are not required (Royal estuary, Hermon and Hammond Lakes, Sabattus River)
- 5-B- waters impaired by no causes other than bacteria from Combined Sewer Overflows or other sources (except statewide mercury advisory as explained in Category 5C below); a lower priority for TMDL development.
 - 1 new segment has been added to 5B
- 5-C- waters impaired by atmospheric deposition of mercury (*Inactive Category due to EPA approved Regional Mercury TMDL*).
 - All freshwaters in Maine have an advisory for the consumption of fish due to the presence of mercury presumed to be from atmospheric deposition. A Regional MercuryTMDL has been approved by US EPA making these waters Category 4A.

- This Integrated Water Quality Monitoring and Assessment Report does not consider this statewide advisory in establishing other category listings.
- The advisory is based on probability data that a stream, river, or lake may contain some fish that exceed the advisory action level (Maine uses a lower action level of 0.2 mg/kg (edible portion) than that established by the USEPA). Any freshwater may contain both contaminated and uncontaminated fish depending on size, age, and species occurrence in that water. The advisory applies to all freshwaters because it may be impossible for someone eating a fish to be able to tell where the fish originated and whether or not it has a high level of mercury.
- 5-D for waters impaired by the residuals of "legacy" activities.
 - No new segments have been added to Category 5-D as compared to 2006.

NUMBER OF SEGMENTS THAT HAVE BEEN DELISTED.

Two river segments and 3 impairment causes have been moved to Category 2 from 2006 Impaired Waters List in this reporting cycle (see Table 8-1) and 3 segments and 5 causes have been moved from Category 5A to Category 4A due to approval of TMDLs.

As with any assessment of this kind, the identification of impaired waters or delisted waters cannot be considered complete but rather is a reflection of the findings at a particular point in time, relative to the level of monitoring effort expended by the agency and other cooperating contributors. While new and expanded monitoring has identified additional miles of impaired waters, this should not be interpreted as an indication that Maine's waters are under some new or increasing threat. Rather, the State has been better able to assess its waters with improved monitoring tools and increased participation from cooperators. All of the new impaired listings appear to be due to conditions that have probably been in place for many years.

LISTING CAUSES, STRESSORS AND SOURCES OF IMPAIRMENT

Cause and stress information for rivers and streams is provided in Table 4-9. Sources of impairment are provided in Table 4-13. The way that DEP groups Cause/Stressor Types in the 2008 report is slightly different from 2004 and earlier reports due to the migration of data into the EPA Assessment Database. These differences by themselves do not reflect actual changes to causes, stressors or sources affecting Maine waters. The ADB should eventually enable increasingly accurate and consistent tracking of causes, stressors and sources as the data is captured and stored in subsequent years.

Causes (Table 4-9): The greatest number of impaired miles (647) is still due to toxics, especially legacy pollutants such as DDT, dioxin and PCBs. For most mainstem river segments that are affected by pulp and paper mill discharges, dioxins were listed in Category 4B in 2004. However, those same segments are now listed in Category 5D for legacy PCB and dioxin contamination of fish tissue. While absolute elimination of the production of dioxin secondary to the pulp and paper bleaching process has probably not been accomplished measureable differences are no longer detectable. Results of MDEP's Above/Below test documented by 2005 that there was no *measurable* difference in dioxin concentrations in fish above and below each tested mill. Non-attainment of aquatic life criteria as determined by observations of biological effects accounts for 332 miles of impairment with oxygen depletion accounting for 398 miles.

Sources (Table 4-13): Atmospheric deposition of mercury affects all waters of the State and is the largest single source of pollution. Legacy pollutant sources such as dioxin and PCBs affect 364 miles. General agricultural NPS sources affect 330 miles. It is important to understand that miles attributed to causes and sources in Tables 4-9 and 4-13 may be listed more than once if a waterbody is subjected to several different types of disturbance.

MAIN STEMS OF MAJOR RIVERS

Most of the mainstem rivers are in good condition and are attaining their classification (mostly Class B or C quality, although significant segments of the St. John, Allagash, East and West Branches of the Penobscot, St. Croix, and Kennebec Rivers are Class AA and A). The primary impairment issue on the larger rivers is non-attainment of the Fish Consumption use, with segments of the Androscoggin, Kennebec, Penobscot, Salmon Falls and Sebasticook Rivers listed in either Category 4 or Category 5. Tissue monitoring studies have found legacy PCB and dioxin contamination in mainstem rivers. Two (2) of Maine's Combined Sewer Overflow (CSO) communities (Fort Kent and Kittery) have completed their CSO abatement projects and no longer have permitted CSOs. Calais has recently been permitted for several CSOs discharging to the St. Croix River. Needed monitoring has had to be re-scheduled for some mainstem river segments due to lack of appropriately low flow levels required for water quality modeling (e.g., Sandy River).

Toxics

DIOXIN MONITORING PROGRAM

Contact: Barry Mower, DEP BLWQ, Division of Environmental Assessment (DEA)

Tel: (207) 287-3901 email: <u>Barry.F.Mower@SPAM-ZAPmaine.gov</u>

Related Website: <u>www.maine.gov/dep/dioxin/</u>

• Please refer to the 2006 report for information on this subject. There have been no changes since the 2006 report.

SURFACE WATER AMBIENT TOXICS (SWAT) MONITORING PROGRAM

Contact: Barry Mower, DEP BLWQ, Division of Environmental Assessment (DEA)

Tel: (207) 287-3901 email: <u>Barry.F.Mower@SPAM-ZAPmaine.gov</u>

Related Website: www.maine.gov/dep/blwq/docmonitoring/swat/index.htm

• Please refer to the 2006 report for information on this subject. There have been no changes since the 2006 report.

AQUATIC LIFE MONITORING

BIOLOGICAL MONITORING OF RIVERS, STREAMS AND BROOKS

Contact: Leon Tsomides, DEP BLWQ, Division of Environmental Assessment (DEA)

Tel: (207) 287-7844 email: <u>Leon.Tsomides@SPAM-ZAPmaine.gov</u>

Related Website: <u>www.maine.gov/dep/blwq/docmonitoring/biomonitoring/index.htm</u>

• Please refer to the 2006 report for information on this subject. There have been no changes since the 2006 report.

REPORTS OF FISH KILLS

Contact: David Courtemanch, DEP BLWQ, Division of Environmental Assessment (DEA)

Tel: (207) 287-7844 email: <u>Dave.L.Courtemanch@SPAM-ZAPmaine.gov</u>

The Department of Environmental Protection documents all pollution-caused fish kills. For the 2006-07 reporting period, there were two documented fish kills. In September 2006, fish (predominantly brook trout) in Longfellow Brook in Caribou were killed from contaminated runoff from a fertilizer blending and distribution facility. A Consent Agreement and Enforcement Order was signed to remediate the source. In July 2007, a fish kill (predominantly minnows) occurred on Hart Brook in Lewiston presumably from urban runoff. No definitive source has been identified for that kill.

ACHIEVING COMPREHENSIVE ASSESSMENT OF ALL STREAMS: PROBABILITY-BASED DESIGN MONITORING

Contact: Susan P. Davies, DEP BLWQ, Division of Environmental Assessment (DEA)

Tel: 207-287-3901 email: <u>Susan.P.Davies@SPAM-ZAPmaine.gov</u>

• Please refer to the 2006 report for information on this subject. There have been no changes since the 2006 report.

Lakes / Ponds

Contact: Linda Bacon, DEP BLWQ, Division of Environmental Assessment (DEA), Lake Assessment Section

Tel: (207) 287-7749 email: Linda.C.Bacon@SPAM-ZAPmaine.gov

Related Website: www.maine.gov/dep/blwq/lake.htm

This section of the 2008 Integrated Report provides an update to information contained in the 2006 Integrated Report, a link to which can be found at: <u>http://www.state.me.us/dep/blwq/docmonitoring/305b/index.htm</u>

Information included in the 2006 report (pages 75 – 91) includes Physical Extent of lakes, Statutory Classification of lakes, Attainment of Classification and Attainment Evaluation Criteria for each Designated Use, how Attainment Status related to Listing Categories, past use of Probability-based Designs, a summary of Listing Category changes for 2006, Criteria Used to Change Listing Status, an overview of Maine's

Invasive Aquatic Plant program, and, Economic Contribution of lakes to Maine. Additional topics required under Section 314 addressed in the 2006 report include: Maine's definition of Significant Lakes, Trophic Status of Significant Publicly Owned Lakes, Lake Rehabilitation Techniques, Acid Effects on Lakes, Toxics in Maine lakes, trend analyses and climate considerations. A number of tables reappear in this report at the request of EPA Region I staff.

Monitoring of Maine lakes continues to include reliance on a strong volunteer-based program, the Maine Volunteer Lake Monitoring Program (www.mainevolunteerlakemonitors.org) as well as both targeted and probability based monitoring performed by state staff. The Lake Assessment Section participated in a US EPA Region I probability-based lake monitoring effort in 2006 as well as the National Lake Assessment effort in 2007.

ATTAINMENT OF CLASSIFICATION

The state designated a subset of the total population of lake as 'Significant Lakes' as requested by EPA under Section 314 in the early 1990s. Table 4-20 summarizes numbers and acreages for all lakes having an identification number as well as the subset of Significant Lakes.

Table 4-20 "All" and "Significant" Lake Category Information

Maine Lake Population Summary				
	Number	Acres		
All Lakes	5,784 (100%)	986,952 (100%)		
Significant Lakes	2,313 (40%)	958,977 (97%)		

Designated uses actively assessed to determine classification attainment status are: Aquatic Life Support, Fish Consumption, Recreation In/On, and Drinking Water Supply (after disinfection/treatment). Table 4-21 summarizes how lake attainment status relates to specific Listing Categories used in the 2008 report.

Table 4-21 Summary of Listing Categories and Subcategories used in the 2008 Assessment of Maine lakes.

Listing Category	Category Summary		
1	Attaining all standards		
2	Attaining some standards; assumed to attain others		
3	Attaining some standards; Insufficient / no data / info to determine if standard(s) are met for use that may be impaired		
4 <mark>a</mark>	TMDL complete		
4b	Expected to meet standards		
4c	Not impaired by a pollutant		
5a	TMDL needed		
5c	Regional TMDL needed due to airborne Hg deposition		

Brief summaries of lakes by Listing Category follow. Lake specific changes are included in Chapter 8, "Summary of 2006 Category Changes" as well as in the appendix.

Category 1: Lake waters attaining all designated uses and water quality standards, and no use is threatened.

For the purposes of this assessment, lakes having no population in their direct watersheds have been listed in 'Category 1, Attaining all standards', with the exception of four lakes which are listed in category 4c, in non-attainment of the Aquatic Life Use (habitat) due to non-pollutant (hydrologic modification). The number of lakes listed in Category 1 is 2,857, totaling 295,443 acres. Waters are summarized by the 10-digit HUC (Hydrologic Unit Code) within which they are located (Appendix III, Category 1). No lakes have moved in or out of this Listing Category since the 2006 reporting cycle.

Category 2: Lake waters attaining some of the designated use(s), no use is threatened, and insufficient data or no data and information is available to determine if the remaining uses are attained or threatened (with presumption that all uses are attained).

The Department is highly confident that these waters attain the following designated uses: drinking water (after disinfection / treatment), recreation in/on the water, fishing (excluding fish consumption), and as habitat for fish and other aquatic life. Category 2 contains 2,881 lakes or 596,474 lake acres. Waters are summarized by the 10-digit HUC within which they are located (Appendix III, Category 2). One lake, Estes Lake has been moved from Category 3 into Category 2 due to improvements in water quality over the past 10 years primarily due to an upgrade in treatment of a municipal discharge. Evaluation of data indicates that these lakes are currently in attainment of their classified uses of Primary Contact and Aquatic Life Support.

Category 3: Lake waters with insufficient data and information to determine if designated uses are attained (with presumption that one or more uses may be impaired).

There are currently 10 lakes covering 17,777 acres listed in Category 3 (Appendix III, Category 3) all of which are designated as 'Significant'. These lakes may or may not be in attainment of 'aquatic life' and/or 'primary contact' criteria. The Department has data suggesting that these waters are meeting some designated use criteria but has evidence that suggests the lakes are 'borderline' with respect to another use. These lakes are the highest priority for data collection over the next few years. Estes Lake was moved out of Category 3 into Category 2 since the 2006 assessment.

Category 4: Lake waters that are impaired or threatened for one or more designated uses, but do not require development of a TMDL.

There are currently 28 lakes covering 73,600 acres listed in Category 4. These lakes fall into two subcategories: waters on which TMDLs have been completed (4A) and waters with impairments not caused by a pollutant (4C). Category 4A contains 23 lakes totaling 24,636 acres. This includes the addition of 5 lakes for which TMDL

studies have been completed since the 2006 report. Completed TMDL documents for these waters are posted on the DEP website at the following URL: www.maine.gov/dep/blwg/docmonitoring/tmdl2.htm

Note: For the 2008 cycle the 4A category now includes all freshwaters in Maine that were listed in previous cycles in a narrative Category 5-C "Impairment caused by atmospheric deposition were of mercury" due to the Statewide fish consumption advisory due to mercury. On December 20, 2007 US EPA approved a Regional Mercury TMDL.

Five lakes (48,964 acres) continue to be listed in Category 4C, lake water impairment not caused by a pollutant. All of these lakes are in non-attainment of aquatic life (habitat) standards due to hydromodification (drawdown).

Category 5: Lake waters that are impaired or threatened for one or more designated uses by a pollutant(s), TMDL development is required.

Three sub categories have been designated under Category 5; however lakes have been listed in only one.

Category 5A includes 4 lakes (3,658 acres) all of which are designated as 'Significant' (lakes impaired by pollutants, and require a TMDL to be conducted by the State of Maine). These totals reflect the movement of 5 lakes to Category 4A. Appendix III, Category 5A lists these lakes, indicates target dates for TMDL completion and indicates development priority. Table 4-22 summarizes individual use support for lakes in Category 5A.

Table 4-22 Individual Use Support Summary for Lakes & Ponds (acres) in Category 5a (TMDL Needed)

Designated Use	Non-Attainment	Attainment
Drinking Water Supply (after disinfection/treatment)	0	3,658
Aquatic Life use Support	3,658	0
Fishing	0	3,658
Recreation In / On	944	2,714*
Navigation, Hydropower, Agriculture & Industrial Supply	0	3,658

Causes or Stressors resulting in non-attainment and Sources are summarized for all impaired waters in Tables 4-10 and 4-14 in Section 4-3 of this document. Tables 4-11 and 4-15 provide Causes / Sources organized by Listing Category.

For more information on Lake TMDL projects:

Contact: Dave Halliwell, DEP BLWQ, Division of Environmental Assessment (DEA)

Tel: (207) 287-2901 email: <u>David.Halliwell@SPAM-ZAPmaine.gov</u>

Related Website: www.maine.gov/dep/blwg/docmonitoring/tmdl2.htm

VARIOUS TABLES AND ADDITIONAL UPDATES REGARDING MAINE LAKES

Section 314 requires a summary of trophic classification for Maine's 'Significant' lakes. This summary is compiled using the numerical criteria in Table 4-4 (also in 2006 report). Table 4-23 summarizes the trophic distribution of Maine Lakes.

Tranhia Catagony	Significant Lakes		All Lakes	
Trophic Category	Number	Acres	Number	Acres
Assessed	1,739	926,954	1,910	928,275
Dystrophic	2	34	2	34
Eutrophic	590	150,922	660	151,354
Mesotrophic	1,022	664,498	1,119	665,340
Oligotrophic	125	111,500	129	111,547
Unknown	574	32,023	3,871	58,681

Table 4-23 Trophic Status of Maine Lakes

Table 4-24 summarizes techniques used to rehabilitate lakes.

Table 4-24 Lake Rehabilitation Technique Summary (Section 319 Projects)

Rehabilitation Technique	
Watershed Treatments	
BMPs associated with Public & Private Road Management	
BMPs associated with Shoreline Erosion Control / Bank Stabilization	
Other Lake Protection/Restoration Controls	
Public Information/Education Program/Activities	

Section 314 requires reporting on Acid Effects on lakes. Maine is fortunate to be located a considerable distance from many sources of atmospheric deposition that result in acidification of surface waters. Some smaller headwater and seepage lakes having naturally low pH are likely slightly more acidic due to such atmospheric inputs but not to levels that have conclusively altered the biota or caused Maine to consider mitigation activities. Table 4-25 provides a summary of acidity assessment efforts in Maine lakes.

Table 4-25 Acid Effects on Maine Lakes

	Number of Lakes *	Acreage of Lakes *	%Acreage *
Assessed for Acidity	~1,150	~797,000	~80%
Impacted by High Acidity	~65	~750	~0.08%
Vulnerable to Acidity	Unknown	Unknown	Unknown

*Totals include all lakes in the state, not only 'significant' lakes

Table 4-26 summarizes source estimates for high acidity in Maine lakes.

Table 4-26 General Sources of Acidity in Acidic Maine Lakes

Source of Acidity	Percent of Acidic Lakes	Percent of All Maine Lakes*
Acid Deposition	60%	0.62%
Natural Sources	30%	0.31%
Combination of Acid Deposition and Natural Sources	10%	0.1%
Total	100%	1.3%

* Includes all lakes in the state, not only 'significant' lakes

INVASIVE AQUATIC PLANTS

Contact: John McPhedran, DEP BLWQ, Division of Environmental Assessment (DEA)

Tel: (207) 287-6110 email: John.McPhedran@SPAM-ZAPmaine.gov

or Milfoil@SPAM-ZAPmaine.gov

Related Website: www.maine.gov/dep/blwg/topic/invasives/index.htm

The Department's formal program to prevent spread and control existing infestations of invasive aquatic plants was in its sixth and seventh years in 2006 and 2007 respectively. Administration of the sticker program for motorized watercraft, the funding mechanism for the Department's work on invasive aquatic species, was amended by statute. Boaters with Maine-registered watercraft now pay automatically with their annual purchase of boat registration. This change assures compliance for boats registered in Maine and reduces processing cost, thereby generating increased revenue for program. Boaters with out-of-state registrations will still be required to purchase a boat sticker to affix next to their out-of-state registration.

As of February 2008, 28 inland bodies of water are infested with invasive aquatic plants, 25 infested with variable milfoil (*Myriophyllum heterophyllum*). Maine's hydrilla control program was in its fifth year in 2007 (*Hydrilla verticillata identified in one lake*). In 2007, 49,783 Courtesy Boat Inspections were conducted, a 23% increase over 2006 and 2005. One of two most recently documented infestations, an isolated plant in a Maine/New Hampshire border lake, was eradicated and removed from the State's infestation list due to rapid response by local lake stewards. Of heightened concern is the threat posed by the diatom *Didymosphenia geminate (rock snot)*, documented in New Hampshire but not yet in Maine. This threat is spurring educational outreach by the Department to anglers and river users to prevent spread.

Estuaries / Ocean

Contact: David Courtemanch, Director, Division of Environmental Assessment (DEA), DEP BLWQ

Tel: (207) 287-3901 e-mail: <u>Dave.L.Courtemanch@SPAM-ZAPmaine.gov</u>

Related Website: www.maine.gov/dep/blwg/coastal.htm

BACKGROUND

Maine has three classes for the management of estuarine and marine waters: SA, SB, and SC. SA waters are managed for high water guality with limited human interference allowed. No direct discharges of pollutants, including those from finfish aquaculture, are allowed in SA waters. SB waters are general-purpose waters and are managed to attain good quality water. Well-treated discharges of pollutants that have ample dilution are allowed. SC waters are managed for the lowest water quality, but they must be fishable and swimmable as well as maintain the structure and function of the biological community. Well-treated discharges of pollutants are allowed in SC waters. Each class is managed for designated uses and each has dissolved oxygen, bacteria and aquatic life standards (see Table 4-32 below).

Table 4-27 Maine's Estuarine and Coastal Waters Classification	on Standards
--	--------------

Class	Designated Use	Dissolved Oxygen	Bacteria	Aquatic Life
SA	Habitat for fish and estuarine and marine life Recreation in and on the water Fishing Aquaculture (not finfish) Propagation and harvesting shellfish Navigation	As naturally occurs	As naturally occurs	As naturally occurs
SB	Habitat for fish and estuarine and marine life Recreation in and on the water Fishing Aquaculture Propagation and harvesting shellfish Navigation Industrial process and cooling water supply Hydroelectric power generation	Not less than 85% of saturation	Enterococcus not higher than geometric mean 8/100ml or instantaneous of 54/100ml from 5/15 to 9/30 Not exceed criteria of National Shellfish Sanitation Program for shellfish harvesting	Support all indigenous estuarine and marine species Discharge not to cause closure of shellfish beds
SC	Habitat for fish and estuarine and marine life Recreation in and on the water Fishing Aquaculture Propagation and restricted shellfish harvesting Navigation Industrial process and cooling water supply Hydroelectric power generation	Not less than 70% of saturation	Enterococcus not higher than geometric mean 14/100ml or instantaneous of 94/100ml from 5/15 to 9/30 Not exceed criteria of National Shellfish Sanitation Program for restricted shellfish harvesting	Maintain structure and function of the resident biological community

The areal distribution of the three marine classes is shown in Table 4-28 and Figure 4-5 below:

Table 4-28 Area and Percentage of Marine and Estuarine Waters in Each Classification

Class	Square Miles	Percentage
SA	211	7.41 %
SB	2,606	91.58 %
SC	29	1.01 %
Total	2,846	100.00 %

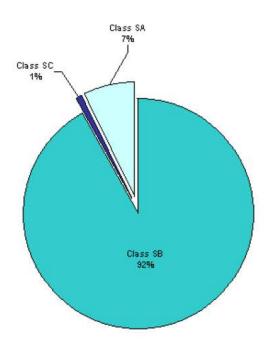


Figure 4-1 Percentage of Estuarine and Marine Waters in Each Classification

This chapter provides an assessment of the degree to which water quality supports the designated use defined by the State of Maine statutes for the protection of aquatic life. Designated uses in this chapter and in Chapter 7 (Public Health – Related Assessments) are divided into two broad use categories: protection of human health and protection of aquatic life. The protection of these uses will result in the protection of other uses (e.g. navigation, industrial process and cooling supply). Applicable monitoring results and attainment assessments are summarized within each of these two categories in this chapter as well as in Chapter 7.

Sources of Monitoring Data

The Maine Department of Environmental Protection (DEP), the National Coastal Assessment/University of Southern Maine, the Department of Marine Resources (DMR), the Casco Bay Estuary Project (CBEP), and a variety of volunteer monitoring groups such as the Spruce Creek Association monitor Maine's coastal waters.

DMR monitors for indicators of human pathogens (e.g., fecal coliforms) and biotoxins (e.g., Paralytic Shellfish Poisoning). The purpose of DMR monitoring is to protect human health by managing shellfish harvest areas (see Chapter 7 of this report).

DEP monitors toxic contaminants in tissues and assesses water quality using data collected by DEP and other organizations. DEP also participates in the Gulf of Maine Council's Gulfwatch Project that surveys toxic contamination in mussel tissue in the Gulf of Maine.

The Maine State Planning Office Coastal Program and University of Maine Cooperative Extension/Sea Grant are responsible for managing and coordinating the Maine Healthy Beaches Program (see Chapter 7 of this report).

The Casco Bay Estuary Project (CBEP), funded by EPA's National Estuary Program, monitors and also supports other monitoring efforts in the Bay, through Friends of Casco Bay (FOCB) and other entities and coordinates the National Coastal Assessment for the entire Maine coast with the assistance of Maine DEP.

The GoMOOS (Gulf of Maine Ocean Observation System) program provides data on the gulf that is collected from buoys, satellites and radar. Since all the buoys are located in offshore waters at present, the data are not used for this assessment. The data are useful in determining the signals coming from the Gulf rather than land. DEP would benefit from the placement of some new buoys closer to land in order to better monitor and understand near shore waters and land/water interactions.

Results from these various monitoring sources provide the basis for determining attainment of classification and designated uses. One of the biggest challenges ahead is to get all the data that is collected into a central location and into useable, universally-translatable formats.

SUMMARY OF STATEWIDE STATUS

This Integrated Assessment report requires the assignment of each Assessment Unit into one of five categories (see Methodology). Specific waters are determined to be impaired if they do not attain one or more of the uses assigned by their classification (as determined by the criteria assigned to that classification).

For this reporting cycle, the Maine DEP has elected to maintain the same listing for estuarine and marine waters as reported in the 2006 Integrated Report:

http://www.state.me.us/dep/blwg/docmonitoring/305b/index.htm

There are several reasons for this. The 2006 report was delayed in submission and subsequently used more recent data than would have been available on April 1, 2006 reporting date. More recently, the Maine DEP has been engaged with DMR in revising the way that water quality data is reported including development of Assessment Units (similar to what is used in the ADB for freshwaters) and digitized maps all of which will make reporting more consistent and easier to track. These will be used in the 2010 report cycle. Overall use attainment summary for 2008 is provided below and in Table 4-8.

<u>Category 1</u>: The 2008 assessment assigns no estuarine and marine waters to Category 1 because there were no waters where all Classification Standards were monitored adequately in a waterbody segment to determine if standards were being met.

<u>Category 2</u>: The 2008 assessment assigns 2,685.17 (94.35%) square miles of estuarine and marine waters to Category 2 (fully attaining*).

<u>Category 3:</u> The 2008 assessment assigns 4.43 (0.16%) square miles of estuarine and marine waters to Category 3 (attainment undetermined*).

<u>Category 4</u>: The 2008 assessment assigns no estuarine and marine waters to Category 4 (impaired for one or more uses*).

<u>Category 5:</u> The 2008 assessment assigns 156.39 (5.50%) square miles of estuarine or marine waters to Category 5 (impaired for one or more uses*). This Integrated

Water Quality Monitoring and Assessment Report does not consider the statewide lobster tomalley consumption advisory that is in place due to the potential presence of PCBs and dioxin in all 2,845.99 square miles of Maine's coastal waters. Category 5 impaired waters require the development of a Total Maximum Daily Load (TMDL) determination. No TMDLs were completed for estuarine/marine waters since the 2006 report was completed. Waters are placed in one of four subcategories: 5-A for waters impaired by pollutants, 5-B-1 for waters impaired only by bacteria, 5-B-2 for waters affected only by Combined Sewer Overflows (CSO), 5-D for waters impaired by the residuals of "legacy" activities.

As with any assessment of this kind, the identification of impaired waters cannot be considered complete but rather is a reflection of the findings (to date) relative to the level of effort expended by the agency and other cooperating contributors.

* All estuarine and marine waters in Maine have an advisory for the consumption of shellfish (lobster tomalley) due to the presence of PCBs and dioxins. The advisory is based on probability data that shellfish (lobster tomalley) inhabiting estuarine or marine waters may exceed the advisory action level for these substances.

CAUSES AND SOURCES OF IMPAIRMENT IN CATEGORIES 4 AND 5

Cause and stress type information is provided in Table 4-12, while information on sources of impairment is provided in Table 4-16.

The general category of "toxics" is by far the cause/stressor that impairs the largest area of marine and estuarine waters in the State. In fact, the "toxics" subcategories of PCBs and dioxins impaired all 2,845.99 square miles of marine/estuarine waters that were assessed in 2008 due to the statewide lobster tomalley consumption advisory described in the previous section. After toxics, the second greatest impaired area (153.55 square miles) of estuarine/marine waters is due to bacterial contamination. By comparison, each of the other remaining general causes is responsible for impairing areas of a few square miles or less.

Industrial point sources have been the largest contributing source category for dioxin. Recently there has been no measurable difference in dioxin concentrations in fish above and below each mill. Though small, unmeasurable discharges still may be occurring these are not significant with respect to bioaccumulation in fish compared to the MCDC's Fish Tissue Action Level. Some industrial loads that are treated through municipal point sources are additional sources although pretreatment is required in most cases. These industrial sources account for all of the shellfish (lobster tomalley) consumption listed waters where dioxins remain the primary contaminant.

NATIONAL COASTAL ASSESSMENT: PROBABILITY-BASED MONITORING

Related Website: www.epa.gov/emap/nca/

The purpose of the National Coastal Assessment (NCA) is to estimate the current status of the condition of the nation's coastal resources on a regional and national basis using ecological indicators. The National Coastal Assessment is based on a probability-based, stratified sampling design. Stations were selected randomly to represent strata (regions) of similar characteristics e.g., Casco Bay, Long Island Sound, etc. Conclusions based on data from such programs are statistically valid for the strata, but are not necessarily representative of conditions at a particular station. The National

Coastal Assessment has not actively sampled the Maine coast since the last reporting cycle.

Please refer to page 95 of the 2006 Integrated Water Quality Monitoring and Assessment Report for information on the National Coastal Assessment. <u>http://www.state.me.us/dep/blwq/docmonitoring/305b/index.htm</u>

PROTECTION OF MARINE LIFE (DESIGNATED USE: HABITAT FOR FISH AND ESTUARINE / MARINE LIFE)

ATTAINMENT OF DISSOLVED OXYGEN STANDARDS

Four water body segments are listed as impaired waters (three in Category 5 and one in Category 4) because they do not attain state standards for dissolved oxygen. The reasons for non-attainment are varied and include natural factors such as benthic respiration and physical circulation factors, as well as potential loadings from point and nonpoint sources. The draft Royal River Waste Load Allocation Study recommends delisting the estuary for dissolved oxygen. The estuary will remain in Category 5 because of high bacteria counts and closure of the shellfishery. The draft Mousam River Waste Load Study indicates that the majority of oxygen loss is due to benthic respiration and circulation factors and that the Kennebunk treatment facility has only a very marginal effect. Upgrades are occurring at that facility and the estuary will be reevaluated after those occur. The upper New Meadows estuary and "Lake" (estuarine salinity) does not meet dissolved oxygen standards. The presumed cause is the partial impoundment on Old Route 1 at the Brunswick-West Bath town line. A modeling study is being conducted to better understand causes and determine solutions. The Piscataqua River estuary has a completed TMDL however implementation in ME and NH is incomplete.

Generally, data from various studies and volunteer monitoring show oxygen levels along the cost to be adequate to protect marine life. Some estuaries have oxygen levels that do not meet their classification criteria and is concluded that many of these instances where criteria are not attained are a result of natural processes. The Maine DEP is initiating a study in cooperation with the USEPA to assess benthic respiration in a number of high quality / least impacted estuaries to assess what expected background values may be.

CASCO BAY ESTUARY PARTNERSHIP

Contact: Director, Casco Bay Estuary Project (CBEP)

Tel: (207) 780-4820 e-mail: <u>cbep@SPAM-ZAPusm.maine.edu</u>

Related Website: www.cascobay.usm.maine.edu

The Casco Bay Estuary Partnership work focuses in five priority areas: habitat protection, toxic pollution, stewardship, clam flat and swimming beach health, and stormwater pollution.

Friends of Casco Bay (FOCB), with support from CBEP, has conducted the Citizens Water Quality Monitoring Program in the bay for the past twelve years. More than 100

citizen volunteers sample surface waters at 80 shore-based stations. They also assist FOCB professional staff with sampling at 10 profile stations located throughout Casco Bay. Measurements include temperature, salinity, pH, water clarity, and dissolved oxygen. The program was expanded to include measurements for chlorophyll fluorescence and dissolved inorganic nutrient concentrations.

Please refer to page 104 of the 2006 Integrated Water Quality Monitoring and Assessment Report for summary of the Casco Bay Estuary Partnership programs. <u>http://www.state.me.us/dep/blwq/docmonitoring/305b/index.htm</u>

CHAPTER 5 WETLANDS

Contact: Jeanne DiFranco, DEP BLWQ, Division of Environmental Assessment (DEA)

Tel: (207) 822-6359 email: <u>Jeanne.L.DiFranco@SPAM-ZAPmaine.gov</u>

Related Websites: <u>www.maine.gov/dep/blwq/wetlands/index.htm</u>

http://www.maine.gov/dep/blwq/docmonitoring/biomonitoring/index.htm

Background

FEDERAL REGULATION

EPA Contact: Jeanne Voorhees, EPA Region I, Office of Ecosystem ProtectionTel: (617) 918-1686email: voorhees.jeanne@SPAM-ZAPepa.gov

Related Website: (EPA) www.epa.gov/owow/wetlands/regs/

ACE Contact: Ruth Ladd, ACE New England Region, Regulatory Division

Tel: (978) 318-8818 email: ruth.m.ladd@SPAM-ZAPusace.army.mil

Related Website: (ACE) www.usace.army.mil/inet/functions/cw/cecwo/reg/index.htm

Lead Agencies: EPA Region I and the U.S. Army Corp of Engineers (ACE) – Maine Project Office

The Clean Water Act provides for wetland protection and regulation through a number of federal programs, most of which are administered by EPA. The Section 404 regulatory program is jointly administered by EPA and the U.S. Army Corps of Engineers. Key elements of the federal wetland protection framework are described in more detail in the Chapter 5 of Maine's 2006 Water Quality Assessment.

WETLANDS REGULATORY PROGRAM IN MAINE'S ORGANIZED TOWNS

Contact: Jeff Madore, DEP BLWQ, Division of Land Resource Regulation (DLRR)

Tel: (207) 287-7848 email: <u>Jeff.G.Madore@SPAM-ZAPmaine.gov</u>

Related Website: (NRPA) www.maine.gov/dep/blwq/docstand/nrpapage.htm

Maine DEP regulates wetland alterations in the organized townships under the Natural Resources Protection Act 38 M.R.S.A., Section 480-A et seq. (NRPA) and Chapter 310 Wetlands and Waterbodies Protection Rules. Additional information on the DEP wetlands regulatory program is available at the above web site.

New Initiatives:

As of September 1, 2007, *significant vernal pool habitat* is protected by law under the Natural Resources Protection Act (NRPA). Vernal pools or "spring pools" are shallow depressions that usually contain water for only part of the year. "Significant vernal

pools" are a subset of vernal pools with particularly valuable habitat. More information is available on the DEP web site at:

http://www.maine.gov/dep/blwq/docstand/nrpa/vernalpools/fs-vernal_pools_intro.htm .

Recognizing the value of specific bird habitats to the State's environment and quality of life, the Maine Legislature determined that these habitats warranted protection under the Natural Resources Protection Act (NRPA) in 1988 as "Significant Wildlife Habitats". After 10 years of data collection and 2 years of legislative review to complete the development of habitat screening maps and additional rulemaking, the DEP began regulating activities "in, on or over" valuable waterfowl and wading bird habitat and shorebird feeding and roosting areas on June 8, 2006. Additional modifications to these regulations were effective June 14, 2007. Copies of the rules that define these habitats and establish licensing criteria ("Chapter 335, Significant Wildlife Habitat") are available by mail or on the internet at MaineDEP.com under "NRPA." DEP fact sheet available keyword Α is also at http://www.maine.gov/dep/blwg/docstand/nrpa/birdhabitat/bird habitat.htm .

WETLANDS REGULATORY PROGRAM IN UNORGANIZED TERRITORIES

Contact: Marcia Spencer-Famous, Senior Planner, DOC LURC, Planning & Administration Division

Tel: (207) 287-4933 email: Marcia.Spencer-Famous@SPAM-ZAPmaine.gov

The Maine Land Use Regulation Commission (LURC) uses a land use planning approach to regulate wetlands in unorganized portions of the State, in accordance with the provisions of Title 12, Sections 681-689 (Use Regulation) and Chapter 10 of LURC rules (Land Use Districts and Standards). Details about LURC's wetlands regulatory program may be found in Chapter 5 of Maine's 2006 Water Quality Assessment, or by contacting Marcia Spencer-Famous.

Development of Wetland Water Quality Standards

Contact: Jeanne DiFranco, DEP BLWQ, Division of Environmental Assessment (DEA)

Tel: (207) 822-6359 email: <u>Jeanne.L.DiFranco@SPAM-ZAPmaine.gov</u>

Related Websites: (EPA)

(Wetland Water Quality) <u>www.epa.gov/owow/wetlands/regs/quality.html</u>

(General Water Quality Standards) www.epa.gov/ost/standards/

In Maine, wetlands are included in the definition of "Waters of the State" contained in the Protection and Improvement of Waters Act, 38 M.R.S.A. Section 361-A, and are further defined as either "fresh surface waters" or "estuarine and marine waters". As waters of the State, wetlands are subject to all pertinent provisions of the Maine Water Classification Law, including designated uses, narrative biological criteria and the State's anti-degradation policy. The Maine DEP Biological Monitoring Program is currently developing wetland-specific biological criteria based on tiered aquatic life uses to refine the State's capability to evaluate wetland condition. DEP is also in the process of clarifying how existing criteria apply to wetlands. This will allow the Department to report on attainment status for wetlands in the future.

Integrity of Wetland Resources

Contact: Jeanne DiFranco, DEP BLWQ, Division of Environmental Assessment (DEA)

Tel: (207) 822-6359 email: <u>Jeanne.L.DiFranco@SPAM-ZAPmaine.gov</u>

WETLAND MONITORING AND ASSESSMENT

Related Website:

http://www.maine.gov/dep/blwq/docmonitoring/biomonitoring/index.htm

Annual Monitoring:

The Maine wetland biomonitoring initiative has been incorporated into DEP's Biological Monitoring Program in the Division of Environmental Assessment. The Biomonitoring Program is responsible for implementing core wetland program elements related to monitoring and assessment and water quality standards as required under the Clean Water Act. The program also addresses State priorities in the Maine Wetland Conservation Plan and DEP Performance Partnership Agreement. Wetland biomonitoring is coordinated with the State's river and stream biomonitoring program using a 5-year rotating basin schedule.

DEP conducts wetland site assessments using biological monitoring, which includes sampling for aquatic macroinvertebrates, epiphytic algae and phytoplankton. Associated physical and chemical data are obtained through field measurements and analysis of water samples. Habitat descriptions, Cowardin classification, hydrogeomorphic setting, substrate, and dominant plant species/community type are also documented. In addition, the DEP Biomonitoring Program uses a Human Disturbance Score as part of a rapid assessment of wetland condition. This information is used to characterize relative levels of human disturbance for biological metric development, identify sources and causes of degradation, and verify that candidate reference wetlands are actually minimally-disturbed.

In 2006, DEP conducted biological monitoring and assessment of 22 wetland stations in the Penobscot, St. Croix and down east coastal watersheds. DEP staff partnered with monitoring staff of the Penobscot Indian Nation and the Passamaquoddy Tribe to identify sites of tribal concern in the target watersheds. The DEP Biomonitoring Unit provided training in wetland monitoring methods for both tribes, and tribal members assisted the Unit with wetland field work. DEP also collaborated with staff of the Moosehorn and Sunkhaze Meadows National Wildlife Reserves to select wetland biomonitoring stations within reserve lands. In 2007, the Biological Monitoring Program conducted monitoring and assessment of 23 wetland stations in the Kennebec River watershed.

Extent of Wetland Resources

WETLAND LOSS TRACKING IN MAINE'S ORGANIZED TOWNS

Contact: Mike Mullen, DEP BLWQ, Division of Land Resource Regulation (DLRR) Tel: (207) 287-4728 email: <u>Mike.Mullen@SPAM-ZAPmaine.gov</u> Related Website: www.maine.gov/dep/blwg/wetlands/threats.htm

Maine DEP tracks permitted wetland losses and mitigation in the organized townships through an application tracking system. When applications for any wetland alterations are logged in, the amount of fill or area to be altered is also entered by wetland type and geographical location. This system enables the Department to monitor and report on annual wetland losses. Wetland mitigation and DEP permitted impacts for 2006 and 2007 are summarized in Tables 5-1 and 5-2 below.

Table 5-1 Wetland Mitigation Totals in the Organized Townships

Area of Mitiga	tion (Acres)	- 2006			
(1/1/2006-12/3	31/2006)				
Wetland	Creation	Enhancement	Preservation	Restoration	Total
Туре					
Forested	1.2	0	66.23	0.57	68.0
Other/Mixed	1.0	4.27	124.7	1.17	131.14
Emergent	0	3.5	6.3	0	9.8
Scrub-shrub	0	0	0	0	0
Open water	0	0	0	0	0
Riverine	0	0	2.2	0.01	2.21
Wet Meadow	0.84	1.43	0	3.3	5.57
Upland	0	0	62.58	0	62.58
Intertidal (other)	0	0	0	0	0
Subtidal (other)	0	0	0	0	0
Total	3.04	9.2	262.01	5.05	279.3

Source: Maine DEP Wetland Loss Tracking System

Wetland	Creation	Enhancement	Preservation	Restoration	Total
Туре					
Forested	15.7	1.26	65.64	2.54	85.14
Other/Mixed	0	3.49	151.33	3.6	158.42
Emergent	0	0	15.0	0	15.0
Scrub-shrub	0.46	0	32.5	0	32.96
Open water	0	0	16.94	.01	16.95
Riverine	0	0.02	0	0	0.02
Wet Meadow	0	1.02	0	0	1.02
Upland	0	0.04	169.93	0	169.97
Intertidal (other)	0	0	0	.04	0.04
Subtidal (other)	0	0	0	0	0
Total	16.16	5.83	451.34	6.19	479.52

Table 5-1 (continued). Wetland Mitigation Totals in the Organized Townships.

Table 5-2 Permitted Wetland Mitigation Totals in the Organized Townships

Source: Maine DEP Wetland Loss Tracking System

Area Impa	icted (/	Acres) -	2006							
	Cranberry permit		(1/1/2006 Full NRPA permit		6-12/31/2006) Tier I		Tier II		Total	
Wetland Type	Filled	Altered	Filled	Altered	Filled	Altered	Filled	Altered	Filled	Altered
Emergent	0	0	1.0	0	0	0	0	0	1.0	0
Forested	0	0	11.7	0	12.27	0.89	5.28	0	29.25	0.89
Great Pond	X	Х	0	0	X	Х	Х	Х	0	0
Intertidal (mudflat)	X	Х	0.03	0.14	X	X	X	X	0.03	0.14
Intertidal (other)	X	X	0.07	0.62	X	X	X	X	0.07	0.62
Intertidal (vegetated)	X	X	0.04	0.14	X	Х	X	X	0.04	0.14
Open Water	0	0	0	0.15	0	0	0	0	0	0.15
Other/Mixed	0	0	11.58	0.08	2.06	0.46	2.08	0	15.72	0.54
Peatland	0	0	0	0	0	0	0	0	0	0
Riverine	X	Х	0.04	0.06	X	X	X	X	0.04	0.06
Scrub-shrub	0	0	2.5	1.97	1.65	0.47	1.11	0	5.26	2.44
Subtidal (aquatic bed)	X	X	0.35	1.91	X	X	X	X	0.35	1.91
Subtidal (other)	X	X	0	1.29	X	X	X	X	0	1.29
Wet Meadow	0	0	0.22	0.56	1.57	0	0.45	0	2.24	0.56
Upland	0	0	0	0.02	0	0	0	0	0	0.02
Total	0	0	27.53	6.94	17.55	1.82	8.92	0	54.0	8.76

(78)		11			7-12/31/2	007)				
Wetland	Cran perm	iberry nit	1. State Contract	NRPA ermit	Tier I		Tier II		Total	
Туре	Filled	Altered	Fille d	Altered	Filled	Altered	Filled	Altered	Filled	Altered
Emergent	0	0	0.09	0	0.39	0.02	0.34	0	0.82	0.02
Forested	0	0	19.7 4	0.16	13.81	0.37	7.4	4.46	40.95	4.99
Great Pond	X	X	0.02	0.15	X	X	Х	X	0.02	0.15
Intertidal (mudflat)	X	X	0.48	0.46	X	X	X	X	0.48	0.46
Intertidal (other)	X	X	0.38	0.65	X	X	X	X	0.38	0.65
Intertidal (vegetated)	X	X	0.1	0.04	X	X	X	X	0.1	0.04
Open Water	0	0	0	1.39	0.04	0	0	0	0.04	1.39
Other/Mixed	0	0	11.1 7	22.49	3.02	0.55	2.39	0	16.58	23.04
Peatland	0	0	0	0	0	0	0	0	0	0
Riverine	X	X	0.18	0.09	X	X	X	X	0.18	0.09
Scrub-shrub	0	0	14.8 5	5.66	2.68	0.3	0.8	0	18.33	5.96
Subtidal (aquatic bed)	X	X	0	2.02	X	X	X	X	0	2.02
Subtidal (other)	X	X	0	0.23	X	X	X	X	0	0.23
Wet Meadow	0	0	0.19	0	3.26	0.62	2.01	0	5.4600	0.62
Upland	0	0	0.03	0	0	0	0	0	0.03	0
Total	0	0	47.2 3	33.34	23.2	1.86	12.94	4.46	83.37	39.66

Table 5-2 (continued). Permitted Wetland Impacts in the Organized Townships.

X = Tier review not available for projects located in these resources

WETLAND LOSS TRACKING IN MAINE'S UNORGANIZED TERRITORIES

Contact: Marcia Spencer-Famous, Senior Planner, DOC LURC, Planning & Administration Division

Tel: (207) 287-4933 email: Marcia.Spencer-Famous@SPAM-ZAPmaine.gov

The Maine Land Use Regulation Commission's (LURC) Geographically Oriented Action Tracker (GOAT) system incorporates the wetlands loss tracking database into LURC's overall permit tracking system. Previously, wetland loss data were kept in a separate database. In addition to the wetlands loss data such as wetland type, size of area lost, etc, GOAT allows wetland loss to be tied to the tax lot using GIS. Because of staff and budget cuts, wetlands loss tracking up until now has been inconsistent, making reporting of losses less than complete. LURC anticipates in coming years to be able to generate realistic reports on wetland losses in the unorganized townships and territories.

CHAPTER 6 GROUNDWATER MONITORING & ASSESSMENTS

Contact: Marianne DuBois, DEP BLWQ, Division of Environmental Assessment (DEA)

Tel: (207) 287-2115 email: <u>Marianne.S.DuBois@SPAM-ZAPmaine.gov</u>

Related Website: www.maine.gov/dep/blwq/gw.htm

Overview

Maine's groundwater may be threatened by contamination, particularly in unforested areas, which comprise approximately 11% of the State. Important sources of groundwater contamination in Maine include disposal activities such as landfills and septic systems, leaking storage facilities, agriculture, and sites contaminated with spilled hazardous materials or by previously unregulated activities.

Generally, the ground water supply in Maine is adequate. The total withdrawal of ground water by all water users is less than one percent of the annual ground water recharge each year. The remaining annual ground water recharge is lost through evapotranspiration or discharges to ponds, lakes, rivers, and streams. Seasonal variations in water tables can lead to local ground water shortages. The Maine Drought Task Force (convened by the Maine Emergency Management Agency) publishes information on Maine ground water and surface water levels at the following website: www.maine.gov/mema/drought

Ground water is withdrawn from three basic types of aquifers in Maine: unconsolidated glaciofluvial deposits (stratified drift or sand and gravel aquifers), till, and fractured bedrock. The stratified drift deposits are the most favorable for development of large volume water supply wells, but these deposits are limited in size and distribution (less than about 10% of the state). Discontinuous bedrock aquifers underlie the entire state and are used for domestic, commercial, industrial and agricultural purposes, and for small public supplies such as schools, restaurants, and summer camps. Wells in till do not generally yield large quantities of water and are most often used for individual domestic water supplies.

Background

The protection of Maine ground water is an issue of concern at all levels of government. Serious ground water pollution problems that have occurred throughout the State and elsewhere have heightened the need for protecting ground water supplies. A few municipalities and regional planning agencies have conducted ground water quality assessment studies, but programs for comprehensive assessment of the quality of ground water resources are needed. Maine's ground water protection programs (Table 6-1) emphasize three areas of effort:

1. State interagency coordination of ground water programs;

2. Assessment of ground water protection problems, including enhancement of the Environmental Groundwater Assessment Database (EGAD); and

3. Statutory changes and building upon implemented state ground water protection programs to increase ground water protection and risk reduction.

Please refer to page 124 of the 2006 Integrated Water Quality Monitoring and Assessment Report for a table of State groundwater protection programs. http://www.state.me.us/dep/blwq/docmonitoring/305b/index.htm

Assessment of Ground Water Quality

In Maine, ground water is classified by its suitability for drinking water purposes. Under the Maine Water Classification Program, ground water is classified as either potable (GW-A) or unpotable (GW-B). Water is unpotable when the concentrations of chemical compounds detected exceed either the Maximum Contaminant Levels (MCL) or the Maximum Exposure Guidelines (MEG) as defined in the Rules Relating to Drinking Water administered by the Maine Department of Health and Human Services (DHHS). Although there are many localities where ground water is unpotable and highly contaminated, no ground water is currently classified GW-B. The state is not currently attempting to designate non-attainment areas.

AQUIFER CHARACTERIZATION ACTIVITIES

Contact: Tom Weddle, DOC BGNA, Maine Geological Survey, Applied Geology Division Director, Hydrogeology Section

Tel: (207) 287-2801 email: <u>Thomas.K.Weddle@SPAM-ZAPmaine.gov</u>

Related Websites: Aquifer Fact Sheet

www.maine.gov/doc/nrimc/mgs/explore/water/facts/aquifer.htm

Aquifer Mapping: <u>www.maine.gov/doc/nrimc/mgs/pubs/series/descrip-aq.htm</u>

The Maine Geological Survey (MGS) is at the "average characteristics" stage in characterizing the physical and chemical attributes of the State's stratified drift aquifers. While site specific data do exist for some aquifers (primarily in the vicinity of ground water resource evaluation projects and contamination sites), complete physical pictures of most aquifer systems do not exist. Hard data on the exact natural chemical processes controlling ground water chemical evolution that occur along a flow path in sand and gravel aquifers are also lacking. MGS has some ambient water quality data but has not yet fully characterized any particular aquifer system.

Please refer to page 126 of the 2006 Integrated Water Quality Monitoring and Assessment Report for further discussion of aquifer characterization activities. http://www.state.me.us/dep/blwq/docmonitoring/305b/index.htm

OVERVIEW OF GROUND WATER CONTAMINATION SOURCES

Most ground water contamination in Maine originates from nonpoint source pollution rather than point source pollution. The following discussion focuses primarily on nonpoint contamination sources that appear to be responsible for most ground water contamination in the State: agriculture, hazardous substance sites, spill sites, landfills, leaking underground storage tanks, septic systems, and shallow well injection. Please refer to the 2006 report beginning on page 127 for additional background information on other sources of contamination, and for additional information on the sources listed above. http://www.state.me.us/dep/blwq/docmonitoring/305b/index.htm

Petroleum Storage Tanks and Product Spills

UNDERGROUND TANKS

Contact: Bruce Hunter, DEP BRWM, Division of Technical Services

Tel: (207) 287-7672 email: <u>Bruce.E.Hunter@SPAM-ZAPmaine.gov</u>

Related Websites:

(General Information) www.maine.gov/dep/rwm/ust/

(Rules for UST Facilities) www.maine.gov/sos/cec/rules/06/096/096c691.doc

LEAKING UNDERGROUND TANKS AND DRINKING WATER WELLS

The Leaking Underground Storage Tank (LUST) Remediation Priority List tracks clean-up sites and provides an objective scoring system to determine which sites receive scarce clean-up dollars. In general, the higher the score, the more quickly resources are allocated to clean up a site. Table 6-1 shows the number of sites placed on this Priority List and the change since the previous 305b report.

Table 6-1 LUST Remediation Priority	Sites – Number of Sites as of Feb 2008
Table 0-1 LOST Memeulation Fhorit	y Siles – Number of Siles as of teb 2000

Total Number of Sites Since 1994	Number of Sites Closed	Number of Active Sites	
1711	1269	442	
Numerical Change and	l Percent Change from 2 years ago (pr	evious 305b report)	
355 / 26% increase	210 / 20% increase	145 / 49% increase	

The sites on the priority list are limited to those contaminated by petroleum products (as opposed to all hazardous chemicals and all hazardous wastes), but it is not limited to USTs. Many of the sites on the priority list are home heating oil tanks. Which are typically aboveground storage tanks (ASTs). Table 6-2 shows the number of private water wells and public water supplies contaminated by petroleum products or threatened with contamination by petroleum products as of February 2008. Note that one active site can contaminate or threaten more than one well.

Table 6-2 Current (February 2008) LUST Remediation Priority Sites - Contamination Summary

Number of Contaminated Wells*	Number of Contaminated Public Water Supplies	Number of Threatened Wells*	Number of Threatened Public Water Supplies	
277	15	659	30	
Numerical	Change and Percent Change	from 2 years ago (previous	305b report)	
-29 / 9% decrease	-18 / 55% decrease	+200 / 44% increase	-6 / 17% decrease	

* Does not include public water supplies.

ABOVE GROUND STORAGE TANKS

Contact: David McCaskill, DEP BRWM, Division of Technical Services Tel: (207) 287-7056 email: <u>David.McCaskill@SPAM-ZAPmaine.gov</u> Related Website: <u>www.maine.gov/dep/rwm/abovegroundtanks</u>

ABOVE GROUND STORAGE TANK SPILL INFORMATION

Maine averages over one heating oil spill per day from ASTs at single family residences (See Figure 6-1). One reason for this statistic is that ASTs are commonly used in Maine. The 2000 U.S. Census figures show that 80% of Maine households are heated with oil. The vast majority of these households have 275 gallon ASTs located either in the basement or outside the residence.

Please refer to page 128 of the 2006 Integrated Water Quality Monitoring and Assessment Report for further information on aboveground storage tanks in Maine. <u>http://www.state.me.us/dep/blwq/docmonitoring/305b/index.htm</u>

New Legislation Requires the Registration of Underground Piping That Is Connected to Aboveground Motor Fuel Tanks

In 2006, the Maine Legislature adopted a law that establishes new requirements for facilities with aboveground tanks storing motor fuel (gasoline, diesel, biodiesel, aviation gasoline, jet fuel, gasohol or other fuels used in the operation of a vehicle or motor engine) and that are connected to underground piping. The law establishes annual registration and annual inspection requirements very similar to those of USTs for this class of ASTs.

All motor fuel ASTs (except for diesel tanks) with underground piping must be registered by 1 January 2007 and be inspected by 1 July 2007. Diesel tanks have an extra 2 years to meet these requirements. (Register by 1 January 2009, and inspect by 1 July 2009.) Further, by 1 January 2011, all pre-June 24, 1991 underground piping systems at all motor fuel ASTs must meet the current DEP's leak detection standards. This closes an important loophole that allowed pre-June-1991 underground piping, such as single wall, pressurized piping, to remain in the ground. As of the end of 2007, 127 AST facilities with underground piping storing motor fuel (not including diesel fuel) have registered their facilities with DEP; 72 of these have submitted the required annual inspection.

SPILL PREVENTION, CONTROL & COUNTERMEASURES PROGRAM FOR ABOVE GROUND TANKS

Contacts: David McCaskill, DEP BRWM, Division of Technical Services

Tel: (207) 287-7056 email: <u>David.McCaskill@SPAM-ZAPmaine.gov</u>

Related Website: <u>www.maine.gov/dep/rwm/spcc/</u>

Extension of Maine's SPCC Program

In 2005, the Maine Legislature made permanent legislation granting the DEP jurisdiction to enforce the federal Spill Prevention Control and Countermeasures (SPCC) regulations (40 CFR Part 112) for facilities that "market and distribute oil to others." The state SPCC program's jurisdiction is comprised primarily of retail gas stations and bulk plants, with a smaller component of airports and marinas. The State SPCC statute also mandated that the DEP provide education and outreach to affected facility owners to encourage their compliance with the federal SPCC rules.

Please refer to page 129-130 of the 2006 Integrated Water Quality Monitoring and Assessment Report for further information on the SPCC Program. http://www.state.me.us/dep/blwq/docmonitoring/305b/index.htm

Oil or Hazardous Materials Spills

Contact: Lyle Hall, DEP BRWM, Division of Program Services

Tel: (207) 287-7499 Lyle.S.Hall@SPAM-ZAPmaine.gov

Related Websites: (Database Reports) www.maine.gov/dep/rwm/data/index.htm

(2004 Spill Report)

www.maine.gov/dep/rwm/publications/pdf/2004statisticalreportfinal.pdf

The DEP BRWM Response Division responded to approximately 2,968 reports of oil or hazardous material events between January of 2006 and December of 2006. Of these events, 467 do not have completed reports and, therefore, are not included in this discussion. An estimated 86% of these responses involved discharges of petroleum products to soil and/or groundwater. During this period, response services personnel discovered over 39 wells that had been contaminated from these spills. Due to further investigation and report completion, these figures are subject to change. Table 6-3 provides information on the 2,501 spills that had completed spill reports.

Spill Location Type	Percent of Total Spills	Number of Spills	Number of Wells Impacted	
Business	24.91%	623	6	
Government	5.92%	148	0	
Residential	25.43%	636	20	
School	1.44%	36	0	
Terminal	12.44%	311	11	
Transportation System	15.35%	384	0	
Utility	10.40%	260	0	
Other	4.12%	103	2	
Total	100%	2,501	39	

Table 6-3 Oil and Hazardous Materials Spills – January 2006 to December 2006

Please refer to page 130 of the 2006 Integrated Water Quality Monitoring and Assessment Report for further information on oil spill reporting in Maine. http://www.state.me.us/dep/blwg/docmonitoring/305b/index.htm

Agriculture

Contact: Matthew Randall, Maine Department of Agriculture, Office of Agricultural, Natural and Rural Resources, Agricultural Compliance Program

Tel: (207) 287-1132 email: <u>Matthew.Randall@SPAM-ZAPmaine.gov</u>

Related Website: <u>www.maine.gov/agriculture/narr/compliance.html</u>

In 2002, the total estimated cropland in Maine was 536,839 acres. The agricultural community uses chemicals for pest control and weed eradication; in addition, many farmers apply chemical fertilizers and manure to their agricultural lands. These are all major potential sources of ground water contamination. The major areas of chemical application include potato fields in Aroostook County, blueberry barrens in Hancock and Washington Counties, and apple orchards and forage cropland in Central Maine. Pesticides and nitrates are the main categories of agricultural ground water contaminants.

MAINE'S NUTRIENT MANAGEMENT LAW

Contact: Mark Hedrich, Nutrient Management Coordinator, Maine Department of Agriculture, Division of Animal Health and Industry

Tel: (207) 287-7608 email: Mark.Hedrich@SPAM-ZAPmaine.gov

Related Website: <u>http://www.maine.gov/agriculture/narr/nutrientmanagement.html</u>

Please refer to page 131 of the 2006 Integrated Water Quality Monitoring and Assessment Report for more information on the Maine Nutrient Management Program. <u>http://www.state.me.us/dep/blwq/docmonitoring/305b/index.htm</u>

Impacts of the Law: Implementing nutrient management on farms can better protect ground and surface water. By applying manure and other nutrients only in the amounts needed for crop production and in a way that will consider nearby sensitive resources, fewer nutrients will leave the site and impact water quality. Studies of Maine farms where nutrient management practices have been implemented show that water quality within a watershed can be significantly improved.

Pesticides

Contact: Henry Jennings, Maine Department of Agriculture, Board of Pesticides Control (BPC)

Tel: (207) 287-2731 email: <u>Henry.Jennings@SPAM-ZAPmaine.gov</u>

Related Websites: www.maine.gov/agriculture/pesticides/water/index.htm

http://www.maine.gov/agriculture/pesticides/pdf/06rptGWhexazinone.rtf

Pesticides can infiltrate soils and reach aquifers as a result of applications to croplands, forests, rights of way, home lawns, etc., and also from accidental spills, leaks, or improper disposal.

Ground water monitoring as described in Maine's Hexazinone State Management Plan is being continued. Approximately 50 private drinking water wells within 1/4 mile of blueberry fields are currently being sampled. Results for monitoring from 1994-2006 are summarized in Table 6-4, below:

Sampling Results	Spring 1994	Spring 1998	Spring 2002	Spring 2006
Total Number of Samples Collected	20	42	49	46
Number of Positive Detections	15	18	29	32
Percentage with Positive Detections	75%	42.8%	59.2%	69.6%
Mean Concentration*(ppb)	1.08	0.41	1.45	.98
Median Concentration (ppb)	0.31	ND	0.43	.34
Highest Reading (ppb)	5.97	2.15	11.41	8.43

Table 6-4	Hexazinone	Monitoring -	1994 through 2006
-----------	------------	--------------	-------------------

*For statistical purposes only, mean concentration was calculated assuming that non detections (ND) were equal to half of the limit of quantification (LOQ). LOQ = 0.1 ppb for 2002 samples.

Please refer to pages 132-133 of the 2006 Integrated Water Quality Monitoring and Assessment Report for further information on pesticides in groundwater. http://www.state.me.us/dep/blwg/docmonitoring/305b/index.htm

Landfills

Contacts: Paula Clark, DEP BRWM, Division of Solid Waste Management

Tel: (207) 287-7718 email: Paula.M.Clark@SPAM-ZAPmaine.gov

and Ted Wolfe, DEP BRWM, Division of Solid Waste Management

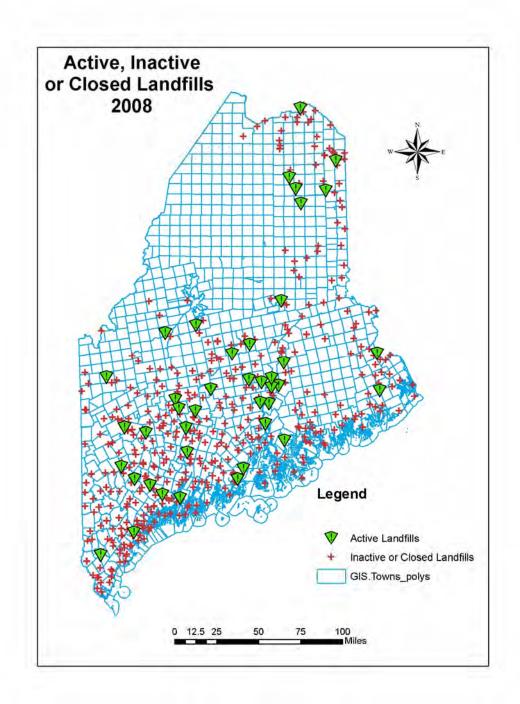
Tel: (207) 287-8552 email: <u>Theodore.E.Wolfe@SPAM-ZAPmaine.gov</u>

Related Website: www.maine.gov/dep/rwm/solidwaste/index.htm

The Maine Department of Environmental Protection is directed by statute to regulate the location, establishment, construction, expansion and operation of all solid waste facilities in the state, including landfills.

ACTIVE LANDFILLS

Related Website: www.maine.gov/dep/rwm/data/landfillactive.htm


There are currently 50 active, licensed landfills in the state of Maine (Figure 6-1).

INACTIVE LANDFILLS

A total of 415 municipal landfills have been identified in the state. As of June 2007, 389 of these landfills have been closed and capped (Figure 6-1).

Please refer to pages 133-136 of the 2006 Integrated Water Quality Monitoring and Assessment Report for further information on Maine landfills and residual land applications. <u>http://www.state.me.us/dep/blwg/docmonitoring/305b/index.htm</u>

Road Salt

Contacts: Erich Kluck, DEP BLWQ, Division of Water Quality Management Regulation (DWQM)

Tel: (207) 287-3901 email: Erich.D.Kluck@SPAM-ZAPmaine.gov

or Christine Olson, Maine Department of Transportation, Environmental Office

Tel: (207) 287-3323 email: Christine.Olson@SPAM-ZAPmaine.gov

Related Website: (Rules - Chapter 574) www.maine.gov/dep/blwq/574final.pdf

(Sand and Salt Piles) www.maine.gov/dep/blwq/docstand/sandsalt/index.htm

DEP is actively involved with siting of new sand-salt buildings and piles and continues to investigate contamination from sand-salt piles on a case-by-case basis. DEP's Sand-Salt Storage Area Rule (Chapter 574) prohibits siting of new sand-salt storage areas on significant sand and gravel aquifers, within source water protection areas of public water supplies and within 300 feet of a private domestic well. MDOT continues to handle complaints related to sand-salt piles that they operate, and roads they maintain.

Federal Facilities, Superfund and Hazardous Substance Sites

Contact: David Wright, DEP BRWM, Division of Remediation Tel: (207) 287-2651 email: <u>David.W.Wright@SPAM-ZAPmaine.gov</u> Related Websites: (Maine DEP Information) <u>www.maine.gov/dep/rwm/rem/index.htm</u> (Federal EPA Information) <u>www.epa.gov/ebtpages/cleasuperfund.html</u>

As of January 31, 2008, DEP has identified 1388 potential hazardous substance sites & closed landfills in Maine. The Division of Remediation investigates and mitigates the risk posed to public health and the environment from these sites. The Department may undertake the investigation and clean-up themselves, but more often compels potential responsible parties to undertake the work, through either the states uncontrolled sites program (for smaller sites) or via one of two federal programs: the federal RCRA program for recently operated sites, or the CERCLA program (the federal Comprehensive Environmental Response and Comprehensive Liability Act, aka Superfund) at sites where operators are not longer viable. Additionally, many sites are investigated and remediated under one of two voluntary programs: the Brownfields Program, which partially funds the work with federal dollars, and Maine's Voluntary Remedial Action Program (VRAP) or. The table below shows the number of sites within each program, and the stage of investigation and remediation of the sites. Please note that 171 sites are covered under more than one program in Table 6-5 below.

 Table 6-5 Numer of sites in various Division of Remediation programs

	Number of sites by Program*							
Site Status	BROWN FIELDS	FEDERAL FACILITIES	LANDFILL CLOSURE	OTHER	RCRA	SUPER FUND	UN- CONTROLLED SITES	VRAP
In Review	6	20	0	1	1	0	183	42
Investigation Needed	3	3	12	0	0	1	11	11
Investigation in Progress	<mark>45</mark>	5	0	1	0	1	20	2
Investigation Complete	11	0	0	0	0	0	1	2
Remediation Needed	8	0	13	0	0	0	<mark>1</mark> 0	16
Remediation Underway	9	7	0	0	1	10	19	29
Operation and Maintenance	0	0	378	0	4	3	64	9
No Further Action Needed	27	16	3	1	1	0	84	432
Referred to Other Programs	0	2	0	0	0	0	18	2
Status Unknown	0	0	5	0	1	0	5	0
Total	109	53	411	3	8	15	415	545
*note that 171	sites are co	overed under	more than on	e program				

Resource Conservation and Recovery Act (RCRA) Sites

Contact: Stacy Ladner, DEP BRWM, Division of Oil and Hazardous Waste Facilities Regulation (OHWFR)

Tel: (207) 287-2651 email: Stacy.A.Ladner@SPAM-ZAPmaine.gov

Related Website: www.maine.gov/dep/rwm/hazardouswaste/index.htm

The DEP currently lists approximately 90 sites with non-interim Resource Conservation & Recovery Act (RCRA) licenses and 60 sites with interim licenses. Over 70 sites are under investigation for possible ground water or surface water contamination. Forty sites listed under RCRA have ground or surface waters that have been contaminated by discharges of hazardous substances. Twenty-three of these 40 facilities have ongoing, active remediation.

Septic Systems

Contact: Russell Martin, DHHS MCDC&P, Division of Environmental Health, Subsurface Wastewater Program

Tel: (207) 287-4735 email: <u>Russell.Martin@SPAM-ZAPmaine.gov</u>

Related Website: www.maine.gov/dhhs/eng/plumb/index.htm

The Department of Health and Human Services, Maine Center for Disease Control and Prevention, has regulated onsite sewage disposal since 1926. This responsibility rests with DHHS because the treatment and disposal of human sanitary waste has been historically considered a public health issue. The Subsurface Wastewater Program within the Division of Environmental Health promulgates and administers the Subsurface Wastewater Disposal Rules. The Program also maintains microfiche copies of all plumbing and subsurface wastewater permits that have been issued statewide from 1974 to the present. During the 2006 fiscal year, the Program processed 12,000 internal plumbing and 10,000 subsurface wastewater permits.

NITRATES AND SEPTIC SYSTEMS

The Health and Environmental Testing Laboratory (HETL) database contains the results of water tests done on private wells. This database provides the largest sample of private well nitrate concentrations in the state. Assuming that the HETL database for nitrate-N represents Maine ground water quality, data from January 2006 to May 2007 indicate approximately 98% of wells sampled have concentrations below 5 mg/L, well below the 10 mg/L drinking water standard for nitrate-N (Table 6-9). This percentage has remained steady for the past few reporting cycles.

Nitrate-N (mg/L)	HETL Database ¹ (percent)	HETL Database ² (percent)	HETL Database ³ (percent)
0.00 to 2.50	91.9	92	93.7
2.51 to 5.00	5.6	6.0	4.5
5.01 to 7.50	2.0	2.0	1.1
7.51 to 10.00	0.5	0.4	0.5
Greater than 10.0	0.0	0.6	0.2
Number of Analyses	2,197	3,638	7,100

Table 6-6 Nitrate-N Frequency Distributions

HETL database for private well analyses between 1/1/04 and 5/31/05.

²HETL database for private well analyses between 1/1/02 and 12/31/03.

³HETL database for private well analyses between 1/1/06 and 5/31/07.

BACTERIA

Private well testing for bacteria identifies a greater contamination potential from bacteria than from nitrate. In public and private drinking water supplies, coliform bacteria are used as the indicator of microbial contamination. The Primary Drinking Water Standard for total coliform bacteria is 0 colonies per 100 ml.

Table 6-7 shows that larger percentages of dug wells test positive for bacteria than drilled wells. This lends support to the belief that dug wells are more susceptible to bacterial contamination than drilled wells.

	HETL Database 1960-1990	HETL Database 1/04-5/05	HETL Database 6/06-8/06 ¹		
Well Type	% wells positive for total Coliform or E. Coli	% wells positive for total Coliform or E. Coli	% wells positive for total Coliform or E. Coli		
Dug	52%	32%	35%		
Drilled	24%	14%	16%		

Table 6-7 Wells testing positive for E. coli or total coliform

¹Only Data available from HETL which distinguishes the well type was from this time period in 2006. HETL stopped collecting well type data after 2006.

Please refer to pages 138-140 of the 2006 Integrated Water Quality Monitoring and Assessment Report for further information on nitrates, bacteria, and septic systems in Maine. <u>http://www.state.me.us/dep/blwq/docmonitoring/305b/index.htm</u>

Shallow Well Injection and the Underground Injection Control (UIC) Program

Contacts: Erich Kluck, DEP BLWQ, Division of Water Quality Management (DWQM)

Tel: (207) 287-3901 email: Erich.D.Kluck@SPAM-ZAPmaine.gov

Related Website: www.maine.gov/dep/blwq/docstand/uic/index.htm

The underground discharge of pollutants by shallow well injection has been illegal in Maine since 1983 when the State adopted the Federal Underground Injection Control (UIC) regulations. The revised rule for UIC was adopted by the BEP in September 2006 and the Primacy package was sent to the U.S. EPA in October of 2006. Table 6-8 lists information on numbers of inspections and registrations for the Federal Fiscal Year 2007 (October 06- September 07).

Table 6-8 Underground Injection Control Program Information

Federal Fiscal Year 2007	New Registrations	Inspections	Variances	Notices of Violation	Enforcement Referrals
FFY2007	10	26	9	12	0

Other Programs

Please refer to pages 142-144 of the 2006 Integrated Water Quality Monitoring and Assessment Report for further information on programs which may monitor for affects to groundwater from the following activities. http://www.state.me.us/dep/blwg/docmonitoring/305b/index.htm

STORMWATER INFILTRATION

Contact: John Hopeck, DEP BLWQ, Division of Environmental Assessment (DEA) Tel: (207) 287-3901 email: <u>John.T.Hopeck@SPAM-ZAPmaine.gov</u>

SALT-WATER INTRUSION

Contact: Marc Loiselle, DOC BGNA, Maine Geological Survey, Applied Geology Division, Hydrogeology Section

Tel: (207) 287-2801 email: Marc.Loiselle@SPAM-ZAPmaine.gov

In coastal areas, excessive ground water withdrawals and/or well placements that are too close to the shoreline may lead to saltwater intrusion.

METALLIC MINING

Contact: Mark Stebbins, DEP BLWQ, Division of Land Resource Regulation (DLRR) Tel: (207) 822-6367 email: <u>Mark.N.Stebbins@SPAM-ZAPmaine.gov</u> Related Website: <u>www.maine.gov/dep/blwg/docstand/miningpage.htm</u>

GRAVEL PITS

Contact: Mark Stebbins, DEP BLWQ, Division of Land Resource Regulation (DLRR)

Tel: (207) 822-6367 email: <u>Mark.N.Stebbins@SPAM-ZAPmaine.gov</u>

Related Website: www.maine.gov/dep/blwq/docstand/miningpage.htm

RADIOACTIVE WASTE STORAGE AND DISPOSAL SITES

Contact: Tom Hillman, DHHS Maine CDC, Division of Environmental Health, Radiation Control Program

Tel: (207) 287-8401email: Tom.Hillman@SPAM-ZAPmaine.govRelated Website: www.maine.gov/dhhs/eng/rad/hp_waste.htm

Summary of Ground Water Quality

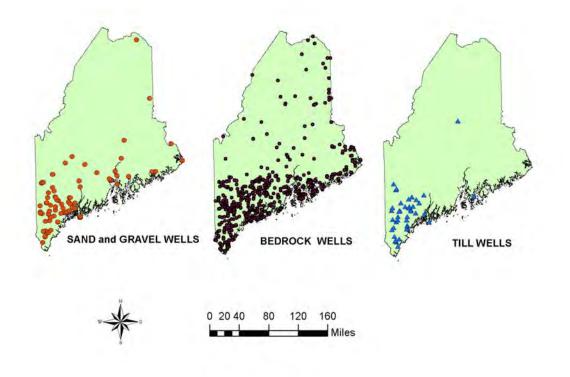


Figure 6-2 Distribution of Sole Source Public Water Supply Wells for the Ambient Water Quality Monitoring Network by Aquifer Type. Wells shown are those which were sampled.

For 2008 the ambient ground water quality monitoring network consists of 2,665 public water supplies. Each of the selected public water supplies is provided by only one source of water: either a drilled well in bedrock; a dug well in glacial till; a drilled well, well point, or dug well in glacial outwash sand and gravel or recent sandy alluvium (Figure 6-2). Some of the wells are large community water supplies: some are nontransient, non-community water supplies. Analytical results for periodic, routine sampling of raw water were provided by the DWP. Not all the well samples were analyzed for the all the same chemical constituents every time they were obtained: frequency depends on the type of water supply and the population served. Nevertheless, the DEP believes that the selection represents ambient ground water quality in the three major geologic settings that provide ground water in Maine. Sand and gravel aquifers are often high yield water sources and are often found in developed areas, and are therefore vulnerable to contamination. Bedrock aguifers, though not usually hydrologically connected, underlie the whole state and are mostly used as private water supplies, as are glacial till aguifers. The locations of the wells used to indicate ambient water quality are shown in Figure 6-3 and a summary of the ambient water quality data is in Table 6-9. Figure 6-2 shows the distribution of these wells by aquifer type.

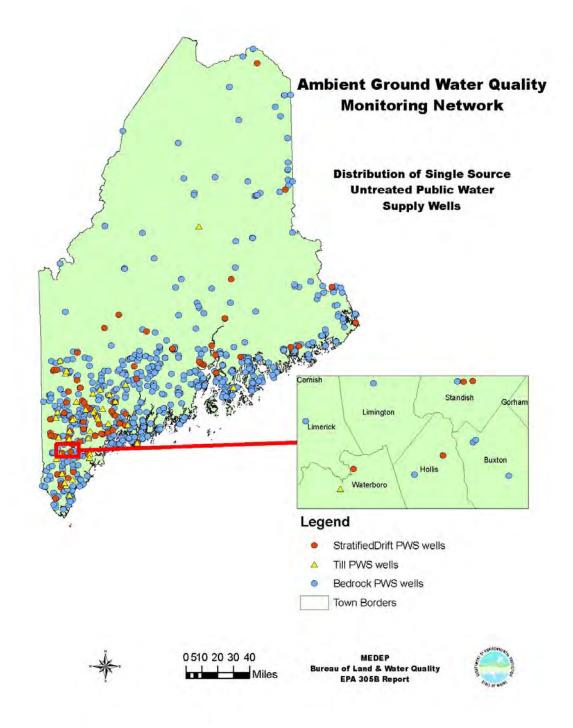


Figure 6-3 Ambient Water Quality Monitoring Network Well Location Map

Table 6-9 Ambient Aquifer Monitoring Data*

Aquifer Descrij	ption: Till	Aı		ater Quality Monitorin iod: Jan. 2006-May. 2007	g Well Data		
Statewide Monitoring data type ¹	Total number of wells used in assessment	Parameter groups	No detections of parameters above MDLs or background levels	No detections of parameters above MDLs or background levels and nitrate concentrations range from background levels to <5 mg/l	Parameters are detected at concentrations exceeding the MDL, but are less than or equal to MCLs and/or nitrate ranges from >5 to <10 mg/l	>10m/l	Parameters are detected at concentrations exceeding MCL
Ambient (raw) water quality data from public water supply wells	73 # of Tests: 1274	VOC SOC NO3 Other	99 no tests 35 1039	0 no tests 25 0	1 no tests 0 16	0 na 0 0	$\begin{array}{c} 0\\ na\\ 0\\ 25^2 \end{array}$
Aquifer Descrij Statewide	-		Data Reporting Peri	ater Quality Monitorin iod: Jan. 2006-May. 2007			
Monitoring data type ¹	Total number of wells used in assessment	Parameter groups	No detections of parameters above MDLs or background levels	No detections of parameters above MDLs or background levels and nitrate concentrations range from background levels to ≤5 mg/l	Parameters are detected at concentrations exceeding the MDL, but are less than or equal to MCLs and/or nitrate ranges from >5 to ≤10 mg/l	.10m/1	Parameters are detected at concentrations exceeding MCL
Ambient (raw) water quality data from public water supply wells	2306 # of Tests: 69121	VOC SOC NO3 Other	20057 1199 3731 36812	0 0 1140 0	67 29 37 3351	0 0 0 0	$\frac{2}{0}$ $\frac{3}{475^3}$
Major uses of aqu		<u>X</u> Pri ems units: <u>X</u>	vate water supply The Public water supply Irr	gationCommerc ermoelectricLivestock rigationCommerc ermoelectricLivestock	ial Industrial Maintenance Baseflow		

² All these exceedances in this parameter group (Other) are due to the present of E Coli and Total Coliform ³ All these exceedances in this parameter group (Other) are due to the present of E Coli and Total Coliform

* data supplied by DHS/BH/DHE/Drinking Water Program, analysis by DEP/BLWQ/DEA/Environmental Geology Unit

Table 6-9 Aquif	Cable 6-9 Aquifer Monitoring Data (Continued)						
Aquifer Descrip Statewide	tion: Stratified			ater Quality Monitori od: Jan. 2006-May. 2007	ng Well Data		
Monitoring	Total number	Parameter	No detections of	No detections of parameters	Parameters are detected at		Parameters are
data type ¹	of wells used in assessment	groups	parameters above MDLs or background levels	above MDLs or background levels and nitrate concentrations range from background levels to ≤ 5 mg/l	concentrations exceeding the MDL, but are less than or equal to MCLs and/or nitrate ranges from >5 to <10 mg/l	.10m/l n	detected at concentrations exceeding MCL's
Ambient (raw)	286	VOC	1757	0	4	0	0
water quality		SOC	458	0	4	0	0
data from public	# of Tests:	NO3	3	88	5	0	2
water supply	10759	Other	8106	0	282	0	<u>50⁴</u>
wells Major uses of aquif	er or hydrologic	unit: <u>X</u> Publ Lives			Baseflow X Private water supply	Th	ermoelectric
Uses affected by wa	ter quality proble	e ms: <u>X</u> Public Live			Baseflow <u>X</u> Private water supply	Th	ermoelectric

⁴ All exceedances in this parameter group (Other)and column are due to the present of E Coli and Total Coliform

* data supplied by DHS/BH/DHE/Drinking Water Program, analysis by DEP/BLWQ/DEA/Environmental Geology Unit

GROUNDWATER TRENDS

New occurrences of ground water contamination are documented in Maine each year. Although discovery of existing contamination is expected to continue, future reports of contamination are expected to decline substantially as the State's ground water protection initiatives continue to be implemented. These programs stress contamination prevention rather than remediation.

Please refer to pages 149-153 of the 2006 Integrated Water Quality Monitoring and Assessment Report for further information on programs which may indicate ground water quality trends. http://www.state.me.us/dep/blwq/docmonitoring/305b/index.htm

CHAPTER 7 PUBLIC HEALTH – RELATED ASSESSMENTS

Beach Program Monitoring & Assessements

Contact: David Courtemanch, Division of Environmental Assessment (DEA) Tel: (207) 287-3901 email: Dave.L.Courtemanch@SPAM-ZAPmaine.gov

MAINE HEALTHY BEACHES PROGRAM

Contacts: Paula Thomson, State Planning Office, Coastal Program (Lead Agency) Tel: (207) 287-3261 email: Paula.Thomson@SPAM-ZAPmaine.gov Esperanza Stancioff, University of Maine Cooperative Extension and Sea Grant (Program Coordinator)

Tel: (207) 832-0343 email: esp@SPAM-ZAPumext.maine.edu

Matt Liebman, EPA Region 1, BEACH Program Coordinator Tel: (617) 918-1626 email: liebman.matt@SPAM-ZAPepa.gov

Related Websites: (Maine Specific) www.mainehealthybeaches.org/ (Federal) www.epa.gov/ost/beaches

There is growing public interest in monitoring ocean beaches in order to provide protection of swimmer health. The Maine Department of Environmental Protection (DEP) has focused on ensuring that areas influenced by licensed discharges are not a threat to swimmer health. All participants in the Maine Healthy Beaches Program (MHB), including State Parks, conduct routine monitoring of beach water quality on a weekly basis from Memorial Day through Labor Day. When exceedances occur, resampling is conducted for those sites. Private beach owners are responsible for their own monitoring programs unless they are working with the municipality and Maine Healthy Beaches, but often private beaches do not conduct any monitoring at all. In Maine, the monitoring of town owned beaches and providing public notification is the jurisdiction of the municipality.

The U.S. Environmental Protection Agency (EPA) initiated the Beaches Environmental Assessment, Closure and Health (BEACH) Act of 2000 in response to the growing concern about public health risks posed by polluted coastal swimming beaches. The

Maine DEP 2008 305(b) Report and 303(d) List

Maine Healthy Beaches Program (MHB) is a voluntary program and includes these components: water quality assessment and public notification of beach status, education and outreach, and working with communities and program partners to identify and remediate pollution sources through applied research and special studies.

The assessment program includes measurement of critical factors that affect the health of the beach environment as well as the health of people who visit them (for participating beaches only). Table 7-1 shows participating Maine beaches as of 2007.

Table 7-1 Beaches Participating in the MHBP

Beach Name	Managing Organization
Sand Beach	Acadia National Park
Hadley Point	Bar Harbor
Hulls Cove	Bar Harbor
Town Beach	Bar Harbor
Fortunes Rocks Beach	Biddeford
Middle Beach	Biddeford
Pemaguid Beach	Bristol
Camden Yacht Club	Camden
Laite Beach	Camden
Crescent Beach	Crescent Beach State Park
Kettle Cove Beach	Crescent Beach State Park
Ferry Beach (Saco)	Ferry Beach State Park
Hills Beach	Hills Beach Association
Gooches Beach	Kennebunk
Kennebunk (Mother's) Beach	Kennebunk
Libby Cove Beach	Kennebunk
Middle Beach	Kennebunk
Colony Beach	Kennebunkport
Goose Rocks	Kennebunkport
Crescent Beach (Kittery)	Kittery
Fort Foster	Kittery
<u>Sea Point Beach</u>	Kittery
Lincolnville Beach Area	Lincolnville
Emery Cove Beach	Mt.Desert Island Water Quality Coalition
<u>Footbridge (Ogunguit)</u>	Ogunquit
<u>Little Beach</u>	Ogunquit
<u>Main (Ogunquit)</u>	Ogunquit
<u>Moody (Ogunguit)</u>	Ogunquit
<u>Riverside (Ogunguit)</u>	Ogunquit
OOB - Central	Old Orchard Beach
OOB - North End	Old Orchard Beach
<u> OOB - Ocean Park</u>	Old Orchard Beach
<u> Popham - Center Beach</u>	Popham Beach State Park
<u> Popham - East Beach</u>	Popham Beach State Park
Popham - West Beach/Morse River	Popham Beach State Park
East End Beach	Portland

Maine DEP 2008 305(b) Report and 303(d) List

East Beach	Reid State Park
Half mile Beach	Reid State Park
Lagoon Beach	Reid State Park
<u>Mile Beach</u>	Reid State Park
Sandy Beach	Rockland
Bay View	Saco
Kinney Shores	Saco
<u>Ferry Beach (Scarborough)</u>	Scarborough
<u>Higgins Beach</u>	Scarborough
Pine Point	Scarborough
Scarborough Beach	Scarborough Beach State Park
Willard Beach	South Portland
<u>Casino Square</u>	Wells
Crescent Beach (Wells)	Wells
<u>Drakes Isl. Beach</u>	Wells
Wells Beach	Wells
Wells Harbor	Wells
Laudholm Beach	Wells National Estuarine Research Reserve
Cape Neddick Beach	York
Long Sands Beach	York
Short Sands Beach	York
York Harbor Beach	York

SWIMMING BEACH CLOSURES

Contact: Esperanza Stancioff, University of Maine Cooperative Extension and Sea Grant (Program Coordinator)

Tel: (207) 832-0343 email: esp@SPAM-ZAPumext.maine.edu

Related Website: www.mainehealthybeaches.org/

Under Clean Water Act (CWA) guidelines, the designated use of swimming beaches is for "Recreation in and on the Water." The beaches listed in Table 7-2 had advisories or closures for the number of days noted. Beaches can be closed or posted to warn of health risks; both methods use some form of risk analysis.

Beach advisories are posted according to:

• Results obtained from bacteria water quality samples exceeding State and Federal standards.

• Conditions at sample site indicating the possible presence of disease-causing organisms. These advisories are recommendations to the public to avoid water contact activities at the beach until further analyses reveal safe conditions.

A beach closure closes the beach to water contact. Closures are based on a number of factors (Risk-Based Assessment Matrix): bacterial count, bather numbers, time of last rainfall, and history of known problems. This is a coordinated decision between the Beach Manager, Town official/State Park Director, and Program Coordinator. A copy of the Risk Assessment Matrix may be viewed and downloaded by visiting this URL: www.mainehealthybeaches.org/assets/pdfs/matrix.pdf For this 2008 Integrated Report, 2006 data show there were 147 advisory and closure days at 19 beaches.

Beach Name and Event	Total Days in 2006
Bay View (Saco)	2
Camden Yacht Club - Advisory	23
Colony Beach (Kennebunkport) - Advisory	8
Crescent Beach (Cape Elizabeth) - Advisory	2
Ferry Beach (Saco) - Advisory	4
Ferry Beach (Scarborough) Advisory	2
Fortunes Roch Beach - Advisory	1
Gooches Beach (Kennebunk) – Advisory and	
Closure (3)	13
Goose Rock (Kennebunkport) - Advisory	38
Hill Beach (Biddeford) - Advisory	5
Lagoon Beach - Advisory	3
Laite Beach - Advisory	8
Laudholm Beach (WNERR) - Advisory	17
Lincolnville Beach Area - Advisory	1
Middle Beach (Kennebunk) - Advisory	1
Old Orchard Beach - Advisory	2
Pine Point - Advisory	5
Sea Point Beach - Advisory	2
Willard Beach (South Portland) – Advisory and	
Closure (4)	10

Table 7-2 2006 Beach Closure or Advisory Information
--

Data from 2007 show that there were 171 advisory days and 2 closure days at 29 beaches.

 Table 7-3
 2007 Beach Closure or Advisory Information

Town Name	Beach Name	Advisory Days	Closure Days	Total Days in 2007
Cape Elizabeth	Crescent Beach (Crescent Beach St. Park)	4		4
Cape Elizabeth	Kettle Cove (Crescent Beach St. Park)	4		4
Portland	East End		2	2
Scarborough	Higgins	2		2
Scarborough	Ferry Beach	1		1
Scarborough	Scarborough (Scarborough Beach St. Park)	1		1
South Portland	Willard Beach	2		2
Lincolnville	Lincolnville Beach	2		2
Camden	Laite Beach	4		41
Camden	Yacht Club	11		11
Rockland	Sandy Beach	14		14
Phippsburg	East (Popham Beach St. Park)	4		4
Phippsburg	Center (Popham Beach St. Park)	5		5
Georgetown	East (Reid St. Park)	3		3
Georgetown	Lagoon (Reid St. Park)	2		2
Georgetown	Mile (Reid St. Park)	2		2
Wells	Drakes Island	6		6
Wells	Wells Harbor	11		11
Wells	Laudholm (WNERR)	3		3
Saco	Kinney Shores	5		5
Saco	Ferry (Ferry Beach St. Park)	1		1
Biddeford	Middle	5		5

Kennebunk	Gooches Beach	18		18
Kennebunkport	Goose Rocks	39		39
Kennebunkport	Colony Beach	9		9
Ogunquit	Main	2		2
Ogunquit	Footbridge	2		2
Ogunquit	Riverside	2		2
Ogunquit	Little	1		1
York	Cape Neddick	6		6
TOTALS	ana taa	171	2	173

Shellfish Program Monitoring & Assessments

SHELLFISH HARVEST AREA CLOSURES

Contact: Amy Fitzpatrick, Director, DMR BRM, Public Health Division, Shellfish Sanitation Program

Tel: (207) 633-9554 email: <u>Amy.Fitzpatrick@SPAM-ZAPmaine.gov</u>

Related Website: www.maine.gov/dmr/rm/public health/publichealth.html

The Department of Marine Resources (DMR) assesses information on shellfish growing areas to ensure that shellfish harvested are safe for consumption. A goal of the Clean Water Act (CWA) is to have these areas meet their designated use of "Propagation and Harvest of Shellfish." Shellfish areas are closed by DMR if the area is found to have elevated levels of bacteria or if the area is determined as threatened by potential sewage pollution problems (proximity of wastewater outfalls or intense storm runoff events). Water samples are collected and tested for fecal coliform bacteria at least six (6) times annually from each of the more than 2,000 established sampling sites that are located along the entire Maine coast. The shoreline survey includes a visual inspection of the shoreline to determine the location and magnitude of potential sewage pollution and toxic contamination problems.

Table 7-4 presents both the percentage and the total area in acres under each classification. Current calculations estimate that Maine has a total of 1,821,434 acres of tidal flats and coastal waters in this classification system. This number has varied some over the past few 305b reporting cycles because of changes in the underlying data sets that Geographic Information Systems (GIS) use to calculate areas and because of the way DMR designates its shellfish harvesting areas. These changes have made it difficult to accurately determine how much progress has been made in the opening up of additional shellfish harvesting areas.

Classification	Percentage	Acres	Square Miles
Supporting (approved)	90.8 %	1,654,408	2,585
Partially Supporting (conditional or restricted)	1.4 %	24,648	38.5
Not supporting (prohibited)	7.8 %	142,378	222.5
Total	100.00 %	1,821,434	2,846

Table 7-4 Classification of Shellfish Harvesting Areas

TOXIC ALGAE (RED TIDE)

Contact: Darcie Couture, Toxin Monitoring Director, DMR BRM, Public Health Division, Marine Biotoxin Monitoring Program

Tel: (207) 633-9570 email: <u>Darcie.Couture@SPAM-ZAPmaine.gov</u>

Related Website: <u>www.maine.gov/dmr/rm/public_health/redtide.htm</u>

"Red Tide" is used to refer to rapid increases in numbers of microscopic marine algae that contain potentially lethal toxins. The toxin is transferred to humans by the ingestion of shellfish that have filtered the organisms into their systems. The toxin affects humans by paralyzing the central nervous system and, in high doses, may cause death.

DMR's Biotoxin Monitoring Program monitors levels of PSP (Paralytic Shellfish Poisoning or "Red Tide") and other marine biotoxins in the shellfish and waters of Maine. Shellfish samples are collected statewide between April and October and evaluated at the Biotoxin laboratories in West Boothbay Harbor and Lamoine. When toxin is found approaching quarantine levels, closures of shellfish harvest areas are implemented. Maine has historically had high levels of PSP during the warmer periods of the year. While red tide is a water quality issue, it is not a direct cause and effect relationship with human-caused pollutants. Closures, therefore, are not reported as violations of water quality standards.

For information on closures, call DMR's hot line 1-800-232-4733 or 207-633-9571or visit the web at

www.maine.gov/dmr/rm/public health/closures/shellfishhotline.htm

The DMR also has an Internet Mapping Site that contains information on Red Tide - the link to that site is here: <u>http://megisims.state.me.us/dmr_redtide/</u>

Ocean Fish and Shellfish Consumption Advisories

Contact Andrew Smith, DHHS Maine CDC, Environmental and Occupational Health Program

Tel: (207) 287-5189 email: <u>Andy.E.Smith@SPAM-ZAPmaine.gov</u>

Related Website: www.maine.gov/dhhs/eohp/fish/

Waters do not attain their "Clean Water Act-designated use for Fishing," whenever government agencies issue fish and/or shellfish consumption advisories. These advisories are designed to let citizens know that there may be an increased risk to their health if they choose to consume certain species of fish or shellfish. Since 1992, human health consumption advisories have been in place to warn the public against the consumption of lobster tomalley due to high levels of toxic contaminants. However, no evidence of elevated levels of these contaminants was found in lobster meat. The advisory was expanded to include bluefish and striped bass in 1996, also due to detection of elevated levels of toxic contaminants in their flesh. The entire Maine coast is only in partial support of its designated use for fishing due to these consumption advisories. Toxic contamination found in lobster tomalley is presumed to originate in Maine waters, which leads to their listing in Category 5-D for non-attainment due to legacy pollutants. Toxic contaminants found in migratory or pelusic

finfish are presumed to have been acquired largely outside of Maine waters where the fish spend most of their lives. Thus advisories for marine finfish are not listed as causes of non-attainment.

Advisory Overview

Current information, with a last revision date of February 20, 2001, on ocean fish and shellfish advisories as adapted from the Maine CDC is as follows:

WARNING About Eating Saltwater Fish and Lobster Tomalley

Warning: Chemicals in some Maine saltwater fish and lobster tomalley may harm people who eat them. Women who are or may become pregnant and children should carefully follow the Safe Eating Guidelines.

It's hard to believe fish that looks, smells, and tastes fine may not be safe to eat. But the truth is that some saltwater fish have mercury, PCBs and Dioxins in them.

All these chemicals settle into the ocean from the air. PCBs and Dioxins also flow into the ocean through our rivers. These chemicals then build up in fish.

Small amounts of mercury can damage a brain starting to form or grow. That's why babies in the womb, nursing babies, and young children are at most risk. Mercury can also harm older children and adults, but it takes larger amounts.

PCBs and Dioxins can cause cancer and other health problems if too much builds up in your body. Since some saltwater fish contain several chemicals, we ask that all consumers of the following saltwater species follow the safe eating guidelines.

SPECIFIC OCEAN FISH CONSUMPTION ADVISORIES

SAFE EATING GUIDELINES

Striped Bass and Bluefish: Recommended to eat no more than 2 meals per month.

Shark, Swordfish, King Mackerel, and Tilefish: Pregnant and nursing women, women who may get pregnant and children under 8 years of age are advised to not eat any swordfish or shark. All other individuals should eat no more than 2 meals per month.

Canned Tuna: Pregnant and nursing women, women who may get pregnant and children under 8 years of age should eat no more than 1 can of "white" tuna or 2 cans of "light" tuna per week.

All other ocean fish and shellfish, including canned fish and shellfish: Pregnant and nursing women, women who may get pregnant and children under 8 years of age should eat no more than 2 meals per week.

LOBSTER MEAT AND TOMALLEY CONSUMPTION ADVISORIES

Lobster Meat: Consumption advisories do not exist for lobster meat.

Lobster Tomalley: Recommended to completely avoid consumption of lobster tomalley. While there is no known safety considerations when it comes to eating

lobster meat, consumers are advised to refrain from eating the tomalley. The tomalley is the soft, green substance found in the body cavity of the lobster that functions as the liver and pancreas. Test results have shown that the tomalley can accumulate contaminants found in the environment.

For more information, including warnings on freshwater fish call (866) 292-3474 or visit the related web site at: <u>www.maine.gov/dhhs/eohp</u>

Freshwater Fish Consumption Monitoring, Assessments and Advisories

Contact: Barry Mower, DEP BLWQ, Division of Environmental Assessment (DEA)

Tel: (207) 287-3901 email: <u>Barry.F.Mower@SPAM-ZAPmaine.gov</u>

Related Website: www.maine.gov/dep/dioxin/

In addition to marine fish and shellfish, DEP monitors freshwater fish in its Dioxin Monitoring Program and Surface Waters Ambient Toxics (SWAT) monitoring program for contaminants that may present a risk for human consumption. The results are forwarded to the MCDC who is responsible for recommending the warnings on eating fish based on the presence of chemicals (MSRA 22 ß 1696 I). MCDC does so in the form of Fish Consumption Advisories, which can be seen with additional information at http://www.maine.gov/dhhs/eohp/fish/ . There is a statewide Fish Consumption Advisory for all freshwaters because of mercury and additional advisories for specific waters because of other contaminants.

MERCURY STATEWIDE FISH CONSUMPTION ADVISORY

Based on monitoring of mercury concentrations in freshwater fish from all over Maine, the Maine Bureau of Health (now MCDC) issued a statewide advisory for all Maine lakes and ponds in 1994 and expanded it to include all freshwaters in 1997 as follows:

Pregnant and nursing women, women who may get pregnant, and children under age 8 SHOULD NOT EAT any freshwater fish from Maine's inland waters. Except, for brook trout and landlocked salmon, 1 meal per month is safe.

All other adults and children older than 8 CAN EAT 2 freshwater fish meals per month. For brook trout and landlocked salmon, the limit is 1 meal per week.

DIOXIN

Dioxin levels in fish from Maine rivers continue to decline, approaching background at some locations but still exceeding background at others.

An evaluation of the need for fish consumption advisories due to the presence of dioxin-like compounds in fish requires a comparison to a health benchmark. The ME-CDC uses a health benchmark that is expressed as a toxicity-weighted concentration of dioxin-like compounds in fish tissue, referred to as a "Fish Tissue Action Level" or FTAL. For the present report, the ME-CDC compares the most recent data on contaminant levels to its current FTALs for dioxin-like compounds of 1.5 parts

per trillion (ppt) for protection of cancer-related effects and a 0.4 parts per trillion FTAL for protection of noncancer related effects. The FTAL of 1.5 ppt for cancer related effects has been used by ME-CDC since 1990. The FTAL of 0.4 ppt for noncancer effects is based on the same toxicity data relied upon since 1990, but has been adjusted downward to account for the substantial background exposure we all get from the presence of these chemicals in most dietary foods.

The ME-CDC has evaluated recent data that can be seen at

http://mainegov-images.informe.org/dep/blwq/docmonitoring/dioxin/report 2007.pdf

RIVER AND STREAM SPECIFIC FISH CONSUMPTION ADVISORIES

The dominant causes for the following fish consumption advisories are identified as dioxin/furans/coplanar PCBs, total PCBs, and total DDTs (DDD + DDE + DDT). ME-CDC is currently reviewing all the fish contaminant data since 2003 and expects any revisions to the fish consumption advisories to be issued in spring 2008.

Current advisories are listed on next page.

Department of Health and Human Services Guidelines about Eating Freshwater Fish

Warning: Mercury in Maine freshwater fish may harm the babies of pregnant and nursing mothers, and young children.

SAFE EATING GUIDELINES

Pregnant and nursing women, women who may get pregnant, and children under age 8 SHOULD NOT EAT any freshwater fish from Maine's inland waters. Except, for brook trout and landlocked salmon, 1 meal per month is safe.

All other adults and children older than 8 CAN EAT 2 freshwater fish meals per month. For brook trout and landlocked salmon, the limit is 1 meal per week.

It's hard to believe that fish that looks, smells, and tastes fine may not be safe to eat. But the truth is that fish in Maine lakes, ponds, and rivers have mercury in them. Other states have this problem too. Mercury in the air settles into the waters. It then builds up in fish. For this reason, older fish have higher levels of mercury than younger fish. Fish (like pickerel and bass) that eat other fish have the highest mercury levels.

Small amounts of mercury can harm a brain starting to form or grow. That is why unborn and nursing babies and young children are most at risk. Too much mercury can affect behavior and learning. Mercury can harm older children and adults, but it takes larger amounts. It may cause numbness in hands and feet or changes in vision. The Safe Eating Guidelines identify limits to protect everyone.

Warning: Some Maine waters are polluted, requiring additional limits to eating fish.

Fish caught in some Maine waters have high levels of PCBs, Dioxins or DDT in them. These chemicals can cause cancer and other health effects. The Bureau of Health recommends <u>additional</u> fish consumption limits on the waters listed below. <u>Remember</u> to check the mercury guidelines. If the water you are fishing is listed below, check the mercury guideline above and follow the most limiting guidelines.

Androscoggin River Gilead to Merrymeeting Bay: 6-12 fish meals a year. Dennys River Meddybemps Lake to Dead Stream: 1-2 fish meals a month. Green Pond, Chapman Pit, & Greenlaw Brook
(Limestone):Do not eat any fish from these waters.
Little Madawaska River & tributaries
(Madawaska Dam to Grimes Mill Road):Do not eat any fish from these waters.
Kennebec River Augusta to the Chops:Do not eat any fish from these waters.
Shawmut Dam in Fairfield to Augusta: 5 trout meals a year, 1-2 bass meals a month.
Madison to Fairfield: 1-2 fish meals a month.
Meduxnekeag River: 2 fish meals a month.
North Branch Presque Isle River 2 fish meals a month.
Penobscot River below Lincoln: 1-2 fish meals a month
Prestile Stream: 1 fish meal a month.
Red Brook in Scarborough: 6 fish meals a year.
Salmon Falls River below Berwick: 6-12 fish meals a year.
Sebasticook River (East Branch, West Branch & Main Stem)
(Corinna/Hartland to Winslow):2 fish meals a month.

Ground Water and Public Health Concerns

PUBLIC HEALTH AND ENVIRONMENTAL CONCERNS

Contaminants found in ground water have numerous adverse human health and environmental impacts. Public health concerns arise because some of the contaminants are individually linked to numerous toxic effects ranging from allergic reactions and respiratory impairment to liver and kidney damage, and damage to the central nervous system. Additional public health concerns also arise because information is not available about the health impacts of many contaminants found in ground water.

Due to uncertainties in the relationships between exposure to contaminants and impacts on human health, public health efforts are based on identifying the probabilities of impacts (i.e. risk assessment). Conducting a risk assessment for combinations of contaminants that are commonly found in ground water is difficult because there are no generally accepted protocols for testing the effects of contaminant interactions. The primary route of exposure to contaminants is through ingestion of drinking water, although exposure is also possible through contact with skin and inhalation of vapors from ground water sources (bathing, food preparation, industrial processes, etc.)

Because ground water generally provides base flow to streams and rivers, environmental impacts include toxic effects on benthic invertebrates, fish, wildlife and aquatic vegetation. This also presents a public health concern if the surface waterbody is a source of food and recreation. In some areas of the State there are probably links between low-level, long-term ground water quality degradation and the water quality of streams and brooks during low-flow conditions.

DRINKING WATER PROGRAMS AND GROUNDWATER CONTAMINANT ASSESSMENTS

WELLHEAD PROTECTION PROGRAM

Contact: David Braley, DHHS Maine CDC, Division of Environmental Health, Drinking Water Program

Tel: (207) 287-5338 email: David.Braley@SPAM-ZAPmaine.gov

Related Website:

www.maine.gov/dhhs/eng/water/Templates/Sections/Source%20Water%20Protection/ sourcewaterprotection.htm or www.state.me.us/dhhs/eng/water/

The State of Maine Drinking Water Program (DWP), located in the Department of Health and Human Services, administers the Wellhead Protection Program (WHPP). The WHPP continues to be a voluntary program for Maine's public water suppliers, with all reduced or waived monitoring tied to approved protection programs. To be eligible for reduced or waived monitoring, a system must have an approved local Wellhead Protection Plan (WHPP) and have completed a waiver application.

SOURCE WATER ASSESSMENT PROGRAM

Contact: Andrews L. Tolman, DHHS Maine CDC, Division of Environmental Health, Drinking Water Program

Tel: (207) 287-2070 email: <u>Andrews.L.Tolman@SPAM-ZAPmaine.gov</u>

Related Websites:

www.maine.gov/dhhs/eng/water/Templates/Sections/Source%20Water%20Protection/ sourcewaterprotection.htm or

www.maine.gov/dhhs/eng/water/forms/Sections/Resolve029finalrpt.htm

Water supply protection is the first line of defense in protecting public health. Protecting a water supply source has long been recognized as the cornerstone of providing safe drinking water. The most effective source protection method is to keep the area contributing water to the supply open and undeveloped. The Maine Drinking Water Program's (DWP) recently completed five year assessment of source protection for public water supplies identified rapid residential and commercial development in source protection areas as the most significant threat to water quality and quantity, and few water suppliers are prepared to deal with these risks.

Public Water Systems (PWS) have a very limited suite of tools for source protection: they can purchase land, inspect existing activities, and ask local government to enact (and enforce) protective ordinances. Only one in five of Maine's community water systems have effective source protection plans in place after more than fifteen years of encouragement and incentives.

FINISHED WATERS

Contact: Lindy Moceus, DHHS Maine CDC, Division of Environmental Health, Drinking Water Program

Tel: (207) 287-8402 email: Lindy.Moceus@SPAM-ZAPmaine.gov

Related Website:

www.maine.gov/dhhs/eng/water/Templates/Sections/Compliance/Compliance.htm

The Drinking Water Program (DWP) is the front line enforcement agent of the U.S. Environmental Protection Agency (EPA) for the rules and regulations set forth in the Safe Drinking Water Act (SDWA). The requirements of SDWA apply to the approximately 2,000 public drinking water systems in Maine. There are 80 water systems that use surface water as their primary source and these all have water treatment systems and watershed protection programs. Of the approximately 1,920 ground water systems, 661 have some form of treatment on-line while the remaining systems have no treatment and serve raw water. Water testing on finished water is the primary means for assessing public water system compliance while verifying the quality of water that is reaching consumers.

PRIVATE WELLS

Contact Andrew Smith, DHHS Maine CDC, Environmental and Occupational Health Program

Maine DEP 2008 305(b) Report and 303(d) List

Tel: (207) 287-5189 email: <u>Andy.E.Smith@SPAM-ZAPmaine.gov</u>

Related Website: www.maine.gov/dhhs/eohp/wells/

The State of Maine has one of the highest per capita uses of domestic household wells for drinking water in the U.S. Based on data from Maine's 2003 Behavioral Risk Factors Surveillance Survey (BRFSS), 52 percent of the state's population relies on private domestic wells for their drinking water. Despite the fact that the majority of Maine residents obtain their drinking water from private household wells, the State does not have an environmental health services program focused on meeting the needs of private well owners.

Please refer to pages 162-167 of the 2006 Integrated Water Quality Monitoring and Assessment Report for additional information on Maine's Wellhead Protection and Source Water Protection Programs, and Finished Water and Private Well information. http://www.state.me.us/dep/blwg/docmonitoring/305b/index.htm

MTBE

Contacts: DEP BRWM 207-287-2651; DHHS Maine CDC 207-287-3201; DOC Maine Geological Survey 207-287-2801; or the U.S. Geological Survey, 207-622-8201

Related Websites: (General Information) <u>www.maine.gov/dep/mtbe.htm</u>

(Questions and Answers) www.maine.gov/dep/rwm/publications/mtbeqa.htm

MTBE or methyl tert-butyl ether is an additive used in gasoline since the late 1970's to replace lead. It makes up about 3% of regular unleaded gasoline and 11% of reformulated gas (RFG). To meet federal clean air requirements, Maine began using RFG in November of 1994. There has been evidence of MTBE in ground water since before 1985. However, no widespread contamination was noted until 1998, when a series of gasoline contamination incidents and concurrent public concern caused the State of Maine to conduct a study of private and public water supply wells. Of the 951 private wells and 793 public water supply wells tested:

- 93% showed either no MTBE or trace levels (below 1ppb).
- 16% showed detectable levels of MTBE, while other gasoline constituents were rarely found.
- While no public water supplies in the study showed MTBE levels above the MCL; 1% of the private wells sampled did show levels above the MCL of 35 ppb.

The DEP's 1998 investigations of the wells with MTBE levels over the MCL indicated an association with relatively small gasoline spills that one might categorize as a "backyard" type of spill – e.g. small, accidental spills that occur while filling the gas tanks of an ATV, snowmobile, garden tractor, etc.

Legislation was approved on Apr. 14, 2004 to prohibit the sale of Gasoline containing MTBE. The prohibition reads "Beginning January 1, 2007 a person may not sell, offer for sale, distribute or blend in this State gasoline that contains more than 1/2 of 1% by volume MTBE that is intended for sale to ultimate consumers in this State." We are still cleaning up sites, but the amount of MTBE we are finding in groundwater is not as much as we had when using RFG.

RADON

Contact: Bob Stilwell, DHHS Maine CDC, Division of Environmental Health, Radiation Control Program

Tel: (207) 287-5676 (or 800-232-0842 in Maine)

email: Bob.Stilwell@SPAM-ZAPmaine.gov

Related Website: www.maine.gov/dhhs/eng/rad/hp radon.htm

Not all public health concerns that involve ground water are caused by pollution released from human activities. The presence of naturally occurring radioactive radon gas in ground water drawn from granite bedrock aquifers and overlying soils has long been recognized as a problem in Maine. Based on studies of miners and more recently on people living in homes with high radon concentrations, medical researchers have shown that high radon levels in air are associated with increased incidence of lung cancer. Radon in water supplies is a concern because radon is readily released into the air from water. Therefore the health concerns stems more from inhalation of the radon rather than drinking the water. A large number of Maine wells have radon concentrations that through normal household water use, release concentrations of radon into the air that are as high or higher than the concentrations associated with an increased incidence of lung cancer.

Proposed federal standards for radon have raised concerns regarding ground water that had previously been regarded as acceptable. The average concentration of radon in public or private water supplies in Maine ranges from 5,000 to 10,000 picocuries/Liter (pci/L). Current Maine guidelines limit radon in water to 20,000 pci/L. The proposed federal standard would create a Maximum Contaminant Level (MCL) for radon in water of 300 pci/L with an Alternate MCL (AMCL) of 4,000 pci/L if a radon multimedia mitigation program is developed and instituted by the State or the community water suppliers. This multimedia mitigation plan would require reducing risks from radon in indoor air, which is estimated to cause 14,000 to 32,000 deaths annually in the U.S., compared to radon in drinking water which is estimated to cause 68 deaths annually. The AMCL of 4,000 pci/L was chosen because it is the amount of radon in drinking water that causes a risk equal to the risk from radon found in outdoor air. Statutory authority for the MCL, AMCL and multimedia mitigation plans were set in the Federal Safe Drinking Water Act Amendments of 1996.

ARSENIC

Contacts: Robert Marvinney, State Geologist, DOC BGNA, Maine Geological Survey, Administrative Division

Tel: (207) 287-2801 email: <u>Robert.Marvinney@SPAM-ZAPmaine.gov</u>

or David Braley, DHHS, Maine CDC, Division of Environmental Health, Drinking Water Program

Tel: (207) 287-5338 email: <u>David.Braley@SPAM-ZAPmaine.gov</u>

Related Website: www.maine.gov/dhhs/eohp/wells/asbrouchure.shtml

Several types of cancer including skin and bladder cancer, along with other health problems have been linked to the occurrence of arsenic in drinking water. The current Maximum Contaminant Level (MCL) for arsenic is 50 ppb (parts per billion); however the EPA has recently proposed lowering the MCL to 10 ppb in drinking water. The Maine Bureau of Health has set a maximum exposure guideline (MEG) for arsenic in domestic well water at 0.01 milligrams of arsenic per liter of water (which is equal to 10 ppb). This is also the same amount that the World Health Organization currently recommends. A 1994 – 1995 study of about 600 randomly selected wells indicates that, statewide, about 1 to 2 percent have arsenic levels greater than 50 ppb. However, about 10 percent have arsenic levels above the MEG of 10 ppb.

Currently a source or sources for all arsenic detected in well water has not been determined. However, preliminary work by the MGS, University of Maine Department of Geological Sciences, DEP, and DHHS indicate that the problem is of statewide significance and that the arsenic concentration in ground water is most likely the result of both natural processes and human activity.

CHAPTER 8 SUMMARY OF IMPAIRED WATERS

Table 8-1 presents specific *Causes* of impairment that have been removed from the 2002, 2004 and 2006 lists of Impaired Waters (the"303d List") for the specified river and stream segments. Refer to the "Delisting" section on page 53 for an explanation of the delisting process. It is important to note that segments may appear multiple times, if they have multiple causes that have been delisted. This list has been presented in this format in keeping with the manner in which the EPA Assessment Database (ADB) stores and reports this information.

Ca	tegory	y by R	eport `	Year					
5	4A	4B	3	2	ADB Assessment Unit #	Water Name	Cause	Delisting Reason / Date	Comments
'02 '04	^{•06} •08				ME0101000303_124R 01	Dickey Brook	Nutrient/Eutrophica tion Biological Indicators	TMDL approved by EPA Category 4A) 9/15/2006	Submitted with Daigle Pond/Cross Pond TMDL in September 2006. EPA approved TMDL 9/28/06
'02 '04	'06 '08				ME0101000303_124R 01	Dickey Brook	Oxygen, Dissolved	TMDL approved by EPA Category 4A) 9/15/2006	Submitted with Daigle Pond/Cross Pond TMDL in September 2006. EPA approved TMDL 9/28/06
'02 '04	'06 '08				ME0101000303_124R 02	Daigle Brook	Nutrient/Eutrophica tion Biological Indicators	TMDL approved by EPA Category 4A) 9/15/2006	Submitted with Daigle Pond/Cross Pond TMDL in September 2006. EPA approved TMDL 9/28/06
'02 '04	[.] 06 .08				ME0101000303_124R 02	Daigle Brook	Oxygen, Dissolved	TMDL approved by EPA Category 4A) 9/15/2006	Submitted with Daigle Pond/Cross Pond TMDL in September 2006. EPA approved TMDL 9/28/06
ʻ02		ʻ04		'06 '08	ME0101000412_140R 01	No. Br. Presque Isle Stream between Mapleton and Presque Isle	Dissolved oxygen	State Determines water quality standard is being met (Category 2) 8/31/2006	Removal of Mapleton POTW complete. 2004 biomonitoring- showed attainment of Class A biocriteria and attains D.O. criteria at Station 11, 0.2 km downstream of Mapleton POTW
'02 '04			'06 '08		ME0101000413_142R 01	Caribou Stream	Benthic- Macroinvertebrate Bioassessments (Streams)	Flaws in original listing (Category 3) 10/2006	Administrative error, conflicting data Biocriteria non-attainment is inconsistent; segment was 5A for nonattainment of biocriteria in 1994 only. Subsequent samples showed attainment; requires re-sampling
		'02 '04 '06 '08			ME0101000413_145R 01	Little Madawaska River and tributaries	Benthic- Macroinvertebrate Bioassessments (Streams)	Other point source or nonpoint source controls are expected to meet water quality standards (Category 4B) 3/15/2004	Haz waste remediation project is complete (Superfund)expected to attain standards

Ca	tegory	y by R	eport \	fear					
5	4A	4B	3	2	ADB Assessment Unit #	Water Name	Cause	Delisting Reason / Date	Comments
		'02 '04 '06 '08			ME0101000413_145R 01	Little Madawaska River and tributaries	Polychlorinated biphenyls	Other point source or nonpoint source controls are expected to meet water quality standards (Category 4B) 3/15/2004	Haz waste remediation project is complete (Superfund)expected to attain standards by 2010
		'02 '04 '06 '08			ME0101000413_145R 02	Greenlaw Stream	Polychlorinated biphenyls	Other point source or nonpoint source controls are expected to meet water quality standards (Category 4B) 2002	Haz waste remediation project (Superfund) expected to attain standards
			(4C) '02 '04	'06 '08	ME0102000103_201R 02	West Branch of Penobscot R below Seboomook Lake	Benthic- Macroinvertebrate Bioassessments (Streams)	State Determines water quality standard is being met (Category 2)	New water level agreement reached, water quality certification has been issued and UAA approved by EPA on April 5, 2005 (FERC# 2634, expiration date 11/31/2064). Meets applicable water quality standards.
'02 '04 '06				'08	ME0102000403_215R 01	Sebec River at Milo above confluence with Piscataquis R	Benthic- Macroinvertebrate Bioassessments (Streams)	Applicable WQS attained due to restoration activities	Previously listed in 5-A for biocriteria non- attainment based on 1985 data. This segment has been delisted: Resampling in 2006, at Biomonitoring Station 827, below the Milo Dam, shows attainment of Class A biocriteria.
ʻ04				'02 '06 '08	ME0102000502_220R _01	Mattanawcook Stream (Lincoln)	E. coli	State Determines water quality standard is being met for this cause (Category 2)	CSO has been removed. Data from multiple sampling events collected by the Penobscot Indian Nation during summer 2004 for Mattanawcook Stream confirm attainment of numeric criteria for dissolved oxygen and bacteria. Segment is also Category 3 listed for sediment contamination; possible fish consumption impairment.

Ca	tegory	y by R	eport	Year					
5	4 A	4B	3	2	ADB Assessment Unit #	Water Name	Cause	Delisting Reason / Date	Comments
'0 <mark>4</mark>				'02 '06 '08	ME0102000502_220R _01	Mattanawcook Stream (Lincoln)	Oxygen, dissolved	State Determines water quality standard is being met for this cause (Category 2)	CSO has been removed. Data from multiple sampling events collected by the Penobscot Indian Nation during summer 2004 for Mattanawcook Stream confirms attainment of numeric criteria for dissolved oxygen and bacteria. Segment is also Category 3 listed for sediment contamination; possible fish consumption impairment.
'02 '04				'06 '08	ME0102000502_231R	Penobscot R, main stem, from Cambolasse Str to Piscataquis R	Benthic- Macroinvertebrate Bioassessments (Streams)	Flaws in original listing of this cause (Category 2) 12/6/2006	Administrative error, no data to support impaired biocriteria assessment. Erroneously listed for benthic macroinvertebrates prior to 2002 cycle; has attained applicable biocriteria in 1992, 1993, 1994 and 1995.
'02 '04		'06 '08			ME0102000502_231R	Penobscot R, main stem, from Cambolasse Str to Piscataquis R	Dioxin (including 2,3,7,8-TCDD)	Other point source or nonpoint source controls are expected to meet water quality standards (Category 4B) 8/1/2006	Dioxin controls in place and monitoring confirms improvement. Dioxin data from 2003 and 2005 showed no difference in fish above and below Lincoln.
<u>'</u> 04		'06 '08		'02	ME0102000503_221R 01	Cold Stream (Enfield) downstream of hatchery	Benthic- Macroinvertebrate Bioassessments (Streams)	Other point source or nonpoint source controls are expected to meet water quality standards (Category 4B) 6/20/2006	Final hatchery permit issued 3/31/06 ; other pollution controls are in place, attainment expected by 2009;
'02 '04 '06	'08				ME0102000510_224R 04	Birch Stream (Bangor)	Benthic- Macroinvertebrate Bioassessments (Streams)	TMDL approved by EPA 9/12/07	EPA approved TMDL 9/12/07 Biomonitoring August 2005 and 2006 both still non-attainment
'02 '04		'06 '08	G		ME0103000304_313R 01	Mill Stream (Embden)	Benthic- Macroinvertebrate Bioassessments (Streams)	Other point source or nonpoint source controls are expected to meet water quality standards (Category 4B) 6/20/2006	Hatchery permit issued 1/30/2006; exp. Date 1/30/2011; other pollution controls are in place, attainment expected by 2009;

Ca	Category by Report Year			Year					
5	4A	4B	3	2	ADB Assessment Unit #	Water Name	Cause	Delisting Reason / Date	Comments
'0 <mark>4</mark>		'06 '08		<mark>'0</mark> 2	ME0103000305_315R _ ⁰²	Unnamed Stream trib to Sandy R (Avon-Dunham Hatchery)	Benthic- Macroinvertebrate Bioassessments (Streams)	Other point source or nonpoint source controls are expected to meet water quality standards (Category 4B) 6/20/2006	Hatchery permit issued 10/18/2005; expiration date 10/18/10; hatchery is now closed; other pollution controls are in place, attainment expected by 2008;
		'02 '04 '06 '08			ME0103000308_325R 01	East Branch Sebasticook River Corundel Pd to Sebasticook L (Corinna)	Benthic- Macroinvertebrate Bioassessments (Streams)	Other point source or nonpoint source controls are expected to meet water quality standards (Category 4B) 3/15/2004	Haz waste remediation project (Superfund). CSO removal. New wastewater permit, removal to land treatment in 2004. Segment attains aquatic life criteria (2003 data). Expected to attain by 2008.
		'02 '04 '06 '08			ME0103000308_325R 01	East Branch Sebasticook River, Corundel Pd to Sebasticook L (Corinna)	Benzene	Other point source or nonpoint source controls are expected to meet water quality standards (Category 4B) 3/15/2004	Haz waste remediation project (Superfund). CSO removal. New wastewater permit, removal to land treatment in 2004. Segment attains aquatic life criteria (2003 data). Expected to attain by 2008.
		'06 '08			ME0103000308_331R 01	Martin Stream (Dixmont)	Ammonia (Un- ionized)	Other point source or nonpoint source controls are expected to meet water quality standards (Category 4B) 7/13/2006	CAFO permit issued 8/15/06; other pollution controls in place, expected to attain stds
		'06 '08	6.		ME0103000308_331R 01	Martin Stream (Dixmont)	Benthic- Macroinvertebrate Bioassessments (Streams) 7/13/2006	Other point source or nonpoint source controls are expected to meet water quality standards (Category 4B) 7/13/2006	CAFO permit issued 8/15/06, other pollution controls in place, expected to attain stds
'02 '04	'06 '08				ME0103000310_322R 01	Fish Brook (Fairfield)	Benthic- Macroinvertebrate Bioassessments (Streams)	EPA approval of TMDL (Category 4A) 8/30/2005	EPA approved TMDL 8/30/2005
'02 '04	06 08				ME0103000310_322R 01	Fish Brook (Fairfield)	Oxygen, Dissolved	EPA approval of TMDL (Category 4A) 8/30/2005	EPA approved TMDL 8/30/2005

Ca	tegor	y by R	eport	Year					
5	4A	4B	3	2	ADB Assessment Unit #	Water Name	Cause	Delisting Reason / Date	Comments
'04	ʻ06			' 08	ME0104000206_423R 01	Androscoggin R, main stem, Livermore impoundment	Benthic- Macroinvertebrate Bioassessments (Streams); Total Suspended Solids	Applicable WQS attained due to restoration activities	EPA approved TMDL 7/18/2005 (TMDL #11594) but there are ongoing licensing issues. Attained Class C biocriteria in 2003, and attained Class B biocriteria in 2004, 2005 and 2006. Benthic invertebrate and TSS causes delisted to 'WQS attainment'. Also 4b listed for dioxin 5d listed for legacy PCB contamination
		'02 '04 '06 '08			ME0104000206_423R 01	Androscoggin R, main stem, Livermore impoundment	Dioxin (including 2,3,7,8-TCDD)	Other point source or nonpoint source controls are expected to meet water quality standards (Category 4B) 3/15/2004	4A listed for aquatic life and solids issues, TMDL is complete; EPA approved TMDL 7/18/2005 but there are ongoing licensing issues. Attained Class C biocriteria in 2003 and attained Class B biocriteria in 2004; Also 4B listed for dioxin; 5D listed for legacy PCB contamination.
		'02 '04 '06 '08			ME0104000207_412R 02	House/Lively Brook	Nitrogen (Total)	Other point source or nonpoint source controls are expected to meet water quality standards (Category 4B) 3/15/2004	Waste (manure) removal (Agric NPS) by Consent Order and Site Permit-expected to attain standards; needs additional monitoring to confirm attainment.
'04			'06 '08	ʻ02	ME0104000208_413R 08	Bobbin Mill Brook (Lake Auburn Outlet, Auburn)	Benthic- Macroinvertebrate Bioassessments (Streams)	Flaws in original listing (Category 3) 3/9/05	Administrative error, conflicting data. Biocriteria non-attainment is inconsistent. Needs re-sampling to confirm non-attainment. 1998- non-attainment of biocriteria; biomonitoring in August 2003 showed attainment of biocriteria; Delist to Category 3- -need to confirm that 1998 non-attainment was caused by natural conditions.
' 04	'06 '08				ME0104000208_424R _01	Androscoggin R, main stem, upstream of the Gulf Island Dam	BOD, Biochemical oxygen demand	EPA approval of TMDL (Category 4A) 7/18/2005	4a EPA approved TMDL (TSS, DO, Nutrients/BOD; phosphorus) 7/18/05 but ongoing licensing issues; 4b dioxin

Ca	tegory	y by R	eport `	Year					
5	4 A	4B	3	2	ADB Assessment Unit #	Water Name	Cause	Delisting Reason / Date	Comments
		'02 '04 '06 '08			ME0104000208_424R _01	Androscoggin R, main stem, upstream of the Gulf Island Dam	Dioxin (including 2,3,7,8-TCDD)	Other point source or nonpoint source controls are expected to meet water quality standards (Category 4B) 3/15/2004	5d Fish tissue sampling shows legacy PCB 2/5/08 Non-attainment of Primary Contact Recreation use due to algae blooms Note: this segment was listed as
ʻ04	'06 '08				ME0104000208_424R _01	Androscoggin R, main stem, upstream of the Gulf Island Dam	Oxygen, Dissolved	EPA approval of TMDL (Category 4A) 7/18/2005	0104000208_424R_02 in the draft 2006 303d list; segment number has been changed in ADB to 424R_01 in ADB and in final 2006 report
ʻ04	'06 '08				ME0104000208_424R _01	Androscoggin R, main stem, upstream of the Gulf Island Dam	Phosphorus	EPA approval of TMDL (Category 4A) 7/18/2005	
<u>'04</u>	'06 '08				ME0104000208_424R _01	Androscoggin R, main stem, upstream of the Gulf Island Dam	Total suspended solids	EPA approval of TMDL (Category 4A) 7/18/2005	
'04	'06 '08				ME0104000208_424R _01	Androscoggin R, main stem, upstream of the Gulf Island Dam	Algae blooms	EPA approval of TMDL (Category 4A) 7/18/2005	4a EPA approved TMDL (TSS, DO, Nutrients/BOD; phosphorus) 7/18/05 but ongoing licensing issues; 4b dioxin 5d Fish tissue sampling shows legacy PCB 2/5/08 Non-attainment of Primary Contact Recreation use due to algae blooms Note: this segment was listed as 0104000208_424R_02 in the draft 2006 303d list; segment number has been changed in ADB to 424R_01 in ADB and in final 2006 report
		'02 '04 '06 '08			ME0105000201_507R 01	Dennys River	Polychlorinated biphenyls	Other point source or nonpoint source controls are expected to meet water quality standards (Category 4B) 9/5/2006	Haz waste remediation project (Superfund) expected to attain standards by 2010

Category by Report Year									
5	4 A	4B	3	2	ADB Assessment Unit #	Water Name	Cause	Delisting Reason / Date	Comments
'02 '04	'06 '08				ME0105000217_520R 01	Carleton Stream (Blue Hill)	Benthic- Macroinvertebrate Bioassessments (Streams)	EPA approval of TMDL (Category 4A) 10/7/2004	EPA approved TMDL 10/7/2004
'02 '04	^{•06} •08				ME0105000217_520R 01	Carleton Stream (Blue Hill)	Iron	EPA approval of TMDL (Category 4A) 10/7/2004	EPA approved TMDL 10/7/2004
'02 '04		ʻ06 ʻ08			ME0105000305_528R 08_02	Sheepscot River below Sheepscot L	Oxygen, Dissolved	Other point source or nonpoint source controls are expected to meet water quality standards (Category 4B) 6/20/2006	Listed for dissolved oxygen; hatchery permit issued 2/20/06, expiration date 2/20/11; facility upgrade complete; Expected to attain standards by 2009.
'02 '04		'06 '08			ME0106000101_605R 01	Mile Brook (Casco)	Benthic- Macroinvertebrate Bioassessments (Streams)	Other point source or nonpoint source controls are expected to meet water quality standards (Category 4B) 6/20/2006	Hatchery permit issued 5/8/2006; exp. Date 5/8/2011; other pollution controls are in place, attainment expected by 2009;
'02 '04				*06 *08	ME0106000102_603R 05	Royal River, segment below Collyer Bk	Drinking water- trichloroethylene	State Determines water quality standard is being met (Category 2) 8/31/2006	Per RCRA hazardous waste site manager: June 2006 surface water monitoring determined that the trichloroethylene standards and all other water quality criteria are being met in the Royal River at sites down- gradient of the contaminated site.
	'02 '04			•06 •08	ME0106000103_609R _01	Presumpscot R, main stem, below Sacarappa Dam	BOD, Biochemical oxygen demand	State Determines water quality standard is being met (Category 2) 8/31/2006	Sources removed, pulping operation closed and Smelt Hill Dam has been breached. Bioassessment (2005) shows attainment of Class C dissolved oxygen and biocriteria (Class B biocriteria just above Smelt Hill dam site).
	'02 '04			'06 '08	ME0106000103_609R _01	Presumpscot R, main stem, below Sacarappa Dam	Total Suspended Solids (TSS)	State Determines water quality standard is being met (Category 2) 8/31/2006	Sources removed, pulping operation closed and Smelt Hill Dam has been breached. Bioassessment (2005) shows attainment of Class C dissolved oxygen and biocriteria (Class B biocriteria just above Smelt Hill dam site).

Ca	tegory	/ by R	eport `	Year					
5	4 A	4B	3	2	ADB Assessment Unit #	Water Name	Cause	Delisting Reason / Date	Comments
'02 '04 '06	'08				ME0106000105_610R 05	Trout Brook (So. Portland)	Benthic- Macroinvertebrate Bioassessments (Streams)	EPA approval of TMDL (Category 4A) 10/25/2007	EPA approved TMDL 10/25/2007 (under bundled urban stream project;)
"02 "04 "06	'08				ME0106000105_610R 05	Trout Brook (So. Portland)	Habitat Assessment (Streams)	EPA approval of TMDL (Category 4A) 10/25/2007	EPA approved TMDL 10/25/2007 (under bundled urban stream project;)
'02 '04 '06	'08				ME0106000105_610R 09	Barberry Cr	Benthic- Macroinvertebrate Bioassessments (Streams)	EPA approval of TMDL (Category 4A) 6/21/2007	EPA approved TMDL 6/21/2007 (under bundled urban stream project.)
⁶⁰² ⁶⁰⁴ ⁶⁰⁶	'08				ME0106000105_610R 09	Barberry Cr	Habitat Assessment (Streams)	EPA approval of TMDL (Category 4A) 6/21/2007	EPA approved TMDL 6/21/2007 (under bundled urban stream project.)
' 04			'06 '08	ʻ02	ME0106000106_607R 12	Norton Brook (Falmouth)	Benthic- Macroinvertebrate Bioassessments (Streams)	Flaws in original listing of this cause (Category 3) 10/2006	Administrative error, conflicting data. More data required to support impaired assessment. Non-attainment of biocriteria in 2002 may be due to natural habitat effects; needs resampling
[.] 02	04 06 08				ME0106000106_612R 01_01	Goosefare Brook	Cd, Cr, Cu, Fe, Pd, Ni, Zn	EPA approval of TMDL (Category 4A) 9/29/2003	EPA approved TMDL 9/29/2003
	'02 '04 '06 '08				ME0106000305_630R 01	Salmon Falls R, segment below Collyer Bk	Ammonia (Un- ionized)	EPA approval of TMDL (Category 4A) 11/1/1999	 4-A EPA approved TMDL 11/22/99 for BOD, ammonia and phosphorus; 5B non-CSO, low priority bacteria listing; 5D fish tissue monitoring shows legacy PCBs and Dioxin
	'02 '04 '06 '08				ME0106000305_630R 01	Salmon Falls R segment below Collyer Bk,	Nutrient/Eutrophica tion Biological Indicators	EPA approval of TMDL (Category 4A) 11/1/1999	4-A EPA approved TMDL 11/22/99 for BOD, ammonia and phosphorus; 5b non-CSO, low priority bacteria listing; 5D fish tissue monitoring shows legacy PCBs and Dioxin
	'02 '04 '06 '08	2			ME0106000305_630R 01	Salmon Falls R, segment below Collyer Bk	Oxygen, Dissolved	EPA approval of TMDL (Category 4A) 11/1/1999	4-A EPA approved TMDL 11/22/99 for BOD, ammonia and phosphorus; 5b non-CSO, low priority bacteria listing; 5D fish tissue monitoring shows legacy PCBs and Dioxin

Lake	Town	MIDAS	Acres	HUC10	List Cat 00 ²	List Cat 02	List Cat 04	List Cat 06	List Cat 08	Comments
CHRISTINA RESERVOIR	FORT FAIRFIELD	9525	400	0101000501	(5a)	5a	5a	5a	5a	08: Stable, chronic blooming 'wetland'; TMDL in prep. 2009
LILLY P	ROCKPORT	83	29	0105000220	(5a)	5a	5a	4a	4a	08: Stable; TMDL app. Dec. 2005
NARROWS P (UPPER)	WINTHROP	98	279	0103000311	<mark>(</mark> 3)	5a	5a	2*	2 *	08: Originally listed in 1998 but low priority for TMDL (approved 2005). Data collected since listing and over long-term record indicate stable trend
ELL (L) P	WELLS	<mark>11</mark> 9	32	0106000304	(5a)	3	2	2 *	2 *	08: Delist no longer supporting repeated nuisance blooms
ARNOLD BROOK L	PRESQUE ISLE	409	395	0101000412	(5a)	5a	5a	5a	4a	08: Stable; TMDL Feb. 2007
DAIGLE P	NEW CANADA	1665	36	0101000303	(5a)	5a	<u>5a</u>	4a		08: Stable; TMDL Sept. 2006
CROSS L	T17 R05 WELS	1674	2515	0101000303	(5a)	5a	5a	4a	4a	08: Stable; TMDL Sept. 2006
ECHO L	PRESQUE ISLE	1776	90	0101000412	(5a)	5a	5a	5a	4a	08: Improv.; TMDL Feb. 2007
MADAWASKA L	T16 R04 WELS	<mark>180</mark> 2	<mark>15</mark> 26	0101000413	(5a)	4a	4a	2 *	2 *	08: Stable, occasional bloom; persistent improvement; TMDL 2000
MONSON P	FORT FAIRFIELD	1820	160	0101000413	(5a)	5a	5a	5a	4a	08: Stable; TMDL Nov. 2006
SEBASTICOOK L	NEWPORT	2264	4288	0103000308	(5a)	4a	4a	4a	4a	08: Slow Improv.; TMDL 2001
HERMON P	HERMON	2286	461	0102000511	(5a)	5a	5a	5a	5a	08: Stable; TMDL being reviewed 2008
HAMMOND P	HAMPDEN	2294	83	0102000511	(5a)	5a	5a	5a	5a	08: Stable; TMDL being reviewed 2008
TOOTHAKER P	PHILLIPS	2336	30	0103000305	(3)	5a	5a	4a	4a	08: Stable; TMDL Sept. 2004
HIGHLAND L	BRIDGTON	3454	<mark>14</mark> 01	0106000101	(5a)	5a	5a	2*		08: TMDL Aug 2004; data indicates persistent stable trend
HIGHLAND (DUCK) L	FALMOUTH	3734	634	0106000103	(5a)	5a	4a	4a	4a	08: TMDL 2003; trophic concerns persist; appears stable possibly deteriorating
SABATTUS P	GREENE	3796	1962	0104000210	(5a)	5a	5a	4a	12	08: Stable perhaps Improving; TMDL August 2004
WILSON P	WAYNE	3832	582	0103000311	(3)	3	2	<mark>5</mark> a		08: deteriorating trophic trend – all trophic param.; TMDL Aug. 2007
MOUSAM L	ACTON	3838	900	0106000302	(5a)	5a	4a	2*		08: Attainment of monitored uses verified. Data collected since listing and over long- term record indicate stable trend.
UNITY P	UNITY	5172	2528	0103000309	(5a)	5a	5a	4a	4a	08: Stable; TMDL Sept 2004

Table 8-2 Status of Category 5a / TMDL Lakes: 2000 through 2008 ¹

Lake	Town	MIDAS	Acres	HUC10	List Cat 00 ²	List Cat 02	List Cat 04	List Cat 06	List Cat 08	Comments
LOVEJOY P	ALBION	5176	324	0103000309	(5a)	5a	5a	4a	4a	08: Stable; TMDL 2004
	WINTHROP	5236	5543	0103000311	(5a)	4a	4a	2*	2*	08: persistent improvement
PLEASANT (MUD) P	GARDINER	<mark>525</mark> 4	746	0103000311	<mark>(5a</mark>)	5a	4a	4a		08: Stable -blooms persist; TMDL complete 2004
ONG P	BELGRADE	5272	2714	0103000310	(3)	3	3	5a		08: Deterior. trophic&DO Gloeotrichia blooms; trophic param. indicate shift
EAST P	SMITHFIELD	5349	1823	0103000310	(5a)	4a	4a	4a		08: blooms persist; deteriorating trophic trend continues; TMDL 2001
WEBBER P	VASSALBORO	5408	1201	0103000312	(5a)	5a	4a	4a	4a	08: Stable; chronic blooms; TMDL 2003
THREEMILE P	CHINA	5416	1162	0103000312	(5a)	5a	4a	4a	4a	08: Stable; chronic blooms; TMDL 2003
THREECORNERED P	AUGUSTA	5424	182	0103000312	(5a)	5a	4a	3	3	08: TMDL 2003;Improving; no recent blooms; additional time/data needed to verify
CHINA L	CHINA	5448	3845	0103000309	(5a)	4a	4a	4a	4a	08: Stable -blooms persist; TMDL 2001.
	NOBLEBORO	5702	293	0105000303	(5a)	5a	5a	3		08: Stable; TMDL Sept 2005 (note- bloomed in 2005)
LONG L	BRIDGTON	5780	4867	0106000101	(5a)	5a	5a	2*	2*	08: TMDL May 2005; Data collected since listing and over long-term record indicate stable trend.
COBBOSSEECONTEE		8065	75	0103000311	(5a)	5a	5a	4a	4a	08: Stable occasional bloom; TMDL 2005
TRAFTON L	LIMESTONE	9779	85	0101000413	(5a)	5a	5a	5a	4a	08: Stable; TMDL Oct. 2006
TOGUS P	AUGUSTA	9931	660	0103000312	(5a)	5a	5a	4a	4a	08: Stable; TMDL Sept 2005
SEWALL P	ARROWSIC	9943	46	0105000307	(3)	3	5a	4a	4a	08: Stable; TMDL March 2006
ANNABESSACOOK L		9961	1420	0103000311	(5a)	5a	4a	4a	4a	08: blooms persist; possible improvement; TMDL 2004

Table 8-2 Status of Category 5a / TMDL Lakes: 2000 through 2008 ¹

¹ Non TMDL listing changes are summarized in Appendix III, Category Listing Change Summary – pgs. 86 and 87.
 ² In 2000, current Listing Categories had not been established. Equivalent Listing Categories have been assigned for purposes of comparison.

* Lakes currently listed in Category 2 do not appear individually in Appendix III but rather are included in the overall lake summary for the HUC.

Waterbody ID	DMR Area	Segment Description	2004 List Cat	2006 List Cat	Delisting Reason
730-7	22-F	Ovens Mouth - Sherman Creek Boothbay - Edgecomb	5B-1	2	Monitoring shows attainment of Class SB criteria for fecals.
724-10	27	St. George River	5B-1	2	Monitoring shows attainment of Class SB criteria for fecals.
722-33	37-I	Western Cove, Stinson Neck, Deer Isle	5B-1	2	Monitoring shows attainment of Class SB criteria for fecals.
707-6	42	Bass Harbor and Eastern Duck Cove	5B-1	2	Erroneously listed in 2004. Monitoring shows attainment of Class SB for fecals.
714-7	48	Thomas Bay, Bar Harbor	5B-1	2	Monitoring shows attainment of Class SB criteria for fecals.
705-2	53-C	Back Bay, Milbridge	5B-1	2	Monitoring shows attainment of Class SB criteria for fecals.
701-3	56-I	Canal Cove, Seward Neck, Lubec	5B-1	2	Monitoring shows attainment of Class SB criteria for fecals.
701-4	56-J	Sipp Bay, Perry and Robinston	5B-1	2	Monitoring shows attainment of Class SB criteria for fecals.

Table 8-3 2004 Category 5/TMDL Estuarine/Marine Waters not on 2006 Category 5/TMDL List

Table 8-4 presents specific Causes of River and Stream impairment for which a Total Maximum Daily Load report (TMDL) must be (or has been) prepared and the schedule that has been established to accomplish it. It is important to note that segments may appear multiple times, in cases where a TMDL is required to address multiple causes of impairment. This list has been presented in this format in keeping with the manner in which the EPA Assessment Database (ADB) stores and reports this information.

ID305B	WATER_NAME	CATEGORY	CAUSE_NAME	TMDL STATUS	DUE DATE	PRIOR- ITY	APPROVED
ME0101000105_ 103R01	Shields Branch of Big Black R	5A	Escherichia coli		2012		
ME0101000105_ 103R01	Shields Branch of Big Black R	5A	"Oxygen, Dissolved"		2012		
ME0101000121_ 117R	St. John River at Madawaska	5B2	Escherichia coli		2011	L	
ME0101000303_ 124R01	Dickey Brook	4A	Nutrient/Eutrophication Biological Indicators	"Category 4ATMDL approved by EPA with Daigle Pond/Cross Pond TMDL September 28, 2006."			9/28/06
ME0101000303_ 124R01	Dickey Brook	4A	"Oxygen, Dissolved"	"TMDL approved by EPA September 28, 2006- submitted with Daigle Pond/Cross Pond TMDL ."			9/28/06
ME0101000303_ 124R02	Daigle Brook	4A	Nutrient/Eutrophication Biological Indicators	TMDL approved with Daigle Pond and Cross Lake TMDL 9/2006			9/28/06
ME0101000303_ 124R02	Daigle Brook	4A	"Oxygen, Dissolved"	TMDL included in Daigle Pond/ Cross Lake TMDL; approved by EPA 9/28/2006			9/28/06
ME0101000412_ 140R02	Dudley Brook (Chapman)	5A	Benthic-Macroinvertebrate Bioassessments	AVGWLF modeling and TMDL contract	2008	М	
ME0101000412_ 140R03 01	Presque Isle Stream at Presque Isle	4A	Ammonia (Un-ionized)	EPA approved TMDL 8/22/2000			8/22/00
ME0101000412_ 140R03_01	Presque Isle Stream at Presque Isle	4A	"BOD, Biochemical oxygen demand"	EPA approved TMDL			8/22/00

Table 8-4 Causes of River and Stream impairment for which a Total Maximum Daily Load Report (TMDL) must be (or has been) prepared

ME0101000412_ 140R03_01	Presque Isle Stream at Presque Isle	4A	Phosphorus (Total)	EPA approved TMDL			8/22/00
ME0101000412_ 140R03_02	N Br Presque Isle Stream	5D	DDT		2012	L	
ME0101000412_ 140R04	"Hanson Brook- formerly ""Unnamed Stream (P.I. airport)"""	5A	Benthic-Macroinvertebrate Bioassessments	"new listing, not started"	2012	Н	
ME0101000412_ 143R01	Everett Brook (Ft. Fairfield)	5A	"Oxygen, Dissolved"	"AVGWLF modeling and TMDL report under contract	2008		
ME0101000413_ 145R01	Little Madawaska River and tributaries	4B-1	Benthic-Macroinvertebrate Bioassessments	4B- Superfund remediation project complete		L	
ME0101000413_ 145R01	Little Madawaska River and tributaries	4B-1	Polychlorinated biphenyls	4-b- Superfund remediation project is complete; expected to attain standards		L	
ME0101000413_ 145R02	Greenlaw Stream	4B-1	Polychlorinated biphenyls			L	
ME0101000413_ 146R01	Webster Brook	5B	Escherichia coli		2012	L	
ME0101000501_ 149R	Minor tributaries to Prestile Stream above dam in Mars Hill	5D	DDT	5-d listed for legacy pollutant- DDT	2020	L	
ME0101000501_ 149R01	Prestile Stream above dam in Mars Hill	5A	Benthic-Macroinvertebrate Bioassessments	"AVGWLF modeling and TMDL report under contract	2008	Н	
ME0101000501_ 149R01	Prestile Stream above dam in Mars Hill	5A	DDT	5-d listed for legacy pollutant - DDT	2020	L	
ME0101000501_ 149R01	Prestile Stream above dam in Mars Hill	5A	Nutrient/Eutrophication Biological Indicators	"AVGWLF modeling and TMDL report under contract	2008	Н	
ME0101000501_ 149R01	Prestile Stream above dam in Mars Hill	5A	"Oxygen, Dissolved"	"AVGWLF modeling and TMDL report under contract	2008		
ME0101000501_ 150R	Prestile Str and tributaries entering below dam in Mars	5D	DDT	5-d legacy pollutant		L	
ME0101000504_ 152R01_01	Meduxnekeag River	4A	Phosphorus (Total)				3/8/01
 ME0101000504 152R01 02	Meduxnekeag River	5D	DDT	5d listed for legacy pollutant- DDT	2020	L	
ME0102000110_	Millinocket Stream (Millinocket)	5A	Escherichia coli	•	2008	Н	

205R03							
ME0102000402_ 219R_02	Piscataquis River at Dover Foxcroft	5B2	Escherichia coli		2009	М	
ME0102000402_ 219R01	Piscataquis R	5A	"Oxygen, Dissolved"		2009		
ME0102000403_ 215R_02	Sebec River at Milo	5B2	Escherichia coli		2009	L	
ME0102000404_ 216R01 01	W. Br. Pleasant R (KIW Twp)	5D	Iron	legacy pollutant- iron	2012	L	
ME0102000404_ 216R01 02	Blood Bk (KIW Twp)	5D	Iron	legacy pollutant- iron	2012	L	
ME0102000502_ 230R	Penobscot R	5A	Nutrient/Eutrophication Biological Indicators	Requires more monitoring data	2009		
ME0102000502_ 230R	Penobscot R	5A	"Oxygen, Dissolved"	Requires more monitoring data	2009		
ME0102000502_ 231R	Penobscot R	5A	"Dioxin (including 2,3,7,8- TCDD)"	4b listed; expected to attain		L	
ME0102000502_ 231R	Penobscot R	5A	Nutrient/Eutrophication Biological Indicators		2009	Н	
ME0102000502_ 231R	Penobscot R	5A	"Oxygen, Dissolved"	Additional monitoring 2007	2009	Н	
ME0102000502_ 231R	Penobscot R	5A	Polychlorinated biphenyls	legacy pollutant- 5d	2020	L	
ME0102000503_ 221R01	Cold Stream (Enfield) downstream of hatchery	4B-1	Benthic-Macroinvertebrate Bioassessments	draft fish hatchery permit should address impairment	2008	L	
ME0102000506_ 222R01	Costigan Str (Costigan)	5A	Escherichia coli		2008		
ME0102000506_ 222R01	Costigan Str (Costigan)	5A	"Oxygen, Dissolved"		2008		
ME0102000506_ 232R	Penobscot R	4B-1	"Dioxin (including 2,3,7,8- TCDD)"	Expected to attain	2020		
ME0102000509_ 226R01	Otter Stream	5B	Escherichia coli		2012	L	
ME0102000509_ 226R02	Boynton Brook	5B	Escherichia coli		2012	L	
ME0102000509_ 233R 01	Penobscot R	5D	"Dioxin (including 2,3,7,8- TCDD)"		2020	L	
ME0102000509_ 233R 01	Penobscot R	5D	Polychlorinated biphenyls	Category 5d for legacy PCB contamination	2020	L	

ME0102000509_ 233R_02	Penobscot River at Orono	5B2	Escherichia coli	5b2- CSO permit controls in place	2012	L	
 ME0102000509 233R_03	Penobscot River at Old Town- Milford	5B2	Escherichia coli		2014	L	
ME0102000510_ 224R01	Burnham Brook (Garland)	5A	"Oxygen, Dissolved"		2012	L	
ME0102000510_ 224R02	Kenduskeag Stream	5B	Escherichia coli		2012	L	
ME0102000510_ 224R03	French Stream (Exeter)	5A	Benthic-Macroinvertebrate Bioassessments		2012	М	
ME0102000510_ 224R04	Birch Stream (Bangor)	4A	Benthic-Macroinvertebrate Bioassessments	EPA approved TMDL 9/12/07		L	9/12/07
ME0102000510_ 224R05	Capehart (Pushaw) Brook (Bangor)	5A	Habitat Assessment (Streams)	Public review draft expected March 2008	2008	Н	
ME0102000510_ 224R06	Arctic Brook (near Valley Ave Bangor)	5A	Benthic-Macroinvertebrate Bioassessments	Draft TMDL is complete; needs Public Review	2008	Н	
ME0102000510_ 224R06	Arctic Brook (near Valley Ave Bangor)	5A	Habitat Assessment (Streams)	Draft TMDL is complete; needs Public Review	2008	Н	
ME0102000511_ 225R01_02	"Shaw Brook (Bangor, Hampden)"	5A	Benthic-Macroinvertebrate Bioassessments	Public review draft TMDL expected March 2008	2008	Н	
ME0102000511_ 225R01_02	"Shaw Brook (Bangor, Hampden)"	5A	Habitat Assessment (Streams)	"Public review draft TMDL expected March 2008	2008		
ME0102000511_ 225R02	Sucker Brook (Hampden) (formerly 'Unnamed St Hampden')	5A	Benthic-Macroinvertebrate Bioassessments	not started	2012		
ME0102000511_ 225R02	Sucker Brook (Hampden) (formerly 'Unnamed St Hampden')	5A	"Oxygen, Dissolved"	not started	2012		
ME0102000513_ 226R03	Penjajawoc Stream (Bangor) Meadow Bk (Bangor)	5A	Benthic-Macroinvertebrate Bioassessments	"Public review draft TMDL complete; due to be revised and re- submitted to EPA	2008		
ME0102000513_ 226R03	Penjajawoc Stream (Bangor) Meadow Bk (Bangor)	5A	Habitat Assessment (Streams)	Public review draft TMDL complete; due to be revised and re- submitted to EPA	2008	Н	

ME0102000513_ 226R03	Penjajawoc Stream (Bangor) Meadow Bk (Bangor)	5A	"Oxygen, Dissolved"	Public review draft TMDL complete; due to be revised and re- submitted to EPA	2008		
ME0102000513_ 234R	Penobscot River	5B2	Escherichia coli		2013	L	
ME0102000513_ 234R02	Penobscot	5D	"Dioxin (including 2,3,7,8- TCDD)"		2020		
ME0102000513_ 234R02	Penobscot	5D	Polychlorinated biphenyls	5d-legacy PCBs	2020	L	
ME0103000304_ 313R01	Mill Stream (Embden)	4B-1	Benthic-Macroinvertebrate Bioassessments	Hatchery permit issued; expiration date 1/30/2011. Expected to attain standards		L	
ME0103000305_ 315R_02	Unnamed Stream trib to Sandy R (Avon-Dunham Hatchery)	4B-1	Benthic-Macroinvertebrate Bioassessments	4-b Expected to attain- Hatchery is closed; permit was issued 10/18/2005		L	
ME0103000305_ 319R_02	"Sandy R,"	5A	Benthic-Macroinvertebrate Bioassessments	flows too high in 2006; unable to collect monitoring data required for TMDL. Next monitoring due in 2007	2008	H	
ME0103000306_ 314R02	Cold Stream (Skowhegan)	5A	Benthic-Macroinvertebrate Bioassessments	Monitoring in 2006; TMDL not started	2010	Н	
ME0103000306_ 320R02	Currier Brook	5B	Escherichia coli		2012	L	
ME0103000306_ 320R03	Whitten Brook (Skowhegan)	5A	Benthic-Macroinvertebrate Bioassessments	Public review draft of TMDL near completion	2008	Н	
ME0103000306_ 320R03	Whitten Brook (Skowhegan)	5A	Escherichia coli	not started	2009	Н	
ME0103000306_ 320R03	Whitten Brook (Skowhegan)	5A	Habitat Assessment (Streams)	Public review draft of TMDL near completion	2008	Н	
ME0103000306_ 320R04	Mill Stream (Norridgewock)	5A	Benthic-Macroinvertebrate Bioassessments		2010	М	
ME0103000306_ 338R_04	"Kennebec R,"	5D	"Dioxin (including 2,3,7,8- TCDD)"			L	
 ME0103000306 338R_04	"Kennebec R,"	5D	Polychlorinated biphenyls	Legacy PCBs	2020	L	

ME0103000306_ 339R_02	"Kennebec R,"	5D	"Dioxin (including 2,3,7,8- TCDD)"			L	
ME0103000306_ 339R_02	"Kennebec R,"	5D	Polychlorinated biphenyls	not started- legacy PCB problem	2020	L	
ME0103000306_ 339R 03	"Kennebec River, near Fairfield"	5B2	Escherichia coli	5b2- CSO permit in place	2013	L	
ME0103000307_ 330R	W Branch of Sebasticook R	5D	"Dioxin (including 2,3,7,8- TCDD)"	not started	2011	М	
ME0103000307_ 330R	W Branch of Sebasticook R	5D	Polychlorinated biphenyls	not started	2011	М	
ME0103000308_ 325R01	East Branch Sebasticook River Corundel Pd to Sebasticook L	4B-1	Benthic-Macroinvertebrate Bioassessments			L	
ME0103000308_ 325R01	East Branch Sebasticook River Corundel Pd to Sebasticook L	4B-1	Benzene	Superfund remediation should fix impairment	2012	L	
ME0103000308_ 325R01	East Branch Sebasticook River Corundel Pd to Sebasticook L	4B-1	"Dioxin (including 2,3,7,8- TCDD)"			L	
ME0103000308_ 325R01	East Branch Sebasticook River Corundel Pd to Sebasticook L	4B-1	Polychlorinated biphenyls			L	
ME0103000308_ 325R02	Brackett Brook (Palmyra)	5A	"Oxygen, Dissolved"		2012		
ME0103000308_ 325R03	Mulligan Stream (St. Albans)	5A	"Oxygen, Dissolved"	TMDL monitoring in 2006	2010	М	
ME0103000308_ 331R	E Branch of Sebasticook R	5A	"Dioxin (including 2,3,7,8- TCDD)"	legacy pollutant		L	
ME0103000308_ 331R	E Branch of Sebasticook R	5A	"Oxygen, Dissolved"	Eutrophic lake source with lake TMDL complete;	2012	L	
ME0103000308_ 331R	E Branch of Sebasticook R	5A	Phosphorus (Total)	in progress	2008	Н	
ME0103000308_ 331R	E Branch of Sebasticook R	5A	Polychlorinated biphenyls	"5d listed, legacy pollutant"		L	
ME0103000308_ 331R01	Martin Stream (Dixmont)	4B-1	Ammonia (Un-ionized)			L	
ME0103000308_ 331R01	Martin Stream (Dixmont)	4B-1	Benthic-Macroinvertebrate Bioassessments			L	
ME0103000308_ 332R	Sebasticook R	5A	"Dioxin (including 2,3,7,8- TCDD)"	Legacy upstream sources m(W.Br. Sebasticook); TMDL not started ; low priority	2011	L	

ME0103000308_ 332R	Sebasticook R	5D	Polychlorinated biphenyls	legacy PCB contamination	2050	L	
ME0103000309_ 327R01	Mill Stream (Albion)	5A	"Oxygen, Dissolved"		2012		
ME0103000309_ 332R	Sebasticook River	5A	"Dioxin (including 2,3,7,8- TCDD)"	Legacy upstream sources m(W.Br. Sebasticook); TMDL not started	2011	L	
ME0103000309_ 332R	Sebasticook River	5B	Escherichia coli	5b2 CSO permit in place; expected to attain standards		L	
ME0103000309_ 332R_01	Sebasticook River (Halifax Impd.)	5A	Dioxin (including 2,3,7,8- TCDD)	not started pending dam removal decision	2011	М	
ME0103000310_ 322R01	Fish Brook (Fairfield)	4A	Benthic-Macroinvertebrate Bioassessments	EPA approved TMDL 8/30/05			8/30/05
ME0103000310_ 322R01	Fish Brook (Fairfield)	4A	"Oxygen, Dissolved"	EPA approved TMDL 8/30/2005			8/30/05
ME0103000311_ 334R03	Jock Stream (Wales)	5A	Nutrient/Eutrophication Biological Indicators	not started	2009		
ME0103000311_ 334R03	Jock Stream (Wales)	5A	"Oxygen, Dissolved"	not started	2009		
ME0103000311_ 334R04	Mill Stream (Winthrop)	5A	Benthic-Macroinvertebrate Bioassessments	TMDL monitoring in 2005; biomonitoring in 2004	2009	М	
ME0103000311_ 334R04	Mill Stream (Winthrop)	5A	Cause Unknown	TMDL monitoring in 2005; biomonitoring in 2004	2009	М	
ME0103000311_ 334R05	Cobbossee Stream (Gardiner)	4A	Phosphorus (Total)	EPA approved TMDL 5/20/2004 (under Pleasant Pond TMDL)			5/20/04
ME0103000312_ 333R02	Whitney Brook (Augusta)	5B	Escherichia coli		2012	L	
ME0103000312_ 333R04	Unnamed tributary to Bond Brook	5A	Benthic-Macroinvertebrate Bioassessments	TMDL and Stream Team monitoring in 2005	2010	Н	
ME0103000312_ 333R04	Unnamed tributary to Bond Brook	5A	Habitat Assessment (Streams)	TMDL and Stream Team monitoring in 2005	2010	H	
ME0103000312_ 335R03	Meadow Brook (Farmingdale)	5A	Benthic-Macroinvertebrate Bioassessments		2012	L	

ME0103000312_ 339R_01	"Kennebec R,"	5D	"Dioxin (including 2,3,7,8- TCDD)"	expected to attain		L	
	"Kennebec R,"	5D	Polychlorinated biphenyls	not started- legacy PCB contamination	2020	L	
ME0103000312_ 339R 02	"Kennebec River at Waterville, CSO"	5B2	Escherichia coli	5b CSO	2014	L	
ME0103000312_ 340R 01	"Kennebec R,"	5D	"Dioxin (including 2,3,7,8- TCDD)"			L	
ME0103000312_ 340R_01	"Kennebec R,"	5D	Polychlorinated biphenyls	not started- legacy PCB contamination	2020	L	
ME0103000312_ 340R_02	"Kennebec River at Augusta, including Riggs Brook- CSO"	5B2	Escherichia coli		2013	L	
ME0103000312_ 340R_03	Kennebec River at Hallowell- CSO	5B2	Escherichia coli		2008	L	
ME0103000312_ 340R 04	Kennebec River at Gardiner- Randolph	5B2	Escherichia coli		2014	L	
ME0103000312_ 427R	Merrymeeting Bay	5D	"Dioxin (including 2,3,7,8- TCDD)"				
ME0103000312_ 427R	Merrymeeting Bay	5D	Polychlorinated biphenyls	not started- legacy PCB contamination	2020	L	
ME0104000201_ 421R	Androscoggin R	5D	"Dioxin (including 2,3,7,8- TCDD)"			L	
ME0104000201_ 421R	Androscoggin R	5D	Polychlorinated biphenyls	5d PCB legacy pollutant	2020	L	
ME0104000202_ 421R	Androscoggin R	5D	"Dioxin (including 2,3,7,8- TCDD)"			L	
ME0104000202_ 421R	Androscoggin R	5D	Polychlorinated biphenyls	not started- 5d- legacy PCB contamination	2020	L	
ME0104000204_ 421R	Androscoggin R	5D	"Dioxin (including 2,3,7,8- TCDD)"			L	
ME0104000204_ 421R	Androscoggin R	5D	Polychlorinated biphenyls	not started- legacy PCBs- Category 5d	2020	L	
ME0104000204_ 422R	Androscoggin R	5D	"Dioxin (including 2,3,7,8- TCDD)"			L	
ME0104000204_ 422R	Androscoggin R	5D	Polychlorinated biphenyls	not started- legacy PCB contamination; Category 5-d	2020	L	
ME0104000205_ 410R01_02	Whitney Brook (Canton) .	5A	Benthic-Macroinvertebrate Bioassessments		2012	М	
ME0104000205	Androscoggin R	5D	"Dioxin (including 2,3,7,8-			L	

422R			TCDD)"				
ME0104000205_ 422R	Androscoggin R	5D	Polychlorinated biphenyls	not started- legacy PCB contamination; Category 5d	2020	L	
ME0104000206_ 423R	Androscoggin R	5D	"Dioxin (including 2,3,7,8- TCDD)"	Legacy		L	
ME0104000206_ 423R	Androscoggin R	5D	Polychlorinated biphenyls	not started- legacy PCB contamination- Category 5d	2020	L	
ME0104000206_ 423R01	Androscoggin R	5D	"Dioxin (including 2,3,7,8- TCDD)"	Legacy		L	
ME0104000206_ 423R01	Androscoggin R	5D	Polychlorinated biphenyls	5d- legacy pcbs	2020	L	
ME0104000207_ 412R02	House/Lively Brook	4B	Nitrogen (Total)	Consent order for waste (manure) removal; site permit in place; expected to attain	2010	L	
ME0104000208_ 413R01	Jepson Brook (Lewiston)	5A	Benthic-Macroinvertebrate Bioassessments	May require Use Attainability Analysis	2012		
ME0104000208_ 413R01	Jepson Brook (Lewiston)	5A	Escherichia coli		2008		
ME0104000208_ 413R01	Jepson Brook (Lewiston)	5A	Habitat Assessment (Streams)	May require Use Attainability Analysis	2012	М	
ME0104000208_ 413R01	Jepson Brook (Lewiston)	5A	"Oxygen, Dissolved"	May require Use Attainability Analysis	2012	М	
ME0104000208_ 413R03	Stetson Brook (Lewiston)	5A	Escherichia coli		2009		
ME0104000208_ 413R03	Stetson Brook (Lewiston)	5A	"Oxygen, Dissolved"		2010		
ME0104000208_ 413R04	"Logan Brook, Auburn"	5A	Escherichia coli	Under bundled bacteria TMDL approach	2010	L	
ME0104000208_ 413R04	"Logan Brook, Auburn"	5A	Habitat Assessment (Streams)	City review of TMDL complete; revise/resubmit to EPA	2008	Н	
ME0104000208_ 413R04	"Logan Brook, Auburn"	5A	"Oxygen, Dissolved"	City review of TMDL complete; revise/resubmit to EPA	2008	Н	
ME0104000208_	Gully Brook (Lewiston)	5A	Escherichia coli	not started	2009	М	

413R07							
ME0104000208_ 413R07	Gully Brook (Lewiston)	5A	"Oxygen, Dissolved"	not started	2012	М	
ME0104000208_ 424R	"Androscoggin R,"	5D	"Dioxin (including 2,3,7,8- TCDD)"			L	
ME0104000208_ 424R	"Androscoggin R,"	5D	Polychlorinated biphenyls	not started; legacy PCBs- 5d listed	2020	L	
ME0104000208_ 424R 01	"Androscoggin R, GIP"	4A	"BOD, Biochemical oxygen demand"	EPA approved TMDL 7/18/05		Н	7/18/05
ME0104000208_ 424R 01	"Androscoggin R, GIP"	5D	"Dioxin (including 2,3,7,8- TCDD)"	Legacy		L	
ME0104000208_ 424R_01	"Androscoggin R, GIP"	4A	"Oxygen, Dissolved"	EPA approved TMDL 7/18/05		Н	7/18/05
ME0104000208_ 424R_01	"Androscoggin R, GIP"	4A	Phosphorus (Total)	EPA approved TMDL 7/18/05		Н	7/18/05
ME0104000208_ 424R_01	"Androscoggin R, GIP"	5D	Polychlorinated biphenyls	Legacy		L	
ME0104000208_ 424R 01	"Androscoggin R, GIP"	4A	Total Suspended Solids (TSS)	EPA approved TMDL 7/18/05		Н	7/18/05
ME0104000209_ 417R 02	Little Androscoggin River at Mechanic Falls	5B2	Escherichia coli		2012	L	
ME0104000210_ 413R02	Penley Brook (Auburn)	5A	"Oxygen, Dissolved"	not started	2010	М	
ME0104000210_ 418R01	Sabattus River between Sabattus and Androscoggin R	5A	Benthic-Macroinvertebrate Bioassessments	updated modeling report completed in 2006	2009	М	
ME0104000210_ 418R01	Sabattus River between Sabattus and Androscoggin R	5A	Nutrient/Eutrophication Biological Indicators	"Updated, revised modeling report completed 2006"	2009	М	
ME0104000210_ 418R01	Sabattus River between Sabattus and Androscoggin R	5A	"Oxygen, Dissolved"	"Updated, revised modeling report completed 2006"	2009	М	
ME0104000210_ 418R02	No Name Brook (Lewiston)	5A	Escherichia coli		2009		
ME0104000210_ 418R02	No Name Brook (Lewiston)	5A	"Oxygen, Dissolved"		2010		
ME0104000210_ 419R01	Unnamed Brook (Biomon Sta. 347-Lisbon Falls at Rt 196)	5A	Habitat Assessment (Streams)	not started	2010	Н	
ME0104000210_ 419R02	Hart Brook (Lewiston) A.K.A Dill Brook and including Goff Bk	5A	Benthic-Macroinvertebrate Bioassessments	City review of TMDL complete;	2008	Н	

				revise/resubmit to EPA			
ME0104000210_ 419R02	Hart Brook (Lewiston) A.K.A Dill Brook and including Goff Bk	5A	Escherichia coli		2009	L	
ME0104000210_ 419R02	Hart Brook (Lewiston) A.K.A Dill Brook and including Goff Bk	5A	Habitat Assessment (Streams)	City review of TMDL complete; revise/resubmit to EPA	2008	Н	
ME0104000210_ 419R02	Hart Brook (Lewiston) A.K.A Dill Brook and including Goff Bk	5A	"Oxygen, Dissolved"	City review of TMDL complete; revise/resubmit to EPA	2008	Н	
ME0104000210_ 420R01	Unnamed tributary 1 to Androscoggin R	5A	Habitat Assessment (Streams)		2012	L	
ME0104000210_ 420R02	Unnamed tributary 2 to Androscoggin R	5A	Habitat Assessment (Streams)		2012	L	
ME0104000210_ 420R03	Unnamed tributary 3 to Androscoggin R	5A	Habitat Assessment (Streams)		2012	L	
ME0104000210_ 420R04	Unnamed tributary 4 to Androscoggin R	5A	Habitat Assessment (Streams)		2012	L	
ME0104000210_ 425R_01	"Androscoggin R,"	5D	"Dioxin (including 2,3,7,8- TCDD)"	Legacy		L	
ME0104000210_ 425R_01	"Androscoggin R,"	5D	Polychlorinated biphenyls	legacy PCB contamination	2020	L	
ME0104000210_ 425R 02	"Androscoggin River, Lewiston- Auburn"	5B2	Escherichia coli		2017	L	
ME0104000210_ 426R	Androscoggin R	5D	"Dioxin (including 2,3,7,8- TCDD)"	Legacy		L	
ME0104000210_ 426R	Androscoggin R	5D	Polychlorinated biphenyls	legacy PCB contamination;	2020	L	
ME0105000201_ 507R01	Dennys River	4B-1	Polychlorinated biphenyls			L	
ME0105000203_ 508R02	Pottle Brook (Perry)	5B	Escherichia coli		2012	L	
ME0105000209_ 512R 02	McCoy Brook (Deblois)	5D	Benthic-Macroinvertebrate Bioassessments	Legacy- peat bog	2012	М	
ME0105000209_ 512R_02	McCoy Brook (Deblois)	5D	рН	legacy effect from abandoned peat mining- low pH	2012	L	
ME0105000209_ 512R_03	"Great Falls Branch, Schoodic Stream (Deblois)"	5A	Benthic-Macroinvertebrate Bioassessments		2012	М	
ME0105000213_ 514R_01	Card Brook (Ellsworth)	5A	Benthic-Macroinvertebrate Bioassessments	Some monitoring data collected	2012	М	

ME0105000213_ 514R_01	Card Brook (Ellsworth)	5A	Escherichia coli	Some monitoring data collected	2012	М	
ME0105000213_ 514R_01	Card Brook (Ellsworth)	5A	"Oxygen, Dissolved"	Some monitoring data collected	2012		
ME0105000217_ 520R01	Carleton Stream (Blue Hill)	4A	Benthic-Macroinvertebrate Bioassessments	EPA approved TMDL			10/7/04
ME0105000217_ 520R01	Carleton Stream (Blue Hill)	4A	Iron	EPA approved TMDL			10/7/04
ME0105000218_ 521R01	Warren Brook (Belfast)	5A	"Oxygen, Dissolved"		2012		
ME0105000220_ 522R01_01	Megunticook River (Camden)	5B	Escherichia coli		2012	L	
ME0105000220_ 522R02_01	Unnamed Brook (Camden) .	5B	Escherichia coli		2012	L	
ME0105000220_ 522R03	Unnamed Brook (Rockport)	5B	Escherichia coli		2012	L	
ME0105000220_ 522R04	Unnamed Brook (Rockland)	5B	Escherichia coli		2012	L	
ME0105000305_ 528R01	Sheepscot River at Alna	5B	Escherichia coli	TMDL will be prepared under bundled bacteria TMDL approach.	2009	М	
ME0105000305_ 528R02	West Branch Sheepscot River	5A	"Oxygen, Dissolved"	"Draft sent to EPA 9/30/2005; requires revision and public review	2009		
ME0105000305_ 528R03	Dyer River below Rt 215	5A	Escherichia coli	draft TMDL; apply new model	2009	Н	
ME0105000305_ 528R03	Dyer River below Rt 215	5A	"Oxygen, Dissolved"	TMDL monitoring complete; apply new TMDL model	2009	Н	
ME0105000305_ 528R04	Trout Brook (Alna)	5A	"Oxygen, Dissolved"	TMDL monitoring in 2005 and 2007	2009	М	
ME0105000305_ 528R05	Meadow Bk (Whitefield)	5A	"Oxygen, Dissolved"	"Dissolved oxygen monitoring in 2005;	2009		
ME0105000305_ 528R06	Carlton Bk (Whitefield)	5A	"Oxygen, Dissolved"	"Dissolved oxygen monitoring in 2005; TMDL monitoring in 2007	2009		
ME0105000305_	Choate Bk (Windsor)	5A	"Oxygen, Dissolved"	"Dissolved oxygen	2009		

528R07				monitoring in 2005; TMDL monitoring in 2007			
ME0105000305_ 528R08_01	Chamberlain Bk (Whitefield)	5A	"Oxygen, Dissolved"	"Dissolved oxygen monitoring in 2005; TMDL monitoring in 2007	2009		
ME0105000305_ 528R08_02	Sheepscot River below Sheepscot L (hatchery-affected)	4B-1	"Oxygen, Dissolved"	Hatchery permit provisions are expected to result in attainment; permit expiration date 2/20/11	2008	L	
ME0106000101_ 605R01	Mile Brook (Casco)	4B-1	Benthic-Macroinvertebrate Bioassessments	Expected to attain- hatchery permit issued		L	
ME0106000102_ 603R02	Chandler River including East Branch	5A	"Oxygen, Dissolved"		2012		
ME0106000102_ 603R06	Cole Brook (Gray)	5A	Benthic-Macroinvertebrate Bioassessments		2012	L	
ME0106000103_ 607R01	Black Brook (Windham)	5A	Escherichia coli	"Under bundled bacteria TMDL approach; TMDL monitoring in 2007;	2009		
ME0106000103_ 607R01	Black Brook (Windham)	5A	"Oxygen, Dissolved"	"TMDL monitoring in 2007;	2009		
ME0106000103_ 607R03	Colley Wright Brook (Windham)	5A	Escherichia coli	"TMDL monitoring in 2007; bundled bacteria TMDL	2009		
ME0106000103_ 607R03	Colley Wright Brook (Windham)	5A	"Oxygen, Dissolved"	"TMDL monitoring in 2007; bundled bacteria TMDL	2009		
ME0106000103_ 607R04	Piscataqua River (Falmouth)	5B	Escherichia coli	5b1low priority recreational waters	2012	L	
ME0106000103_ 607R06	Hobbs Brook (Cumberland)	5A	Escherichia coli	TMDL monitoring 2007; Under bundled bacteria TMDL approach	2009		
ME0106000103_ 607R06	Hobbs Brook (Cumberland)	5A	"Oxygen, Dissolved"	TMDL monitoring 2007; Under bundled bacteria TMDL approach	2009		

ME0106000103_ 607R07	Inkhorn Brook (Westbrook)	5A	Escherichia coli	"TMDL monitoring in 2007; Under bundled bacteria TMDL approach	2009		
ME0106000103_ 607R07	Inkhorn Brook (Westbrook)	5A	"Oxygen, Dissolved"	"TMDL monitoring in 2007; Under bundled bacteria TMDL approach	2009		
ME0106000103_ 607R08	Mosher Brook (Gorham)	5A	Escherichia coli	TMDL monitoring in 2007; Under bundled bacteria TMDL approach	2009		
ME0106000103_ 607R08	Mosher Brook (Gorham)	5A	"Oxygen, Dissolved"	TMDL monitoring in 2007; Under bundled bacteria TMDL approach	2009		
ME0106000103_ 607R09	Otter Brook (Windham)	5A	Escherichia coli	TMDL monitoring in 2007; Under bundled bacteria TMDL approach	2009		
ME0106000103_ 607R09	Otter Brook (Windham)	5A	"Oxygen, Dissolved"	TMDL monitoring in 2007; Under bundled bacteria TMDL approach	2009		
ME0106000103_ 607R10	Thayer Brook	5A	"Oxygen, Dissolved"		2010		
ME0106000103_ 607R11	Nason Brook (Gorham)	5B	Escherichia coli	"5-B, low priority, non- CSO, bacteria only waters"		L	
ME0106000103_ 607R12	Pleasant River (Windham)	5A	Escherichia coli	"not started, new 303d listing"	2010	М	
ME0106000103_ 607R12	Pleasant River (Windham)	5A	"Oxygen, Dissolved"	"not started, new 303d listing"	2010	М	
ME0106000103_ 609R 02	Presumpscot River at Westbrook	5B2	Escherichia coli		2011	L	
ME0106000104_ 611R02	Phillips Brook (Scarborough)	5A	Habitat Assessment (Streams)	TMDL monitoring in 2006	2009	М	
ME0106000105_ 607R11_01	"Nasons Brook (Portland) south of Rt 25, trib to Fore River"	5A	Benthic-Macroinvertebrate Bioassessments	TMDL monitoring in 2006; TMDL internal draft	2008	Н	
ME0106000105_	Unnamed Stream (Portland 3)	5A	Benthic-Macroinvertebrate	not started	2012	М	

609R01			Bioassessments				
ME0106000105_ 610R01	Capisic Brook	5A	Benthic-Macroinvertebrate Bioassessments	Draft sent to EPA 7/29/05 under bundled Urban Stream project; revise and resubmit	2008	Н	
ME0106000105_ 610R01	Capisic Brook	5A	Habitat Assessment (Streams)	Draft sent to EPA 7/29/2005 under bundled urban stream report; revise and resubmit	2008	Н	
ME0106000105_ 610R02	Clark Brook (Westbrook)	5A	"Oxygen, Dissolved"		2012		
ME0106000105_ 610R03	Long Creek (South Portland)	5A	Benthic-Macroinvertebrate Bioassessments	Internal draft TMDL; active stakeholder process is developing a Watershed Management Plan; final TMDL needs to be consistent with WMP.	2010	М	
ME0106000105_ 610R03	Long Creek (South Portland)	5A	Habitat Assessment (Streams)	Internal draft TMDL; active stakeholder process is developing a Watershed Management Plan; final TMDL needs to be consistent with WMP.	2010	M	
ME0106000105_ 610R04	"Stroudwater River (South Portland, Westbrook)"	5A	"Oxygen, Dissolved"		2012		
ME0106000105_ 610R05	Trout Brook (South Portland)	4A	Benthic-Macroinvertebrate Bioassessments	EPA approved TMDL 10/25/2007			10/25/07
ME0106000105_ 610R05	Trout Brook (South Portland)	4A	Habitat Assessment (Streams)	EPA approved TMDL 10/25/07			10/25/07
ME0106000105_ 610R06	Kimball Brook	5A	Benthic-Macroinvertebrate Bioassessments	not started	2012	М	
ME0106000105_ 610R06	Kimball Brook	5A	Habitat Assessment (Streams)	not started	2012	М	
ME0106000105_ 610R07	"Red Brook (Scarborough, S Portland)"	5A	Habitat Assessment (Streams)		2012	L	
ME0106000105	"Red Brook (Scarborough, S	5A	Polychlorinated biphenyls		2012	L	

610R07	Portland)"						
ME0106000105_ 610R08	Fall Bk (Portland)	5A	Habitat Assessment (Streams)		2012	L	
ME0106000105_ 610R09	Barberry Cr	4A	Benthic-Macroinvertebrate Bioassessments	EPA approved TMDL 6/21/2007 (under bundled urban stream project.)			6/21/07
ME0106000105_ 610R09	Barberry Cr	4A	Habitat Assessment (Streams)	Final TMDL approved by EPA;			6/21/07
ME0106000106_ 602R01	Frost Gully Brook	5A	Benthic-Macroinvertebrate Bioassessments	draft TMDL complete; Public review comments required changes to model	2008	Н	
ME0106000106_ 602R01	Frost Gully Brook	5A	Escherichia coli	Draft complete; Public review comments required changes to model	2008	Н	
ME0106000106_ 602R01	Frost Gully Brook	5A	Habitat Assessment (Streams)	draft complete; Public review comments required changes to model	2008	Н	
ME0106000106_ 602R02	Mare Brook (Brunswick)	5A	Habitat Assessment (Streams)		2010	М	
ME0106000106_ 602R03	Concord Gully (Freeport)	5A	Habitat Assessment (Streams)	draft complete; Public review comments on draft TMDL required changes to model	2008	Н	
ME0106000106_ 612R01_01	Goosefare Brook .	4A	Cadmium	EPA approved TMDL complete			9/29/03
ME0106000106_ 612R01_01	Goosefare Brook .	4A	Chromium (total)	EPA approved TMDL 9/29/2003			9/29/03
ME0106000106_ 612R01_01	Goosefare Brook .	4A	Copper	EPA approved TMDL 9/29/2003			9/29/03
ME0106000106_ 612R01 01	Goosefare Brook .	4A	Iron	EPA approved TMDL 9/29/2003			9/29/03
ME0106000106_ 612R01 01	Goosefare Brook .	4A	Lead	EPA approved TMDL 9/29/2003			9/29/03
ME0106000106_ 612R01_01	Goosefare Brook .	4A	Nickel	EPA approved TMDL 9/29/2003			9/29/03
ME0106000106	Goosefare Brook .	4A	Zinc	EPA approved TMDL			9/29/03

ME0106000106. The are Brook, Saco* 5B2 Escherichia coli 2011 L ME0106000106. Bear Bk 5B Escherichia coli 2012 L ME0106000204_ 618R01 Saco R 5B Escherichia coli 2012 L ME0106000204_ 614R01 Saco R 5B Escherichia coli 2012 L ME0106000200_ 614R01 Ossippee R 5B Escherichia coli 2012 L ME0106000210_ 614R01 Little Ossippee R 5A Benthic-Macroinvertebrate Bioassessments not started 2012 L ME0106000210_ 615R02 Brown Brook (Limerick) 5A Benthic-Macroinvertebrate Bioassessment TMDL monitoring in 2006 2009 M ME0106000210_ 616R02 Brown Brook (Limerick) 5A Habitat Assessment TMDL monitoring in 2006 2009 M ME0106000211_ 616R02 Wales Pond Brook (Hollis) 5A Benthic-Macroinvertebrate Bicassessments not started 2010 H ME0106000211_ 616R02 Tactor Bk (Biddeford) 5A Benthic-Macroinvertebrate Bicassessments 201	612R01 01				9/29/2003			
ME0106000106, 618R04 Bear Bk 5B Escherichia coli 2012 L ME0106000204, 618R01 Saco R 5B Escherichia coli 2012 L ME0106000204, 614R01 Ossippee R 5B Escherichia coli 2012 L ME0106000210, 614R01 Little Ossippee R 5A Benthic-Macroinvertebrate Bioassessments not started 2012 L ME0106000210, 615R02 Brown Brook (Limerick) 5A Yoxygen, Dissolved" not started 2012 L ME0106000210, 615R02 Brown Brook (Limerick) 5A Yoxygen, Dissolved" not started 2009 M ME0106000210, 615R02 Brown Brook (Limerick) 5A Habital Assessment (Streams) TMDL monitoring in 2006 2009 M ME0106000211, 616R02 Vales Pond Brook (Hollis) 5A Benthic-Macroinvertebrate Bioassessments not started 2010 H ME0106000211, 616R02 Sawyer Bk 5B Escherichia coli 2012 L ME0106000211, 616R03 Thatcher Bk (Biddeford) 5A Benthic-Macroinvertebrate Bioassessments New listing; Not started 2012 M		"Bear Brook, Saco"	5B2	Escherichia coli		2011	L	
616R04								
ME0106000204_ 618R01 Saco R 5B Escherichia coli 2012 L 618R01 Saco R 5B Escherichia coli 2012 L 614R01 ME0106000209_ 614R01 Little Ossippee R 5A Benthic-Macroinvertebrate Bioassessments not started 2012 L ME0106000210_ 615R01 Little Ossippee R 5A Benthic-Macroinvertebrate Bioassessments not started 2012 L ME0106000210_ 615R02 Brown Brook (Limerick) 5A Benthic-Macroinvertebrate Bioassessments TMDL monitoring in 2006 2009 M ME0106000210_ 615R02 Brown Brook (Limerick) 5A Benthic-Macroinvertebrate Bioassessments TMDL monitoring in 2006 2009 M ME0106000211_ 616R03 Sawyer Bk 5B Escherichia coli 2012 L ME0106000211_ 616R05 Thatcher Bk (Biddeford) 5A Benthic-Macroinvertebrate Bioassessments New listing. Not started 2012 M ME0106000211_ 616R05 Thatcher Bk (Biddeford) 5A Benthic-Macroinvertebrate Bioassessments New listing. Not started 2012 M ME0106000211_ 616R05 Sawar Pond Brook at South Street 616R05		Bear Bk	5B	Escherichia coli		2012	L	
618R01								
ME0106000209_ 614R01 Ossippee R 5B Escherichia coli 2012 L 614R01 Little Ossippee R 5A Benthic-Macroinvertebrate Bioassessments not started 2012 L ME0106000210_ 615R01 Little Ossippee R 5A "Oxygen, Dissolved" not started 2012 L ME0106000210_ 615R02 Brown Brook (Limerick) 5A Benthic-Macroinvertebrate Bioassessments TMDL monitoring in 2006 2009 M ME0106000210_ 615R02 Brown Brook (Limerick) 5A Benthic-Macroinvertebrate Bioassessments TMDL monitoring in 2006 2009 M ME0106000211_ 616R02 Brown Brook (Hollis) 5A Benthic-Macroinvertebrate Bioassessments not started 2010 H ME0106000211_ 616R02 Tappan Bk 5B Escherichia coli 2012 L ME0106000211_ 616R03 Thatcher Bk (Biddeford) 5A Benthic-Macroinvertebrate Bioassessments New listing; Not started 2012 M ME0106000211_ 616R05 Thatcher Bk (Biddeford) 5A Escherichia coli 2012 M ME0106000211_ 616R05 Swan Pond Brook at South Street (Biddeford) 5B		Saco R	5B	Escherichia coli		2012	L	
614R01 C <thc< th=""> C <thc< th=""> <thc< th=""></thc<></thc<></thc<>								
ME0106000210_ 615R01 Little Ossippee R 5A Benthic-Macroinvertebrate Bioassessments not started 2012 L ME0106000210_ 615R01 Little Ossippee R 5A "Oxygen, Dissolved" not started 2012 L ME0106000210_ 615R02 Brown Brook (Limerick) 5A Benthic-Macroinvertebrate Bioassessments TMDL monitoring in 2006 2009 M ME0106000210_ 615R02 Brown Brook (Limerick) 5A Habitat Assessment Bioassessments TMDL monitoring in 2006 2009 M ME0106000211_ 616R02 Brown Brook (Hollis) 5A Benthic-Macroinvertebrate Bioassessments not started 2010 H ME0106000211_ 616R02 Tappan Bk 5B Escherichia coli not started 2012 L ME0106000211_ 616R03 Sawyer Bk 5B Escherichia coli 2012 L M ME0106000211_ 616R05 Swan Pond Brook at South Street 5B Escherichia coli 2012 M M ME0106000211_ 616R05 Swan Pond Brook at South Street 5B Escherichia coli 2012 L M ME0106000211_ 616R06 Saco River at Biddeford) 5A		Ossippee R	5B	Escherichia coli		2012	L	
615R01meBioassessmentsnot started2012LME0106000210 615R01Brown Brook (Limerick)5ABenthic-Macroinvertebrate BioassessmentsTMDL monitoring in 20062009MME0106000210 615R02Brown Brook (Limerick)5ABenthic-Macroinvertebrate BioassessmentsTMDL monitoring in 20062009MME0106000211 616R02Brown Brook (Limerick)5AHabitat Assessment BioassessmentsTMDL monitoring in 20062009MME0106000211 616R02Brown Brook (Hollis)5ABenthic-Macroinvertebrate Bioassessmentsnot started2010HME0106000211 616R02Tappan Bk5BEscherichia coli2012LLME0106000211 616R05Sawyer Bk5BEscherichia coli2012LHME0106000211 616R05Thatcher Bk (Biddeford)5ABenthic-Macroinvertebrate BioassessmentsNew listing; Not started2012LME0106000211 616R05Thatcher Bk (Biddeford)5ABenthic-Macroinvertebrate BioassessmentsNew listing; Not started2012LME0106000211 618R05Swan Pond Brook at South Street5BEscherichia coli2012LME0106000211 618R05Sace River at Biddeford-Saco5B2Escherichia coli2012LME0106000211 618R05Sace River at Biddeford-Saco5B2Escherichia coli2012LME0106000301 622R02Kennebunk River5BEscherichia coli2012L </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>							-	
ME0106000210_ 615R01 Little Ossippee R 5A "Oxygen, Dissolved" not started 2012 L ME0106000210_ 615R02 Brown Brook (Limerick) 5A Benthic-Macroinvertebrate Bioassessments TMDL monitoring in 2006 2009 M ME0106000210_ 615R02 Brown Brook (Limerick) 5A Benthic-Macroinvertebrate Bioassessments TMDL monitoring in 2006 2009 M ME0106000211_ 616R0 Wales Pond Brook (Hollis) 5A Benthic-Macroinvertebrate Bioassessments not started 2010 H ME0106000211_ 616R03 Tappan Bk 5B Escherichia coli 2012 L ME0106000211_ 616R03 Sawyer Bk 5B Escherichia coli 2012 L ME0106000211_ 616R05 Thatcher Bk (Biddeford) 5A Benthic-Macroinvertebrate Bioassessments New listing; Not started 2012 M ME0106000211_ 616R05 Thatcher Bk (Biddeford) 5A Escherichia coli 2012 M ME0106000211_ 616R05 Saco River at Biddeford-Saco 5B Escherichia coli 2013 L ME0106000211_ 619R01 Saco River at Biddeford-Saco 5B2 Escherichia coli 2013		Little Ossippee R	5A		not started	2012	L	
615R01CCCCME0106000210 015R02Brown Brook (Limerick)5ABenthic-Macroinvertebrate BioassessmentsTMDL monitoring in 20062009MME0106000210 015R02Brown Brook (Limerick)5AHabitat Assessment (Streams)TMDL monitoring in 20062009MME0106000211 015R02Wales Pond Brook (Hollis)5ABenthic-Macroinvertebrate Bioassessmentsnot started2010HME0106000211 016R02Tappan Bk5BEscherichia coli2012LLME0106000211 016R02Sawyer Bk5BEscherichia coli2012LLME0106000211 016R02Thatcher Bk (Biddeford)5ABenthic-Macroinvertebrate BioassessmentsNew listing; Not started2012MME0106000211 016R05Thatcher Bk (Biddeford)5AEscherichia coli2012LME0106000211 016R05Thatcher Bk (Biddeford)5AEscherichia coli2012LME0106000211 016R05Thatcher Bk (Biddeford)5AEscherichia coli2012LME0106000211 018R05Saw Pond Brook at South Street5BEscherichia coli2012LME0106000211 019R01Saco River at Biddeford-Saco5B2Escherichia coli2012LME0106000301 022R02Kennebunk River5BEscherichia coli2012LME0106000301 022R02Lord's Brook (Lyman)5A"BOD, Biochemical oxygen Biological Indicatorsenforcement actions, 					-			
ME0106000210_ 615R02Brown Brook (Limerick)5ABenthic-Macroinvertebrate BioassessmentsTMDL monitoring in 20062009MME0106000210_ 615R02Brown Brook (Limerick)5AHabitat Assessment (Streams)TMDL monitoring in 20062009MME0106000211_ 616RWales Pond Brook (Hollis)5ABenthic-Macroinvertebrate Bioassessmentsnot started2010HME0106000211_ 616R02Tappan Bk5BEscherichia coli2012LME0106000211_ 616R03Sawyer Bk5BEscherichia coli2012LME0106000211_ 616R03Sawyer Bk5ABenthic-Macroinvertebrate BioassessmentsNew listing; Not started2012MME0106000211_ 616R05Thatcher Bk (Biddeford)5ABenthic-Macroinvertebrate BioassessmentsNew listing; Not started2012MME0106000211_ 616R05Thatcher Bk (Biddeford)5AEscherichia coli2012MME0106000211_ 616R06Sace River at Biddeford-Saco 622R015BEscherichia coli2012LME0106000211_ 612R04Kennebunk River5BEscherichia coli2012LME0106000211_ 612R04Kennebunk River5BEscherichia coli2012LME0106000301_ 622R02Lord's Brook (Lyman)5A'BOD, Biochemical oxygen demand''enforcement actions, technical support and permit revisions underway;MME0106000301_ 622R02Lord's Brook (Lyman)5A'BOD, Biochemica		Little Ossippee R	5A	"Oxygen, Dissolved"	not started	2012	L	
615R02Event for the second								
ME0106000210_ 615R02Brown Brook (Limerick)5AHabitat Assessment (Streams)TMDL monitoring in 20062009MME0106000211_ 616R02Wales Pond Brook (Hollis)5ABenthic-Macroinvertebrate Bioassessmentsnot started2010HME0106000211_ 616R02Tappan Bk5BEscherichia coli0t started2012LME0106000211_ 616R03Sawyer Bk5BEscherichia coli2012LME0106000211_ 616R05Sawyer Bk (Biddeford)5ABenthic-Macroinvertebrate BioassessmentsNew listing; Not started2012MME0106000211_ 616R05Thatcher Bk (Biddeford)5ABenthic-Macroinvertebrate BioassessmentsNew listing; Not started2012MME0106000211_ 616R05Thatcher Bk (Biddeford)5AEscherichia coli2012LME0106000211_ (Biddeford)Saco River at Biddeford-Saco5B2Escherichia coli2013LME0106000211_ (Biddeford)Kennebunk River5BEscherichia coli2012LME0106000301_ 622R02Lord's Brook (Lyman)5A"BOD, Biochemical oxygen demand"enforcement actions, technical support and permit revisionsMME0106000301_ 622R02Lord's Brook (Lyman)5A"Oxygen, Dissolved"M		Brown Brook (Limerick)	5A			2009	M	
615R02(Streams)2006ME0106000211_ 616RWales Pond Brook (Hollis)5ABenthic-Macroinvertebrate Bioassessmentsnot started2010HME0106000211_ 616R02Tappan Bk5BEscherichia colinot started2012LME0106000211_ 616R03Sawyer Bk5BEscherichia coli2012LME0106000211_ 616R05Sawyer Bk5BEscherichia coli2012MME0106000211_ 616R05Thatcher Bk (Biddeford)5ABenthic-Macroinvertebrate BioassessmentsNew listing; Not started2012MME0106000211_ 616R05Thatcher Bk (Biddeford)5ABenthic-Macroinvertebrate BioassessmentsNew listing; Not started2012LME0106000211_ 618R05Swan Pond Brook at South Street (Biddeford)5BEscherichia coli2012LME0106000211_ 618R06Saco River at Biddeford-Saco5B2Escherichia coli2013LME0106000301_ 622R02Lord's Brook (Lyman)5A"BOD, Biochemical oxygen demand"enforcement actions, echnical support and permit revisions underway;MME0106000301_ 622R02Lord's Brook (Lyman)5A"Oxygen, Dissolved"M			- •					
ME0106000211_ 616RWales Pond Brook (Hollis)5ABenthic-Macroinvertebrate Bioassessmentsnot started2010HME0106000211_ 616R02Tappan Bk5BEscherichia coli2012LME0106000211_ 616R03Sawyer Bk5BEscherichia coli2012LME0106000211_ 616R03Sawyer Bk5BEscherichia coli2012MME0106000211_ 616R05Thatcher Bk (Biddeford)5ABenthic-Macroinvertebrate BioassessmentsNew listing; Not started2012MME0106000211_ 616R05Thatcher Bk (Biddeford)5AEscherichia coliSavyer Bk2009LME0106000211_ 616R06Swan Pond Brook at South Street (Biddeford)5BEscherichia coli2012LME0106000211_ 618R06Swan Pond Brook at South Street (Biddeford)5BEscherichia coli2012LME0106000211_ 619R01Saco River at Biddeford-Saco5B2Escherichia coli2013LME0106000301_ 622R02Lord's Brook (Lyman)5A"BOD, Biochemical oxygen demand"enforcement actions, technical support and permit revisions underway;MME0106000301_ 622R02Lord's Brook (Lyman)5A"Oxygen, Dissolved"M		Brown Brook (Limerick)	5A			2009	M	
616RImage: Constraint of the second seco			_			0010		
ME0106000211_ 616R02Tappan Bk5BEscherichia coli2012LME0106000211_ 616R03Sawyer Bk5BEscherichia coli2012LME0106000211_ 616R05Thatcher Bk (Biddeford)5ABenthic-Macroinvertebrate BioassessmentsNew listing; Not started2012MME0106000211_ 616R05Thatcher Bk (Biddeford)5ABenthic-Macroinvertebrate BioassessmentsNew listing; Not started2009LME0106000211_ 616R05Thatcher Bk (Biddeford)5AEscherichia coli2009LME0106000211_ 616R06Swan Pond Brook at South Street (Biddeford)5BEscherichia coli2012LME0106000211_ 619R01Saco River at Biddeford-Saco5B2Escherichia coli2013LME0106000301_ 622R02Kennebunk River5BEscherichia coli2012LME0106000301_ 622R02Lord's Brook (Lyman)5A"BOD, Biochemical oxygen Biological Indicatorsenforcement actions, technical support and permit revisions underway;MME0106000301_ 622R02Lord's Brook (Lyman)5A"Oxygen, Dissolved"M		Wales Pond Brook (Hollis)	5A		not started	2010	н	
616R02CC <td></td> <td>Tannan Dk</td> <td>CD</td> <td></td> <td></td> <td>0040</td> <td></td> <td></td>		Tannan Dk	CD			0040		
ME0106000211_ 616R03Sawyer Bk5BEscherichia coli2012LME0106000211_ 616R05Thatcher Bk (Biddeford)5ABenthic-Macroinvertebrate BioassessmentsNew listing; Not started2012MME0106000211_ 616R05Thatcher Bk (Biddeford)5AEscherichia coliNew listing; Not started2009L616R05Thatcher Bk (Biddeford)5AEscherichia coli2009L616R05Swan Pond Brook at South Street (Biddeford)5BEscherichia coli2012L616R06(Biddeford)Saco River at Biddeford-Saco5B2Escherichia coli2013L619R01Saco River at Biddeford-Saco5B2Escherichia coli2012LME0106000301_ 622R02Kennebunk River5BEscherichia coli2012LME0106000301_ 622R02Lord's Brook (Lyman)5A"BOD, Biochemical oxygen Biological Indicatorsenforcement actions, technical support and permit revisions underway;MME0106000301_ 622R02Lord's Brook (Lyman)5A"Oxygen, Dissolved"M		Гаррап Вк	эв	Escherichia coli		2012	L	
616R03MMMMMME0106000211_ 616R05Thatcher Bk (Biddeford)5ABenthic-Macroinvertebrate BioassessmentsNew listing; Not started2012MME0106000211_ 616R05Thatcher Bk (Biddeford)5AEscherichia coli2009LME0106000211_ 616R06Swan Pond Brook at South Street (Biddeford)5BEscherichia coli2012LME0106000211_ 616R06Swan Pond Brook at South Street (Biddeford)5BEscherichia coli2013LME0106000211_ 619R01Saco River at Biddeford-Saco5B2Escherichia coli2013LME0106000301_ 622R01Kennebunk River5BEscherichia coli2012LME0106000301_ 622R02Lord's Brook (Lyman)5A"BOD, Biochemical oxygen demand"enforcement actions, technical support and Biological IndicatorsMME0106000301_ 622R02Lord's Brook (Lyman)5A"Oxygen, Dissolved"enforcement actions, technical support and permit revisions underway;M		Counter Dk	ED.	Lasharishia asli		2012	-	
ME0106000211_ 616R05Thatcher Bk (Biddeford)5ABenthic-Macroinvertebrate BioassessmentsNew listing; Not started2012MME0106000211_ 616R05Thatcher Bk (Biddeford)5AEscherichia coli2009LME0106000211_ 616R06Swan Pond Brook at South Street (Biddeford)5BEscherichia coli2012LME0106000211_ 616R06Swan Pond Brook at South Street (Biddeford)5BEscherichia coli2012LME0106000211_ 619R01Saco River at Biddeford-Saco 622R015B2Escherichia coli2013LME0106000301_ 622R02Kennebunk River5BEscherichia coli2012LME0106000301_ 622R02Lord's Brook (Lyman)5A"BOD, Biochemical oxygen demand"enforcement actions, technical support and Biological IndicatorsMME0106000301_ 622R02Lord's Brook (Lyman)5A"Oxygen, Dissolved"M		Sawyer BK	ЭD	Escherichia coli		2012		
616R05BioassessmentsstartedImage: constraint of the started of the s		Thatcher Bk (Biddeford)	54	Benthic-Macroinvertebrate	New listing: Not	2012	NA	
ME0106000211_ 616R05Thatcher Bk (Biddeford)5AEscherichia coli2009LME0106000211_ 616R06Swan Pond Brook at South Street (Biddeford)5BEscherichia coli2012LME0106000211_ 619R01Saco River at Biddeford-Saco 619R015B2Escherichia coli2013LME0106000301_ 622R01Kennebunk River5BEscherichia coli2012LME0106000301_ 622R02Lord's Brook (Lyman)5A"BOD, Biochemical oxygen demand"enforcement actions, technical support and permit revisions underway;MME0106000301_ 622R02Lord's Brook (Lyman)5A"Oxygen, Dissolved"M		Thatcher BK (Biddelold)	JA			2012	171	
616R05MediaMainMedia		Thatcher Bk (Biddeford)	54		Started	2009	1	
ME0106000211_ 616R06Swan Pond Brook at South Street (Biddeford)5BEscherichia coli2012LME0106000211_ 619R01Saco River at Biddeford-Saco 619R015B2Escherichia coli2013LME0106000301_ 622R01Kennebunk River5BEscherichia coli2012LME0106000301_ 622R02Lord's Brook (Lyman)5A"BOD, Biochemical oxygen demand"enforcement actions, technical support and permit revisions underway;MME0106000301_ 622R02Lord's Brook (Lyman)5ANutrient/Eutrophication Biological Indicatorsenforcement actions, technical support and permit revisions underway;M		matcher BR (Biddelord)	54			2003		
616R06(Biddeford)Image: Construction of the sector o		Swan Pond Brook at South Street	5B	Escherichia coli		2012	1	
ME0106000211_ 619R01Saco River at Biddeford-Saco5B2Escherichia coli2013LME0106000301_ 622R01Kennebunk River5BEscherichia coli2012LME0106000301_ 622R02Lord's Brook (Lyman)5A"BOD, Biochemical oxygen demand"enforcement actions, technical support and permit revisions underway;MME0106000301_ 622R02Lord's Brook (Lyman)5ANutrient/Eutrophication Biological Indicatorsenforcement actions, technical support and permit revisions underway;M			08			2012	-	
619R01Image: constraint of the second se			5B2	Escherichia coli		2013	1	
ME0106000301_ 622R01Kennebunk River5BEscherichia coli2012LME0106000301_ 622R02Lord's Brook (Lyman)5A"BOD, Biochemical oxygen demand"enforcement actions, technical support and permit revisions underway;MME0106000301_ 622R02Lord's Brook (Lyman)5ANutrient/Eutrophication Biological Indicatorsenforcement actions, technical support and permit revisions underway;MME0106000301_ 622R02Lord's Brook (Lyman)5A"Oxygen, Dissolved"M			022			2010	_	
622R01Image: Constraint of the sector of the se		Kennebunk River	5B	Escherichia coli		2012	L	
ME0106000301_ 622R02Lord's Brook (Lyman)5A"BOD, Biochemical oxygen demand"enforcement actions, technical support and permit revisions underway;MME0106000301_ 622R02Lord's Brook (Lyman)5ANutrient/Eutrophication Biological Indicatorsenforcement actions, technical support and permit revisions underway;MME0106000301_ 622R02Lord's Brook (Lyman)5A"Oxygen, Dissolved"M			02				_	
622R02 demand" technical support and permit revisions underway; M ME0106000301_ 622R02 Lord's Brook (Lyman) 5A Nutrient/Eutrophication Biological Indicators permit revisions underway; M ME0106000301_ 622R02 Lord's Brook (Lyman) 5A "Oxygen, Dissolved" M		Lord's Brook (Lyman)	5A	"BOD. Biochemical oxygen	enforcement actions.		М	
ME0106000301_ 622R02 Lord's Brook (Lyman) 5A Nutrient/Eutrophication Biological Indicators permit revisions underway; M ME0106000301_ 622R02 Lord's Brook (Lyman) 5A "Oxygen, Dissolved" M M								
622R02 Biological Indicators underway; ME0106000301_ 622R02 Lord's Brook (Lyman) 5A "Oxygen, Dissolved"		Lord's Brook (Lyman)	5A				М	
ME0106000301_ 622R02 Lord's Brook (Lyman) 5A "Oxygen, Dissolved" M	_							
622R02	ME0106000301	Lord's Brook (Lyman)	5A				М	
ME0106000302_ "Mousam R," 4A Aluminum EPA approved TMDL 3/8/01								
	ME0106000302_	"Mousam R,"	4A	Aluminum	EPA approved TMDL			3/8/01

628R01							
ME0106000302_ 628R01	"Mousam R,"	4A	Ammonia (Un-ionized)	EPA approved TMDL			3/8/01
ME0106000302_ 628R01	"Mousam R,"	4A	Arsenic	EPA approved TMDL			3/8/01
ME0106000302_ 628R01	"Mousam R,"	4A	"BOD, Biochemical oxygen demand"	EPA approved TMDL			3/8/01
ME0106000302_ 628R01	"Mousam R,"	4A	Copper	EPA approved TMDL			3/8/01
ME0106000302_ 628R01	"Mousam R,"	4A	Lead	EPA approved TMDL			3/8/01
ME0106000302_ 628R01	"Mousam R,"	4A	Phosphorus (Total)	EPA approved TMDL			3/8/01
ME0106000302_ 628R01	"Mousam R,"	4A	Selenium	EPA approved TMDL			3/8/01
ME0106000302_ 628R01	"Mousam R,"	4A	Silver	EPA approved TMDL			3/8/01
ME0106000302_ 628R01	"Mousam R,"	4A	Zinc	EPA approved TMDL			3/8/01
ME0106000302_ 628R02	Mousam River at Sanford	5B2	Escherichia coli		2008	L	
ME0106000303_ 624R01	"Stevens Brook (Wells, Ogunquit)"	5A	Benthic-Macroinvertebrate Bioassessments	TMDL data collected in 2006	2009	М	
ME0106000304_ 625R01	Adams Brook (Berwick)	5A	Benthic-Macroinvertebrate Bioassessments	TMDL data collected in 2006	2009	М	
ME0106000304_ 625R03	West Brook (N. Berwick)	5A	"1,1-Dichloroethane"	not started	2012		
ME0106000304_ 625R03	West Brook (N. Berwick)	5A	"1,2-Dichloroethane"	not started	2012		
ME0106000304_ 625R03	West Brook (N. Berwick)	5A	"Oxygen, Dissolved"	not started	2012		
ME0106000305_ 630R01	Salmon Falls R	4A	Ammonia (Un-ionized)	EPA approved TMDL 11/22/99		L	11/22/99
ME0106000305_ 630R01	Salmon Falls R	4B	"Dioxin (including 2,3,7,8- TCDD)"	4-b expected to attain	2008		
ME0106000305_ 630R01	Salmon Falls R	5B2	Escherichia coli	NH data and TMDL	2008		
ME0106000305_ 630R01	Salmon Falls R	4A	Nutrient/Eutrophication Biological Indicators	EPA approved TMDL 11/22/99			11/22/99
ME0106000305_	Salmon Falls R	4A	"Oxygen, Dissolved"	EPA approved TMDL			11/22/99

630R01				11/22/99			
ME0106000305_	Salmon Falls R	5B2	Polychlorinated biphenyls	not started; legacy	2020	L	
630R01				PCBs			

Table 8-5 Lake TMDL Current Project Update

Lake	Lake ID	Pollutants	Project Status	Priority *	TMDL Submittal Target**
CHRISTINA RESER∀OIR	<mark>9</mark> 525	Total phosphorus	Preliminary draft	3	2009
HAMMOND P 2294 Possible natural condition		TMDL being prepared in combination with Hermon P; draft awaiting sediment dating piece	1	2008	
HERMON P	2286	Possible natural condition	TMDL being prepared in combination with Hammond P; draft awaiting sediment dating piece	1	2008
LONG P	5272	Dissolved oxygen; Total phosphorus	Preliminary draft	2	2008

Table 8-6 Estuarine/Marine Current TMDL Project Update

Segment	Assessment Unit ID & Pollutant	Project Status	TMDL Submittal Target	
Mousam River Estuary	811-9, PS	Report Review	2008	

CHAPTER 9 ACCESSING AND MANAGING DATA USED IN MAKING DECISIONS ON STATUS OF WATERS

Maine DEP Quality Management System

Contact: Malcolm Burson, DEP Quality Assurance Manager, Office of Policy Services Tel: (207) 287-7755 email: <u>Malcolm.C.Burson@SPAM-ZAPmaine.gov</u> Related Website: www.maine.gov/dep/qms.htm

• Please refer to the 2006 report for information on this subject.

Environmental and Geograpic Analysis Database (EGAD)

Contact: Chris Halsted, EGAD Programmer/Analyst, DEP GIS Unit Tel: (207) 287-87546 email: Christian.H.Halsted@maine.gov

Groundwater Contact: Mark Holden, DEP BLWQ, Division of Environmental Assessment (DEA) Tel: (207) 287-7779 email:<u>Mark.K.Holden@SPAM-ZAPmaine.gov</u>

Related Website: www.maine.gov/dep/rwm/egad/

The Maine Environmental and Geographic Analysis Database (EGAD) stores site and water quality information in a relational database using Oracle technology and spatial locations using Environmental Systems Research Institute (ESRI) Spatial Database Engine (SDE) software. The database includes data from groundwater and surface water samples as well as sediment and biological samples and other pertinent information. To date (February 2008), data from the MDEP Biological Monitoring, SWAT (Surface Water Ambient Toxics) and Dioxin Monitoring programs have been fully incorporated into EGAD; data from the Marine Monitoring and Lakes Assessment programs have been partly incorporated.

Database functionalities exist to assess trends in water quality information, satisfy requests for data, assist in answering inquiries, provide automated analysis, reporting and map-making capability, and achieve rapid access to information for emergency response for hazardous materials spills. The EGAD system also allows complete integration of all data via spatial relationships. Water quality assessment results are stored in Maine's version of the EPA Assessment Database (ADB). MDEP envisions that all raw water quality data, in support of the Integrated Report will ultimately be stored in the EGAD database with a GIS-facilitated link to ADB assessments. By the end of 2008 EGAD will have upload links established to port Maine water quality data into the national EPA database, WQX. Additionally public access to Maine data will soon take a significant step forward by utilizing a Google Earth platform to geo-locate and browse Maine surface and ground water data via the Internet.

Graphic Analysis of groundwater-related data (time trend parameter analysis, etc.) can be done as well or in conjunction with mapping. Having immediate access saves time allowing for good municipal planning for wellhead protection and designation, selection of data for analysis by the DEP, and export in response to requests. There are over 16,000 sites in the database, approximately 10,000 sample points as well as over 6 million lab analysis records. The database now includes surface water data which is discussed in another section of this report. There are many different Site Types (see related web site above). The common format of the EDD (Electronic Data Deliverable) permits quality control of large amounts of analyte data and associated which is submitted from laboratories. Approximately 1000 groundwater sites are added every year.

LISTINGS ON INDIVIDUAL WATERS

See Appendices II through IV (separate document) for listing information on specific waters.

State of Maine

Department of Environmental Protection

2008 Integrated Water Quality Monitoring and Assessment Report

Appendices:

Acronyms, HUC Maps, Definitions And Integrated Lists of Surface Waters

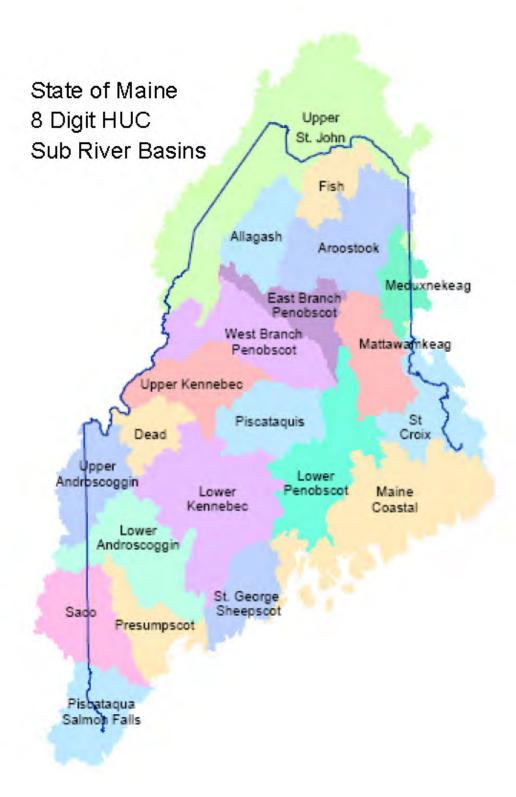
Table of Contents

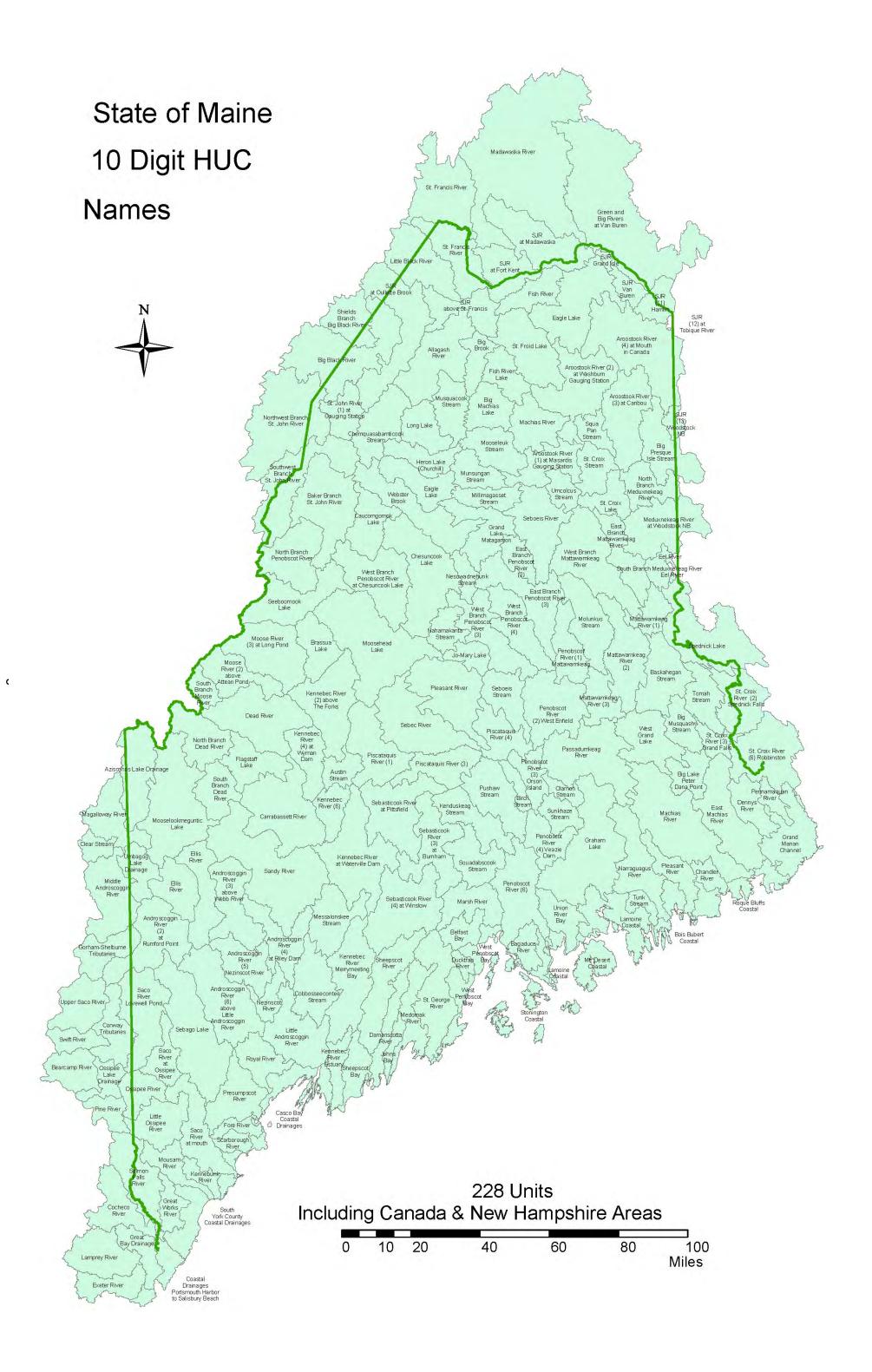
Appendix I: Acronyms Found in the Body of the 2008 305(b) Report Along with the Meaning	
Definition	
HUC Maps for Appendices II through IV	
10-Digit HUCs Map (named)	
10-Digit HUCs Map (numbered)	
Definitions for terms common in Appendices II through IV	
Appendix II: Rivers and Streams	11
Category 1: Rivers and Streams Fully Attaining All Designated Uses	
Category 2: Rivers and Streams Attaining Some Designated Uses - Insufficient Information	tion for
Other Uses	
Category 3: Rivers and Streams with Insufficient Data or Information to Determine if	
Designated Uses are Attained (One or More Uses may be Impaired)	
Category 4-A: Rivers and Streams with Impaired Use, TMDL Completed	
Waters Impaired by Atmospheric Deposition of Mercury:	
Category 4-B: Rivers and Streams Impaired by Pollutants - Pollution Control Requireme	ents
Reasonably Expected to Result in Attainment.	
Category 4-C: Rivers and Streams with Impairment not Caused by a Pollutant	46
Category 5-A: Rivers and Streams Impaired by Pollutants Other Than Those Listed in 5	
Through 5-D (TMDL Required)	
Category 5-B: Rivers and Streams Impaired by Bacteria Contamination (TMDL Require	
Category 5-D: Rivers and Streams Impaired by Legacy Pollutants	
Appendix III: Lakes	
Category 1: Lake Waters Fully Attaining All Designated Uses	
Category 2: Lake Waters Within Hydrologic Unit Attaining Some Designated Uses - Inst	
Information for Other Uses	
Category 3: Lake Waters with Insufficient Data or Information to Determine if Designate	d Uses
are Attained	
Category 4-A: Lake Waters with Impaired Use, TMDL Completed	
Waters Impaired by Atmospheric Deposition of Mercury:	
Category 4-C: Lake Waters with Impairment not Caused by a Pollutant	
Category 5-A: Lake Waters Needing TMDLs	
Category Listing Change Summary: 2006 to 2008 (6 Lakes)*	
Appendix IV: Estuarine and Marine Waters	
Category 1: Estuarine and Marine Waters Fully Attaining All Designated Uses	
Category 2: Estuarine and Marine Waters Attaining Some Designated Uses – Insufficier	nt
Information for Other Uses	
Category 3: Estuarine and Marine Waters with Insufficient Data or Information to Detern	
Designated Uses are Attained	
Category 4-A: Estuarine and Marine Waters with Impaired Use, TMDL Completed	
Category 4-B-1: Estuarine and Marine Waters Impaired by Pollutants - Pollution Control	
Requirements Reasonably Expected to Result in Attainment	
Category 4-C: Estuarine and Marine Waters with Impairment not Caused by a Pollutant	
Category 5-A: Estuarine and Marine Waters Impaired by Pollutants Other Than Those L	isted in
5-B Through 5-D (TMDL Required)	
Category 5-B-1: Estuarine and Marine Waters Impaired only by Bacteria (TMDL Require	ed) 90
Category 5-B-2: Estuarine and Marine Waters Impaired by Bacteria from Combined Sev	wer
Overflows	
Category 5-D: Estuarine and Marine Waters Impaired by Legacy Pollutants	

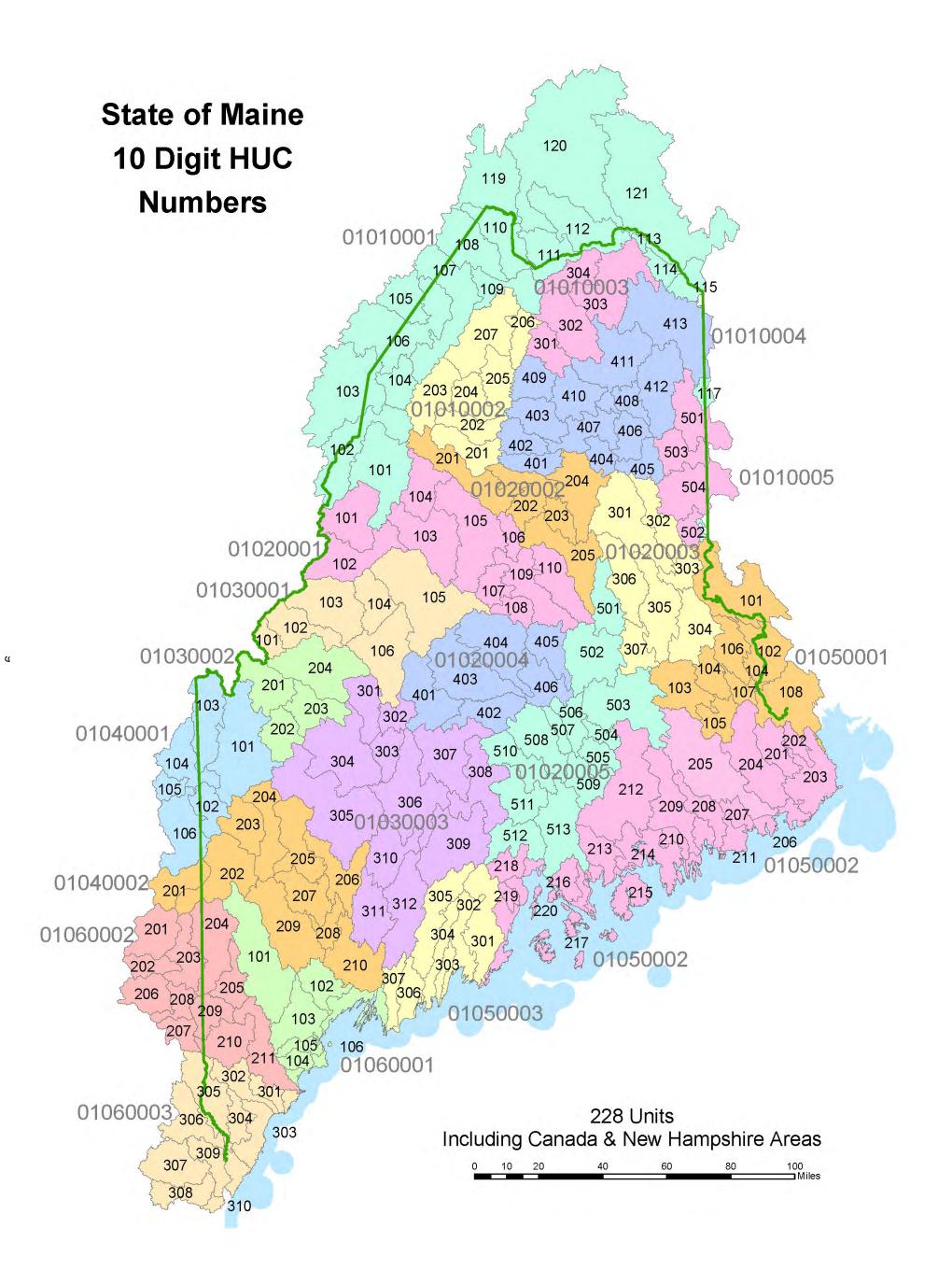
APPENDIX I: ACRONYMS FOUND IN THE BODY OF THE 2008 305(B) REPORT ALONG WITH THE MEANING OR DEFINITION

No.		Term	Meaning or Definition
1	303(d) List		List of a state's Impaired Waters
2	305(b) Report		The 305(b) report is a complete assessment of all water quality management sub-segments in the state for which uses and standards are available. (a.k.a. The Integrated Report)
3	A/B		Above/Below (Fish Test for Dioxin)
4	ADB		EPA Database (short for Assessment DataBase)
5	ALPS		Aquifer Lakes Pilot Survey
6	AMCL		Alternate Maximum Contaminant Level
7	AMD		Acid Mine Drainage
8	ANC		Acid Neutralizing Capacity
9	AST		Above Ground Storage tank
10	AU		Animal Unit: 1 AU is equal to 1,000 lbs. of live animal body weight.
11	BMP		Best Management Practice
12	Board		Board of Environmental Protection
13	BOD		Biological or Biochemical Oxygen Demand
14	BPJ		Best Professional Judgment
15	CAFO		Concentrated Animal Feeding Operation
16	CBEP		Casco Bay Estuary Partnership
17	CDBG		Community Development Block Grant
18	CHL a		Chlorophyll a
19	CNMP		Certified Nutrient Management Planners
20	COD		Chemical Oxygen Demand
21	CSO		Combined Sewer Overflow
22	CWA		Clean Water Act
23	DAFRR		Maine Department of Agriculture, Food and Rural Resources - former name of the MDOA
24	DEP - BAQ		Department of Environmental Protection - Bureau of Air Quality
25	DEP - BLWQ		Department of Environmental Protection - Bureau of Land and Water Quality
26	DEP - BLWQ - D	EA	DEP - Bureau of Land and Water Quality - Division of Environmental Assessment

No.	Term	Meaning or Definition
27	DEP - BLWQ - DECTA	DEP - Bureau of Land and Water Quality - Division of Engineering, Compliance and Technical Assistance
28	DEP - BLWQ - DLRR	DEP - Bureau of Land and Water Quality - Division of Land Resource Regulation
29	DEP - BLWQ - DPS	DEP - Bureau of Land and Water Quality - Division of Program Services
30	DEP - BLWQ - DWM	DEP - Bureau of Land and Water Quality - Division of Watershed Management
31	DEP - BLWQ - DWRR	DEP - Bureau of Land and Water Quality - Division of Water Resource Regulation
32	DEP - BLWQ - DWRR - UICP	DEP - BLWQ - Division of Water Resource Regulation - Underground Injection Control Program
33	DEP - BRWM	Department of Environmental Protection - Bureau of Remediation and Waste Management
34	DEP - BRWM - DOHWFR	DEP - Bureau of Remediation and Waste Management - Division of Oil and Hazardous Waste Facilities Regulation
35	DEP - BRWM - DOR	DEP - Bureau of Remediation and Waste Management - Division of Remediation
36	DEP - BRWM - DOR - USP	DEP - BRWM - Division of Remediation - Uncontrolled Hazardous Substance Sites Program
37	DEP - BRWM - DPS	DEP - Bureau of Remediation and Waste Management - Division of Program Services
38	DEP - BRWM - DSWM	DEP - Bureau of Remediation and Waste Management - Division of Solid Waste Management
39	DEP - BRWM - DTS	DEP - Bureau of Remediation and Waste Management - Division of Technical Services
40	DEP, MDEP, MeDEP, "The Department"	State of Maine - Department of Environmental Protection
41	DHS - BOH	Department of Human Services - Bureau of Health
42	DHS - BOH - DHE	DHS - Bureau of Health - Division of Health Engineering
43	DHS - BOH - DHE - DWP	DHS - Bureau of Health - Division of Health Engineering - Drinking Water Program
44	DHS - BOH - DHE - DWP - WHPP	DHS - BOH - DHE - Drinking Water Program - Wellhead Protection Program
45	DHS - BOH - DHE - RCP	DHS - Bureau of Health - Division of Health Engineering - Radiation Control Program
46	DHS - BOH - HETL	DHS - Bureau of Health - Public Health and Environmental Testing Laboratory
47	DHS, MDHS	Department of Human Services
48	DIFW - BRM	Maine Department of Inland Fisheries and Wildlife - Bureau of Resource Management
49	DIFW, IF&W, MDIFW	Maine Department of Inland Fisheries and Wildlife
50	DMR	Discharge Monitoring Report
51	DMR - BRM	Department of Marine Resources - Bureau of Resource Management
52	DMR - BRM - PHD	DMR - Bureau of Resource Management - Public Health Division
53	DMR, MDMR	Department of Marine Resources
54	DOA - OANRR	Maine Department of Agriculture - Office of Agricultural, Natural and Rural Resources
55	DOA - OANRR - BPC	DOA - Office of Agricultural, Natural and Rural Resources - Board of Pesticide Control


No.	Term	Meaning or Definition	
56	DOA - OANRR - NMP	DOA - Office of Agricultural, Natural and Rural Resources - Nutrient Management Program	
57	DOA, MDOA	Maine Department of Agriculture	
58	DOC	Department of Conservation	
59	DOC	Dissolved Organic Carbon	
60	DOC - BGNA	Department of Conservation - Bureau of Geology and Natural Areas	
61	DOC - BGNA - MGS	DOC - Bureau of Geology and Natural Areas - Maine Geologic Survey	
62	DOC - BGNA - MNAP	DOC - Bureau of Geology and Natural Areas - Maine Natural Areas Program	
63	DOC - LURC	Department of Conservation - Land Use Regulation Commission	
64	DOE, U.S. DOE, USDOE	Department of Energy	
65	EDD	Electronic Data Deliverable	
66	EGAD	Environmental Groundwater Analysis Database	
67	ELS	Eastern Lake Survey	
68	EMAP	Environmental Monitoring and Assessment Program	
69	EPA, USEPA, U.S. EPA	United States Environmental Protection Agency	
70	EPA-NE, EPA-New England	Region 1 of the EPA (Covers CT, MA, ME, NH, RI & VT)	
71	FFY	Federal Fiscal Year	
72	GIS	Geographic Information Systems - computerized mapping systems	
73	GPA	Great Pond Class A	
74	GPS	Global Positioning System	
75	GTCC	Greater Than Class C (radioactive waste)	
76	HDPE	High-Density Poly Ethylene	
77	HELM	High Elevation Lakes Monitoring	
78	HLW	High Level (radioactive) Waste	
79	HRS	Hazard Ranking System	
80	HUC	Hydrologic Unit Code	
81	ICAG	Interim Cover and Grading (procedure for landfills)	
82	ISFSI	Independent Spent (nuclear power plant) Fuel Storage Installation	
83	JETCC	Joint Environmental Training Coordinating Committee	
84	LLW	Low Level (radioactive) Waste	


No.		Term	Meaning or Definition
85	LQG		Large Quantity Generators
86	LUST		Leaking Underground Storage Tank
87	MCGL		Maximum Contaminant Goal Level
88	MCL		Maximum Contaminant Level
89	MDL		Maximum Daily Load
90	MDOT		Maine Department of Transportation
91	MEG		Maximum Exposure Guideline
92	MeGIS, OGIS		Maine Office of Geographic Information Systems (GIS)
93	MEPDES		Maine Pollutant Discharge Elimination System
94	mg/L		Milligrams Per Liter
95	MHBP		Maine Healthy Beaches Program
96	MRWA		Maine Rural Waters Association
97	MS4		Municipal Separate Storm Sewer Systems
98	MSW		Municipal Solid Waste
99	MWPP		Maine Water Pollution Prevention Program
100	NAD		EPA Database (short for National Assessment Database)
101	NCR		Noncompliance Review Meetings (can be monthly or quarterly - QNCR)
102	NEMO		Non-point Education for Municipal Officials Program
103	NGO		Non-governmental Organization
104	NMP		Nutrient Management Plan
105	NORM		Naturally Occurring Radioactive Materials
106	NPDES		National Pollutant Discharge Elimination System
107	NPL		National Priorities List (a.k.a. Superfund Sites)
108	NPS		Nonpoint Source (of Pollution)
109	NRC, U.S. NRC, U	JSNRC	Nuclear Regulatory Commission
110	NRPA		Natural Resources Protection Act
111	OBD		Overboard Discharge -
112	ODGP		Overboard Discharge Grant Program
113	OIA		Office of Innovation and Assistance


No.		Term	Meaning or Definition
114	OME		Operations Management Evaluations
115	P2 Program		Pollution Prevention Program
116	PBT		Persistent Bioaccumulative and Toxic Pollutants
117	PCB		Polychlorinated Biphenyls
118	pci/L		Picocuries Per Liter
119	PCS		Permit Compliance System
120	pg/g		Picograms per Gram
121	POTW		Publicly Owned Treatment Works - e.g. a municipal wastewater treatment plant
122	Ppb		Parts Per Billion
1 <mark>2</mark> 3	Ppm		Parts Per Million
124	Ppq		Parts Per Quadrillion
125	P-WL		Wetland Protection Sub-District
126	QA/QC		Quality Assurance / Quality Control
127	QAPP		Quality Assurance Project/Program Plan
128	QMP		Quality Management Plan
129	QMS		Quality Management System
130	QMSC		Quality Management Steering Committee
131	RAP		Remedial Action Plan
132	RCRA		Resource Conservation and Recovery Act
1 <mark>3</mark> 3	REMAP		Regional Environmental Monitoring and Assessment Program
134	RFP		Request For Proposal
135	RLTM		Regional Long Term Monitoring
136	SBTAP		Small Business Technical Assistance Program
137	SCGP		Small Community Grant Program
138	SDT		Secchi Disk Transparency
139	SDWA		Safe Drinking Water Act
140	SHWT		Seasonal High Water Table
141	SOP		Standard Operating Procedures
142	SPCC		Spill Prevention Control and Countermeasures

No.	Term	Meaning or Definition
143	SPO, MSPO	Maine State Planning Office
144	SPU	Standard Platinum Units
145	SQG	Small Quantity Generators
146	SRF	State Revolving Fund
147	State Fiscal Year	July 1st to June 30 th
148	STORET	EPA Database (short for STOrage and RETrieval)
<mark>149</mark>	SWAP	Surface Water Assessment Program
150	TDS	Total Dissolved Solids
151	THWRP	Toxics and Hazardous Waste Reduction Program
152	TMDL	Total Maximum Daily Load
153	TPH	Total Petroleum Hydrocarbons
154	TSI	Trophic State Indices
155	UIC	Underground Injection Conduit
156	USDA	United State Department of Agriculture
157	USGS	United States Geological Survey
158	UST	Underground Storage Tank
159	VLMP	Volunteer Lake Monitoring Program
160	WET	Whole Effluent Toxicity

HUC Maps for Appendices II through IV

DEFINITIONS FOR TERMS COMMON IN APPENDICES II THROUGH IV

ADB Assessment Unit ID: (Rivers and Streams Only) Combination of the Assessment Unit (HUC – Hydrologic Unit Code) and Segment ID (used in previous Integrated Reports) to create a unique identification code for each water segment in the ADB.

Assessment Unit (HUC): 10-digit HUC number – Note: HUCs can be thought of as very large watersheds, but they have not yet been assigned to marine waters.

Waterbody or Lake ID: Segment numbers within an assessment unit (these are the same numbers used by the Waterbody System in previous 305b reports). For lakes, this is a unique ID number for each lake that is also known as a MIDAS code.

DMR Area: A numeric code assigned to generalized areas of marine waters by the State Department of Marine Resources (DMR).

Segment or Lake Name / Segment Description: Common name for a river or stream segment, a lake or portions of marine waters (respectively).

Location: Additional description of the location of a river, stream or marine water segment.

Segment Size / Lake Area / Segment Acres: In miles for rivers and streams, in acres for lakes or marine waters (also in square miles for marine waters).

Segment Class: The assigned classification from M.R.S.A. Title 38 Section 467,468,469. Assessment is made according to the standards of the assigned class.

Monitored Date / Last Year Sampled: The last year data was collected from an assessment unit or segment. When data is older than five years, it is listed as an evaluated segment.

Scheduled Monitoring Date: Estimate of when a segment/lake is likely to be sampled again.

Impaired Use: Uses from M.R.S.A. Title 38 Section 465, 465-A, 465-B that are found to not be fully supported

Cause(s): Criteria that have not been attained or known pollutants that cause impairment. Final determination of all causes may require completion of the TMDL or other analyses.

Reason for DMR Closure: The reason as to why the DMR has closed an area to shellfishing.

Sources: A list of probable sources of impairment to a water body or segment. Final determination of sources may require completion of a TMDL or other problem analysis.

TMDL Schedule: Projected date for TMDL (Total Maximum Daily Load) completion. A "2006" indicates the TMDL's completion is expected within this reporting cycle. Other entries indicate when those TMDL's completion may be expected (or other management actions will be taken to bring a segment into attainment). These schedules may be revised in future report listings.

TMDL (Target) Date: Projected / scheduled date that a TMDL Report will be completed.

TMDL Number: (If known) A number assigned by the EPA to identify and track TMDLs

TMDL Approval: The year that the EPA approved a TMDL for a water segment or lake.

Expect to Attain Date: Future date when the quality of a waterbody or segment is expected to attain its designated uses and will no longer be considered impaired.

2004 ListCat / 2004 Listing Category: Previous category a segment/ water was listed under. **Comments / Notes:** A general field to display relevant comments or notes.

APPENDIX II: RIVERS AND STREAMS

Category 1: Rivers and Streams Fully Attaining All Designated Uses

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION SEGMENT		SEGMENT CLASS	COMMENTS	
ME0101000101_101R	Baker Branch St. John R and its tributaries		210.92	Class AA	Nature Conservancy reserve	
ME0101000102_101R	SW Branch St. John R and its tributaries		142.9	Class AA	Nature Conservancy reserve	
ME0101000104_106R	Minor tributaries St. John R entering above Nine Mile Bridge		74.36	Class A		
ME0101000104_114R	St. John R	main stem, above Nine Mile Bridge	17.4	Class AA		
ME0101000106_103R	Big Black R and its tributaries		159.14	Class AA		
ME0101000107_104R	Chimenticook Str and its tributaries	those riverine waters	25.35	Class A		
ME0101000107_105R	Pocwock Str and its tributaries	those riverine waters lying	37.8	Class A		
ME0101000107_106R Minor tributaries St. John R entering above Ouellette Bk			77.41	Class A		
ME0101000107_114R	St. John R	main stem, above Ouellette Bk	47.2	Class AA		
ME0101000108_107R	Little Black R and its tributaries		111.07	Class A		
ME0101000109_106R	Minor tributaries St. John R entering above Little Black R		<mark>63.2</mark> 2	Class A		
ME0101000201_119R Eagle Lake		Allagash R tributaries	98.83	Class AA	Allagash Wilderness Waterway	
ME0101000202_119R	Heron (Churchill) Lake	Allagash R tributaries	97.52	Class AA	Allagash Wilderness Waterway	
ME0101000203_119R	Chemquasabamticook Stream and tributaries		159. <mark>1</mark> 8	Class AA	Allagash Wilderness Waterway	
ME0101000204_119R	Long Lake	Allagash R tributaries	155.17	Class AA	Allagash Wilderness Waterway	

Category 1: Rivers and Streams Fully Attaining All Designated Uses
--

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION		SEGMENT CLASS	COMMENTS
ME0101000204_120R	Allagash R	main stem	7.41	Class AA	Allagash Wilderness Waterway
ME0101000205_119R	Musquacook Stream and tributaries		171.46	Class AA	Allagash Wilderness Waterway
ME0101000206_119R	Big Brook and tributaries		118.62	Class AA	Allagash Wilderness Waterway
ME0101000207_119R	Allagash R tributaries		272.88	Class AA	Allagash Wilderness Waterway
ME0101000207_120R	Allagash R	main stem	45.41	Class AA	Allagash Wilderness Waterway
ME0101000301_121R	Fish R	main stem, and its tributaries above outlet of Fish River Lake	144.98	Class AA	
ME0101000401_130R	Millimagasset Stream and tributaries		97.63	Class AA	
ME0101000402_130R	Munsungan Stream and tributaries		103.28	Class AA	
ME0101000403_130R	Mooseleuk Stream and tributaries		159.07	Class AA	
ME0101000404_130R	Umcolcus Stream and tributaries		77.28	Class AA	
ME0101000405_131R	St. Croix Stream	tributaries to St. Croix L	127.97	Class AA	~
ME0101000406_131R	St. Croix Str and its tributaries		124.68	Class AA	
ME0101000407_130R	Aroostook R	main stem, and tributaries above St Croix Str	141.83	Class AA	
ME0101000409_133R	Machias R and tributaries above Big Machias L		175.53	Class AA	
ME0101000411_136R01	Gardner Brook and tributaries	Entering Aroostook R. from the north, upstream of Washburn	10	Class B	
ME0102000101_201R	North Branch of Penobscot R and its tributaries		176.66	Class A	
ME0102000106_202R	Nesowadnehunk Stream and tributaries		56.94	Class AA	Baxter State Park

Category 1: Rivers and Streams Fully Attaining All Designated Uses

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION		SEGMENT CLASS	COMMENTS
ME0102000107_202R	Namakanta Stream and tributaries		97.3 <mark>6</mark>	Class AA	Nature Conservancy Reserve, State Ecological Reserve
ME0102000109_202R	Tributaries of West Branch Penobscot R above Ferguson L		207.95	Class AA	Baxter State Park
ME0102000201_206R	Webster Bk and tributaries of East Branch Penobscot R	above Grand Matagamon	188.67	Class AA	Baxter State Park
ME0102000202_206R	Tributaries of East Branch Penobscot R at Grand Matagamon		167.03	Class AA	Baxter State Park
ME0103000101_301R	South Branch Moose R and its tributaries		48.72	Class AA	
ME0103000102_301R	Moose R and its tributaries above Attean Pd		139.43	Class AA	

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	SEGMENT SIZE	SEGMENT CLASS	COMMENTS
ME0101000103_102R	NW Branch St. John R and its tributaries		54.04	Class AA	
ME0101000105_103R	Shields Branch of Big Black R	Tributaries	7.88	Class AA	
ME0101000109_109R	Minor tributaries St. John R entering above St. Francis R		90.89	Class A	
ME0101000109_114R	St. John R	main stem, above confluence St. Francis R	26.59	Class AA	
ME0101000110_108R	St. Francis R and its tributaries		134.93	Class A	
ME0101000111_109R	Minor tributaries St. John R entering above Fort Kent		44	Class A	
ME0101000111_114R	St. John R	main stem, above Fort Kent	1.4	Class AA	
ME0101000111_115R	St. John R	main stem, above Fort Kent	17.49	Class A	
ME0101000112_110R	Minor tributaries St. John R entering above Madawaska		40.67	Class B	
ME0101000112_115R	St. John R	main stem, above Madawaska	0.63	Class A	
ME0101000113_111R	Minor tributaries St. John R entering above Grand Isle		14.58	Class B	
ME0101000114_112R	Violette Str and its tributaries (riverine waters only)		72.02	Class B	
ME0101000115_113R	Minor tributaries St. John R entering below Violette Bk		47.34	Class B	
ME0101000115_118R	St. John R	main stem, below ∀an Buren	10.02	Class C	
ME0101000116_113R	Minor tributaries St. John R entering below Grand Falls		5.79	Class B	
ME0101000116_116R	St. John R	main stem, above Madawaska	21.84	Class B	

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	SEGMENT SIZE	SEGMENT CLASS	COMMENTS
ME0101000116_117R	St. John R	main stem, from Madawaska to La Grande Isle	15.51	Class C	
ME0101000117_150R	Riviere de Chute and its tributaries		24.67	Class B	
ME0101000118_153R	Minor tributaries of the Eel River		21.21	Class B	
ME0101000121_111R	Minor tributaries St. John R	entering Madawaska and ∀an Buren	15.21	Class B	
ME0101000121_118R	St. John R	main stem, from La Grande Isle to ∀an Buren	10.23	Class C	
ME0101000302_121R	Fish R	main stem, and its tributaries above outlet of Porta	106.81	Class AA	
ME0101000302_122R	Fish R	main stem, and tributaries above the outlet of St. Froid lake	214.23	Class AA	
ME0101000303_123R	Tributaries of Fish R entering above the outlet of Mud Lake		87.36	Class B	
ME0101000303_124R	Tributaries of Fish R above the outlet Cross L		24.5	Class B	
ME0101000303_125R	Tributaries of Fish R above the outlet Square L		83.5	Class B	
ME0101000303_126R	Fish R	main stem, and tributaries above outlet of Eagle L	104.4	Class A	
ME0101000304_127R	Wallagrass Str and tributaries		76.71	Class B	
ME0101000304_128R	Tributaries of Fish R entering below outlet of Eagle Lake		61.45	Class B	
ME0101000304_129R	Fish R	main stem, below outlet of Eagle Lake	12.59	Class A	
ME0101000304_147R	Aroostook River	main stem, between St. Croix and Masardis Gauge	1.8	Class A	
ME0101000408_132R	Squapan Stream and tributaries		83.16	Class B	

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	SEGMENT SIZE	SEGMENT CLASS	COMMENTS
ME0101000408_136R	Minor tributaries of Aroostook R entering between confluence		25.54	Class A	
ME0101000410_133R	Machias R and its tributaries		182.92	Class AA	
ME0101000411_134R	Little Machias R and its tributaries		66.96	Class A	
ME0101000411_135R	Beaver Brk and its tributaries		104.55	Class B	
ME0101000411_136R	Minor tributaries of Aroostook R above Washburn Gauge		92.29	Class A	
ME0101000411_137R	Salmon Brk and its tributaries		52.37	Class B	
ME0101000411_147R	Aroostook River	main stem, above Washburn Gauge	29.39	Class A	
ME0101000412_138R	Minor tributaries Aroostook R	entering from south above Presque Isle	11.96	Class B	
ME0101000412_139R	Presque Isle Str	main stem above confluence of Alder Brk	108.56	Class A	
ME0101000412_140R	Presque Isle Str	main stem below confluence of Alder Brk	48.17	Class B	
ME0101000412_140R01	No. Br.Presque Isle Stream	between Mapleton and Presque Isle	11.49	Class B	Previously 5-A listed. Removal of Mapleton POTW complete. 2004 biomonitoring- showed attainment of Class A biocriteria at Station 11 (0.2 km downstream of Mapleton POTW)
ME0101000412_141R	Minor tributaries Aroostook R	entering north and west above Caribou	39.57	Class B	
ME0101000412_143R	Minor tributaries Aroostook R	entering from south below Presque Isle Str	9.91	Class B	
ME0101000412_148R	Aroostook River	main stem, above Caribou	24.17	Class B	
ME0101000413_142R	Caribou Str and its tributaries		33.18	Class B	

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	SEGMENT SIZE	SEGMENT CLASS	COMMENTS
ME0101000413_144R	Minor tributaries Aroostook R	entering from north below Caribou	35	Class B	
ME0101000413_145R	Little Madawaska R and tributaries		247.46	Class A	
ME0101000413_146R	Limestone Str and its tributaries		40.45	Class B	
ME0101000413_148R	Aroostook River	main stem, above Caribou	17.61	Class B	
ME0101000502_153R	S Branch of Meduxnekeag R and its tributaries		<mark>61.3</mark> 3	Class B	
ME0101000503_151R	N Branch of Meduxnekeag R and its tributaries		153.88	Class A	
ME0101000504_152R	Meduxnekeag R	main stem, and tributaries	243.63	Class B	
ME0102000102_201R	West Branch of Penobscot R	and its tributaries above Seboomook L outlet	194.24	Class A	
ME0102000103_201R01	West Branch of Penobscot R and its tributaries at Chesuncook		233.11	Class A	
ME0102000103_201R02	West Branch of Penobscot R	below Seboomook Lake	1	Class A	Delisted from 4C Flow modified for hydropower. New hydro water quality certification in place, 2006
ME0102000104_201R	West Branch Penobscot R tributaries above Caucomgomoc L		115.89	Class A	
ME0102000105_201R	West Branch of Penobscot R	and its tributaries above Chesuncook outlet	300.36	Class A	
ME0102000108_202R	Jo-Mary Lake tributaries		61.49	Class AA	
ME0102000109_203R	West Branch Penobscot R	main stem, from Ripogenus dam to Ferguson L	18.49	Class A	
ME0102000109_205R01	West Branch Penobscot R	main stem, below confluence with Millinocket Str	4.25	Class C	

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	SEGMENT SIZE	SEGMENT CLASS	COMMENTS
ME0102000110_202R	Tributaries of West Branch Penobscot R	entering below Ferguson L	247.22	Class AA	
ME0102000110_205R01	Backwater of Dolby Impoundment		0.5	Class C	Delisted in 2004; Previously 4- C listed. New impoundment oxygen measurement in attainment.
ME0102000203_206R	Tributaries of East Branch Penobscot R above Seboeis R		62.57	Class AA	
ME0102000203_207R	East Branch Penobscot R	main stem above Seboeis R	22.89	Class AA	
ME0102000204_206R	Seboeis River and tributaries		228.46	Class AA	
ME0102000205_206R	Tributaries of East Branch Penobscot R below Seboeis R		264.48	Class AA	
ME0102000205_207R	East Branch Penobscot R	main stem above Seboeis R	24.97	Class AA	
ME0102000301_208R	West Branch of Mattawamkeag R and its tributaries		337.93	Class A	
ME0102000302_209R	East Branch of Mattawamkeag R and its tributaries		<mark>160.72</mark>	Class A	
ME0102000303_212R	Minor tributaries of Mattawamkeag R	below confluence of E and W Branch	82.9	Class A	
ME0102000303_213R	Mattawamkeag R,	main stem, below confluence with E and W Branch	15.46	Class A	
ME0102000304_210R	Baskahegan Str and its tributaries		202.99	Class A	
ME0102000305_212R	Minor tributaries of Mattawamkeag R	below confluence with Baskahegan Str	218.31	Class A	
ME0102000305_213R	Mattawamkeag R	main stem, below confluence with Baskahegan Str	<mark>21.</mark> 9	Class A	
ME0102000306_211R	Molunkus Str and its tributaries		238.97	Class A	
ME0102000307_212R	Minor tributaries of Mattawamkeag R below Kingman		117.37	Class A	

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION		SEGMENT CLASS	COMMENTS
ME0102000307_213R	Mattawamkeag R	main stem, below confluence with E and W Branch	12.79	Class AA	
ME0102000401_214R	Piscataquis R	main stem and tributaries, above the Rt. 6 bridge in Guilford	312.14	Class AA	
ME0102000402_218R	Minor tributaries of Piscataquis R	above confluence with Sebec R	203.6	Class A	
ME0102000403_215R	Sebec R and its tributaries		350.6	Class A	AU# has been changed: formerly ME0102000403_215R_01
ME0102000403_215R01	Sebec R	at Milo above confluence with Piscataquis R	2.3	Class A	Previously listed in 5-A for biocriteria non-attainment based on 1985 data. Resampling in 2006, at Biomon. Sta. 827, below the Milo Dam, shows attainment of Class A biocriteria.
ME0102000404_216R	Pleasant R and its tributaries		361.07	Class AA	
ME0102000405_217R	Sebois Str and its tributaries		159.76	Class A	
ME0102000406_218R	Minor tributaries of Piscataquis R	entering below confluence with Sebec R	<mark>15</mark> 4.74	Class A	
ME0102000406_219R	Piscataquis R	main stem, above confluence with Sebec R	23.29	Class B	
ME0102000501_220R	Minor tributaries Penobscot R	above confluence of Mattawamkeag R	144.51	Class A	
ME0102000502_220R_01	Mattanawcook St	(Lincoln)	1.2	Class C	'06 delisted segment for E. coli and Oxygen, Category 3 for possible sediment contamination
ME0102000502_220R_02	Minor tributaries Penobscot R	Piscataquis R	241.86	Class A	

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	SEGMENT SIZE	SEGMENT CLASS	COMMENTS
ME0102000503_221R	Passadumkeag R and its tributaries		382.42	Class AA	
ME0102000504_222R	Olamon Stream and its tributaries		53.34	Class A	
ME0102000505_226R	Sunkhaze Stream and its tributaries		88.7	Class AA	
ME0102000506_222R	Minor tributaries of Penobscot R	between Piscataquis R and Orson Is	91.11	Class A	
ME0102000507_226R	Birch stream and its tributaries		63.38	Class B	
ME0102000508_223R	Pushaw Str and its tributaries		277.17	Class B	
ME0102000509_226R	Minor tributaries of Penobscot R	between Orson Is and Veazie Dam	127.81	Class B	
ME0102000510_224R	Kenduskeag Str and its tributaries		199.83	Class B	
ME0102000511_225R	Souadabscook Str and tributaries		156	Class AA	
ME0102000512_228R	Marsh River and its tributaries (nontidal portions)		199.77	Class B	
ME0102000512_229R	Penobscot R	main stem, above confluence of Mattawamkeag R	13.03	Class C	
ME0102000513_226R	Minor tributaries Penobscot R	between Veazie Dam and Reed Bk (non-tidal portions)	62.12	Class B	
ME0102000513_227R	Minor tributaries entering from the east to Penobscot R	between Reed Bk and south end of Verona Is	185.21	Class B	
ME0102000513_227R01	Mill Stream (Orrington)		2	Class B	
ME0102000513_228R	Minor tributaries entering from the west to Penobscot R	between Reed Bk and south end of Verona Is	26.57	Class B	
ME0103000103_301R	Moose R and its tributaries above Rt 201 Jackman		88.74	Class AA	
ME0103000103_302R	Moose R and its tributaries at Long Pond		113.6	Class A	
ME0103000104_302R	Moose River and tributaries at Brassua L		134.37	Class A	

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	SEGMENT SIZE	SEGMENT CLASS	COMMENTS
ME0103000105_303R	Moosehead Lake and minor tributaries of Moosehead Lake		401.92	Class A	
ME0103000106_304R	Minor tributaries of Kennebec R entering above Dead R		268.45	Class AA	
ME0103000106_306R	Kennebec R	main stem, above confluence of Dead R	<mark>19.16</mark>	Class AA	
ME0103000201_307R	North Branch of Dead R and its tributaries		131.98	Class A	
ME0103000203_309R	Flagstaff Lake and minor tributaries of Flagstaff Lake		96.5 <mark>2</mark>	Class A	
ME0103000204_310R	Tributaries of Dead R entering below Flagstaff Lake		204.87	Class A	
ME0103000204_311R_01	Dead R, main stem		21.47	Class AA	A 1 mile segment (ME0 103000204_311R_02) is listed in Category 4c, flow modified for hydropower
ME0103000301_312R	Minor tributaries Kennebec R	between Dead River and Wyman Dam	80.26	Class A	
ME0103000302_312R	Austin Stream and tributaries		75.68	Class A	
ME0103000303_312R	Minor tributaries Kennebec R	between Wyman dam and Carrabassett R	69.04	Class A	
ME0103000304_313R	Carrabassett R and its tributaries		279.53	Class AA	
ME0103000305_315R_01	Sandy R	and tributaries above Rt 145 Strong	138.67	Class AA	
ME0103000305_316R	Sandy River and tributaries	between Rt. 145 and Rt. 2 Farmington	190.66	Class A	
ME0103000305_317R	Wilson Str and its tributaries above Wilson Pond		64.8	Class A	
ME0103000305_318R	Wilson Str	main stem, below Wilson Pond	15.99	Class C	

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	SEGMENT SIZE	SEGMENT CLASS	COMMENTS
ME0103000305_319R_01	Sandy R,	main stem, below Rt. 2 bridge in Farmington	29.69	Class B	
ME0103000305_320R	Minor tributaries Kennebec R	between Carrabassett R and Sebasticook R	193.79	Class B	
ME0103000305_322R	Tributaries Messalonskee Str entering below Messalonskee L		21.23	Class B	
ME0103000305_323R	Messalonskee Str	main stem .	10.27	Class C	
ME0103000306_314R	Wesserunsett Str and its tributaries		109.85	Class B	
ME0103000307_324R	W Branch of Sebasticook R	and its tributaries except for main stem below Rt 23 (Hartland)	350.13	Class B	
ME0103000307_329R	Higgins Brook, tributary to Great Moose L. & Sebasticook		97.9 <mark>9</mark>	Class A	
ME0103000309_326R	Twentyfive Mile Str and its tributaries		136.96	Class B	
ME0103000309_327R	Fifteen Mile Str and its tributaries		70.97	Class B	
ME0103000309_328R	China Lake Outlet and its tributaries		41.04	Class B	
ME0103000309_329R	Minor tributaries of Sebasticook R entering below Burnham		111.48	Class B	
ME0103000309_329R01	Minor tributaries of Sebasticook R	from E and W Branches to Burnham (bridge)	32.21	Class B	
ME0103000310_321R	Tributaries Messalonskee Str entering above Messalonskee L		167.07	Class B	
ME0103000311_334R	Cobbosseecontee Str and its tributaries		185.45	Class B	
ME0103000311_335R	Minor tributaries Kennebec R	Cobbossee Str to Merrymeeting Bay (Chops)	144.38	Class B	
ME0103000312_333R	Minor tributaries Kennebec R	between Sebasticook R and Cobbossee Str	132.5	Class B	

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION		SEGMENT CLASS	COMMENTS
ME0103000312_333R01	Bond Brook (Augusta)		10	Class B	
ME0103000312_335R02	Togus Stream (Chelsea)		2.01	Class B	
ME0103000312_336R	Kennebec R	main stem, from Dead R to Wyman Dam	24.86	Class A	
ME0103000312_337R	Kennebec R	main stem, from Wyman Dam to Carrabassett R	23.14	Class A	
ME0104000101_402R	Mooseleukmeguntic - Cupsuptic R and its tributaries		38.33	Class AA	
ME0104000101_403R	Mooseleukmeguntic -Kennebago R and its tributaries		82.69	Class AA	
ME0104000102_404R	Umbagog - Rapid R and its tributaries		141.6	Class AA	
ME0104000102_405R	Umbagog	Tributaries of Umbagog Lake and segments of minor tributaries entering Androscoggin R in NH	43.95	Class A	
ME0104000103_401R	Azicohos - Magalloway R	and its tributaries upstream of the Maine-NH border	137.8	Class A	
ME0104000104_401R	Magalloway - Sturtevant Str and its tributaries		13.75	Class A	
ME0104000106_405R	Minor tributaries entering Androscoggin R in NH		8.83	Class A	
ME0104000201_406R	Minor tributaries of Androscoggin R	entering upstream of the Wild R	11.24	Class A	
ME0104000202_406R	Minor tributaries of Androscoggin R	entering above Rumford Point	129.85	Class AA	
ME0104000203_407R	Ellis R and its tributaries		119.67	Class A	
ME0104000204_408R	Swift R and its tributaries		66.07	Class A	
ME0104000204_410R	Androscoggin R	Minor tributaries of entering between Rumford Pt and Webb R	<mark>35.51</mark>	Class B	

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	SEGMENT SIZE	SEGMENT CLASS	COMMENTS
ME0104000205_409R	Webb R and its tributaries		102.33	Class A	
ME0104000205_410R	Minor tributaries of Androscoggin R	entering between Rumford Pt and Webb R	46	Class B	
ME0104000206_410R	Minor tributaries of Androscoggin R	between Riley Dam and Nezinscot R	34.13	Class B	
ME0104000206_411R	Dead R and its tributaries above Androscoggin L		43.47	Class B	
ME0104000206_411R01	Dead R	Androscoggin L to Androscoggin R	8	Class B	
ME0104000206_423R01	Androscoggin R.	Mainstem, Livermore impoundment	1	Class C	Attained Class C biocriteria in 2003, and attained Class B biocriteria in 2004, 2005 and 2006. Benthic invertebrate and TSS causes delisted. Also 4b listed for dioxin 5d listed for legacy PCB contamination
ME0104000207_412R	Nezinscot R and its tributaries		107.91	Class A	
ME0104000208_413R	Minor tributaries of Androscoggin R	between Nezinscot R and L Androscoggin R	17.32	Class B	
ME0104000209_414R	Little Androscoggin R	and tributaries above Rt. 26 bridge in Paris	141.16	Class A	
ME0104000209_415R	Bog Brk and other tributaries of Little Androscoggin R	below Rt 26 bridge	78.25	Class A	
ME0104000209_416R	Little Androscoggin R	main stem, from Rt. 26 bridge in Paris to Rt 121 in Oxford	12.65	Class C	
ME0104000209_417R_01	Little Androscoggin R,	main stem, below Rt. 121 bridge in Oxford	24.49	Class C	

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	SEGMENT SIZE	SEGMENT CLASS	COMMENTS
ME0104000210_418R	Sabattus R and its tributaries		22.45	Class B	
ME0104000210_419R	Minor tributaries of Androscoggin R	between L Androscoggin R and Brunswick Dam	89.77	Class B	
ME0104000210_420R	Minor tributaries of Merrymeeting Bay		94.31	Class B	
ME0105000101_501R	Tributaries of St. Croix R	entering above outlet of Spednik L	111.07	Class A	
ME0105000102_502R	St. Croix R	main stem, from outlet of Spednik Lake to Spednik Falls	110.55	Class A	
ME0105000103_502R	Grand Lake Stream and tributaries		230.47	Class A	Hatchery permit issued August 2006 to protect water quality;
ME0105000104_502R	Musquash Stream and tributaries		123.19	Class A	
ME0105000105_502R	Big Lake at Peter Dana Point		134.7	Class A	
ME0105000106_502R	Tomah Stream and tributaries		166.98	Class AA	
ME0105000107_502R	St. Croix River and tributaries above Grand Falls		60.35	Class A	
ME0105000108_503R	Minor tributaries of St. Croix R	between Grand Falls and tidewater	59.28	Class B	
ME0105000108_504R	Minor tributaries of St. Croix River Estuary	entering tidewater in Calais and Robbinston	<mark>38</mark> .1	Class B	
ME0105000108_505R	St. Croix R	main stem, from Grand Falls to tidewater	22.17	Class A	
ME0105000201_507R	Dennys R and its tributaries		125.39	Class AA	
ME0105000202_508R	Pennamaquan River and tributaries		63.24	Class B	
ME0105000203_508R	Minor drainage entering tidewater in Washington County	between Robbinston and Sandy Point (Cutler)	180.8	Class B	
ME0105000204_509R	E Machias R and its tributaries		288.08	Class AA	

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION		SEGMENT CLASS	COMMENTS
ME0105000204_509R01	Chase Mill Stream (East Machias)		1.52	Class B	
ME0105000205_510R	Machias R and its tributaries		489.5	Class AA	
ME0105000206_508R	Roque Bluffs Coastal	Minor drainages entering tidewater between Sandy Pt (Cutler) and E Machias R	51.68	Class B	
ME0105000207_513R	Chandler R and its tributaries		57.11	Class B	
ME0105000207_513R01	Minor drainages entering tidewater in Addison and Harrington		39.85	Class A	
ME0105000208_511R	Pleasant R and its tributaries		109.2	Class AA	
ME0105000208_511R01	Bog Stream (T18MD)		1.02	Class B	
ME0105000209_512R_01	Narraguagus R and its tributaries		323.8	Class AA	
ME0105000209_513R	Minor drainages entering tidewater in Machias Bay		<mark>30.39</mark>	Class B	
ME0105000209_513R01	Roque Bluff Coastal	Minor drainages entering tidewater between E Machias R and Pleasant R	90.14	Class B	
ME0105000210_513R	Tunk Stream and tributaries		54.42	Class A	
ME0105000211_513R	Bois Bubert Coastal	and Tunk Str	76.96	Class B	
ME0105000212_515R	W Branch of Union R and its tributaries		210.3	Class B	
ME0105000212_516R	E Branch of Union R and its tributaries		159.2	Class B	
ME0105000212_517R	Minor tributaries of Graham Lake		203.69	Class B	Reeds Brook- Green Lake NFH: final hatchery permit issued 2/6/04; exp date 2/6/09
ME0105000212_518R	Tributaries of Union R entering below outlet of Graham Lake		64.14	Class B	

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	SEGMENT SIZE	SEGMENT CLASS	COMMENTS
ME0105000212_520R	Minor drainages entering Penobscot Bay	in Hancock County between Verona Is and Castine	7.51	Class B	
ME0105000213_514R_02	Union River Bay		18.62	Class AA	
ME0105000214_514R	Min. drainages entering tidewater between Tunk S./Haynes Pt.	(Trenton)	228.71	Class A	
ME0105000215_514R	Mt Desert Coastal	tributaries entering from Mt Desert and adjacent islands	<mark>115.98</mark>	Class AA	
ME0105000216_520R	Bagaduce River and its tributaries		125.06	Class B	
ME0105000216_520R01	Stonington Coastal	Minor drainages entering tidewater in Hancock County	209.66	Class B	
ME0105000217_514R	Stonington Coastal	Minor drainages entering tidewater in Hancock County west of Union River	<mark>39.64</mark>	Class AA	
ME0105000218_521R	Minor drainages entering tidewater in Waldo County		93.17	Class B	
ME0105000219_521R	Ducktrap River and its tributaries		51.55	Class AA	
ME0105000220_521R	West Penobscot Bay Coastal	Minor drainages entering tidewater in Waldo County south of Verona Is	84.39	Class B	
ME0105000220_522R01_ 02	Minor drainages entering tidewater in Knox County		116.06	Class B	
ME0105000220_522R02_ 02	West Penobscot Bay Coastal -	Minor drainages entering tidewater from Waldo Cty line to Marshall Pt (St George R)	86.02	Class B	
ME0105000301_523R	St. George R and its tributaries		216.79	Class AA	
ME0105000301_524R01	Min drainages entering tidewater portion of St George R		79.67	Class B	
ME0105000301_524R02	Minor drainages to Muscongus Bay	including Meduncook River to Pemaquid Point	13.26	Class B	

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	SEGMENT SIZE	SEGMENT CLASS	COMMENTS
ME0105000302_524R01	Unnamed Brook (N. Cushing)		0.5	Class B	
ME0105000302_525R	Medomak River and its tributaries	including Meduncook River to Pemaquid Point	86.91	Class A	
ME0105000302_526R	Minor drainages to Muscongus Bay	including Meduncook River to Pemaquid Point	97.78	Class B	
ME0105000303_526R	Minor drainages entering tidewater into Johns Bay		46.92	Class B	
ME0105000303_526R01	Minor drainages entering tidewater of Damariscotta River		40.26	Class B	
ME0105000304_527R	Damariscotta Lake outlet	including its tributaries entering above tidewater	30.82	Class B	
ME0105000304_527R01	Damariscotta River below lake outlet		0.2	Class B	
ME0105000305_528R	Sheepscot R and its tributaries		186.3	Class AA	Palermo Fish Hatchery- final hatchery permit issued 2/20/06; exp date 2/20/11
ME0105000305_529R01	Minor drainages entering tidewater of Damariscotta River		7.07	Class B	
ME0105000305_529R02	Minor drainages entering tidewater of Sheepscot River		<mark>82.55</mark>	Class B	
ME0105000306_529R	Minor drainages entering tidewater of Sheepscot Bay		93.8	Class B	
ME0105000306_530R	Minor drainages entering tidewater of Sheepscot Bay		50.48	Class B	
ME0105000307_530R	Min. drainages entering tidewater of Kennebec Estuary	below the Chops	133.36	Class B	
ME0106000101_605R	Crooked R and its tributaries		173.58	Class AA	
ME0106000101_606R	Sebago Lake and its tributaries		256.73	Class A	

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	SEGMENT SIZE	SEGMENT CLASS	COMMENTS
ME0106000102_603R	Royal R and its tributaries		131.86	Class A	
ME0106000102_603R03	Eddy Brook (New Gloucester)		3.68	Class B	
ME0106000102_603R04	Hatchery Brook (Gray)		0.87	Class B	Final hatchery permit issued 6/6/06; exp date 6/6/11
ME0106000102_603R05	Royal River	segment below Collyer Bk	2.15	Class B	2006 delisted segment; RCRA hazardous waste site; water quality criteria are met down- gradient of the contaminated site.
ME0106000102_604R	Min. drainages entering tidewater	between Royal River and Presumpscot River	9.8	Class B	
ME0106000103_607R	Tributaries of Presumpscot R	entering below outlet of Sebago L	267.59	Class B	
ME0106000103_608R	Presumpscot R	main stem, above Dundee Dam	4.2	Class A	
ME0106000103_609R_01	Presumpscot R,	main stem, below Sacarappa Dam	6.9	Class C	2006 delisted segment; closure of pulp mill and breach of Smelt Hill Dam. Attainment of dissolved oxygen and biocriteria
ME0106000103_611R	Min. drainages entering tidewater	in Cumberland County between Fore River and Scarborough R	36.49	Class B	
ME0106000103_612R	Min. drainages entering tidewater	in York County east of Saco River	10.19	Class B	
ME0106000106_601R	Min. drainages entering tidewater in Sagadhoc County	west of Small Point	26.74	Class B	
ME0106000106_602R	Min. drainages entering tidewater	between Cumberland-Sagadahoc line and Royal River	94.47	Class B	
ME0106000203_613R	Minor tributaries of Saco R entering above Swans Falls		1.48	Class A	

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	SEGMENT SIZE	SEGMENT CLASS	COMMENTS
ME0106000203_618R	Saco R,	main stem, between the Maine-New Hampshire border and Swans Falls	5.42	Class AA	
ME0106000204_613R	Minor tributaries of Saco R	between Swans Falls and Rt 160 in Brownfield	209.74	Class A	
ME0106000204_618R	Saco R,	main stem, between Swans Falls and Rt 160 in Brownfield	27.53	Class AA	
ME0106000205_613R	Minor tributaries of Saco R	between Rt 160 in Brownfield and Ossippee River	116.42	Class A	
ME0106000205_618R	Saco R,	main stem, between Rt 160 in Brownfield and Ossippee River	<mark>14</mark> .95	Class AA	
ME0106000209_614R	Ossippee R and its tributaries		105.38	Class B	
ME0106000210_615R	Little Ossippee R and its tributaries		266.16	Class B	
ME0106000210_616R	Minor tributaries of Saco R	between Little Ossippee River and tidewater	214.67	Class B	
ME0106000211_613R	Minor tributaries of Saco R	between the Ossippee River and Little Ossippee River	75.58	Class B	
ME0106000211_616R01	Deep Brook (Saco)		2.5	Class B	
ME0106000211_617R	Min. tributaries of Saco River Estuary	entering tidewater between head of tide and Camp Ellis	12	Class B	
ME0106000211_618R	Saco R	main stem, between the Maine-New Hampshire border and Swans Falls	14.71	Class AA	
ME0106000211_619R	Saco R	main stem, between the Little Ossippee River and tidewater	24.1	Class AA	
ME0106000211_619R02	Saco River (Dayton)		0.2	Class A	
ME0106000211_619R03	Saco River (West Buxton)		0.2	Class A	
ME0106000211_619R04	Saco River (Bar Mills)		0.2	Class A	

Category 2: Rivers and Streams Attaining Some Designated Uses - Insufficient Information for Other Uses

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	SEGMENT SIZE	SEGMENT CLASS	COMMENTS
ME0106000301_622R	Kennebunk R and its tributaries		88.8	Class B	
ME0106000302_623R	Mousam R	main stem, above Rt. 224 bridge in Sanford and all tributaries to the entire main stem	164.91	Class B	
ME0106000302_624R	Min. drainages entering tidewater	between Mousam River and the Ogunquit-York boundary	98.83	Class B	
ME0106000303_621R	Min. drainages entering tidewater	between Saco River and Kennebunk River	37.41	Class B	
ME0106000304_625R02	Great Works R,	main stem, above Rt. 9 bridge in N Berwick and all tributaries	137.32	Class B	
ME0106000304_626R	Min. drainages entering tidewater	between Ogunquit-York boundary and Piscataqua Estuary	99.62	Class B	
ME0106000305_627R	Minor tributaries of Salmon Falls River		155.81	Class B	
ME0106000305_629R	Great Works R	main stem, below Rt. 9 bridge in N Berwick	15.23	Class B	
ME0106000305_630R03	Salmon Falls R,	main stem, from Great East Lake to tidewater	22.2	Class B	
ME0106000310_626R	Min. drainages entering	tidewater of the Piscataqua Estuary	36.22	Class B	
ME0106000310_626R01	Smelt Brook (York)		3.18	Class B	

Bold text indicates waters that were removed from the 2006 impaired waters list

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	SEGMENT SIZE	SEGMENT CLASS	COMMENTS	SCHEDULED MONITORING DATE
ME0101000412_143R02	Merrit Brook	entering Aroostook R. from south, downstream of Presque Isle	1	Class B	Potential sources for impairment, inconclusive data.	2009
ME0101000413_142R01	Caribou Stream (Caribou)		2.73	Class B	Previously 5A; Biocriteria attainment is inconsistent but 2004 sample showed Class A biocriteria attainment	2009
ME0102000502_220R_01	Mattanawcook Stream	tributary to Penobscot R. in Lincoln	1.2	Class C	Dissolved oxygen and bacteria delisted to Category 2 in 2006. New data shows sediment contamination; fish consumption use may be impaired. Insufficient data	2008
ME0102000511_225R01_01	Souadabscook Stream	main stem below Hammond Pd	5.5	Class AA	Eutrophic lake source, (Hermon Pd TMDL required). Data inconclusive for river segment	2011
ME0102000512_228R01	Unnamed Brook (Frankfort)		1	Class B	Potential sources for impairment, inconclusive data.	20 <mark>1</mark> 1
ME0103000305_316R01	Barker Stream (Farmington)		8.22	Class B	Errors or inconsistencies in the original data. Limited new data indicates attainment.	2012
ME0103000305_316R03	Tannery Brook (Farmington)		1.5	Class B	Potential sources for impairment unknown, inconclusive data.	2012
ME0103000305_317R01	Meadow Brook (Wilton)		3. <mark>3</mark> 9	Class B	Potential sources for impairment unknown, inconclusive data.	2012
ME0103000306_314R01	Wesserunsett Stream at Athens		2.67	Class B	Errors or inconsistencies in the data.	2012
ME0103000306_320R01	Carrabassett Stream (Canaan, Skowhegan)		19.88	Class B	Errors or inconsistencies in the data.	2012

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	SEGMENT SIZE	SEGMENT CLASS	COMMENTS	SCHEDULED MONITORING DATE
ME0103000306_339R_01	Kennebec R,	Shawmut Dam	5.5	Class C	Insufficient data.	2012
ME0103000309_328R01	China Lake Outlet (Vassalboro)		4.27	Class B	2002 Aquatic Life assessment in attainment. NPS controls. Improved lake condition. Facility compliance review recommended.	2008
ME0103000309_329R02	Twelvemile Brook (Clinton)		3	Class B	Errors or inconsistencies in the data.	2012
ME0103000309_329R03	Unnamed stream (Benton)		2	Class B	Potential sources for impairment unknown, inconclusive data.	2012
ME0103000309_329R04	Farnham Brook (Pittsfield)		3	Class B	Potential sources for impairment unknown, inconclusive data.	2012
ME0103000311_334R01	Mud Mills Stream (Monmouth)		10.5	Class B	Errors or inconsistencies in the data.	2012
ME0103000311_334R02	Potters Brook (Litchfield)		4.23	Class B	Errors or inconsistencies in the data.	2012
ME0103000312_333R01_01	Tanning Brook	Manchester, tributary to Bond Brook	5	Class B	Class B stream; Biomonitoring Station 744 showed attainment of Class C in 2004; needs resampling	2012
ME0103000312_333R03	Kennedy Brook (Augusta)		2	Class B	Previously listed in Category 2 (2004) and 5-A listed (2002). Stormwater diversion; potential sources for impairment, data is inconsistent.	2012
ME0103000312_335R01	Kimball Brook (Pittston)		3.38	Class B	Errors or inconsistencies in the data.	2012
ME0103000312_420R01	Abagadasset River (Richmond, Bowdoinham)		13.33	Class B	Errors or inconsistencies in the data.	2012

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	SEGMENT SIZE	SEGMENT CLASS	COMMENTS	SCHEDULED MONITORING DATE
ME0104000101_403R_01	Rangeley River	From Rangeley Lake Dam to Mooselookmeguntic Lake in Oquossoc	1.3	Class A	Rangeley River- Cooke Oquossoc Hatchery- final hatchery permit issued 12/30/05; exp date 12/30/10; Lake outlet effect confounds interpretation of effect of salmon hatchery	2008
ME0104000202	Sunday River (Newry, Bethel)		5	Class A	Potential sources for impairment, inconclusive data.	2008
ME0104000205_410R01_01	Spears Stream (Peru).		9.75	Class B	Potential sources for impairment unknown, inconclusive data.	2008
ME0104000206_410R02	Sevenmile Stream	Tributary to Androscoggin entering from the north in Jay	3	Class B	Data from 1995 indicates possible dissolved oxygen and nutrient problem. Needs re-sampling to confirm impairment.	2012
ME0104000207_412R01	Nezinscot River at Buckfield		4	Class B	Potential sources for impairment, recent data provides conflicting status.	2008
ME0104000207_412R03	Nezinscot River at Turner		2	Class B	Potential sources for impairment, inconclusive data.	2008
ME0104000208_413R08	Bobbin Mill Brook	(Lake Auburn Outlet, Auburn)	3.45	Class B	Conflicting data. Needs re-sampling to confirm that 1998 non-attainment was caused by natural conditions.	2008
ME0104000209_414R02	Penneseeewassee Lake Outlet		1.24	Class B	New information inconclusive.	2008
ME0104000209_415R01	Davis Brook (Poland)		1	Class B	Errors or inconsistencies in the data.	2008
ME0105000108_503R01	Unnamed stream (Calais)		1	Class B	Potential sources for impairment unknown, inconclusive data.	2011
ME0105000108_505R01	Woodland Impoundment		5.5	Class C	Insufficient data. Long term river study in 2006.	2008

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	SEGMENT SIZE	SEGMENT CLASS	COMMENTS	SCHEDULED MONITORING DATE
ME0105000213_519R	Union R	Main stem (Ellsworth)	2.94	Class B	Sampled in 2007; new model under construction; new treatment plant is planned.	2010
ME0106000103_607R05	East Branch Piscataqua River	Mainstem entering Piscataqua just upstream of confluence with Presumpscot River in Falmouth	5.5	Class B		2010
ME0106000103_607R13	Tannery Brook (Gorham)	Tributary to Little River in Gorham	2	Class B	Potential sources of impairment; Variable or conflicting information; Category 3 listed from Rt 114 to confluence with Little river	2010
ME0106000104_611R	Tributaries of the Scarborough River and Scarborough Marsh		99.99	Class B	Potential sources for impairment, insufficient data.	2010
ME0106000105_610R	Stroudwater River and minor drainages of the Fore River		50.45	Class B	Potential sources for impairment, insufficient data.	2010
ME0106000106_607R12	Norton Brook	Falmouth	1.34	Class B	Administrative error, conflicting data. More data required to support impaired assessment. Non- attainment of biocriteria in 2002 may be due to natural habitat effects; needs resampling	2010
ME0106000304_625R04	Goodall Brook (Sanford)	upstream of Berwick Rd	2.5	Class B	Newly listed this cycle; Biomonitoring station 747- non-attainment of biocriteria in 2004. Needs re-sampling to confirm.	2010

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	CAUSE	SEGMENT SIZE	SEGMENT CLASS		COMMENTS
ME0101000303_124R01	Dickey Brook		Nutrient/Eutrophication Biological Indicators	19.5	Class B	30683	Submitted under Cross L. and Daigle Pond TMDL; EPA- approved 9/15/06
ME0101000303_124R01	Dickey Brook		Oxygen, Dissolved	19.5	Class B	<mark>30683</mark>	Submitted under Cross L. and Daigle Pond TMDL; EPA- approved 9/15/06
ME0101000303_124R02	Daigle Brook		Nutrient/Eutrophication Biological Indicators	7.99	Class B	30681	Submitted under Cross L. and Daigle Pond TMDL; EPA- approved 9/15/06
ME0101000303_124R02	Daigle Brook		Oxygen, Dissolved	7.99	Class B	30 <mark>681</mark>	Submitted under Cross L. and Daigle Pond TMDL; EPA- approved 9/15/06
ME0101000412_140R03_01	Presque Isle Stream at Presque Isle		Ammonia (Un-ionized)	1	Class B	2529	EPA approved TMDL 8/22/2000
ME0101000412_140R03_01	Presque Isle Stream at Presque Isle		BOD, Biochemical oxygen demand	1	Class B	2529	EPA approved TMDL 8/22/2000
ME0101000412_140R03_01	Presque Isle Stream at Presque Isle		Phosphorus (Total)	1	Class B	2529	EPA approved TMDL 8/22/2000
ME0101000504_152R01_01	Meduxnekeag River	Below confluence with S Branch	Phosphorus (Total)	11	Class B	2471	EPA approved TMDL 3/8/2001
ME0102000510_224R04	Birch Stream	Bangor	Benthic-Macroinvertebrate Bioassessments (Streams)	0.5	Class B	33160	EPA approved TMDL 9/12/07
ME0103000310_322R01	Fish <mark>Brook (</mark> Fairfield)		Benthic-Macroinvertebrate Bioassessments (Streams)	6.34	Class B	120 <mark>7</mark> 7	EPA approved TMDL 8/30/2005
ME0103000310_322R01	Fish Brook (Fairfield)		Oxygen, Dissolved	6.34	Class B	12077	EPA approved TMDL 8/30/2005

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	CAUSE		SEGMENT CLASS		COMMENTS	
ME0103000311_334R05	Cobbossee Stream (Gardiner)		Phosphorus (Total)	1.46	Class B	9998	Completed as part of Pleasant Pond TMDL , EPA approved May 20, 2004	
ME0104000208_424R_01	Androscoggin R,	main stem, upstream of the Gulf Island Dam	Phosphorus	<mark>8.1</mark> 9	Class C	<mark>11</mark> 594		
ME0104000208_424R_01	Androscoggin R,	main stem, upstream of the Gulf Island Dam	Oxygen, Dissolved	8.19	Class C	11594	EPA approved TMDL 7/18/05 (solids, DO, BOD, P) but ongoing licensing issues; Also	
ME0104000208_424R_01	Androscoggin R,	main stem, upstream of the Gulf Island Dam	Total Suspended Solids	<mark>8.1</mark> 9	Class C	1 <mark>1</mark> 594	listed 5d for legacy PCB and dioxin contamination	
ME0104000208_424R_01	Androscoggin R,	main stem, upstream of the Gulf Island Dam	BOD, Biochemical oxygen demand	8.19	Class C	11594		
ME0104000208_424R_01	Androscoggin R,	main stem, upstream of the Gulf Island Dam	Algae blooms	8.19	Class C	1159 <mark>4</mark>	New cause added; non- attainment of recreation use due to algal blooms	
ME0105000217_520R01	Carleton Stream (Blue Hill)		Benthic-Macroinvertebrate Bioassessments (Streams)	1.23	Class C	10917	EPA approved TMDL 10/7/2004	
ME0105000217_520R01	Carleton Stream (Blue Hill)		Iron	1.23	Class C	<mark>10917</mark>	EPA approved TMDL 10/7/2004	
ME0106000105_610R05	Trout Brook	So. Portland	Benthic-Macroinvertebrate Bioassessments (Streams)	2.93	Class C	33816	EPA approved TMDL 10/25/2007 (under bundled	
ME0106000105_610R05	Trout Brook	So. Portland	Habitat Assessment (Streams)	2.93	Class C	33817	urban stream project;)	
ME0106000105_610R09	Barberry Cr		Benthic-Macroinvertebrate Bioassessments (Streams)	3.03	Class C 32399		EPA approved TMDL 6/21/2007 (under bundled	
ME0106000105_610R09	Barberry Cr		Habitat Assessment (Streams)	3.03	Class C		urban stream project.)	

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	CAUSE	SEGMENT SIZE	SEGMENT CLASS		COMMENTS
ME0106000106_612R01_01	Goosefare Brook		Cadmium	6.14	Class B	9765	
ME0106000106_612R01_01	Goosefare Brook		Chromium (total)	6.14	Class B	9765	
ME0106000106_612R01_01	Goosefare Brook	17	Copper	6.14	Class B	9765	EPA approved TMDL
ME0106000106_612R01_01	Goosefare Brook		Iron	6.14	Class B	9765	9/29/2003; Principal sources
ME0106000106_612R01_01	Goosefare Brook		Lead	6.14	Class B	9765	include urban NPS
ME0106000106_612R01_01	Goosefare Brook		Nickel	6.14	Class B	9765	_
ME0106000106_612R01_01	Goosefare Brook	12	Zinc	6.14	Class B	9765	
ME0106000302_628R01	Mousam R,	main stem, below Rt. 224 bridge in Sanford	Aluminum	20.48	Class B	2530	
ME0106000302_628R01	Mousam R,	main stem, below Rt. 224 bridge in Sanford	Ammonia (Un-ionized)	20.48	Class B	2530	
ME0106000302_628R01	Mousam R,	main stem, below Rt. 224 bridge in Sanford	Arsenic	20.48	Class B	2530	EPA approved TMDL 3/8/2001
ME0106000302_628R01	Mousam R,	main stem, below Rt. 224 bridge in Sanford	BOD, Biochemical oxygen demand	20.48	Class B	2530	LPA approved TMDE 3/0/2001
ME0106000302_628R01	Mousam R,	main stem, below Rt. 224 bridge in Sanford	Copper	20.48	Class B	2530	
ME0106000302_628R01	Mousam R,	main stem, below Rt. 224 bridge in Sanford	Lead	20.48	Class B	2530	

ADB ASSESSMENT UNIT ID	SEGMENT NAME		CAUSE	SEGMENT SIZE	SEGMENT CLASS		COMMENTS
ME0106000302_628R01	Mousam R,	main stem, below Rt. 224 bridge in Sanford	Phosphorus (Total)	20.48	Class B	<mark>2530</mark>	
ME0106000302_628R01	Mousam R,	main stem, below Rt. 224 bridge in Sanford	Selenium	20.48	Class B	2530	EPA approved TMDL 3/8/2001
ME0106000302_628R01	Mousam R,	main stem, below Rt. 224 bridge in Sanford	Silver	20.48	Class B	2530	
ME0106000302_628R01	Mousam R,	main stem, below Rt. 224 bridge in Sanford	Zinc	20.48	Class B	2530	
ME0106000305_630R01	Salmon Falls R		Ammonia (Un-ionized)	7.43	Class B	1029	EPA approved TMDL 11/22/99;
ME0106000305_630R01	Salmon Falls R		Nutrient/Eutrophication Biological Indicators	7.43	Class B	1029	5b non-CSO, low priority bacteria problem 5d fish tissue monitoring shows legacy PCBs
ME0106000305_630R01	Salmon Falls R		Oxygen, Dissolved	7.43	Class B	1029	and dioxin

Bold text indicates waters for which a TMDL has been approved since the 2006 Integrated Report was published

Waters Impaired by Atmospheric Deposition of Mercury:

All freshwaters formerly listed in Category 5-C are moved to Category 4A (TMDL Completed) due to US EPA approval of a Regional Mercury TMDL.

5-C waters moved to 4A: Impairment caused by atmospheric deposition of mercury; a regional scale TMDL has been approved. Maine has a fish consumption advisory for fish taken from all freshwaters due to mercury. Many waters, and many fish from any given water, do not exceed the action level for mercury. However, because it is impossible for someone consuming a fish to know whether the mercury level exceeds the action level, the Maine Department of Human Services decided to establish a statewide advisory for all freshwater fish that recommends limits on consumption. Maine has already instituted statewide programs for removal and reduction of mercury sources.

ADB ASSESSMENT UNIT ID	SEGMENT NAME	CAUSE		SEGMENT CLASS	COMMENTS	EXPECT TO ATTAIN DATE
ME0101000413_145R01	Little Madawaska River and tributaries	Benthic-Macroinvertebrate Bioassessments (Streams)	20.5	Class B	Haz waste remediation project is complete (Superfund)—expected to attain standards	2008
ME0101000413_145R01	Little Madawaska River and tributaries	Polychlorinated biphenyls	20.5	Class B	Haz waste remediation project is complete (Superfund)—expected to attain standards	2020
ME0101000413_145R02	Greenlaw Stream	Polychlorinated biphenyls	17.12	Class B	Haz waste remediation project (Superfund)expected to attain standards	2008
ME0102000502_231R	Penobscot R. main stem, from Cambolasse Str to Piscataquis R	Dioxin (including 2,3,7,8- TCDD)	19.08	Class B	Also 5A listed for DO and nutrients	2020
ME0102000503_221R01	Cold Stream (Enfield) downstream of hatchery	Benthic-Macroinvertebrate Bioassessments (Streams)	1.63	Class A	Final hatchery permit issued 3/31/06	2011
ME0102000506_232R	Penobscot R	Dioxin (including 2,3,7,8- TCDD)	36.49	Class B	Dioxin license limits in 38 MRSA Section 420. New Dioxin sources removed, expected to attain standards. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference.	2020
ME0102000509_233R_01	Penobscot R	Dioxin (including 2,3,7,8- TCDD)	14.51	Class B	Dioxin license limits in 38 MRSA Section 420. New Dioxin sources removed, expected to attain standards. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference.	2020
ME0102000513_234R02	Penobscot	Dioxin (including 2,3,7,8- TCDD)	10.1	Class B	Dioxin license limits in 38 MRSA Section 420. New Dioxin sources removed, expected to attain standards. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference.	2020

ADB ASSESSMENT UNIT ID	SEGMENT NAME	CAUSE	SEGMENT SIZE	SEGMENT CLASS	COMMENTS	EXPECT TO ATTAIN DATE
ME0103000304_313R01	Mill Stream (Embden)	Benthic-Macroinvertebrate Bioassessments (Streams)	2.57	Class B	Hatchery permit issued 1/30/2006; exp. date 1/30/2011	2011
ME0103000305_315R_02	Unnamed Stream trib to Sandy R (Avon- Dunham)	Benthic-Macroinvertebrate Bioassessments (Streams)	2.63	Class B	Hatchery permit issued 10/18/2005; hatchery is closed	2010
ME0103000306_338R_04	Kennebec R,	Dioxin (including 2,3,7,8- TCDD)	22.76	Class B	Dioxin license limits in 38 MRSA Section 420. New Dioxin sources removed, expected to attain standards. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference.	2020
ME0103000306_339R_02	Kennebec R,	Dioxin (including 2,3,7,8- TCDD)	14.65	Class C	Dioxin license limits in 38 MRSA Section 420. New Dioxin sources removed, expected to attain standards. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference.	2020
ME0103000308_325R01	East Branch Sebasticook River Corundel Pd to Sebasticook L	Benzene	4.51	Class C	Haz waste remediation project (Superfund). CSO removal. New wastewater permit, removal to land treatment in 2004. Segment attains aquatic life criteria (2003 data). Expected to attain in 2010.	2010
ME0103000308_325R01	East Branch Sebasticook River Corundel Pd to Sebasticook L	Benthic-Macroinvertebrate Bioassessments (Streams)	4.51	Class C	Haz waste remediation project (Superfund). CSO removal. New wastewater permit, removal to land treatment in 2004. Segment attains aquatic life criteria (2003 data). Expected to attain in 2010.	2010
ME0103000308_331R01	Martin Stream (Dixmont)	Ammonia (Un-ionized)	0.5	Class A	CAFO permit in place, operations currently suspended; expected to attain stds. Segment length is from fields draining manure storage piles to downstream of Rt 7	2008

ADB ASSESSMENT UNIT ID	SEGMENT NAME	CAUSE	SEGMENT SIZE	SEGMENT CLASS	COMMENTS	EXPECT TO ATTAIN DATE
ME0103000308_331R01	Martin Stream (Dixmont)	Benthic-Macroinvertebrate Bioassessments (Streams)	0.5	Class A	CAFO permit in place, operations currently suspended, expected to attain stds. Segment length is from fields draining manure storage piles to downstream of Rt 7	2008
ME0103000312_339R_01	Kennebec R,	Dioxin (including 2,3,7,8- TCDD)	17.7	Class B	Dioxin license limits in 38 MRSA Section 420. New Dioxin sources removed, expected to attain standards. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference.	2020
ME0103000312_340R_01	Kennebec R,	Dioxin (including 2,3,7,8- TCDD)	30.53	Class C	Dioxin license limits in 38 MRSA Section 420. New Dioxin sources removed, expected to attain standards. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference.	2020
ME0103000312_427R	Merrymeeting Bay	Dioxin (including 2,3,7,8- TCDD)	3.44	Class B	Dioxin license limits in 38 MRSA Section 420. New Dioxin sources removed, expected to attain standards. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference.	2020
ME0104000201_421R	Androscoggin R	Dioxin (including 2,3,7,8- TCDD)	2.35	Class B	Dioxin license limits in 38 MRSA Section 420. New Dioxin sources removed, expected to attain standards. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference.	2020

ADB ASSESSMENT UNIT ID	SEGMENT NAME	CAUSE	SEGMENT SIZE	SEGMENT CLASS	COMMENTS	EXPECT TO ATTAIN DATE
ME0104000202_421R	Androscoggin R	Dioxin (including 2,3,7,8- TCDD)	31.04	Class B	Dioxin license limits in 38 MRSA Section 420. New Dioxin sources removed, expected to attain standards. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference.	2020
ME0104000204_421R	Androscoggin R	Dioxin (including 2,3,7,8- TCDD)	10.97	Class C	Dioxin license limits in 38 MRSA Section 420. New Dioxin sources removed, expected to attain standards. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference.	2020
ME0104000204_422R	Androscoggin R	Dioxin (including 2,3,7,8- TCDD)	6.8	Class C	Dioxin license limits in 38 MRSA Section 420. New Dioxin sources removed, expected to attain standards. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference.	2020
ME0104000205_422R	Androscoggin R	Dioxin (including 2,3,7,8- TCDD)	15.7	Class C	Dioxin license limits in 38 MRSA Section 420. New Dioxin sources removed, expected to attain standards. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference.	2020
ME0104000206_423R	Androscoggin R	Dioxin (including 2,3,7,8- TCDD)	21.7	Class C	Dioxin license limits in 38 MRSA Section 420. New Dioxin sources removed, expected to attain standards. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference.	2020

ADB ASSESSMENT UNIT ID	SEGMENT NAME	CAUSE	SEGMENT SIZE	SEGMENT CLASS	COMMENTS	EXPECT TO ATTAIN DATE
ME0104000206_423R01	Androscoggin R	Dioxin (including 2,3,7,8- TCDD)	1	Class C	Dioxin license limits in 38 MRSA Section 420. New Dioxin sources removed, expected to attain standards. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference.	2008
ME0104000207_412R02	House/Lively Brook	Nitrogen (Total)	3.53	Class B	Waste (manure) removal (Agric NPS) by Consent Order and Site Permit-expected to attain standards; needs addtional monitoring to confirm attainment.	2008
ME0104000208_424R	Androscoggin R,	Dioxin (including 2,3,7,8- TCDD)	15.45	Class C	Dioxin license limits in 38 MRSA Section 420. New Dioxin sources removed, expected to attain standards. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference.	2020
ME0104000210_425R_01	Androscoggin R,	Dioxin (including 2,3,7,8- TCDD)	22.15	Class C	Dioxin license limits in 38 MRSA Section 420. New Dioxin sources removed, expected to attain standards. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference.	2020
ME0104000210_426R	Androscoggin R	Dioxin (including 2,3,7,8- TCDD)	8.49	Class C	Dioxin license limits in 38 MRSA Section 420. New Dioxin sources removed, expected to attain standards. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference.	2020
ME0105000201_507R01	Dennys River	Polychlorinated biphenyls	4.5	Class AA	Haz waste remediation project (Superfund)expected to attain standards by 2010	2010

ADB ASSESSMENT UNIT ID	SEGMENT NAME	CAUSE	SEGMENT SIZE	SEGMENT CLASS	COMMENTS	EXPECT TO ATTAIN DATE
ME0105000305_528R08_02	Sheepscot River below Sheepscot L	Oxygen, Dissolved	5.67		Listed for dissolved oxygen; hatchery permit issued 2/20/06; Expected to attain standards.	2010
ME0106000101_605R01	Mile Brook (Casco)	Benthic-Macroinvertebrate Bioassessments (Streams)	2.28	Class B	Hatchery permit issued 5/8/2006; exp. date 5/8/2011	2009

Bold text indicates waters that were moved into Category 4-B during this reporting cycle

ADB ASSESSMENT UNIT ID	SEGMENT NAME	CAUSE		SEGMENT CLASS	COMMENTS
ME0102000109_205R02	West Branch Penobscot R	Other flow regime alterations	4.24	Class C	Flow diversion - modified for hydropower.
ME0102000513_227R02	Silver Lake Outlet	Other flow regime alterations	1.28	Class B	Water withdrawal.
ME0103000204_311R_02	Dead R, main stem	Other flow regime alterations	1	Class AA	Flow modified for hydropower. New hydro certification pending.
ME0103000306_338R_01	Kennebec R,	Other flow regime alterations	5	Class B	Impounded water (Norridgwock)
ME0103000309_332R01	Sebasticook River (Halifax impoundment)	Other flow regime alterations	2	Class C	Impounded water. Dam removal decision pending.
ME0106000103_608R01	Presumpscot River	Other flow regime alterations	<mark>16.14</mark>	Class A	Impoundments. Draft water quality certificate.
ME0106000203_613R01	Wards Brook (Fryeburg)	Other flow regime alterations	1.5	Class C	Impounded water
ME0106000302_628R01_01	Mousam River below Old Falls Dam	Other flow regime alterations	1	Class C	Low oxygen from bottom release

Category 4-C: Rivers and Streams with Impairment not Caused by a Pollutant

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	CAUSE	SEGMENT SIZE	SEGMENT CLASS		COMMENTS
ME0101000105_103R 01	Shields Branch of Big Black R	mainstem	Escherichia coli	<mark>8.16</mark>	Class AA	2012	
ME0101000105_103R 01	Shields Branch of Big Black R	mainstem	Oxygen, Dissolved	<mark>8.1</mark> 6	Class AA	2012	
ME0101000412_140R 02	Dudley Brook (Chapman)	8	Benthic-Macroinvertebrate Bioassessments (Streams)	6.41	Class B	2008	TMDL report under contract
ME0101000412_140R 04	Unnamed Stream (P.I. airport)	Tributary to Presque Isle Stream, draining the airport	Benthic-Macroinvertebrate Bioassessments (Streams)	2.5	Class B	2012	
ME0101000412_143R 01	Everett Brook (Ft. Fairfield)		Oxygen, Dissolved	3.53	Class B	2008	TMDL report under contract
ME0101000501_149R 01	Prestile Stream above dam in Mars Hill		DDT	15.78	Class A	2020	5D- legacy DDT sources
ME0101000501_149R 01	Prestile Stream above dam in Mars Hill		Benthic-Macroinvertebrate Bioassessments (Streams)	15.78	Class A	2008	Eutrophic lake source; Agricultural NPS source;
ME0101000501_149R 01	Prestile Stream above dam in Mars Hill		Nutrient/Eutrophication Biological Indicators	15.78	Class A	2008	non-attainment of biocriteria; AVGWLF modeling and TMDL report under contract
ME0101000501_149R 01	Prestile Stream above dam in Mars Hill		Oxygen, Dissolved	15.78	Class A	2008	AU is also listed as 5d for legacy DDT sources
ME0102000110_205R 03	Millinocket Stream (Millinocket)		Escherichia coli	3.03	Class C	2008	Evaluated
ME0102000402_219R 01	Piscataquis R	main stem, below Dover Foxcroft	Oxygen, Dissolved	<mark>13.44</mark>	Class B	2009	

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	CAUSE	SEGMENT SIZE	SEGMENT CLASS	TMDL PRIORITY	COMMENTS
ME0102000502_230R	Penobscot R	main stem, from Mattawamkeag R to Cambolassee Str	Nutrient/Eutrophication Biological Indicators	14.05	Class B	2009	New licenses in development for point sources; WQ monitoring in 2007 for new modeling effort; ongoing nutrient issues- algal blooms. PCBs are listed 5d- legacy pollutant. Also listed 4B-New Dioxin sources removed, expected to attain standards
ME0102000502_230R	Penobscot R	main stem, from Mattawamkeag R to Cambolassee Str	Oxygen, Dissolved	14.05	Class B	2009	New licenses in development for point sources; WQ monitoring in 2007 for new modeling effort; ongoing nutrient issues- algal blooms. PCBs are listed 5d- legacy pollutant. Also listed 4B-New Dioxin sources removed, expected to attain standards
ME0102000502_231R	Penobscot R	main stem, from Cambolasse Str to Piscataquis R	Oxygen, Dissolved	19.08	Class B		New licenses in development for point sources; WQ monitoring in 2007 for new modeling effort; ongoing nutrient issues- algal blooms. PCBs are
ME0102000502_231R	Penobscot R	main stem, from Cambolasse Str to Piscataquis R	Nutrient/Eutrophication Biological Indicators	19.08	Class B	2009	listed 5d- legacy pollutant. Also listed 4B-New Dioxin sources removed, expected to attain standards
ME0102000506_222R 01	Costigan Str (Costigan)		Escherichia coli	0.78	Class B	2008	
ME0102000506_222R 01	Costigan Str (Costigan)		Oxygen, Dissolved	<mark>0.78</mark>	Class B	2008	
ME0102000510_224R 01	Burnham Brook (Garland)		Oxygen, Dissolved	3.73	Class B	2012	
ME0102000510_224R 03	French Stream (Exeter)		Benthic-Macroinvertebrate Bioassessments (Streams)	1 <mark>2.7</mark> 9	Class B	2012	
ME0102000510_224R 05	Capehart Brook (AKA Unnamed (Pushaw) Stream (Bangor)		Habitat Assessment (Streams)	0.46	Class B	2008	
ME0102000510_224R 06	Arctic Brook (near ∀alley Ave Bangor)		Benthic-Macroinvertebrate Bioassessments (Streams)	0. <mark>1</mark> 8	Class B	2008	

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	CAUSE	SEGMENT SIZE	SEGMENT CLASS		COMMENTS
ME0102000510_224R 06	Arctic Brook (near Valley Ave Bangor)		Habitat Assessment (Streams)	<mark>0.18</mark>	Class B	2008	
ME0102000511_225R 01_02	Shaw Brook (Bangor, Hampden)		Benthic-Macroinvertebrate Bioassessments (Streams)	3 91	Class B	2008	
ME0102000511_225R 01_02	Shaw Brook (Bangor, Hampden)		Habitat Assessment (Streams)	3.91	Class B	2008	
ME0102000511_225R 02	(Hampden) (formerly	Tributary to Penobscot R. entering from the west, in Hampden	Oxygen, Dissolved	2.5	Class B	2012	Formerly identified and 303d listed as 'Unnamed
ME0102000511_225R 02	(Hampden) (formerly	Tributary to Penobscot R. entering from the west, in Hampden	Benthic-Macroinvertebrate Bioassessments (Streams)	25	Class B	2012	Stream (Hampden)'
ME0102000513_226R 03	Penjajawoc Stream (Bangor) Meadow Bk (Bangor)		Benthic-Macroinvertebrate Bioassessments (Streams)	6 76	Class B	2008	
ME0102000513_226R 03	Penjajawoc Stream (Bangor) Meadow Bk (Bangor)		Habitat Assessment (Streams)	6.76	Class B	2008	
ME0102000513_226R 03	Penjajawoc Stream (Bangor) Meadow Bk (Bangor)		Oxygen, <mark>Dissolved</mark>	6.76	Class B	2008	
ME0103000305_319R _02		main stem, segment below Farmington WWTP	t Benthic-Macroinvertebrate Bioassessments (Streams)		Class B		Flows too high in 2006; requires follow-up monitoring in order to complete TMDL, scheduled for 2007
ME0103000306_314R 02	Cold Stream (Skowhegan)		Benthic-Macroinvertebrate Bioassessments (Streams)		Class B	2010	Monitoring in 2006; TMDL not started
ME0103000306_320R 03	Whitten Brook (Skowhegan)		Benthic-Macroinvertebrate Bioassessments (Streams)	1 1 2	Class B	2008	Public review draft TMDL, 2008

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	CAUSE	SEGMENT SIZE	SEGMENT CLASS	TMDL PRIORITY	COMMENTS
ME0103000306_320R 03	Whitten Brook (Skowhegan)		Habitat Assessment (Streams)	1.12	Class B	2008	Public review draft TMDL, 2008
ME0103000306_320R 03	Whitten Brook (Skowhegan)		Escherichia coli	1.12	Class B	2009	Public review draft TMDL, 2008; bundled bacteria TMDL
ME0103000306_320R 04	Mill Stream (Norridgewock)		Benthic-Macroinvertebrate Bioassessments (Streams)	8.17	Class B	2010	
ME0103000307_330R	W Branch of Sebasticook R		Polychlorinated biphenyls	12.5	Class C	2011	Likely municipal and industrial sources of PCBs and dioxin
ME0103000307_330R	W Branch of Sebasticook R		Dioxin (including 2,3,7,8- TCDD)	12.5	Class C	2011	Likely municipal and industrial sources of PCBs and dioxin
ME0103000308_325R 02	Brackett Brook (Palmyra)		Oxygen, Dissolved	2.74	Class B	2012	
ME0103000308_325R 03	Mulligan Stream (St. Albans)		Oxygen, Dissolved	4.03	Class B	2010	
ME0103000308_331R	E Branch of Sebasticook R	Below Sebasticook L.	Oxygen, Dissolved	10.25	Class C	Low	Eutrophic lake source; lake TMDL complete
ME0103000309_327R 01	Mill Stream (Albion)		Oxygen, Dissolved	<mark>2.1</mark> 7	Class B	2012	
ME0103000309_332R	Sebasticook River	Mainstem excluding Halifax Impd	Dioxin (including 2,3,7,8- TCDD)	30.83	Class C	2011	Dioxin from upstream sources (W. Branch). TMDL scheduled for 2011. New hydro certification received in 2006; 5b2 for 1 CSO in Winslow with LTCP (under KSTD's LTCP); Permit date 2009.
ME0103000309_332R _01	Sebasticook River	Halifax impoundment	Dioxin (including 2,3,7,8- TCDD)	2.0	Class C	2011	Dioxin from upstream sources (W. Branch). TMDL scheduled for 2011
ME0103000311_334R 03	Jock Stream (Wales)		Oxygen, Dissolved	9.43	Class B	2009	
ME0103000311_334R 03	Jock Stream (Wales)		Nutrient/Eutrophication Biological Indicators	9.43	Class B	2009	

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	CAUSE	SEGMENT SIZE	SEGMENT CLASS		COMMENTS
ME0103000311_334R 04	Mill Stream (Winthrop)		Benthic-Macroinvertebrate Bioassessments (Streams)	<mark>0.63</mark>	Class B	2009	Stream TMDL monitoring 2005; Biomon. sample
ME0103000311_334R 04	Mill Stream (Winthrop)		Impairment Unknown	0.63	Class B	2009	2004 - NA
ME0103000312_333R 04	Unnamed tributary to Bond Brook	(Augusta) entering below I-95	Habitat Assessment (Streams)	1.34	Class B	2010	TMDL and Stream Team monitoring in 2005
ME0103000312_333R 04	Unnamed tributary to Bond Brook	(Augusta) entering below I-95	Benthic-Macroinvertebrate Bioassessments (Streams)	1.34	Class B	2010	TMDL and Stream Team monitoring in 2005
ME0103000312_335R 03	Meadow Brook (Farmingdale)		Benthic-Macroinvertebrate Bioassessments (Streams)	2	Class B	2012	
ME0104000205_410R 01_02	Whitney Brook (Canton) .		Benthic-Macroinvertebrate Bioassessments (Streams)	1.82	Class B	2012	
ME0104000208_413R 01	Jepson Brook (Lewiston)		Oxygen, Dissolved	2.43	Class B	2010	
ME0104000208_413R 01	Jepson Brook (Lewiston)		Escherichia coli	2.43	Class B	2010	Upstream section is a 80% channelized . May
ME0104000208_413R 01	Jepson Brook (Lewiston)		Habitat Assessment (Streams)	<mark>2.43</mark>	Class B	2010	require Use Attainability Analysis. New cause added based on 2006 biomonitoring data.
ME0104000208_413R 01	Jepson Brook (Lewiston)		Benthic- Macroinvertebrate Bioassessments (Streams)	2.43	Class B	2010	uata.
ME0104000208_413R 03	Stetson Brook (Lewiston)		Oxygen, Dissolved	6.82	Class B	2010	
ME0104000208_413R 03	Stetson Brook (Lewiston)		Escherichia coli	<mark>6.82</mark>	Class B	2009	bundled bacteria TMDL
ME0104000208_413R 04	Logan Brook, Auburn		Escherichia coli	0.96	Class B	2010	Under bundled bacteria TMDL
ME0104000208_413R 04	Logan Brook, Auburn		Habitat Assessment (Streams)	0.96	Class B	2008	City review of TMDL complete; revise/resubmit to EPA

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	CAUSE	SEGMENT SIZE	SEGMENT CLASS	TMDL PRIORITY	COMMENTS
ME0104000208_413R 04	Logan Brook, Auburn		Oxygen, Dissolved	<mark>0.96</mark>	Class B	2008	City review of TMDL complete; revise/resubmit to EPA
ME0104000208_413R 07	Gully Brook (Lewiston)		Escherichia coli	1.91	Class B	2009	bundled bacteria TMDL
ME0104000208_413R 07	Gully Brook (Lewiston)		Oxygen, Dissolved	1.91	Class B	2012	
ME0104000210_413R 02	Penley Brook (Auburn)		Oxygen, Dissolved	1.57	Class B	2010	
ME0104000210_418R 01	Sabattus River between Sabattus and Androscoggin R		Benthic-Macroinvertebrate Bioassessments (Streams)	11.41	Class C	2009	Updated revised modeling report completed June 2006, for dissolved oxygen and nutrient issues
ME0104000210_418R 01	Sabattus River between Sabattus and Androscoggin R		Nutrient/Eutrophication Biological Indicators	11.41	Class C	2009	Updated revised modeling report completed June 2006, for dissolved oxygen and nutrient issues
ME0104000210_418R 01	Sabattus River between Sabattus and Androscoggin R		Oxygen, Dissolved	11.41	Class C	2007	Updated revised modeling report completed June 2006, for dissolved oxygen and nutrient issues
ME0104000210_418R 02	No Name Brook (Lewiston)		Escherichia coli	10.02	Class C	2009	bundled bacteria TMDL
ME0104000210_418R 02	No Name Brook (Lewiston)		Oxygen, Dissolved	10.02	Class C	2010	
ME0104000210_419R 01	Unnamed Brook (Biomon Sta. 347- Lisbon Falls at Rt 196)		Habitat Assessment (Streams)	1.36	Class B	2010	
ME0104000210_419R 02	Hart Brook (Lewiston) A.K.A Dill Brook and including Goff Bk		Habitat Assessment (Streams)	4.15	Class B	2008	Hart Brook, including tributaries Goff Brook & Dill Brook; TMDL originally submitted under the name "Dill Brook". City review of TMDL complete; revise/resubmit to EPA

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	CAUSE	SEGMENT SIZE	SEGMENT CLASS		COMMENTS
ME0104000210_419R 02	Hart Brook (Lewiston) A.K.A Dill Brook and including Goff Bk		Escherichia coli	4.15	Class B	2009	Hart Brook, including tributaries Goff Brook & Dill Brook; TMDL originally submitted under the name "Dill Brook"; bundled bacteria TMDL
ME0104000210_419R 02	Hart Brook (Lewiston) A.K.A Dill Brook and including Goff Bk		Oxygen, Dissolved	4.15	Class B	2008	Hart Brook, including tributaries Goff Brook & Dill Brook; TMDL originally submitted under the name "Dill Brook". City review of TMDL complete; revise/resubmit to EPA
ME0104000210_419R 02	Hart Brook (Lewiston) A.K.A Dill Brook and including Goff Bk		Benthic-Macroinvertebrate Bioassessments (Streams)	<mark>4.1</mark> 5	Class B	2008	Hart Brook, including tributaries Goff Brook & Dill Brook; TMDL originally submitted under the name "Dill Brook". City review of TMDL complete; revise/resubmit to EPA
ME0104000210_420R 01	Unnamed tributary to Androscoggin R	(near River Rd. Brunswick) 43.91538/69.98089	Habitat Assessment (Streams)	1.8 <mark>5</mark>	Class B	2012	
ME0104000210_420R 02	Unnamed tributary to Androscoggin R	(near Water St. Brunswick) 43.92167/69.95586	Habitat Assessment (Streams)	0.56	Class B	2012	
ME0104000210_420R 03	Unnamed tributary to Androscoggin R	(near Jordan Ave., Brunswick) 43.91077/69.94130	Habitat Assessment (Streams)	1.73	Class B	2012	
ME0104000210_420R 04	Unnamed tributary to Androscoggin R	(near Rt. 196, Topsham) 43.92470/69.95027	Habitat Assessment (Streams)	1.77	Class B	2012	
ME0105000209_512R _ ⁰³	Great Falls Branch, Schoodic Stream (Deblois)		Benthic-Macroinvertebrate Bioassessments (Streams)	1.33	Class A	2012	Formerly listed as segment 512R_02 - Great Falls Branch, Schoodic Stream
ME0105000213_514R _01	Card Brook (Ellsworth)		Escherichia coli	1.2	Class B	2012	
ME0105000213_514R _01	Card Brook (Ellsworth)		Oxygen, Dissolved	1.2	Class B	2012	

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	CAUSE	SEGMENT SIZE		TMDL PRIORITY	COMMENTS
ME0105000213_514R _01	Card Brook (Ellsworth)		Benthic- Macroinvertebrate Bioassessments (Streams)	1.2	Class B	2012	New cause added based on 2006 biomonitoring non-attainment
ME0105000218_521R 01	Warren Brook (Belfast)		Oxygen, Dissolved	6. <mark>04</mark>	Class B	2012	
ME0105000305_528R 02	West Branch Sheepscot River		Oxygen, Dissolved	2.29	Class AA	2009	Draft TMDL to EPA 9/30/05- requires revision and public review; Formerly referred to as "West Branch Sheepscot River below Halls Corner"
ME0105000305_528R 03	Dyer River below Rt 215		Oxygen, Dissolved	<mark>9.3</mark> 5	Class B	2009	Draft TMDL complete; apply new model
ME0105000305_528R 03	Dyer River below Rt 215		Escherichia coli	9. <mark>3</mark> 5	Class B	2009	Draft TMDL; apply new model; bundled bacteria TMDL
ME0105000305_528R 04	Trout Brook (Alna)		Oxygen, Dissolved	3.43	Class B	2009	TMDL monitoring in 2005 and 2007
ME0105000305_528R 05	Meadow Bk (Whitefield)		Oxygen, Dissolved	<mark>5.94</mark>	Class B	2009	TMDL monitoring in 2005 and 2007
ME0105000305_528R 06	Carlton Bk (Whitefield)		Oxygen, Dissolved	3.94	Class B	2009	TMDL monitoring in 2005 and 2007
ME0105000305_528R 07	Choate Bk (Windsor)		Oxygen, Dissolved	1.33	Class B	2009	TMDL monitoring in 2005 and 2007
ME0105000305_528R 08_01	Chamberlain Bk (Whitefield)		Oxygen, Dissolved	1.76	Class B	2009	TMDL monitoring in 2005 and 2007
ME0106000102_603R 02	Chandler River including East Branch		Oxygen, Dissolved	27.19	Class B	2012	
ME0106000102_603R 06	Cole <mark>Brook</mark> (Gray)		Benthic-Macroinvertebrate Bioassessments (Streams)	·) / U	Class B	2012	
ME0106000103_607R 01	Black Brook (Windham)		Oxygen, Dissolved	6.07	Class B	2009	TMDL monitoring in 2007

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	CAUSE	SEGMENT SIZE		TMDL PRIORITY	COMMENTS
ME0106000103_607R 03	Colley Wright Brook (Windham)		Oxygen, Dissolved	<mark>8.1</mark> 6	Class B	2008	
ME0106000103_607R 03	Colley Wright Brook (Windham)		Escherichia coli	8.16	Class B	2008	
ME0106000103_607R 06	Hobbs Brook (Cumberland)		Escherichia coli	1.54	Class B	2009	
ME0106000103_607R 06	Hobbs Brook (Cumberland)		Oxygen, Dissolved	1.54	Class B	2009	
ME0106000103_607R 07	Inkhorn Brook (Westbrook)		Escherichia coli	<mark>4</mark> .32	Class B	2009	
ME0106000103_607R 07	Inkhorn Brook (Westbrook)		Oxygen, Dissolved	4.32	Class B	2009	
ME0106000103_607R 08	Mosher Brook (Gorham)		Escherichia coli	2.03	Class B	2009	
ME0106000103_607R 08	Mosher Brook (Gorham)		Oxygen, Dissolved	2.03	Class B	2009	
ME0106000103_607R 09	Otter Brook (Windham)		Oxygen, Dissolved	2.16	Class B	2009	
ME0106000103_607R 09	Otter Brook (Windham)		Escherichia coli	2. <mark>1</mark> 6	Class B	2009	
ME0106000103_607R 10	Thayer Brook		Oxygen, Dissolved	3.82	Class B	2008	
ME0106000103_607R 12	Pleasant River (Windham)	mainstem of Pleasant River from Thayer Brook to confluence with Presumpscot	Escherichia coli	8.8	Class B	2010	

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	CAUSE	SEGMENT SIZE	and the second		COMMENTS
ME0106000103_607R 12	Pleasant River (Windham)	mainstem of Pleasant River from Thayer Brook to confluence with Presumpscot	Oxygen, Dissolved	8.8	Class B	2010	
ME0106000104_611R 02	Phillips Brook (Scarborough)		Habitat Assessment (Streams)	2.77	Class C	2009	
ME0106000105_607R 11_01	Nasons Brook (Portland) south of Rt 25, trib to Fore River		Benthic-Macroinvertebrate Bioassessments (Streams)	2	Class C	2008	TMDL monitoring in 2006; Internal draft TMDL
ME0106000105_609R 0 <mark>1</mark>	Unnamed Stream (Portland 3)	Tributary to Presumpscot R. entering east of Rt. 302 in Portland	Benthic-Macroinvertebrate Bioassessments (Streams)	16	Class B	2012	
ME0106000105_610R 01	Capisic Brook		Benthic-Macroinvertebrate Bioassessments (Streams)		Class C	2008	Draft TMDL sent to EPA 7/29/2005 under bundled Urban Stream report
ME0106000105_610R 01	Capisic Brook		Habitat Assessment (Streams)	3.02	Class C	2008	Draft TMDL sent to EPA 7/29/2005 under bundled Urban Stream report
ME0106000105_610R 02	Clark Brook (Westbrook)		Oxygen, Dissolved	1.23	Class C	2012	
ME0106000105_610R 03	Long Creek (South Portland)		Benthic-Macroinvertebrate Bioassessments (Streams)		Class C	2010	Active stakeholder process is underway to consider TMDL, watershed restoration process;
ME0106000105_610R 03	Long Creek (South Portland)		Habitat Assessment (Streams)	4.12	Class C	2010	Active stakeholder process is underway to consider TMDL, watershed restoration process.
ME0106000105_610R 04	Stroudwater River (South Portland, Westbrook)		Oxygen, Dissolved	15.71	Class B	2012	
ME0106000105_610R 06	Kimball Brook		Habitat Assessment (Streams)	1.55	Class C	2012	Biomon Station 795; Biomonitoring results - non- attainment of Class C
ME0106000105_610R 06	Kimball Brook		Benthic-Macroinvertebrate Bioassessments (Streams)	1 55	Class C	2012	Biomon Station 795; Biomonitoring results - non- attainment of Class C

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	CAUSE	SEGMENT SIZE	The second s		COMMENTS
ME0106000105_610R 07	Red Brook (Scarborough, S Portland)		Habitat Assessment (Streams)	7.15	Class C	2012	
ME0106000105_610R 07	Red Brook (Scarborough, S Portland)		Polychlorinated biphenyls	7.15	Class C	2012	
ME0106000105_610R 08	Fall Bk (Portland)		Habitat Assessment (Streams)	2.54	Class C	2012	
ME0106000106_602R 01	Frost Gully Brook		Benthic-Macroinvertebrate Bioassessments (Streams)	4 ()4	Class A	2008	
ME0106000106_602R 01	Frost Gully Brook		Escherichia coli	4.04	Class A	2008	
ME0106000106_602R 01	Frost Gully Brook		Habitat Assessment (Streams)	4.04	Class A	2008	
ME0106000106_602R 02	Mare Brook (Brunswick)		Habitat Assessment (Streams)	4.9	Class B	2010	
ME0106000106_602R 03	Concord Gully (Freeport)		Habitat Assessment (Streams)	2.47	Class B	2008	
ME0106000210_615R 01	Little Ossippee R	segment from Lake Arrowhead Dam to Saco River	Oxygen, Dissolved	12.49	Class B	2012	
ME0106000210_615R 01	Little Ossippee R	Arrowhood Dom to	Benthic-Macroinvertebrate Bioassessments (Streams)	12 /0	Class B	2012	
ME0106000210_615R 02	Brown Brook (Limerick)		Habitat Assessment (Streams)	2.44	Class B	2009	Biomon Station 445; Class B stream only attains Class C
ME0106000210_615R 02	Brown Brook (Limerick)		Benthic-Macroinvertebrate Bioassessments (Streams)		Class B	2009	Biomon Station 445; Class B stream only attains Class C
ME0106000211_616R	Wales Pond Brook (Hollis)		Benthic-Macroinvertebrate Bioassessments (Streams)		Class B	2010	draft hatchery permit (Shy Beaver); ongoing issues; TMDL not started

ADB ASSESSMENT UNIT ID	SEGMENT NAME	LOCATION	CAUSE	SEGMENT SIZE	SEGMENT CLASS	TMDL PRIORITY	COMMENTS
ME0106000211_616R 05	Thatcher Bk (Biddeford)		Benthic-Macroinvertebrate Bioassessments (Streams)	<mark>5.67</mark>	Class B	2012	
ME0106000211_616R 05	Thatcher Bk (Biddeford)		Escherichia coli	5.67	Class B	2009	bundled bacteria TMDL
ME0106000301_622R 02	Lord's Brook (Lyman)		BOD, Biochemical oxygen demand	2.35	Class B	2012	Fungal growth on stream bottom; currently revising permit
ME0106000301_622R 02	Lord's Brook (Lyman)		Oxygen, Dissolved	2.35	Class B	2012	Fungal growth on stream bottom; currently revising permit
ME0106000301_622R 02	Lord's Brook (Lyman)		Nutrient/Eutrophication Biological Indicators	2.35	Class B	2012	Fungal growth on stream bottom; currently revising permit
ME0106000303_624R 01	Stevens Brook (Wells, Ogunquit)		Benthic-Macroinvertebrate Bioassessments (Streams)	2.87	Class B	2009	TMDL data collected 2006
ME0106000304_625R 01	Adams Brook (Berwick)		Benthic-Macroinvertebrate Bioassessments (Streams)	2.97	Class B	2009	TMDL data collected 2006
ME0106000304_625R 03	West Brook (N. Berwick)		Oxygen, Dissolved	3.22	Class B	2012	AWQC drinking water impairment from industrial NPS/hazardous waste; dichloroethane

Bold text indicates waters that were moved into Category 5A during this reporting cycle

ADB ASSESSMENT UNIT ID	SEGMENT NAME	CAUSE	SEGMENT SIZE	SEGMENT CLASS	COMMENTS
ME0101000121_117R	St. John River at Madawaska	Escherichia coli	0 *	Class C	
ME0101000413_146R01	Webster Brook	Escherichia coli	12.1	Class B	
ME0102000402_219R_02	Piscataquis River at Dover Foxcroft	Escherichia coli	0 *	Class B	
ME0102000403_215R_02	Sebec River at Milo	Escherichia coli	0 *	Class B	Also listed in 5-A
ME0102000509_226R01	Otter Stream	Escherichia coli	6.27	Class B	
ME0102000509_226R02	Boynton Brook	Escherichia coli	2.64	Class B	
ME0102000509_233R_02	Penobscot River at Orono	Escherichia coli	0 *	Class B	Orono CSO permit has been issued-
ME0102000509_233R_03	Penobscot River at Old Town- Milford	Escherichia coli	0 *	Class B	
ME0102000510_224R02	Kenduskeag Stream	Escherichia coli	1.5	Class B	
ME0102000513_234R	Penobscot River	Escherichia coli	0 *	Class B	Also listed in 4-B, 5D and 5-A
ME0103000306_320R02	Currier Brook	Escherichia coli	3.19	Class B	
ME0103000306_339R03	Kennebec River at Fairfield	Escherichia coli	0 *	Class C	AU# changed: formerly ME0103000306_338R_02
ME0103000306_338R_03	Kennebec River at Skowhegan	Escherichia coli	0 *	Class B	AU# changed: formerly: ME0103000306_338R_02
ME0103000309_332R	Sebasticook River (main stem, below confluence of E and W Branches, (excluding the Halifax Impd)	Escherichia coli	0*	Class C	5b for 1 CSO in Winslow with LTCP (under KSTD's LTCP); Permit date 2009; also listed 5D for dioxin
ME0103000312_333R02	Whitney Brook (Augusta)	Escherichia coli	2.68	Class B	
ME0103000312_339R_02	Kennebec River at Waterville	Escherichia coli	0 *	Class B	
ME0103000312_340R_02	Kennebec River at Augusta, including Riggs Brook	Escherichia coli	0 *	Class B	
ME0103000312_340R_03	Kennebec River at Hallowell	Escherichia coli	0 *	Class B	
ME0103000312_340R_04	Kennebec River at Gardiner- Randolph	Escherichia coli	0 *	Class <mark>B</mark>	

Category 5-B: Rivers and Streams Impaired by Bacteria Contamination (TMDL Required)

ADB ASSESSMENT UNIT ID	SEGMENT NAME	CAUSE	SEGMENT SIZE	SEGMENT CLASS	COMMENTS
ME0104000209_417R_02	Little Androscoggin River at Mechanic Falls	Escherichia coli	0 *	Class C	
ME0104000210_425R_02	Androscoggin River	Escherichia coli	0 *	Class C	
ME0105000108_505R_02	St. Croix R, (Calais)	Escherichia coli	0*		Newly permitted CSO community
ME0105000203_508R02	Pottle Brook (Perry)	Escherichia coli	0.5	Class B	
ME0105000220_522R01_01	Megunticook River (Camden)	Escherichia coli	3.56	Class B	
ME0105000220_522R02_01	Unnamed Brook (Camden)	Escherichia coli	0.7	Class B	
ME0105000220_522R03	Unnamed Brook (Rockport)	Escherichia coli	0.5	Class B	
ME0105000220_522R04	Unnamed Brook (Rockland)	Escherichia coli	0.5	Class B	
ME0105000305_528R01	Sheepscot River at Alna	Escherichia coli	4.01	Class AA	bundled bacteria TMDL; target date 2009
ME0106000103_607R04	Piscataqua River (Falmouth)	Escherichia coli	12.53	Class B	
ME0106000103_607R11	Nason Brook (Gorham)	Escherichia coli	2.7	Class B	
ME0106000103_609R_02	Presumpscot River at Westbrook	Escherichia coli	0 *	Class C	
ME0106000106_612R01_02	Bear Brook, Saco	Escherichia coli	0 *	Class B	
ME0106000106_616R04	Bear Bk	Escherichia coli	0.5	Class B	
ME0106000204_618R01	Saco R	Escherichia coli	5	Class AA	
ME0106000209_614R01	Ossippee R	Escherichia coli	5	Class B	
ME0106000211_616R02	Tappan Bk	Escherichia coli	0.5	Class B	
ME0106000211_616R03	Sawyer Bk	Escherichia coli	0.5	Class B	
ME0106000211_616R06	Swan Pond Brook at South Street (Biddeford)	Escherichia coli	1	Class B	
ME0106000211_619R01	Saco River at Biddeford-Saco	Escherichia coli	0 *	Class B	
ME0106000301_622R01	Kennebunk River	Escherichia coli	3.07	Class B	
ME0106000302_628R02	Mousam River at Sanford	Escherichia coli	0 *	Class C	District working with Town to eliminate catch basins.
ME0106000305_630R01	Salmon Falls R	Escherichia coli	7.43	Class B	Also listed 5d- legacy PCBs and dioxin and 4A-TMDL approved for other parameters

Category 5-B: Rivers and Streams Impaired by Bacteria Contamination (TMDL Required)

* Estimate of affected rivemiles is not provided since it is highly variable depending on an overflow event

ADB ASSESSMENT UNIT ID	SEGMENT NAME	CAUSE	SEGMENT SIZE	SEGMENT CLASS	COMMENTS
ME0101000412_140R03_02	N Br Presque Isle Stream	DDT	14.68	Class B	legacy DDT contamination
ME0101000501_149R	Minor tributaries to Prestile Stream above dam in Mars Hill	DDT	77.2	Class B	legacy DDT contamination
ME0101000501_150R	Prestile Str and tributaries entering below dam in Mars Hill	DDT	95.55	Class B	legacy DDT contamination
ME0101000504_152R01_02	Meduxnekeag River	DDT	11	Class B	legacy DDT contamination
ME0102000404_216R01_01	W. Br. Pleasant R (KIW Twp)	Iron	1	Class AA	legacy iron mine contamination
ME0102000404_216R01_02	Blood Bk (KIW Twp)	Iron	1	Class A	legacy iron mine contamination
ME0102000509_231R	Penobscot R	Polychlorinated biphenyls	19.08	Class B	New licenses issued or underway for mills. WQ monitoring in 2007 and modeling report in 2008 to ascertain appropriate loads. PCBs are listed 5d- legacy pollutant. Dioxin listed 4b- controls in place, expected to attain standards
ME0102000509_233R_01	Penobscot R	Polychlorinated biphenyls	14.51	Class B	4-b Dioxin license limits in 38 MRSA Section 420. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference. Fish tissue monitoring has revealed legacy PCBs
ME0102000513_234R02	Penobscot	Polychlorinated biphenyls	10.1	Class B	4-b Dioxin license limits in 38 MRSA Section 420. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference. Fish tissue monitoring has revealed legacy PCBs
ME0103000306_338R_04	Kennebec R,	Polychlorinated biphenyls	22.76	Class B	4-b Dioxin license limits in 38 MRSA Section 420. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference. Fish tissue monitoring has revealed legacy PCBs

ADB ASSESSMENT UNIT ID	SEGMENT NAME	CAUSE	SEGMENT SIZE	SEGMENT CLASS	COMMENTS
ME0103000306_339R_02	Kennebec R,	Polychlorinated biphenyls	1 <mark>4</mark> .65	Class C	4-b Dioxin license limits in 38 MRSA Section 420. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference. Fish tissue monitoring has revealed legacy PCBs
ME0103000308_331R	E Branch of Sebasticook R, Below Sebasticook L.	Dioxin (including 2,3,7,8-TCDD)	10.25	Class C	Upstream Lake TMDL and superfund project are complete; Dioxin, PCBCategory 5D Dissolved oxygen -5A
ME0103000308_331R	E Branch of Sebasticook R Below Sebasticook L.	Polychlorinated biphenyls	10.25	Class C	Upstream Lake TMDL and superfund project are complete; Dioxin, PCBCategory 5D Dissolved oxygen -5A
ME0103000309_332R	Sebasticook River mainstem excluding Halifax Impd.	Polychlorinated biphenyls	30.83	Class C	Legacy PCBs; Also listed 5A for Dioxin from upstream sources (W. Branch). TMDL scheduled for 2011. New hydro certification received in 2006; 5b2 for 1 CSO in Winslow with LTCP (under KSTD's LTCP); Permit date 2009.
ME0103000312_339R_01	Kennebec R,	Polychlorinated biphenyls	17.7	Class B	4-b Dioxin license limits in 38 MRSA Section 420. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference. Fish tissue monitoring has revealed legacy PCBs
ME0103000312_340R_01	Kennebec R,	Polychlorinated biphenyls	30.53	Class C	4-b Dioxin license limits in 38 MRSA Section 420. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference. Fish tissue monitoring has revealed legacy PCBs
ME0103000312_427R	Merrymeeting Bay	Polychlorinated biphenyls	3.44	Class B	4-b Dioxin license limits in 38 MRSA Section 420. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference. Fish tissue monitoring has revealed legacy PCBs
ME0104000201_421R	Androscoggin R	Polychlorinated biphenyls	2.35	Class B	4-b Dioxin license limits in 38 MRSA Section 420. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference. Fish tissue monitoring has revealed legacy PCBs

ADB ASSESSMENT UNIT ID	SEGMENT NAME	CAUSE		SEGMENT CLASS	COMMENTS
ME0104000202_421R	Androscoggin R	Polychlorinated biphenyls	31.04	Class B	4-b Dioxin license limits in 38 MRSA Section 420. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference. Fish tissue monitoring has revealed legacy PCBs
ME0104000204_421R	Androscoggin R	Polychlorinated biphenyls	10.97	Class C	4-b Dioxin license limits in 38 MRSA Section 420. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference. Fish tissue monitoring has revealed legacy PCBs
ME0104000204_422R	Androscoggin R	Polychlorinated biphenyls	6.8	Class C	4-b Dioxin license limits in 38 MRSA Section 420. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference. Fish tissue monitoring has revealed legacy PCBs
ME0104000205_422R	Androscoggin R	Polychlorinated biphenyls	15.7	Class C	4-b Dioxin license limits in 38 MRSA Section 420. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference. Fish tissue monitoring has revealed legacy PCBs
ME0104000206_423R	Androscoggin R	Polychlorinated biphenyls	21.7	Class C	4-b Dioxin license limits in 38 MRSA Section 420. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference. Fish tissue monitoring has revealed legacy PCBs
ME0104000206_423R01	Androscoggin R	Polychlorinated biphenyls	1	Class C	4a listed for aquatic life and solids issues,TMDL is complete; EPA approved TMDL 7/18/2005 but there are ongoing licensing issues. Attained Class C biocriteria in 2003 and attained Class B biocriteria in 2004 listed for legacy PCB contamination
ME0104000208_424R	Androscoggin R,	Polychlorinated biphenyls	15.45	Class C	4-b Dioxin license limits in 38 MRSA Section 420. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference. Fish tissue monitoring has revealed legacy PCBs

ADB ASSESSMENT UNIT ID	SEGMENT NAME	CAUSE	SEGMENT SIZE	SEGMENT CLASS	COMMENTS		
ME0104000210_425R_01	Androscoggin R,	Polychlorinated biphenyls	22.15	Class C	4-b Dioxin license limits in 38 MRSA Section 420. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 10 pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference. Fish tissue monitoring has revealed legacy PCBs		
ME0104000210_426R	Androscoggin R	Polychlorinated biphenyls	8.49	Class C	4-b Dioxin license limits in 38 MRSA Section 420. Compliance is measured by (1) no detection of dioxin in any internal waste stream (at 1) pg/l detection limit), (2) no detection in fish tissue sampled below a mill's outfall greater than upstream reference. Fish tissue monitoring has revealed legacy PCBs		
ME0105000209_512R_02	McCoy Brook (Deblois)	Benthic- Macroinvertebrate Bioassessments (Streams)	1	Class B	Legacy peat mining effects		
ME0105000209_512R_02	McCoy Brook (Deblois)	pН	1	Class B	Legacy peat mining effects		
ME0106000305_630R01	Salmon Falls R	Dioxin (including 2,3,7,8-TCDD)	7.43	Class B	5b non-CSO, low priority bacteria problem fish tissue monitoring shows legacy PCBs and dioxin.		
ME0106000305_630R01	Salmon Falls R	Polychlorinated biphenyls	7.43	Class B	5b non-CSO, low priority bacteria problem fish tissue monitoring shows legacy PCBs and dioxin.		

С	Category 1: Lake Waters Fully Attaining All Designated Uses									
	HUC		HUC Name	Total HUC Area (Sq. Miles)	Lake Area within the HUC listed in Category 1 (Acres)	# of Lakes within the HUC listed in Category 1	Other listing categories having lakes within this HUC			
ME	0101000101	*	Baker Branch St. John River	355.24	3383	89				
ME	0101000102	*	Southwest Branch St. John River	354.42	191	30				
ME	0101000103	*	Northwest Branch St. John River	504.67	333	5				
ME	0101000104	*	St. John River (1) at Gauging Station	127.53	211	25				
ME	0101000105	*	Shields Branch Big Black River	162.98	2	1				
ME	0101000106	*	Big Black River	466.4	1178	14				
ME	0101000107	*	St. John River at Oullette Brook	384.74	2866	10				
ME	0101000108	*	Little Black River	261.73	38	4	2			
ME	0101000109	*	St. John River above St. Francis	176.48	298	17	2			
ME	0101000110	*	St. Francis River	228.41	3289	9	2			
ME	0101000114	*	St. John River at Van Buren	64.98	8	1	2			
ME	0101000201	*	Eagle Lake	169.18	11806	30				
ME	0101000202	*	Heron Lake (Churchill)	129	5875	21				
ME	0101000203	*	Chemquasabamticook Stream	214.54	3293	9				
ME	0101000204	*	Long Lake	143.4	2436	10				
ME	0101000205	*	Musquacook Stream	155.53	3889	20				
ME	0101000206	*	Big Brook	100.88	708	11				
ME	0101000207	*	Allagash River	320.93	2134	15	2			
ME	0101000301	*	Fish River Lake	128.98	3601	15				
ME	0101000302	*	St. Froid Lake	273.95	1238	43	2			
ME	0101000303	*	Eagle Lake	353.06	1067	9	2,4a			
ME	0101000304	*	Fish River	133.44	107	4	2			
ME	0101000401	*	Millimagasset Stream	108.59	5215	35				
ME	0101000402	*	Munsungan Stream	120.15	2668	37				
ME	0101000403	*	Mooseleuk Stream	168.76	1600	24				
ME	0101000404	*	Umcolcus Stream	82.6	1244	10	2			

Maine DEP 2008 Integrated Water Quality Report Appendices 65

С	Category 1: Lake Waters Fully Attaining All Designated Uses										
	HUC		HUC Name	Total HUC Area (Sq. Miles)	Lake Area within the HUC listed in Category 1 (Acres)	# of Lakes within the HUC listed in Category 1	Other listing categories having lakes within this HUC				
ME	0101000405	*	St. Croix Lake	112.34	162	25	2				
ME	0101000406	*	St. Croix Stream	126.48	273	17					
ME	0101000407	*	Aroostook River (1) at Masardis Gauging Station	175.93	43	6	2				
ME	0101000409	*	Big Machias Lake	146.85	1542	14					
ME	0101000410	*	Machias River	182.46	395	10					
ME	0101000411	*	Aroostook R (2) at Washburn Gauging Station	348.8	110	8	2				
ME	0101000412	*	Aroostook River (3) at Caribou	289.41	41	2	2,4a				
ME	0101000413	*	Aroostook River (4) at Mouth in Canada	499.04	92	2	2,3,4a				
ME	0101000501	*	Big Presque Isle Stream	232.18	5	2	2,5a				
ME	0101000502	*	South Branch Meduxnekeag River	64.55	4	1	2				
ME	0101000503	*	North Branch Meduxnekeag River	147.7	186	12	2				
ME	0102000101	*	North Branch Penobscot River	255.48	3529	59					
ME	0102000102	*	Seeboomook Lake	266.8	4999	102	2				
ME	0102000103	*	WEST Branch Penobscot R at Chesuncook Lk	314.76	5473	59	2				
ME	0102000104	*	Caucomgomok Lake	178.46	10211	59					
ME	0102000105	*	Chesuncook Lake	404.77	34926	73					
ME	0102000106	*	Nesowadnehunk Stream	66.56	1936	32					
ME	0102000107	*	Nahamakanta Stream	103.18	4679	76					
ME	0102000108	*	Jo-Mary Lake	83.5	6949	40					
ME	0102000109	*	West Branch Penobscot River (3)	245.71	25876	105	2				
ME	0102000110	*	West Branch Penobscot River (4)	211.31	12365	66	2				
ME	0102000201	*	Webster Brook	289.69	21919	48	2				
ME	0102000202	*	Grand Lake Matagamon	200.84	6042	51					
ME	0102000203	*	East Branch Penobscot River (2)	89.69	913	43					
ME	0102000204	*	Seboeis River	268.31	6638	76	2				
ME	0102000205	*	East Branch Penobscot River (3)	269.47	1439	81	2				
ME	0102000301	*	West Branch Mattawamkeag River	368.52	129	9	2				
	0102000302	*	East Branch Mattawamkeag River	165.95	45	1	2				
ME	0102000304	*	Baskahegan Stream	233.6	824	4	2				
ME	0102000305	*	Mattawamkeag River (2)	276.47	1358	5	2				

С	ategory 1	:	Lake Waters Fully Attainir	ng All Desig	nated Uses		
	HUC		HUC Name	Total HUC Area (Sq. Miles)	Lake Area within the HUC listed in Category 1 (Acres)	# of Lakes within the HUC listed in Category 1	Other listing categories having lakes within this HUC
ME	0102000306	*	Molunkus Stream	233.59	766	8	2
ME	0102000401	*	Piscataquis River (1)	264.05	282	16	2
ME	0102000403	*	Sebec River	351.1	1372	37	2
ME	0102000404	*	Pleasant River	339.32	4354	81	2
ME	0102000405	*	Seboeis Stream	161.16	3812	24	2
ME	0102000501	*	Penobscot River (1) at Mattawamkeag	161.07	941	6	2
ME	0102000502	*	Penobscot River (2) at West Enfield	298.2	1115	5	2
ME	0102000503	*	Passadumkeag River	398.81	10851	27	2
ME	0102000504	*	Olamon Stream	53.88	9	1	2
ME	0102000505	*	Sunkhaze Stream	94.65	68	13	2
ME	0102000508	*	Pushaw Stream	238.53	1014	2	2
ME	0103000101	*	South Branch Moose River	68.34	171	14	
ME	0103000102	*	Moose River (2) above Attean Pond	180.94	2207	56	2
ME	0103000103	*	Moose River (3) at Long Pond	307.3	1643	35	2
ME	0103000104	*	Brassua Lake	157.53	473	27	4c
ME	0103000105	*	Moosehead Lake	549	4116	92	2
ME	0103000106	*	Kennebec River (2) above The Forks	323.12	6404	120	2
ME	0103000201	*	North Branch Dead River	200.89	2348	50	2
ME	0103000202	*	South Branch Dead River	147.96	73	4	2
ME	0103000203	*	Flagstaff Lake	173.02	825	18	2,4c
ME	0103000204	*	Dead River	357.53	5691	190	2
ME	0103000301	*	Kennebec River (4) at Wyman Dam	158.85	2344	22	2
ME	0103000302	*	Austin Stream	89.87	297	11	2
ME	0103000303	*	Kennebec River (6)	110.29	87	9	2
ME	0103000304	*	Carrabassett River	396.83	398	19	2
ME	0103000305	*	Sandy River	592.92	86	6	2,4c
ME	0103000312	*	Kennebec River at Merrymeeting Bay	314.46	3	1	2,3,4a
ME	0104000101	*	Mooselookmeguntic Lake	473.72	3283	36	2
ME	0104000102	*	Umbagog Lake Drainage	122.05	759	7	2
ME	0104000103	*	Aziscohos Lake Drainage	245.91	1606	33	4c

	HUC		HUC Name	Total HUC Area (Sq. Miles)	Lake Area within the HUC listed in Category 1 (Acres)	# of Lakes within the HUC listed in Category 1	Other listing categories having lakes within this HUC
ME	0104000202	*	Androscoggin River (2) at Rumford Point	308.23	27	3	2
ME	0104000203	*	Ellis River	164.26	29	2	2
ME	0104000204	*	Ellis River	202.35	89	13	2
ME	0104000205	*	Androscoggin River (3) above Webb River	245.05	22	3	2
ME	0104000209	*	Androscoggin R (6) above Little Androscoggin	353.1	6	1	2
ME	0105000101	*	Spednick Lake	411.52	291	1	2
ME	0105000102	*	St. Croix River (2) at Spednick Falls	216.84	778	6	
ME	0105000103	*	West Grand Lake	224.54	4426	10	2
ME	0105000104	*	Big Musquash Stream	114.17	412	3	2
ME	0105000105	*	Big Lake at Peter Dana Point	121.07	1417	15	2
ME	0105000106	*	Tomah Stream	153.03	233	8	2
ME	0105000201	*	Dennys River	130.64	190	2	2
ME	0105000203	*	Grand Manan Channel	246.09	370	8	2
ME	0105000204	*	East Machias River	311.96	1357	11	2
ME	0105000205	*	Machias River	498.35	11912	90	2
ME	0105000208	*	Pleasant River	130.39	243	13	2
ME	0105000209	*	Narraguagus River	245.16	826	47	2
ME	0105000210	*	Tunk Stream	48.41	1076	15	2
ME	0105000212	*	Graham Lake	495.07	1908	20	2,3,4c
ME	0105000214	*	Lamoine Coastal	256.14	180	11	2
ME	0106000101	*	Sebago Lake	441.76	306	13	2,3
ME	0106000103	*	Presumpscot River	205.44	15	4	2,4a
ME	0106000105	*	Fore River	54.46	1	1	2
ME	0106000305	*	Salmon Falls River	242.91	150	1	2
	5 F		Totals within Category 1:	2.23	295,443	2,857	

* Lakes within this HUC can be found under other listing categories (see right column)

	HUC		HUC Name	Total HUC Area (Sq. Miles)	Lake Area within the HUC listed in Category 2 (Acres)	# of Lakes within the HUC listed in Category 2	
ME	0101000108	*	Little Black River	261.73	3	1	1
ME	0101000109	*	St. John River above St. Francis	176.48	41	4	1
ME	0101000110	*	St. Francis River	228.41	330	2	1
ME	0101000111	*	St. John River at Fort Kent	184.38	266	7	
ME	0101000112	*	St. John River at Madawaska	310.29	3	1	
ME	0101000113	*	St. John River at Grand Isle	16.18	16	1	
ME	0101000114	*	St. John River at Van Buren	64.98	4	3	1
ME	0101000115	*	St. John River (11) at Hamlin	102.19	41	7	
ME	0101000116	*	St. John River (12) at Tobique River	0.41	19	1	
ME	0101000117	*	St. John River (13) at Woodstock NB	40.37	28	6	
ME	0101000121	*	Green and Big Rivers at Van Buren	948.13	11	6	5
ME	0101000207	*	Allagash River	320.93	1	1	1
ME	0101000302	*	St. Froid Lake	273.95	4874	2	1
ME	0101000303	*	Eagle Lake	353.06	20281	15	1,4a
ME	0101000304	*	Fish River	133.44	792	18	1
ME	0101000404	*	Umcolcus Stream	82.6	2	2	1
ME	0101000405	*	St. Croix Lake	112.34	416	1	1
ME	0101000407	*	Aroostook R (1) at Masardis Gauging Station	175.93	338	21	1
ME	0101000408	*	Squa Pan Stream	81.21	17	1	4c
ME	0101000411	*	Aroostook R (2) at Washburn Gauging Station	348.8	340	4	1
ME	0101000412	*	Aroostook River (3) at Caribou	289.41	352	15	1, <mark>4</mark> a
ME	0101000413	*	Aroostook River (4) at Mouth in Canada	499.04	1938	33	1,3,4a
ME	0101000501	*	Big Presque Isle Stream	232.18	214	24	1,5a
ME	0101000502	*	South Branch Meduxnekeag River	64.55	290	7	1
ME	0101000503	*	North Branch Meduxnekeag River	147.7	138	10	1
ME	0101000504	*	Meduxnekeag River at Woodstock NB	300.02	1868	45	
ME	0102000102	*	Seeboomook Lake	266.8	6460	3	1
ME	0102000103	*	WEST Branch Penobscot R at Chesuncook Lk	314.76	22	1	1

	HUC		HUC Name	Total HUC Area (Sq. Miles)	Lake Area within the HUC listed in Category 2 (Acres)	# of Lakes within the HUC listed in Category 2	
ME	0102000109	*	West Branch Penobscot River (3)	245.71	8	2	1
ME	0102000110	*	West Branch Penobscot River (4)	211.31	554	5	1
ME	0102000201	*	Webster Brook	289.69	58	1	1
ME	0102000204	*	Seboeis River	268.31	1242	10	1
ME	0102000205	*	East Branch Penobscot River (3)	269.47	7	1	1
ME	0102000301	*	West Branch Mattawamkeag River	368.52	5218	43	1
ME	0102000302	*	East Branch Mattawamkeag River	165.95	2732	16	1
ME	0102000303	*	Mattawamkeag River (1)	102.28	70	1	
ME	0102000304	*	Baskahegan Stream	233.6	10280	6	1
ME	0102000305	*	Mattawamkeag River (2)	276.47	443	12	1
ME	0102000306	*	Molunkus Stream	233.59	<mark>1</mark> 591	13	1
ME	0102000307	*	Mattawamkeag River (3)	127.82	804	14	
ME	0102000401	*	Piscataquis River (1)	264.05	3406	46	1
ME	0102000402	*	Piscataquis River (3)	178.58	1253	19	
ME	0102000403	*	Sebec River	351.1	14497	64	1
ME	0102000404	*	Pleasant River	339.32	14	4	1
ME	0102000405	*	Seboeis Stream	161.16	4445	14	1
ME	0102000406	*	Piscataquis River (4)	164.69	7515	32	
ME	0102000501	*	Penobscot River (1) at Mattawamkeag	161.07	928	8	1
ME	0102000502	*	Penobscot River (2) at West Enfield	298.2	5581	17	1
ME	0102000503	*	Passadumkeag River	398.81	8073	20	1
ME	0102000504	*	Olamon Stream	53.88	318	3	1
ME	0102000505	*	Sunkhaze Stream	94.65	4	1	1
ME	0102000506	*	Penobscot River (3) at Orson Island	112.65	6	4	
ME	0102000507	*	Birch Stream	54.55	103	3	
ME	0102000508	*	Pushaw Stream	238.53	6058	16	1
ME	0102000509	*	Penobscot River (4) at Veazie Dam	140.5	2253	25	
ME	0102000510	*	Kenduskeag Stream	191.28	174	5	

	HUC		HUC Name	Total HUC Area (Sq. Miles)	Lake Area within the HUC listed in Category 2 (Acres)	# of Lakes within the HUC listed in Category 2	
ME	0102000511	*	Souadabscook Stream	177.79	645	12	5a
ME	0102000512	*	Marsh River	168.72	438	20	
ME	0102000513	*	Penobscot River (6)	290.37	6098	25	
ME	0103000102	*	Moose River (2) above Attean Pond	180.94	19	1	1
ME	0103000103	*	Moose River (3) at Long Pond	307.3	9581	24	1
ME	0103000105	*	Moosehead Lake	549	79454	12	1
ME	0103000106	*	Kennebec River (2) above The Forks	323.12	3051	17	1
ME	0103000201	*	North Branch Dead River	200.89	48	5	1
ME	0103000202	*	South Branch Dead River	147.96	657	10	1
ME	0103000203	*	Flagstaff Lake	173.02	83	6	1,4c
ME	0103000204	*	Dead River	357.53	385	23	1
ME	0103000301	*	Kennebec River (4) at Wyman Dam	158.85	4700	21	1
ME	0103000302	*	Austin Stream	89.87	882	11	1
ME	0103000303	*	Kennebec River (6)	110.29	337	16	1
ME	0103000304	*	Carrabassett River	396.83	3615	42	1
ME	0103000305	*	Sandy River	592.92	3741	88	1,4c
ME	0103000306	*	Kennebec River at Waterville Dam	410.5	3280	43	
ME	0103000307	*	Sebasticook River at Pittsfield	316.21	7012	28	G.
ME	0103000308	*	Sebasticook River (3) at Burnham	266.25	2936	14	4a
ME	0103000309	*	Sebasticook River (4) at Winslow	365.58	1898	47	4a
ME	0103000310	*	Messalonskee Stream	207.64	4073	48	3,4a,5a
ME	0103000311	*	Cobbosseecontee Stream	216.27	10579	47	3,4a
ME	0103000312	*	Kennebec River at Merrymeeting Bay	314.46	1569	33	1,3,4a
ME	0104000101	*	Mooselookmeguntic Lake	473.72	32243	45	1
ME	0104000102	*	Umbagog Lake Drainage	122.05	8353	4	1
ME	0104000104	*	Magalloway River	195.1	650	9	
ME	0104000106	*	Middle Androscoggin River	268.68	24	1	
ME	0104000201	*	Gorham-Shelburne Tributaries	154.72	7	1	

	HUC		HUC Name	Total HUC Area (Sq. Miles)	Lake Area within the HUC listed in Category 2 (Acres)	# of Lakes within the HUC listed in Category 2	
ME	0104000202	*	Androscoggin River (2) at Rumford Point	308.23	713 5		1
ME	0104000203	*	Ellis River	164.26	1258	6	1
ME	0104000204	*	Ellis River	202.35	108	11	1
ME	0104000205	*	Androscoggin River (3) above Webb River	245.05	3461	11	1
ME	0104000206	*	Androscoggin River (4) at Riley Dam	203.85	5906	52	3
ME	0104000207	*	Androscoggin River (5) at Nezinscot River	178.75	1743	29	
ME	0104000208	*	Nezinscot River	83.22	3591	16	
ME	0104000209	*	Androscoggin R (6) above Little Androscoggin	353.1	10255	58	1
ME	0104000210	*	Little Androscoggin River	262.87	614	28	4a
ME	0105000101	*	Spednick Lake	411.52	35904	10	1
ME	0105000103	*	West Grand Lake	224.54	31174	22	1
ME	0105000104	*	Big Musquash Stream	114.17	3218	10	1
ME	0105000105	*	Big Lake at Peter Dana Point	121.07	10334	4	1
ME	0105000106	*	Tomah Stream	153.03	239	7	1
ME	0105000107	*	St. Croix River (3) at Grand Falls	70.2	7627	4	
ME	0105000108	*	St. Croix River (6) at Robbinston	323.71	2792	20	
ME	0105000201	*	Dennys River	130.64	10294	5	1
ME	0105000202	*	Pennamaquan River	54.4	2025	10	
ME	0105000203	*	Grand Manan Channel	246.09	3332	12	1
ME	0105000204	*	East Machias River	311.96	15289	26	1
ME	0105000205	*	Machias River	498.35	1948	14	1
ME	0105000206	*	Roque Bluffs Coastal	83.23	167	4	
ME	0105000208	*	Pleasant River	130.39	1201	15	1
ME	0105000209	*	Narraguagus River	245.16	2382	17	1
ME	0105000210	*	Tunk Stream	48.41	2466	6	1
ME	0105000211	*	Bois Bubert Coastal	75.62	53	6	
ME	0105000212	*	Graham Lake	495.07	18173	92	1,3,4c
ME	0105000213	*	Union River Bay	126.78	4117	12	Constant of the Province of th

	нис		HUC Name	Total HUC Area (Sq. Miles)	Lake Area within the HUC listed in Category 2 (Acres)	# of Lakes within the HUC listed in Category 2	Other listing categories having lakes within this HUC
ME	0105000214	*	Lamoine Coastal	256.14	3300	51	1
ME	0105000215	*	Mt. Desert Coastal	108.01	2626	44	S
ME	0105000216	*	Bagaduce River	81.92	1250	12	
ME	0105000217	*	Stonington Coastal	140	1030	55	
ME	0105000218	*	Belfast Bay	91.6	2254	25	
ME	0105000219	*	Ducktrap River	33.17	993	16	
ME	0105000220	*	West Penobscot Bay Coastal	162.7	1989	31	4a
ME	0105000301	*	St. George River	278.44	8010	100	
ME	0105000302	*	Medomak River	152.87	1554	38	
ME	0105000303	*	Johns Bay	46.94	2473	14	3
ME	0105000304	*	Damariscotta River	115.51	4604	21	
ME	0105000305	*	Sheepscot River	250.89	4366	55	
ME	0105000306	*	Sheepscot Bay	113.16	514	36	5
ME	0105000307	*	Kennebec River Estuary	89.51	723	16	4a
ME	0106000101	*	Sebago Lake	441.76	45624	75	1,3
ME	0106000102	*	Royal River	140.93	769	12	
ME	0106000103	*	Presumpscot River	205.44	2627	29	1,4a
ME	0106000104	*	Scarborough River	53.72	10	3	
ME	0106000105	*	Fore River	54.46	45	11	1
ME	0106000106	*	Casco Bay Coastal Drainages	170.01	368	32	
ME	0106000204	*	Saco River-Lovewell Pond	566.22	7340	58	
ME	0106000205	*	Saco River at Ossipee River	114.23	4180	49	
ME	0106000209	*	Ossipee River	122.89	2052	31	
ME	0106000210	*	Little Ossipee River	185.21	4287	73	Ş
ME	0106000211	*	Saco River at mouth	220.24	1513	41	
ME	0106000301	*	Kennebunk River	59.18	319	9	
ME	0106000302	*	Mousam River	116.97	3232	39	
ME	0106000303	*	South York County Coastal Drainages	155.09	594	37	

	HUC		HUC Name	Total HUC Area (Sq. Miles)	Lake Area within the HUC listed in Category 2 (Acres)	# of Lakes within the HUC listed in Category 2	Other listing categories having lakes within this HUC	
ME	0106000304	*	Great Works River	86.67	519	22		
ME	0106000305	*	Salmon Falls River	242.91	3766	20	1	
ME	0106000310	*	Coastal Drainages-Portsmouth Harb.to Salisbury	65.19	39	8		
	С. 		Totals within Category 2:	10	596,452**	2,875**		

* Lakes within this HUC can be found under other listing categories (see right column)

**Totals do not include 6 lakes (22 Acres) occurring on islands and not currently assigned to a HUC

Category 3: Lake Waters with Insufficient Data or Information to Determine if Designated Uses are Attained

	HUC		Lake Name	Lake ID	Lake Area (Acres)	Date of Visit; Y Likely Vis	ear of Next	Comments	Other listing categories having lakes within this HUC	2006 Listing Category
ME	0101000413	*	FISCHER L	1808	10	2004	2009	08: S; blooms observed; add'l data needed; FR=55	1,2,4a	3
ME	0103000310	*	GREAT P	5274	8239	2007	2008	08: S/D-trophic&DO Gloeotrichia blooms	2,3,4a,5a	3
ME	0103000310	*	MESSALONSKEE L	5280	3510	2007	2008	08: S/D-trophic&DO Gloeotrichia blooms	2,3,4a,5a	3
ME	0103000310	*	SALMON L (ELLIS P)	5352	666	2007	2008	08: apparent trophic deterioration	2,3,4a,5a	3
ME	0103000311	*	COCHNEWAGON P	3814	410	2007		08: apparent trophic deterioration; alum treatment ~15 y.a.	2,4a	3
ME	0103000312	*	THREECORNERED P	<mark>5424</mark>	182	2007	2008	08: TMDL 2003;Improving; no recent blooms; additional time/data needed to verify	2,4a	3
ME	0104000206	*	ANDROSCOGGIN L	3836	3980	2007	2008	08: apparent trophic deterioration	2	3
ME	0105000212	*	ABRAMS P	4444	423	2007	The second second second second	08: apparent trophic deterioration	2,4c	3
ME	0105000303	*	DUCKPUDDLE P	5702	293	2007	2008	08: I; TMDL Sept 2005 (note bloomed in 2005)	2	3
ME	0106000101	*	PAPOOSE P	3414	64	2007	2008	08: S/I - Trophic concerns persist; appears stable-possibly improving-data inconclusive	2	3
	Total acreage fo	r 1	10 lakes within Categoy	/ 3:	17,777					

* Lakes within this HUC can be found under other listing categories (see column second in from right)

	HUC		Lake Name	Lake ID	Lake Area (Acres)	Year of	ast Visit; f Likely Visit	TMDL Year approved by EPA (Impaired use & notes)	Other listing categories having lakes within this HUC	20064 Listing Cat.
ME	0101000303	*	CROSS L	1674	2515	2007	2008	2006 (Prim.Contact, stable, blooms persist)	1,2,4a	4a
ME	0101000303	*	DAIGLE P	1665	36	2007	2008	2006 (Prim.Contact, stable, blooms persist)	1,2,4a	4a
ME	0101000412	*	ARNOLD BROOK L	409	395	2007	2008	2007 (Prim.Contact, stable, blooms persist)	1,2,4a	5a
ME	0101000412	*	ECHO L	1776	90	2007	2008	2007 (Prim.Contact, stable, blooms persist)	1,2,4a	5a
ME	0101000413	*	MONSON P	1820	160	2007	2008	2006 (Prim.Contact, stable, blooms persist)	1,2,3,4a	5a
ME	0101000413	*	TRAFTON L	9779	85	2007	2008	2006 (Prim.Contact, stable, blooms persist)	1,2,3,4a	5a
ME	0103000305	*	TOOTHAKER P	2336	30	2007	2008	2004 (Prim.Contact, stable, blooms persist)	1,2	4a
ME	0103000308	*	SEBASTICOOK L	2264	4288	2007	2008	2001 (Prim.Contact, slow improve., blooms persist)	2	4a
ME	0103000309	*	CHINA L	5448	3845	2007	2008	2001 (Prim.Contact, stable, blooms persist)	2,4a	4a
ME	0103000309	*	LOVEJOY P	5176	324	2007	2008	2004 (Prim.Contact, stable, blooms persist)	2,4a	4a
ME	0103000309	*	UNITY P	5172	2528	2007	2008	2004 (Prim.Contact, stable, blooms persist)	2,4a	4a
ME	0103000310	*	EAST P	5349	1823	2007	2008	2001 (Prim.Contact, blooms persist; deteri trophic trd)	2,3,5a	4a
ME	0103000311	*	ANNABESSACOOK L	9961	1420	2007	2008	2004 (Prim.Contact; blooms persist; poss. Improve.)	2,3,4a	4a
ME	0103000311	*	COBBOSSEECONTEE (LT)	8065	75	2007	2008	2005 (Prim.Contact, stable, occas.bloom)	2,3,4a	4a
ME	0103000311	*	PLEASANT (MUD) P	5254	746	2007	2008	2004 (Prim.Contact, stable, blooms persist)	2,3,4a	4a
ME	0103000311	*	WILSON P	3832	582	2007	2008	2007 (Trophic trend)	2,3,4a	5a
ME	0103000312	*	THREEMILE P	5416	1162	2007	2008	2003 (Prim.Contact, stable, blooms persist)	1,2,3,4a	4a
ME	0103000312	*	TOGUS P	9931	660	2007	2008	2005 (Prim.Contact, stable, occas.bloom)	1,2,3,4a	4a
ME	0103000312	*	WEBBER P	5408	1201	2007	2008	2003 (Prim.Contact, stable, blooms persist)	1,2,3,4a	4a
ME	0104000210	*	SABATTUS P	3796	1962	2007	2008	2004 (Prim.Contact, stable perhaps improving	2	4a
ME	0105000220	*	LILLY P	83	29	2007	2008	2005 (Prim.Contact, stable)	2	4a
ME	0105000307	*	SEWALL P	9943	46	2007	2008	2006 (Prim.Contact, stable)	2	4a
ME	0106000103	*	HIGHLAND (DUCK) L	3734	634	2007	2008	2003 (Aquatic life, trophic concerns; possib. deterior.)	1,2	4a
	-		or 23 lakes with Category 4A:		24,636					

Category 4-A: Lake Waters with Impaired Use, TMDL Completed

* Lakes within this HUC can be found under other listing categories (see column second in from right)

Waters Impaired by Atmospheric Deposition of Mercury:

All freshwaters formerly listed in Category 5-C are moved to Category 4A (TMDL Completed) due to US EPA approval of a Regional Mercury TMDL.

5-C waters moved to 4A: Impairment caused by atmospheric deposition of mercury; a regional scale TMDL has been approved. Maine has a fish consumption advisory for fish taken from all freshwaters due to mercury. Many waters, and many fish from any given water, do not exceed the action level for mercury. However, because it is impossible for someone consuming a fish to know whether the mercury level exceeds the action level, the Maine Department of Human Services decided to establish a statewide advisory for all freshwater fish that recommends limits on consumption. Maine has already instituted statewide programs for removal and reduction of mercury sources.

	нис		Lake Name	Lake ID		Date of Last Visit; Year of Likely Next Visit		Comment (Impaired use)	Other listing categories having lakes within this HUC	2006 Listing Category
ME	0101000408	*	SQUAPAN L	1654	5120	2001	2007	Non-att.d/t non-poll. (Aquatic Life: draw down)	2	4c
ME	0103000104	*	BRASSUA L	4120	8979	1996	2007	Non-att.d/t non-poll. (Aquatic Life: draw down)	1	4c
ME	0103000203	*	FLAGSTAFF L	38	20300			Non-att.d/t non-poll. (Aquatic Life: draw down)	1,2	4c
ME	0104000103	*	AZISCOHOS L	3290	6700	2004	2009	Non-att.d/t non-poll. (Aquatic Life: draw down)	1	4c
ME	0105000212	*	GRAHAM L	4350	7865	2004	2009	Non-att.d/t non-poll. (Aquatic Life: draw down)	1,2,3	4c
		-	for 5 lakes within Category 4		48,964				1. E.	

Category 4-C: Lake Waters with Impairment not Caused by a Pollutant

* Lakes within this HUC can be found under other listing categories (see column second in from right)

	нис		Lake Name	Lake ID	Conversion of the second	Date of Last Visit; Year of Likely Next Visit	Impaired Use	TMDL (Target Dates)	Priority	Other listing categories having lakes within this HUC	2006 Listing Category
ME	0101000501	*	CHRISTINA RESERVOIR	9525	400	2007 2008	Prim. Cont.	2009	3	1,2	5a
ME	0102000511	*	HAMMOND P	2294	83	2007 2008	Prim. Cont.	2008	1	2,5a	5a
ME	0102000511	*	HERMON P	2286	461	2007 2008	Prim. Cont.	2008	1	2,5a	5a
ME	0103000310	*	LONG P	5272	2714	2007 2008	Trophic trend	2008	2	2,3,4a	5a
	Total acr	eag	e for 4 lakes in Category 5a	a:	3,658						

Category 5-A: Lake Waters Needing TMDLs

* Lakes within this HUC can be found under other listing categories (see column second in from right)

Category Listing Change Summary: 2006 to 2008 (6 Lakes)*

нис	Lake Name	Lake ID	2006 ListCat	2008 ListCat	Notes
0106000302	ESTES L	0007	3	2	Data indicates sustained improvement in water quality
0101000412	ARNOLD BROOK L	409	5a	4a	TMDL Completed 02/05/07
0101000412	ECHO L	1776	5a	4a	TMDL Completed 02/05/07
0101000413	MONSON P	1820	5a	4a	TMDL Completed 11/28/06
0101000413	TRAFTON L	9779	5a	4a	TMDL Completed 10/26/06
0103000311	WILSON P	3832	5a	4a	TMDL Completed 08/30/07

* Lakes currently listed in Categories 1 or 2 do not appear individually in their respective Appendix III tables but rather are included in the overall lake summary for the HUC.

*All lakes previously listed in Category 5-C are now moved to Category 4-A due to US EPA approval of a Regional Mercury TMDL

APPENDIX IV: ESTUARINE AND MARINE WATERS

Category 1: Estuarine and Marine Waters Fully Attaining All Designated Uses

No waters are listed in Category 1 in 2006

Waterbody ID	DMR Area	Segment Description	Segment Acres	Segment Class	Last Year Sampled		Segment Size (Square Miles)	Comments
812	*	Piscataqua R. Estuary		SC/SB			0.00	
826		, Fort Foster, Kittery to Bald Head York		SB/SA			0.00	
824		, Bald Head, York to Kennebunk R. Estuary (east bank), Kennebunkport		SB			0.00	
824-1	4B	Ogunquit & Moody Beaches	1,108.30	SB	Current	2 STP outfalls	1.7317188	
821		Kennebunk R. Estuary (east bank), Kennebunkport to Biddeford Pool, Biddeford		SB			0.00	
821-3	<mark>8-</mark> B	Timber Point to Fortunes Rocks, Biddeford	279.2	SB	Current	OBDs (Over Board Discharges)	0.4362500	
811		Biddeford Pool, Biddeford to Dyer Point (Two Lights), Cape Elizabeth		SB			0.00	
811-3	12	Prouts Neck, Scarborough	1004.8	SB	Current	STP outfall	1.5700000	
804		Dyer Point (Two Lights), Cape Elizabeth to Parker Point (west bank of Royal R.), Yarmouth		SB/SA			0.00	
802	,	Parker Point (west Bank of Royal R.), Yarmouth to south end of Butler Cove (Merrymeeting Bay), Bath		SB/SA			0.00	
802-1	14-D	Great Chebeague Island, Cumberland	22.1	SB	Current	OBD	0.0345313	
802-3	16-C	Cousins & Littlejohn Islands, Yarmouth	59.5	SB	Current	STP outfall; OBDs	0.0929688	
802-4	17	Harraseeket River, Freeport	530.8	SB	Current	STP outfall	0.8293750	
802-10	18-C	Mere Point Neck-Birch Island, Brunswick	1 <mark>5.3</mark>	SB	Current	Improper septic systems	0.0239063	
802-12	18-E	Cundy's Harbor and Dingley Island, Harpswell	235.2	SB	Current	OBDs	0.3675000	

Waterbody ID	DMR Area	Segment Description	Segment Acres	Segment Class	Last Year Sampled	Reason for DMR Closure	Segment Size (Square Miles)	Comments
802-14	18-H	Harpswell Sound, Harpswell	55	SB	Current	OBDs	0.0859375	
802-15	<mark>18-</mark>	Harpswell Fuel Depot, Harpswell	contamination; Testing clams and sediments in the SWAT program		0.1598438			
802-16	18-M	Lookout Point & Wilson Cove, Harpswell	9.9	SB	Current	Horse manure runoff, but elevated fecal counts not reported	0.0154688	
802-17	18-R	East Harpswell and Long Island, Harpswell	15.4	SB	Current	Improper septic systems	0.0240625	
							0.00	
802-21	18AA	Little Yarmouth Island	8.4	SB	Current	Improper septic systems	0.0131250	
	18-P	Bombazine Is. And Foster Pt.	29.8	SB	Current	OBDs	0.0465625	
802-22	19	Wood Island - Malaga Island, Phippsburg	350.3	SB	Current/ incomplete survey	Improper septic systems	0.5473438	Moved from Category 5 (incorrect placement in 2004?)
802-23	19-A	Birch Point, West Bath - Bear Island, Phippsburg	107	SB	Current	OBDs; Improper septic systems	0.1671875	
802-22	19B	N. Cape Small Hbr.	7	SB	Current	Septic system problems	0.0109375	
802-24	19-C	Dam Cove - Birch Point, West Bath	291.6	SB	Current	OBDs	0.4556250	
710	*	South end of Butler Cove (Meerymeeting Bay), Bath to east point of Sagadahoc Bay, Georgetown		SB			0.00	
730	*	East point of Sagadahoc Bay, Georgetown to Ocean Point, Boothbay		SB/SA			0.00	
730-2	20-E	N.Robinhood Cove, So. Robinhood Cove, & Knubble Bay, Georgetown/Westport	674	SB	Current	OBDs, marina	1.0531250	Moved from Category 3

Waterbody ID	DMR Area	Segment Description	Segment Acres	Segment Class	Last Year Sampled	Reason for DMR Closure	Segment Size (Square Miles)	Comments
730-3	21	Indian Point, Georgetown, to Fowle Pt., Westport	2425.3	SB	Current	OBDs, incomplete survey	3.7895313	
730-4	22	Sheepscot River	1431.7	SB	Current	OBDs	2.2370313	
730-5	22-B	Hodgdon Island, Boothbay	249.2	SB	Current	nt LOBD 0.3893750		Knickercane Cove - Merrow Island, Boothbay
730-5	22-C	Cameron Point. Southport	206.98	SB	Current	OBD, gray water discharges	0.3234063	Back River, Boothbay
730-7	22-F	Ovens Mouth - Sherman Creek, Boothbay – Edgecomb	162.3	SB	Current	OBD	0.2535938	Moved from Category 5, elevated fecals in 2004
730-8	22-G	Upper Sheepscot River	299.2	SB	Current	Restricted: possible NPS	0.4675000	No prohibited areas - 7/2/1997
730-9	23	Boothbay Harbor - Damariscove Island	7337.9	SB/SA	Mainland is current	OBDs; Boats	11.4654688	
730-11	23-B	Southwestern Southport Island	392.5	SB	Current	OBDs	0.6132813	
729-1	24	Damariscotta River - Boothbay	69 <mark>2.6</mark>	SB	Current	OBDs; Boats	1.0821875	
729	*	Ocean Point, Boothbay to Pemaquid Point, Bristol		SB			0.00	
729-3	25-A	South Bristol	550.4	SB	Current	OBDs; Boats	0.8600000	
729-4	25-B	Pemaquid River, Bristol	324.6	SB	Current	OBDs; Boats	0.5071875	
726-1	25-C	New Harbor, Bristol	161.8	SB	Current	OBDs; Boats	0.2528125	
729-5	25-E	Inner Heron Island	11	SB	no station	No station; Septic system problems	0.0171875	
729-6	25-F	Pemaquid Neck, Bristol	580.1	SB	Current	OBDs	0.9064063	
726-2	25-D	Long Cove Point to Muscongus Harbor, Bristol	556. 1	SB	Current	OBDs	0.8689063	
726-4	25-G	Soldiers Cove, Bristol	18.7	SB	Current	OBDs, improper septics	0.0292188	
726-5	25-H	Keene Narrows, Medomak - Bremen	70.4	SB	Current	Marina; Septic system problems	0.1100000	
726-6	25-I	Muscongus Harbor, Bristol-Bremen	11.7	SB	Current	OBD; Boats, Septic system problems	0.0182813	
726-7	25-J	Eastern Farmers Island, South Bristol	13.4	SB	Current	OBD	0.0209375	

Waterbody ID	DMR Area	Segment Description	Segment Acres	Segment Class	Last Year Sampled	Passon for LIMP Clocura	Segment Size (Square Miles)	Comments
726-8	25-N	High Island to McFarlands Cove, South Bristol	172.7	SB	Current	Improper septic systems	0.2698438	OBD in 2004
726	*	Pemaquid Point, Bristol to middle north side of Back River Cove, Waldoboro		SB			0.00	
724	*	Middle north side of Back River Cove, Waldoboro to Marshall Point, St. George		SB			0.00	
724-3	26-B	Friendship Harbor	508.5	SB	Current	OBDs	0.7945313	
724-5	26-H	Broad Cove, Cushing	25.5	SB	Current	Restricted: wildlife	0.0398438	
724-6	26-K	Upper Meduncook Rive - Crotch Island, Cushing	27	SB	Current	Septic system problems - Crotch Island	0.0421875	
724-7	26-M	Pleasant Point Gut - Davis Cove, Cushing	24.9	SB	Current	Septic system problems	0.0389063	
724-9	26-0	Friendship Long Island & Vicinity, Friendship	167.6	SB	Current but more samples needed	Septic system problems	0.2618750	Moved from Category 3
72 <mark>4</mark> -10	27	St. George River	1,046.40	SB	Current	STP; seasonal closure	1.6350000	Moved from Category 5, elevated fecals in 2004
	27-C	Upper Bay, St. George	469.28	SB	Current	Conditional on STP	0.7332500	
724-12	28-A	Port Clyde and the St. George Islands, St. George and Cushing	390.4	SB	Current	OBDs; Septic system problems	0.6100000	
722	*	Marshall Point, St. George to Naskeag Point, Brooklin		SB/SA			0.00	
722-3	28-B	Spruce Head Island - Thorndike Point	403.7	SB	Current	Incomplete DMR sanitary survey; OBDs; Boats	0.6307813	
722-4	28-C	Rackliff Island, St. George	65.3	SB	2 stations dropped in 2002	OBDs	0.1020313	

Waterbody ID	DMR Area	Segment Description	Segment Acres	Segment Class	Last Year Sampled		Segment Size (Square Miles)	Comments
722-5	28-E	Ash Point-Birch Point, Owl's Head	60.2	SB	Current	Incomplete DMR sanitary survey; OBDs	0.0940625	
722-9	29-A	Owl's Head	726.8	SB	Current	OBDs 1.1356250		
722-12	30-A	Southwestern Vinalhaven	2242.9	SB		Incomplete DMR sanitary survey; OBDs; Septic system problems 3.5045313		
	30-B	The Basin, Vinalhaven	34.7	SB	Current	Questionable plumbing	0.0542188	New
722-15	30-1	North Haven Island	3,984.80	SB	Current	OBDs; Boats	6.2262500	
722-18	30-L	Bartlett and Crabtree	51.5	SB	Current	Septic system problems	0.0804688	Ames Creek, North Haven
722-20	30-N	Indian Point - Burnt Island, North Haven	40.9	SB	Current	OBDs; Septic system problems	0.0639063	
7 <mark>22-26</mark>	36	Penobscot & Bagaduce Rivers, in Castine-Penobscot	1,632.00	SB/SA	Current	2 5500000		lower acresdivided into 36, 36A, B & C
722-26	36-C	Harborside, Brooksville	207.00	SB	Current	OBDs	0.3234375	new, also lists heavy metals
722-27	36-F	Islesboro	1771.3	SB	Current	OBD; Boats; Septic system problems	2.7676563	
722-28	37	Condon Point, Brooksville, to "Herricks" Village Brooksville	547	SB	Current	OBDs	0.8546875	
722-29	37-A	Deer Isle	61	SB	Current	OBDs	0.0953125	
722-30	37-B	Blastow Cove, Deer Isle	7	SB	Current	OBDs	0.0109375	
722-31	37-C	Heart Island, Deer Isle	9	SB	Current	OBDs	0.0140625	
722-32	37-E	Eggemoggin, Little Deer Isle	43	SB	Current	OBDs	0.0671875	
722-35	38-A	Inner Harbor, Stonington-Deer Isle	0.5	SB	Current	OBDs (and STP)	0.0007813	
7 <mark>22-</mark> 36	38-B	Burnt Cove, Stonington	75	SB	Current	OBD formerly high fecal counts on		
722-37	38-C	Fifield Point to Moose Island	51	SB	Current	OBDs	0.0796875	
707	*	Naskeag Point, Brooklin to Bass Harbor Head, Tremont		SB/SA			0.00	
707-1	39	Blue Hill Harbor	308	SB	Current	OBDs	0.4812500	

Waterbody ID	DMR Area	Segment Description	Segment Acres	Segment Class	Last Year Sampled	Reason for DMR Closure	Segment Size (Square Miles)	Comments
707-2	39-C	McHerd Cove - Webber Cove, East Blue Hill	42	SB	Current	OBDs	0.0656250	
707-3	39-D	High Head-Sand Point, South Blue Hill	38	SB	Current	OBDs	0.0593750	
707-1A	39-J	Hub Island and Peters Cove, Blue Hill Harbor, Blue Hill	62	SB	Current	STP	0.0968750	New
707-5	40	Union River Bay, Surry & Trenton	6,778.00	SB	Current	STP	10.5906250	
707-5A	40-A	Union River, Patten Bay & Heath Brook, Ellsworth, Surry & Trenton	1,828.00	SB	Current	OBDs, WWTP	2.8562500	was DMR area 40
707-6	42	Bass Harbor & Eastern Duck Cove, Tremont	702	SB	Current	OBDs (placed in incorrect category 2004)	1.0968750	
707-7	42-A	Lunt Harbor, Frenchboro	10	SB	Current	OBDs	0.0156250	
707-8	42-B	Burnt Coat Harbor, Swans Island	64	SB	Current	OBDs	0.1000000	
707-9	42-D	Red Point, Swans Island	178	SB	Current	OBDs	0.2781250	
714	*	Bass Harbor Head, Tremont to Schoodic Point, Winter Harbor		SB/SA			0.00	
714-1	43	Southwest Harbor	569	SB	Current	OBDs	0.8890625	
714-2	44	Northeast Harbor and Bracy Cove	<mark>1,259.00</mark>	SB/SA	Current	OBDs and STP	1.9671875	was Southern Mt. Desert Island & the Cranberry Isles was 8711 acres now in DMR areas 45, 45A, 45B
714-3	44A	Broad Cove and Somes Harbor, Mount Desert	125	SB/SA	Current	OBDs; Seasonal marina	0.1953125	
	45	Sutton Island	120	SB	Current	OBDs	0.1875000	was part of DMR area 44
	45A	Great Cranberry Island	81	SB	Current	OBDs	0.1265625	was part of DMR area 44
-	45B	Little Cranberry Island	196	SB	Current	OBDs	0.3062500	was part of DMR area 44
714-4	46	Seal Harbor	288	SB	Current	OBDs and STP	0.4500000	
714-6	47	Bar Harbor	1,941.00	SB	Current	OBDs	3.0328125	

Waterbody ID	DMR Area	Segment Description	Segment Acres	Segment Class	Last Year Sampled		Segment Size (Square Miles)	Comments
714-6	47	Bar Harbor depuration area (Bar Island bar)	46	SB	Current	CSOs; Seasonal marina	0.0718750	
714-8	49	Salisbury Cove, Bar Harbor	208	SB	Current	OBDs	0.3250000	
714-12	50	Sorrento	49	SB	Current	OBDs; Seasonal marina	0.0765625	
714-17	51	Winter Harbor	139	SB	Current	OBDs	0.2171875	
<mark>714-1</mark> 8	51-A	Arey Cove, Winter Harbor	84	SB	Current	OBDs	0.1312500	
<mark>714</mark> -19	51-B	Grindstone Neck, Winter Harbor	292	SB	Current	OBDs	0.4562500	
714-20	*	Northwest End Flanders Bay, Sullivan-Sorrento		SB		DMR Area 50-D; 9/19/2001 Repealed -open; Was on TMDL list in 1998	0.00	
706	*	Schoodic Point, Winter Harbor to Petit Manan Point, Steuben		SB			0.00	
706-1	52	Prospect Harbor and Shark Cove, Gouldsboro	288	SB	Current	OBDs 0.450000		was Corea Hbr, was 443 acres
706-2	52-A	Corea Harbor and Sand Cove, Gouldsboro	110	SB	Current	OBDs	0.1718750	Sand Cove added, was 42 acres
706-4	52-C	Bunkers Harbor, Gouldsboro	207	SB	Current	OBDs	0.3234375	
706-5	52-D	Southwestern Petit Manan Point, Steuben	106	SB	Current	OBDs	0.1656250	
706-9		Wonsqueak Harbor, Gouldsboro	10	SB	Current	OBDs	0.0156250	
705	*	Petit Manan Point, Steuben to Ray Point, Milbridge		SB/SA			0.00	
704	*	Ray Point, Milbridge to south end of Cape Split, Addison		SB			0.00	
<mark>704-</mark> 1	53-A	Pleasant River and Dyer Cove, Addison	<mark>48</mark> 9	SB	Current	OBDs	0.7640625	
704-4	53-H	Cape Split, Addison	84	SB	Current	OBDs	0.1312500	
703	*	South end of Cape Split, Addison to Kelley Point, Jonesport		SB/SA			0.00	

Waterbody ID	DMR Area	Segment Description	Segment Acres	Segment Class	Last Year Sampled		Segment Size (Square Miles)	Comments
703-1	53-H	Cape Split, Addison	acres in waterbody 704-4	SB	Current	OBDs		
713	*	Kelley Point, Jonesport to Point of Maine, Machiasport		SB			0.00	
709	*	Point of Maine, Machiasport to Thorton Point, Cutler		SB			0.00	
709-1	55-E	Machias - East. Machias Rivers	729	SB	Current	OBDs (and STP)	1.1390625	was DMR area 55
709-2A	55	Randall Flats and Sanborn Cove, Machiasport	710	SB	Current	STP (Conditional restricted)	1.1093750	
709-2	55-B	Howard Cove - Starboard Cove, Bucks Harbor	118	SB	Current	OBDs	0.1843750	
709-3	55-C	Northeastern Holmes Bay, Whiting - Cutler	144	SB	Current	OBDs	0.2250000	
709-4	55-H	Bucks Harbor, Machiasport	47	SB	Current	OBDs	0.0734375	
708	*	Thorton Point, Cutler to Todd Head, Eastport		SB/SA/SC			0.00	
708-2	55-D	Great Head, Cutler & Bog Brook Cove, Trescott	167	SB	Current	OBDs	0.2609375	
708-5	57	Eastport	<mark>653</mark>	SC	Current	OBDs (STP or 2 – boundary dependent)	1.0203125	
701	*	Cobscook Bay		SB/SA			0.00	
701-5	57	Eastport	acres in waterbody 701-5	SC	Current	OBDs (STP or 2 – boundary dependent)		
701-6	57-A	Pleasant Point, Perry and Kendall Head, Eastport	872	SB	Current	OBDs (STP or 2 – boundary dependent)	1.3625000	
701-9	58-C	North Lubec	70	SB	Current	OBDs	0.1093750	
702		, Todd Head, Eastport to Whitlocks Mill, Calais		SB/SC			0.00	

Waterbody ID	DMR Area	Segment Description	Segment Acres	Segment Class	Last Year Sampled	Reason for LIMIR LIOSUIR	Segment Size (Square Miles)	Comments
702-1	57	Eastport	653	SC	Current	OBDs (STP or 2 – boundary dependent)	1.0203125	

*segments of this waterbody can be found in other listing categories

Category 3: Estuarine and Marine Waters with Insufficient Data or Information to Determine if Designated Uses are Attained

Waterbody ID	DMR Area	Segment Description	Segment Acres	Segment Class	Last Year Sampled	Projected Sample Date	Segment Size (Square Miles)	Comments
824-2	4-A	Perkins Cove	13.2	SB	No station		0.0206250	Many boats – no data
802-26		Quahog Bay, inside of the south end of Pole Island	589.61	SB	2005	2006		Possible Dissolved Oxygen Non- attainment; 309.4 acres in 5-B-1
722-10	29-B	Matinicus Island - Ragged Island	2,203.20	SB	no survey or samples	Far off the Maine coast - logistical problems	3.4425000	Never
702-3	60	Little River, Perry	29	SB	7/25/1988		0.0453125	No information

Total = 2,835.0

Total = 4.4297031

Category 4-A: Estuarine and Marine Waters with Impaired Use, TMDL Completed

Waterbody ID	Segment Description	Segment Size Acres	Segment Class	Last Year Sampled	Impaired Use	Cause	Source	TMDL Approved	Segment Size (Square Miles)	Comments
812	Piscataqua R. Estuary, Eliot, So. Berwick	Acres included in Category 5-B-1	SB	1994	Marine Life Use Support	Dissolved Oxygen	Municipal point sources	1999	0.00	

(A TMDL is complete, but there is insufficient new data to determine if attainment has been achieved)

Category 4-B-1: Estuarine and Marine Waters Impaired by Pollutants - Pollution Control Requirements Reasonably Expected to Result in Attainment

Waterbody ID	Segment Description	Segment Size Acres	Segment Class	Last Year Sampled	Impaired Use	Cause	Source	Segment Size (Square Miles)	Comments
824-5	Ogunquit R.	Acres included in Category 5-B-1	SB	1995	Marine Life Use Support	Dissolved Oxygen	Municipal point source	0.00	Outfall moved out of estuary
811-8	Goosefare Brook	Acres included in Category 5-B-1	SC	1994	Marine Life Use Support	Dissolved Oxygen	Municipal point source	0.00	Outfall moved out of estuary; TMDL on freshwater brook
726-11	Medomak R. Estuary	Acres included in Category 5-B-1	SB	2003	Marine Life Use Support	Dissolved Oxygen	Listed previously for Marine Life Use Support for Dissolved Oxygen caused by Municipal Point Source. Discharge has been removed (spray irrigation).	0.00	No data available yet on attainment.
724-13	St. George R. Estuary (DMR Area 27)	Acres included in Category 5-B-1	SB	1999	Marine Life Use Support; Bacteria (Included in Category 5-B-1)	Dissolved Oxygen	Listed previously for Marine Life Use Support for Dissolved Oxygen caused by Municipal Point Source. New discharge license has been issued; Nonpoint source.	0.00	New license issued based on modeling; No data available yet on attainment
7 <mark>22-4</mark> 5	Penobscot R. Estuary	Acres included in Category 5-B-1	SC		Fish Consumption	Toxics: Dioxin, PCBs, Bacteria	Industrial point sources, CSOs	0.00	Dioxin legislation passed; hazardous waste clean-up

Category 4-C: Estuarine and Marine Waters with Impairment not Caused by a Pollutant

Waterbody ID	Segment Description	Segment Size Acres	and the second	Last Year Sampled	Impaired Use	Cause	Source	Segment Size (Square Miles)	Comments
<mark>802-27</mark>	New Meadows R. Estuary, including the "Lake" upstream of Howard Point	Acres included in Category 5-B-1	SB	2002	Marine Life Use Support		Partial Impoundment	0.00	

Category 5-A: Estuarine and Marine Waters Impaired by Pollutants Other Than Those Listed in 5-B Through 5-D (TMDL Required)

Waterbody ID	Segment Description	Segment Acres	Segment Class	Last Year Sampled	Impaired Use	Cause	Source	TMDL Date	Segment Size (Square Miles)	Comments
811-9	Mousam R. Estuary (DMR Area 6)	192	SB	current for	Use	Dissolved Oxygen; Elevated Fecals, Nonpointsource	Municipal point source, Nonpoint source, Sediment Oxygen Demand	2008	0.30	Includes 54.7 acro DMR closure
811-8	Saco R. Estuary	5 <mark>76</mark>	SC	199 <mark>8</mark>		Toxicity, Copper, Elevated Fecals	Municipal point source, CSOs	2008	0.90	
804-7	Fore R. Estuary	768	SC	2001		Aquatic life, Toxics, Elevated Fecals	Municipal point source, CSOs, Stormwater, Hazardous waste sites, Nonpoint (spills of all sizes)	2012	1.20	Additional acres included in category 5-B-1
	Royal R. Estuary	173.5	SB	2005	LISE	DO, Elevated fecals, NPS	Municipal point source, Stormwater, Nonpoint Source	2010	0.27	Additional acres included in category 5-B-1. Pending wasteload allocation study.
	Total =	1709.5	•				•	Total =	2.67	

Waterbody ID	DMR Area	Segment Description	Segment Size Acres	Segment Class	Last Year Sampled	Source	Segment Size (Square Miles)	Comments
812-1	1	Piscataqua R. Estuary, Kittery, Eliot, So. Berwick	1144.2	SB/SC	Current	4 STP outfalls; Stormwater; Elevated fecals; Nonpoint Source	1.7878125	
826-1	1B	Jaffrey Point, N. H. to Brave Boat Harbor, York	1,211.90	SB	Current	2 STP outfalls; Stormwater, Elevated fecals; Nonpoint Source	1.8935938	
826-2	2	York River	276.1	SB	Current	Elevated fecals; Nonpoint Source	0.4314063	OBDs removed
826-2	2A	York Harbor	<mark>41.2</mark>	SB	Current	Elevated fecals; Nonpoint Source	0.0643750	was in category 3; Seasonal Boat Closure
826-3	2B	Lobster Cove	57.4	SB	Current	Elevated fecals; Nonpoint Source	0.0896875	
<mark>826-3</mark>	3	Cape Neddick	<mark>1425.7</mark>	SB	Current	1 STP outfall; Elevated fecals; Nonpoint Source	2.2276563	
824-1	4	Ogunquit River	32.7	SB	Current	Elevated fecals; Nonpoint Source	0.0510938	was in category 2, STP
824-3	5	Webhannet River	604.7	SB	Current	Elevated fecals; Nonpoint Source	0.9448438	STP removed
824-3	5A	Little River	133.1	SB	Current	Elevated fecals; Nonpoint Source	0.2079688	
824-4	7	Kennebunk River	<mark>498.3</mark>	SB	Current	1 STP outfall; Nonpoint Source; Elevated fecals	0.7785938	
821-1	8	Cape Porpoise	126.6	SB	Current	Elevated fecals; Nonpoint Source	0.1978125	
821-2	8-A	Cape Porpoise Harbor	130.7	SB	Current	OBDs; Elevated fecals; Nonpoint Source	0.2042188	
821-2A	8-AA	Goosefare Bay	7.8	SB	Current	OBDs; Elevated fecals; Nonpoint Source	0.0121875	was part of DMR area 8
811-1	9	Saco River	1245.4	SB/SC	Current	1 0/50275		an additional 576 acres are included in Category 5-A
-	10	Saco Bay	3404.4	SB	Current	STP outfall; Elevated fecals; Nonpoint 5.3193750 was part		was part of DMR area 9
<mark>811-2</mark>	11	Scarborough River	201.7	SB/SA	Current	t OBDs; Elevated fecals; Nonpoint 0.3151563 was Northern Saco Scarborough River		was Northern Saco Bay & Scarborough River
811-4	13	Spurwink River	45.1	SB/SA	Current	Elevated fecals; Nonpoint Source	0.0704688	

Waterbody ID	DMR Area	Segment Description	Segment Size Acres	Segment Class	Last Year Sampled	Source	Segment Size (Square Miles)	Comments
804-1	14	Portland - Falmouth Area	128 <mark>27.6</mark>	SB/SC	2/19/2002	4 STP outfalls; Stormwater; Elevated fecals; Nonpoint Source	20.0431250	an additional 768 acres are included in Category 5-A
804-2	14-A	Falmouth – Cumberland	11.5	SB	Current	Elevated fecals; Nonpoint Source	0.0179688	
804-3	14-C	Long Island - Cliff Island, Portland	617.2	SB	Current - Long Is; 10/12/00 – others	OBDs; Elevated fecals; Nonpoint Source	0.9643750	
802-25	16	Royal & Cousins R. Estuaries	108.8	SB	Current	STP, OBD, Elevated fecals	0.1700000	an additional 173.5 acres are included in Category 5-A
802-5	17-В	Maquoit Bay, Brunswick and Freeport	300.9	SB	Current	Elevated fecals; Nonpoint Source	0.4701563	Combined 17-A & 17-B, 2002 report
	<mark>17-</mark> Е	Basin, Ash and Stover Coves, Harpswell	280.1	SB	Current	Elevated fecals; Nonpoint Source	0.4376563	seasonal closure May-Sep, new
	17-F	Orrs and Bailey Island, Harpswell	200.4	SB	Current	OBDs; Elevated fecals; Nonpoint Source	0.3131250	New
	17-G	Harpswell Sound, Harpswell	547.1	SB	Current	OBDs; Elevated fecals; Nonpoint Source	0.8548438	New
802-7	18	Potts Harbor	675.3	SB	Current	Elevated fecals; Nonpoint Source	1.0551563	
802-8	18-A	Gurnet Strait, Harpswell	154.5	SB	Current	OBDs; Elevated fecals; Nonpoint Source	0.2414063	
802-9	18 <mark>-</mark> BB	New Meadows River, Brunswick, West Bath, Harpswell	1 <mark>2.6</mark>	SB	Current	OBDs; Elevated fecals; Nonpoint Source	0.0196875	was 19-E in part
	18-B	New Meadows Lake, Brunswick, West Bath	22.5	SB	Current	Elevated fecals; Nonpoint Source	0.0351563	
802-10	<mark>18-</mark> J	Middle Bay	76.9	SB	Current	Elevated fecals; Nonpoint Source	0.1201563	Mislabeled as 18-C in 2004
	18-CC	Merepoint, Brunsick	14.5	SB	Current	Elevated fecals; Nonpoint Source	0.0226563	New
802- <mark>1</mark> 1	18-D	Eastern Bailey - Orr's Island, Western Quahog Bay,	1,2 <mark>56.6</mark> 0	SB	Current	OBDs; Elevated fecals; Nonpoint Source	1.9634375	

Waterbody ID	DMR Area	Segment Description	Segment Size Acres	Segment Class	Last Year Sampled	Source	Segment Size (Square Miles)	Comments
802-1 <mark>2</mark>	18-F	Card Cove and Orrs Cove, Harpswell	52.1	SB	Current	Seasonal Boat Closure, Elevated fecals	0.0814063	was in Category 2
	18-G	Northern Quahog Bay	257.3	SB	Current	OBDs; Elevated fecals; Nonpoint Source	0.4020313	
802-19	18-X	Little Hen Island and Big Hen Island, Harpswell	70.7	SB	Current	OBDs; Elevated fecals; Nonpoint Source	0.1104688	
802-9	19-F	Long Cove, West Bath	7.7	SB	Current	Elevated fecals; Nonpoint Source	0.0120313	was in Category 2
710-1	20	Upper Kennebec River and Tributaries	17,293.80	SB	Current	Elevated fecals; Nonpoint Source	27.0215625	
÷	20-G	Middle Kennebec River	1,145.50	SB	Current	Seasonal elevated fecals; Nonpoint Source	1.7898 <mark>4</mark> 38	New
710-2	20-H	Lower Kennebec, Phippsburg/Georgetown	<mark>1865.4</mark>	SB	Current	OBD; Elevated fecals; Nonpoint Source	2.9146875	
730-1	20-B	Back River, Wiscasset and Westport	139.4	SB	Current	OBD; Elevated fecals; Nonpoint Source	0.2178125	
730-6	22-E	Western Barters Island, Boothbay	225.9	SB	Current	Elevated fecals; Nonpoint Source	0.3529688	
730-10	23-A	Ebencook Harbor, Southport	1226.9	SB	Current	OBDs; Boats; Elevated fecals; Nonpoint Source	1.9170313	
729-2	24-A	Lower Salt Bay	42.6	SB	Current	Elevated fecals; Nonpoint Source	0.0665625	
729-2	25	Damariscotta River, Newcastle – Damariscotta	694.5	SB	Current	STP; Elevated fecals; Nonpoint Source	1.0851563	
726-10	26	Medomak River, Waldoboro and Friendship	155.6	SB	Current	Elevated fecals after rainfall; Nonpoint Source	0.2431250	
724-2	26-A	Monhegan Island	521.6	SB	Never	Untreated household sewage (straight pipe)	0.8150000	Permanent PSP (paralytic shellfish poisoning) Closure
724-4	26-D	Wiley Cove, Cushing	61.2	SB	Current	Elevated fecals; Farm animals, Nonpoint Source 0.0956250		
	26-E	Dutch Neck and Back River	<mark>35.1</mark>	SB	Current	Elevated fecals; Nonpoint Source	0.0548438	new

Waterbody ID	DMR Area	Segment Description	Segment Size Acres	Segment Class	Last Year Sampled	Source	Segment Size (Square Miles)	Comments
724-8	26-N	Maple Juice Cove, Cushing	<mark>124</mark>	SB	Current	Septic system problems; Elevated fecals; Nonpoint Source	0.19375 <mark>0</mark> 0	
724-11	27-B	Deep Cove - Otis Cove, St. George	318.2	SB	Current	OBD; Septic system problems; Elevated fecals; Nonpoint Source	0.4971875	
722-1	27-A	Eastern Wheeler Bay, St. George	35.1	SB	Current	OBDs; Elevated fecals; Nonpoint Source	0.0548438	
	27-E	Upper St. George and Mill River	317.6	SB	Current	STP; OBDs; Elevated fecals; Nonpoint Source	0.4962500	new
722-2	28	Tenants Harbor to Mosquito Head, St. George	621.4	SB	Current	OBDs; Elevated fecals; Boats; Nonpoint Source	0.9709375	
722-6	28-H	Marshall Point - Mosquito Head, St. George	1 <mark>93.8</mark>	SB	Current	OBD; Septic system problems; Elevated fecals; Nonpoint Source	0.3028125	
722-7	<mark>28-</mark> 1	Weskeag River, So. Thomaston and Owls Head	41.9	SB	Current	Septic system problems; Elevated fecals; Nonpoint Source	0.0654688	
722-8	29	Rockland	2,459.90	SB/SC	Current	STP; OBDs; Stormwater; Boats; Elevated fecals; Nonpoint Source	3.8435938	
722-11	30	Rockport	2,036.30	SB	Current	OBDs; Boats; Elevated fecals; Nonpoint Source	3. <mark>181718</mark> 8	
722-13	30-D	Vinalhaven	1,255.20	SB	Current	OBDs; Boats; Elevated fecals; Nonpoint Source	1.9612500	
722-14	30-H	Kent Cove, North Haven	180.8	SB	Current	Elevated fecals; Nonpoint Source	0.2825000	
722-16	<mark>30-</mark> J	Vinal Cove - Starboard Rock, Vinalhaven	90.4	SB	Current	OBD; Elevated fecals; Nonpoint Source	0.1412500	
722-17	30-K	Southern Harbor, North Haven	36.4	SB	Current	Elevated fecals; Nonpoint Source	0.0568750	
722-19	30-M	Roberts Harbor, Vinalhaven	175.4	SB	Current	OBD; Elevated fecals; Nonpoint Source	0.2740625	
722-21	31-A	Rockport Harbor to Ducktrap Harbor, Lincolnville	2, <mark>139.6</mark> 0	SB	Current	STP; Elevated fecals; Nonpoint Source	3.3431250	

Waterbody ID	DMR Area	Segment Description	Segment Size Acres	Segment Class	Last Year Sampled	Source	Segment Size (Square Miles)	Comments
722-22	31-B	Great Spruce Head - Kelleys Cove, Northport	1,237.30	SB	Current	STP; Elevated fecals; Nonpoint Source	1.9332813	
722-23	32	Belfast Bay	4,172	SB	Current	STP; OBDs; Boats; Elevated fecals; Nonpoint Source	6.5187500	
722-24	33	Searsport - Stockton Springs	2789	SB/SC	Current	STP; OBDs; Septic system problems; Elevated fecals; Nonpoint Source	4.3578125	
	34	Stockton Springs	460.60	SB/SC	Current	Eelevated fecals, Nonpoint Source	0.7196875	
722-25	35	Penobscot River	12,743.00	SB/SC	Current	STP; OBDs; Boats; Elevated fecals; Nonpoint Source	19.9109375	
722-26A	36-A	Northern Bay, Penobscot	786.30	SB	Current	OBDs, Elevated fecals, Nonpoint Source	1.22859 <mark>38</mark>	new
722-26B	36-B	Upper Baggaduce River	7.00	SA	Current	Agriculture, Nonpoint Source	0.0109375	new
722-29A	37-D	Long Cove, Deer isle	22.00	SB	Current	Eelevated fecals, Nonpoint Source	0.0343750	new
722-34	38	Stonington Harbor & NW Crocket Cove, Deer Isle & Stonington	222	SB	Current	OBDs; Elevated fecals; Nonpoint Source	0.3468750	
722-38	39-A	Center Harbor – Brooklin	32	SB	Current	Elevated fecals; Seasonal marina, Nonpoint Source	0.0500000	
722-38	39-B	Eastern Flye Point, Brooklin	<mark>11</mark>	SB	Current	Elevated fecals; Nonpoint Source	0.0171875	
722-39	39-F	Benjamin River, Sedgwick	23	SB	Current	Seasonal marina; Elevated fecals; Nonpoint Source	0.0359375	
707-4	39-E	Salt Pond, Sedgwick – Brooklin	80	SB	Current	Elevated fecals; Nonpoint Source	0.1250000	
	<mark>39-</mark> H	Northwest Herrick Bay, Brooklin	38	SB	Current	Elevated fecals; Nonpoint Source	0.0593750	new
	39-G	Northern Morgan Bay	114	SB	Current	Elevated fecals; Nonpoint Source	0.1781250	new
ай — — — — — — — — — — — — — — — — — — —	39-I	Bragdon Brook, Blue Hill	25	SB	Current	t Elevated fecals; Nonpoint Source 0.0390625 new		new
707-10	42-Е	Mackerel Cove, Swans Island	4	SB	Current	Elevated fecals; Nonpoint Source	0.0062500	

Waterbody ID	DMR Area	Segment Description	Segment Size Acres	Segment Class	Last Year Sampled	Source	Segment Size (Square Miles)	Comments
707-5	48-A	Goose Cove, Trenton	121	SB	Current	Elevated fecals; Nonpoint Source	0.1890625	
707-11	48-B	Pretty Marsh Harbor, Mount Desert	180	SB	Current	Elevated fecals; Nonpoint Source	0.2812500	
	48-C	Northwest Cove, Bar Harbor	87	SB	Current	Elevated fecals; Nonpoint Source	0.1359375	
714-9	49-A	Jellison Cove, Hancock	9	SB	Current	Elevated fecals; Nonpoint Source	0.0140625	
714-10	49-B	Carrying Place, Hancock	25	SB	Current	Elevated fecals; Nonpoint Source	0.0390625	
714-11	49-C	Kilkenny Cove, Hancock	43	SB	Current	Elevated fecals; Nonpoint Source	0.0671875	
	49-D	Eagle Point, Sullivan	7	SB	Current	Elevated fecals; Nonpoint Source	0.0109375	new
714-13	50-A	US Rt. 1 Bridge, West Sullivan and Long Cove, Sullivan	30	SB	Current	Elevated fecals; Nonpoint Source	0.0468750	
714-14	50-B	Springer Brook, Mill Brook and West Brook, W. Franklin	93	SB	Current	Elevated fecals; Nonpoint Source	0.1453125	
714-15	50-C	Johnny's Brook and Card Mill Stream, Franklin	2	SB	Current	Elevated fecals; Nonpoint Source	0.0031250	
	50-D	Evergreen Point, Sullivan	34	SB	Current	Elevated fecals; Nonpoint Source	0.0531250	new
714-16	50-E	Egypt Bay, Hancock and Franklin	106	SB	Current	Elevated fecals; Nonpoint Source	0.1656250	
	51-C	Bunker Cove, South Gouldsboro	12	SB	Current	Elevated fecals; Nonpoint Source	0.0187500	new
706-3	52-B	Mill Pond Stream, Gouldsboro	8	SB	Current	Elevated fecals; Nonpoint Source	0.0125000	
706-6	52-E	Dyer Harbor - Pinkham Bay, Steuben	73	SB	Current	Elevated fecals; Nonpoint Source	0.1140625	
706-7	52-F	Birch Harbor, Gouldsboro	19	SB	Current	Seasonal marina; Elevated fecals; Nonpoint Source	0.0296875	
	52-G	Joy Bay, Gouldsboro and Steuben	1024	SB	Current	Elevated fecals; Nonpoint Source	1.6000000	
706-8	52-J	Dyer Harbor, Steuben	162	SB	Current	Elevated fecals; Nonpoint Source	0.2531250	

Waterbody ID	DMR Area	Segment Description	Segment Size Acres	Segment Class	Last Year Sampled	Source	Segment Size (Square Miles)	Comments
705-3	52-K	Mitchell Point, Milbridge	32	SB	Current	Septic system problems; Elevated fecals; Nonpoint Source	0.0500000	
705-1	<mark>5</mark> 3	Narraguagus River, Milbridge	821	SB	Current	Elevated fecals, OBDs, Nonpoint Sourcce	1.2828125	was in Category 2
704-2	53-D	Curtis Creek, Flat Bay, Harrington	31	SB	Current	Elevated fecals; Nonpoint Source	0.0484375	
704-3	53-E	Upper Harrington River	<mark>483</mark>	SB	Current	Elevated fecals; Nonpoint Source	0.7546875	
705-3	53-G	Smith Cove, Narraguagus Bay, Milbridge	3	SB	Current	Elevated fecals; Nonpoint Source	0.0046875	
<mark>703-</mark> 2	54	Jonesport and West Jonesport	459	SB	Current	OBDs; Elevated fecals; Nonpoint Source	0.7171875	
703-3	54-A	North End of Beals Island	95	SB	Current	Elevated fecals; Nonpoint Source	0.1484375	
703-4	54-B	Indian River, Addison – Jonesport	68	SB	Current	Elevated fecals; Nonpoint Source	0.1062500	
703-5	54-K	Southeastern Alley Bay & Pig Island Gut, Beals	24	SB	Current	Elevated fecals; Nonpoint Source	0.0375000	
703-6	<mark>54-</mark> M	Lamesen Brook in West River, Addison	52	SB	Current	Elevated fecals; Nonpoint Source	0.0812500	
713-1	54-D	East & West Branches, Little Kennebec Bay, Machias and Machiasport	68	SB	Current	Elevated fecals; Nonpoint Source	0.1062500	
71 <mark>3</mark> -2	<mark>54-G</mark>	White Creek, Masons Bay, Jonesport – Jonesboro	47	SB	Current	Elevated fecals; Nonpoint Source	0.0734375	
713-3	54-H	Chandler River, Jonesboro	119	SB	Current	Elevated fecals, OBDs, Nonpoint Source	0.1859375	
709-5	55-I	Indian Head, Machiasport	17	SB	Current	Elevated fecals; Nonpoint Source	0.0265625	
708-1	55-A	Little River - Cutler Harbor	37	SB	Current	Elevated fecals; Nonpoint Source	0.0578125	
708-3	55-G	Money Cove, Cutler	32	SB	Current	Elevated fecals; Nonpoint Source	0.0500000	
708-4	56-C	Haycock Harbor, Trescott	16	SA/SB	Current	Elevated fecals; Nonpoint Source	0.0250000	

Waterbody ID	DMR Area	Segment Description	Segment Size Acres	Segment Class	Last Year Sampled	Source	Segment Size (Square Miles)	Comments
708-6	58	Lubec and South Lubec	70	SB	Current	OBDs; Elevated fecals; Nonpoint Source	0.1093750	
70 <mark>1-</mark> 1	56	Denny's River and Northwest Denny's Bay, Edmunds – Pembroke	88	SA/SB	Current	Elevated fecals; Nonpoint Source	0.1375000	
701-2	56-A	Pennamaquan Bay, Pembroke	80	SB	Current	Elevated fecals; Nonpoint Source	0.1250000	
708-4	56-B	East Stream, Trescott	15	SA/SB	Current	Elevated fecals; Nonpoint Source	0.0234375	
	56-D	Crane Mill Brook, Edmunds	94	SA	Current	Elevated fecals; Nonpoint Source	0.1468750	New
	56-H	Ox Cove, Pembroke	<mark>653</mark>	SA	Current	Elevated fecals; Nonpoint Source	1.0203125	New
701-7	57-B	Deep Cove, Eastport	154	SC	Current	Elevated fecals; Nonpoint Source	0.2406250	
	59	Hal Moon Cove, Eastport	46	SB	Current	Elevated fecals; Nonpoint Source	0.0718750	New
701-8	58	Lubec and South Lubec	487	SB	Current	OBDs; Elevated fecals; Nonpoint Source	0.7609375	
701-10	58-F	The Haul-Up, South Bay, West Lubec	40	SB	Current	Elevated fecals; Nonpoint Source	0.0625000	
70 <mark>2-4</mark>	62	St. Croix River – Passamaquoddy Bay	7 <mark>,933.0</mark> 0	SB/SC	Current	OBDs (and STP); Elevated fecals; Nonpoint Source	12.3953125	

Total = 98,380.0

Total = 153.718750

Waterbody ID	Location	Permitted Facility Name	Goal (separation or partial)	Enforcement Control (permit or consent decree, date) *	Segment Size (Square Miles)	
<mark>811-</mark> 6	Biddeford	Biddeford WWTF	Separation	Permit & A.O. 2013	0.00	Draft Phase II CSO Master Plan was submitted to Dept. on 6/30/05. Presently under review – negotiating schedule.
811-7	Saco	Saco WWTP	Partial w/ generic bypass	Permit and C.D. 2011	0.00	EPA Consent Decree – All major CSO abatement work has been completed. Some minor separation projects remain. CSO-primary bypass on line. (1) Performance evaluation of wet weather flows and control level achieved due 1/1/2011.
804-7	Cape Elizabeth	Portland Water District	Separation		0.00	Master Plan to determine excessive I/I and responsible parties due to Department by 6/30/08. Complex sewer system issue involving three public entities. After review of MP, Department will involve appropriate party(ies) in either enforcement or permitting action. Abatement compliance date unknown at this time.
804-6	South Portland	South Portland WPCF	Partial w/ generic bypass	2012	0.00	(1) By September 30, 2008, the permittee shall submit an updated CSO Master Plan and abatement schedule.
804-5	Portland	Portland Water District - Portland WWTF	Partial w/ generic bypass	2018	0.00	Will include Major Milestone in permit being renewed in 2008.
710-03	Bath	Bath WPCF	Partial w/ generic bypass	Permit 2012	0.00	Major Milestones in current permit have been completed. Update MP approved. New Major Milestones will be placed in renewed permit in 2009.
722-40	Rockland	Rockland WWTF	Partial w/ generic bypass	Permit 2011	0.00	Abatement projects have been completed, no overflows since 2004. (1) Submit Updated Master Plan assessing abatement success by 7/31/2010.
722-41	Belfast	Belfast WWTF	Separation	Permit 2011	0.00	Major Milestone in permit to submit updated MP by July 31, 2008.
722-42	Bucksport	Bucksport WWTP	Separation w/ generic bypass	Permit 2012	0.00	CSO Master Plan approved 12/30/04. Permit renewal of 301(h) waiver being denied by EPA. Completion of last major project, CSO-primary bypass, in April 2008.
722-43	Winterport	Winterport Sewerage District	Se <mark>paration</mark>	Permit 2016	0.00	EPA Administrative Order issued 7/20/04. CSO Master Plan approved 12/28/04. Permit renewal of 301(h) waiver is being denied by EPA.
722-44	Hamden	Hamden, Town of	Partial w/ storage	Permit 2015	0.00	Infiltration/inflow monitoring report and a revised CSO abatement/elimination schedule submitted 6/19/03. Approved 12/23/03. Have completed two of the three sewer rehabilitation projects required ahead of schedule. Last remaining project is not required during current permit period, therefore, no Major Milestone in permit.

Category 5-B-2: Estuarine and Marine Waters Impaired by Bacteria from Combined Sewer Overflows

Category 5-B-2: Estuarine and Marine Waters Impaired by Bacteria from Combined Sewer Overflows

Waterbody ID	Location	Permitted Facility Name		inermit or consent	Segment Size (Square Miles)	Comments
714-21	Bar Harbor	Bar Harbor, Town of	Separation	Permit 2015	0.00	Updated Master Plan submitted Dec. 2006, under review by Department.
709- <mark>6</mark>	Machias	Machias WWTF	Separation	Permit 2009		Sewer separation projects complete. WWTF upgrade with increased wet weather capacity to start in 2008. (1) Submit updated MP by 12/31/09

*Last date in schedule OR best estimation of when water quality standards will be attained **Indeterminate value

(1) Major Milestone is listed in permit with statement that it can not be modified without formal application renewal

Category 5-D: Estuarine and Marine Waters Impaired by Legacy Pollutants

All estuarine and marine waters are listed in Category 5-D, partially supporting fishing ("shellfish" consumption) due to elevated levels of PCBs and other persistent, bioaccumulating substances in lobster tomalley.