

ARTMENT OF CONSERVATION

Walter A. Anderson, State Geologist

OPEN-FILE NO. 86-13

Title: First Annual Report - Pesticides in Ground Water Study

Author: Andrews L. Tolman (compiler)

Date: 1986

Financial Support: Funding for this project was provided by the Maine Legislature, the Department of Human Services, the Maine Geological Survey, the U.S. Geological Survey, and the Maine Department of Environmental Protection.

> This report is preliminary and has not been edited or reviewed for conformity with Maine Geological Survey standards.

> > Contents: 21 page report

Report to the 112th Maine State Legislature Energy and Natural Resources Committee by

The Maine Geological Survey Department of Conservation in cooperation with Department of Agriculture, Food and Rural Resources Department of Human Services Department of Environmental Protection Department of Transportation State Planning Office U.S. Geological Survey, Water Resources Division

Compiled by Andrews L. Tolman, Director, Hydrogeology Maine Geological Survey Department of Conservation January 17, 1986

.

Introduction

The Ground Water Policy Review Committee of the Land and Water Resources Council recommended to Governor Brennan in December, 1984, that a state-wide screen of the impact of agricultural practices on ground-water quality be conducted. Governor Brennan and the Legislature accepted the recommendation and directed the Maine Geological Survey, Department of Conservation, to coordinate an inter-agency, three year screening study, with annual progress reports to the Legislature's Energy and Natural Resources Committee.

The study was authorized to determine whether the detection of Temik (aldicarb) and elevated nitrates in ground water in some agricultural areas of Maine were symptoms of a larger problem. The recent findings of soil . fumigants and other pesticides in ground water in the Connecticut Valley and other agricultural areas of Southern New England lent added urgency to this study.

An ad-hoc Pesticides in Ground Water Group was assembled to plan and conduct the study. Participants in the group included representatives of the Maine Geological Survey, Department of Conservation; Bureau of Agriculture and Rural Resources and Pesticides Control Board, Department of Agriculture, Food and Rural Resources; Water and Oil and Hazardous Materials Bureaus, Department of Environmental Protection; Environmental Health Unit, Health Engineering, and Public Health Laboratory, Department of Human Services; Location and Environment, Department of Transportation; Natural Resources Division, State Planning Office; and the U.S. Geological Survey, Water Resources Division.

With such a broad range of expertise and interest within the group, it was determined that we should focus our knowledge in a pesticide ranking matrix to determine which pesticides were most likely to be found in ground water.

In order to develop a list of pesticides which might be found in ground water, we collected information on the quantity sold, the types of crops and application methods, and the persistence and leachability for each commonly used pesticide. Each of these factors was given a numerical rating, ranging from 1 to 10, and the pesticides were ranked based on the average of the three ratings.

A discussion of the factors and the ranking procedure is presented in the attached "Pesticides Selection (matrix) Project" report. The ranking depended on available data from other state and national studies, as well as Pesticide Control Board records.

Of the 44 pesticides ranked, 25 can be analyzed by the State's Public Health Lab using available methods (Table 1). A list of these pesticides and their detection limits is attached. Work is underway to develop and verify methods for the other pesticides in the top 20, including breakdown products of maneb and mancozeb (dithiocarbamates).

The priority list of pesticides was subdivided based on application to various crop types. A suite of pesticide tests were developed for potatoes, corn, market gardens, blueberries, and orchards. Copies of the laboratory request sheets are attached.

Site Selection

The next step in planning the study was to determine sampling locations. Based on research in other states, we determined that the most geologically sensitive areas should be sampled in order to assess the worst case possibilities. Areas judged geologically sensitive have thin or sandy soils, shallow water table and high aquifer potential. If pesticides were not found in the most likely areas, then it is probable that other, less sensitive areas would also be pesticide-free.

Sampling locations were selected to provide areal coverage of the State's agricultural areas, and to represent the different crop types. Whenever possible, monitoring wells installed by the U.S. Geological Survey, Maine Geological Survey, and Department of Environmental Protection cooperative Aquifer Mapping Project were used, as well as wells from the USGS-MGS Saco River Valley study. These carefully constructed wells can be used to extract shallow ground water from sand and gravel aquifers. They are often located in agricultural areas. Their use minimized drilling expense, variability in well construction, and logistical problems.

In areas where monitoring wells were not available, household wells belonging to cooperating farmers and agricultural area residents were sampled. Private wells were used mostly in Aroostook County and orchard sampling. A total of 46 wells were sampled, 14 of them twice, for a grand total of 60 samples.

Sampling and Analysis

Ten blueberry, 24 potato, 4 forage crop, 17 sweet corn/market gardens, and 5 orchard samples were analyzed for pesticides. The potato samples were obtained both from ground water beneath sandy soils in glacial valleys and from ground water beneath till-derived soils in northern Maine. A number of the samples were difficult to classify as the wells were located between potato and market crop fields. In these cases, the sample was analyzed for both sets of pesticides.

Samples from monitoring wells were collected using a gas bladder portable pump or a submersible pump. At least 3 well volumes were pumped prior to sampling to ensure the water samples were representative of the geochemical environment. Specific conductance (a measure of total dissolved ion concentration) was measured during pumping and samples were taken after the conductance stabilized. Ground-water samples from monitoring wells were filtered through 0.45 micron filters in the field to remove sediments. Literature search, after the sampling, indicated that the filters and sampling equipment used may adsorb certain pesticides.

A laboratory test of selected pesticides indicated that pesticides related to guthion and aldicarb may have been sorbed onto sampling apparatus or filters. Further testing and sampling will be conducted over the next year to obtain better recovery of these compounds. Samples from most private wells, since they are sediment-free, were not filtered. The tap was allowed to run until specific conductance of the water stabilized prior to sample collection.

All samples were chilled and delivered to the Public Health Laboratory within 72 hours of collection. The samples were then extracted and analyses were run on the extract.

Results

Results of the chemical analyses presented in table 3. Nitrate was the only substance found in concentrations exceeding health advisories or proposed recommended maximum concentration levels in drinking water (USEPA: 10 mg/L NO_-N). Twelve wells exceeded this standard. Traces (see pesticides information sheet, table 1) of dinoseb were detected in the initial sampling of 5 wells (53005, 57601, 57605, 57501, and 57606) and metribuzin was detected in 3 wells (57604, 57605, 82203), all in potato growing areas. Wells (53005, 57601, 57605, 57501, and 57606) were re-sampled in September and did not show detectable amounts of either chemical. Thiodon was detected in one well (dt6) in a potato growing area. Atrazine was detected in July in one well (21620) near a corn field; alachlor was detected near another corn field (43105).

Copper was found in two orchard wells (8516 A and L). Because no other, related compounds (nitrate or other pesticides) were detected, and because acidic ground water in the area is known to leach copper from plumbing, the low concentrations detected are not believed to result from agricultural practices. Arsenic, at a concentration below drinking water standards, was found in another orchard well (853001).

Samples from 2 wells (852604 and 852606) in blueberry growing areas contained traces of hexazinone. With the exception of aldicarb, detection limits for all chemicals tested were more sensitive than available health standards. Unfortunately, many of these chemicals do not have standards or guidelines published or promulgated. Continued effort by USEPA is needed to develop standards for pesticides.

Summary

The first year of the study has yielded useful results despite technical difficulties in developing both sampling and analytical techniques. Preliminary indications are that pesticides are not detectable in most of the sensitive areas sampled. Pesticides were found most often in northern Maine, but even there, concentrations were low.

We plan to refine our sampling and analytical procedures for the next field season and, where possible, increase the number of wells sampled in sensitive areas. With this additional information, we should be able to make a more quantitative assessment of the presence of pesticides in ground water.

PESTICIDE SECTION MAINE PUBLIC HEALTH LABORATORY

PESTICIDE INFO SHEET

DDD

CHEMICALS	SYNONYMS	METHOD	MLD ¹	
Alachlor		II	4.50	
Aldicarb	Temik	Sp-2	50.00	
Atrazine		II	2.5	
Butylate	Sutan	II	2.30	
Captan		II	1.25	
Carbofuran	Furadan	II	15.00	
Chlorothalonil	Bravo	II.	1.25	
2,4-D		Ia2 ·	1.25	
2,4,5-T		Ia	1.25	
2,4,5-TP	Silvex	Ia ²	.25	
Diazinon		II	7.60	
Dicamba	Banvel	Ib	1.25	
Difolitan		II	1.25	
DNBP	Premerge, Dinoseb	Ib	1.25	
Dursban	Chlorpyrifos	II	1.25	
Endosulfan	Thiodan	II	1.0	
Endrín		II	.50	
Eptam	EPTC	II	1.25	
Guthion	Azinphos'methyl	II	5.0	
Imidan	Phosmet	II	12.5	
Lindane		II	.50	
Linuron	Lorox	II	12.0	
Malathion		II	1.25	
Methomyl	Lannate	Sp-3	64.0	
Methoxychlor		II	1.50	
Methyl Parathion		II	1.0	
Metribuzin	Sencor	II	0.25	
Monitor	Methamidophos	Sp-4		
PCNB	Terraclor	II	1.5	
Sevin	Carbaryl	II	50.0	
Simazine		II	8.0	
Triclopyr	Garlon	Ia*	.5	
Trifluralin	Treflan	II	.60	
Velpar	Hexazinone	Sp-1	62.0	
Copper			20.0	

¹MLD: "Minimum Level of Detection" of the analysis under our conditions for which statistically sound recovery data is available.

TRACE: The analysis detected the pesticide indicated but at a concentration below the stated MLD.

²Compounds detected in a "Ia" screen will also be detected in a "Ib" screen and should have similar detection limits. In general, a "Ib" screen is more effective.

SPECIAL NOTE: This information effective 11/14/85. It will be updated as Lab techniques and needs change.

3	sample	# Crop type	Geologic	depth to	Nitr	ate mg/1	Pestic	ides detec	ted*	filtere
			Setting	water, ft	summer	fall	summer		fall	
-	dt6	potatoes	sand	15	17.2	15.2	thiodan		none	yes
	dt8	11	and	13	2.56		none			yes
	dt11		gravel	17	0	0.16	none		none	yes
	dt10	and		18	7.17	6.82	none		none	yes
Ŷ	dt3	market		14	0.63	0.43	none		none	yes
	dt1	garden		10	0		none			yes
	dt12			16	1.33		none			yes
-	53003	potatoes	till		19.2		none	1		no
	53005	1 0	1.1		9.5		dinoseb			no
	57601	11	11		10.2	0	dinoseb		none	no
	57602		1.1	20	5.85	5.17	none		none	no
	57701	1.1			1.67	1.51	none		none	no
(11	57604		11		22.2	11.28	metribuzin		none	no
0.	57605	11	1.1		5.55	4.26	dinoseb and	metribuzin	none	no
	57501	11	4.4	15	4.63	6.8	dinoseb		none	no
	57702	11	1.1		5.75	4.26	none		none	no
	57606		1.1	12	4.61	4.6	dinoseb		none	no
	57703	and peas	12		12.4	9.5	metribuzin		none	no
	57603	processing			2.67	3.4	none		none	no
-	43103	. corn	sand	7	1.82		alachlor			yes
	dt5	and	and	14	3.47		none			yes
	dt4	market	gravel	8	0		none			yes
	dt2	garden	1.1	16	6.94		none			yes
	dt7	11		15	7.68		none			yes
	dt9		1.1	13	0		none			yes
	43001	11	1.1	16	12.4		* none			no
	41801	11	**	14	16.2		none			no
	21620	1.1	1.1	15	41.5		atrazine			no
	53002		till		24.8		none			no

Pesticides in Ground Water Study: 1985 Sampling Results-table 3

*all at trace levels unless otherwise noted

Setting water, ftsummerfallsummerfall8516Aorchardtill0.64copper .05 mg/l (from piping)no8516B''0.25noneno	ered
8516A orchard till 0.64 copper .05 mg/l (from piping) no 8516B '' 0.25 none no	
8516B '' 0.25 none no	0
	0
8516C '' 0.82 copper .07 mg/l (from piping) no	0
851601 '' 1 1.2 none no	0
853001 '' 0 arsenic .037 mg/l no	0
852601 blueberry sand 47 0 none yes	8
852602 and 17 0 none yes	s
852603 gravel 22 0 none yes	8
852604 '' 30 0 hexazinone yes	s
852605 '' 21 0 none yes	s
852606 '' 13 0.16 hexazinone yes	8
852701 '' 49 0 none yes	s
852502 '' 4 0 none yes	8
854501 '' 5 0 none yes	s
852501 '' 0 0 none no	0

Pesticides in Ground Water Study: 1985 Sampling Results-table 3, page2

*all at trace levels unless otherwise noted

TO : FUBLIC HEALTH LABORATORY	ATT: PESTICIDE LAB
SAMPLE LOCATION CODE	CROP TYPE: ORCHARD
DATE OF SAMPLE COLLECTION	BY:
DATE RECEIVED IN LAB	BY:
DATE EXTRACTED _	BY:
BLANK ND.	
SAMPLE BOTTLE NO	(II SCREEN with emphasis on captan, phosmet, guthion & simazine - 1 LITER BROWN AMBER BOTTLE
	AS ME SEASS VUR BUTTLE
	Nitrates - 250 ML WHITE PLASTIC BOTTLE
	Copper & arsenic 250 ML WHITE PLASTIC BOTTLE
Please list specific pesticides that location and indicate when they were	are KNDWN to be used at this last used.
SUGGESTED SAMPLING PERIOD: SAMPLE F	IRST WEEK OCTOBER
II Screen with emphasis on Captan, Pl Simazine	hosmet, Guthion & \$125
Auto A for nitrates	6

4

•

•

TO : PUBLIC HEALTH LABORATORY	ATT: PESTICIDE LAB
SAMPLE LOCATION CODE	CROP TYPE: BLUEBERRY
DATE OF SAMPLE COLLECTION	BY:
DATE RECEIVED IN LAB	BY:
DATE EXTRACTED _	BY:
BLANK NO.	
SAMPLE BOTTLE NO	(II SCREEN with emphasis on guthion & Diazinon - 1 LITER BROWN AMBER BOTTLE
- herrichteren	Hexazinone - 1 LITER BROWN AMBER BOTTLE
	Arsenic- 250 ML WHITE PLASTIC BOTTLE
	Nitrate - 250 ML WHITE PLASTIC BOTTLE

Please list specific pesticides that are KNOWN to be used at this location and indicate when they were last used.

TO: PUBLIC HEALTH LABORATORY	ATTENTION: PESTICID	ELAB
SAMPLE LOCATION CODE	CROP TYPE: POTATOES	
DATE OF SAMPLE COLLECTION	BY:	
DATE RECEIVED IN LAB	BY:	
DATE EXTRACTED	BY:	_
••••••		
BLANK NO.		
LAB I.D. No. SAMPLE BOTTLE NO.		RESULTS
	EARLY SEASON II SCREEN with emphasis on Linuron, EPTC, and Metribuzin - Special Test for Temik - I LITER BROWN AMBER BOTTLE	
	LATE SEASON II SCREEN with emphasis on Phosmet, Guthion, Endosulfan, Carbaryi and Chlorothalanii - Carbaryi test - I LITER BROWN AMBER BOTTLE	
	Special test for Dinoseb and Dalapon - I LITER BROWN AMBER BOTTLE	
	LITER BOOK WEER BOTTLE	
	Arsenic - 250 ML WHITE PLASTIC BOTTLE	
	Nitrates - 260 ML WHITE PLASTIC BOTTLE	
	Paula and the second second second	

riease fist specific pesticides that are KNOWN to be used at this location and indicate when they were used

SUGGEST SAMPLING PERIODS FOR POTATO CROPS:

First or Second week of July	
and Metribuzin	\$125.00
Special test for Temik	50.00
Special test for Dinoseb and Dalapon	125.00
AA for Arsenic	6.00
Auto A for Nitrates	6.00
First or Second in September	
Il Screen with emphasis on Phosmet, Guthion, Endosulfan,	
Carbaryl and Chlorothalanil	\$125.00
Special tost for Dichigoschenater	00-00
Special test den Henttor	00.000
AA for Arsenic	6.00
Auto A for Nitrates	6.00

SAMPLE LOCATION CODE	CROP TYPE: MARKET GARDENS
DATE OF SAMPLE COLLECTION	BY:
DATE RECEIVED IN LAB	BY:
DATE EXTRACTED _	BY:
BLANK ND.	•
SAMPLE BOTTLE ND	(II SCREEN with emphasis on diazanon, malathion, trifuralin, & carbaryl
	1 LITER BROWN AMBER BOTTLE
	Special test for Dinoseb & Dalapo 1 LITER BROWN AMBER BOTTLE
	Nitrates - 250 ML WHITE PLASTIC BOTTLE
Please list specific pesticides that location and indicate when they were	are KNOWN to be used at this last used.
SUGGESTED SAMPLING PERIOD: 1st or 2nd II SCREEN with emphasis on Diaz	d WEEK SEPTEMBER
& carbaryl	\$125
Special test for Dinoseh and Da	Lanon

10

. .

i

- - - x

TO : PUBLIC HEALTH LABORATORY	ATT: PESTICIDE LAB
SAMPLE LOCATION CODE	CROP TYPE: FORAGE CROPS and/ or SWEET CORN
DATE OF SAMPLE COLLECTION	BY:
DATE RECEIVED IN LAB_	
DATE EXTRACTED	BY:
BLANK ND.	
SAMPLE BOTTLE NO.	(II SCREEN with emphasis on atrazine, simazine, butylate, alachlor, cyanazine and carbofuran 1 LITER BROWN AMBER BOTTLE
	(II SCREEN with emphasis on carbaryl (Sweet corn only)- 1 LITER BROWN AMBER BOTTLE
	Special Test for Methomyl (sweet corn only) 1 LITER BROWN AMBER BOTTLE
	Nitrates - \$6 250 ML WHITE PLASTIC BOTTLE
Please list specific pesticides that location and indicate when they were	are KNOWN to be used at this last used.
SUGGESTED SAMPLING PERIOD:	
SAMPLE 1st OR 2nd WEEK IN.JUNE	*
II Screen with emphasis on Atra	zine, Butylate,
Alachlor, Simazine, Cyanazine &	Carbofuran\$125
Auto A for nitrates	6
SAMPLE 1st OR 2nd WEEK IN SEPTE	MBER - SWEET CORN ONLY
II Screen with emphasis on Carb	ary1
Special Test for methomy1	75
Auto A for nitrates	6

Appendix A

Pesticide Selection Project:

Pesticides in Ground-Water Group

Contributors:

Cheryl Fontaine, DHS, Drinking Water Henry Jennings, DAIRR, Pesticides Control Board Craig Neil, DOC, Maine Geological Survey Ernest Richardson, DHS, Public Health Laboratory Terry Shehata, DHS, Environmental Health Unit

Compiled by:

Andrews L. Tolman, DOC, Maine Geological Survey

October 30, 1985

The ongoing Maine Pesticides Study was recommended by the Ground-Water Policy Review Committee. The recommendation was endorsed by Governor Brennan and funding for analytical costs of the study was provided by the Legislature. The study was planned and is being executed by an inter-agency Pesticides in Ground-water Group with representation from the Maine Department of Agriculture, Pesticides Control Board; Maine Department of Environmental Protection; the Department of Human Services, Drinking Water Program, State Public Health Lab; and the U.S. Geological Survey. The Maine Geological Survey was directed to coordinate the project.

The project is to be conducted over a three-year period, with 1985 as the first year. Because the recommendation was not accepted until the spring of 1985, a quick start was mandatory. The group resolved both to narrow the field of investigation and to utilize the work already done in other states (notably Wisconsin and California) as an aid to design the study.

All the scoring and ranking was performed based on data available from existing studies and records. The amount and reliability of data varied among both pesticides and categories. For example, the quantity sold is known much more accurately than the leachability of a particular pesticide. Similarly, one pesticide can be used as either a foliar spray or applied to the soil, with different ground-water contamination potentials.

In developing the rankings and selecting sampling locations, a conservative approach was adopted: the "worst case" for any given element was used in the ranking, and wells in the most geologically sensitive locations were selected for sampling. However, new data are being developed by EPA and pesticides manufacturers, particularly on leachability, which may make the rankings less reliable.

The quantity, application, and leachability scores were each developed separately and then combined to yield a total score. The development of each score will be explained separately. Quantity and application scores were developed primarily by Pesticides Control Board staff, and leachability scores primarily by the Drinking Water Program.

As the Pesticides Work Group began to function, it immediately became clear that there was a need, due to time and financial constraints, to focus our attention on those pesticides that were both commonly used in Maine and that posed the greatest threat of contamination to ground water. We therefore scored and ranked commonly used, registered pesticides on three attributes: quantity of pesticide sold, method of pesticide application, and the leachability of the pesticide in soils.

Upon completion, the matrix included 44 pesticides. All 44 are being analyzed for in the first round of samples, after which the matrix and analyzed list will be refined.

The quantity of pesticide sold was categorized on a scale of 1-10 as follows:

1	=	0	-	5,000	lbs.	sold	6	=	30,000	-	40,000	lbs.	sold
2	=	5,000	-	10,000	1bs.	sold	7	=	40,000	-	50,000	lbs.	sold
3	=	10,000	Ξ	15,000	lbs.	sold	8	=	50,000	-	60,000	lbs.	sold
4	=	15,000	-	20,000	lbs.	sold	9	=	60,000	-	300,000	lbs.	sold
5	=	20,000	-	30,000	lbs.	sold	10	=	>	-	300,000	lbs.	sold

1984 Maine Agricultural Pesticide Sales

Generic Name of Pesticide	Lbs. of Active Ingredient Sold in 1984	Score	Principal Uses		
maneb (F)	500,000+	10	Potatoes, apples,		
			broccoli, vegetables, dried beans		
mancozeb (F)	581,987	10	Potatoes, apples.		
	5011501		broccoli, vegetables, dried beans		
dinoseb (H, TK)	323,224	10	Potatoes, peas, dried beans, vegetables		
chlorothalanil (F)	129,959	9	Potatoes, broccoli		
disulfoton (SI)	58,576	8	Potatoes		
phosmet (I)	57,910	8	Apples, potatoes, vegetables		
atrazine (H)	54-974	8	Forage corn, sweet corn		
methamidophos (T)	17.604	7	Potatoes		
aptan (F)	37 020	5	Annles good treat		
captan (r)	57,520	u	potatoes, vegetables		
beweginese (U)	77 540	6	Bluebownics		
hexazinone (h)	30,540	6	Biteberries		
dalapon (H)	52,457	0	Potatoes		
metribuzin (H)	24,980	2	Potatoes		
Linuron (H)	23,825	2	Potatoes		
azinphos-methyl (1)	18,033	4	Blueberries, apples, potatoes		
diquat (TK)	17,980	4	Topkill potatoes		
metolachlor (H)	14,242	3	Forage corn, sweet corn		
PCNB (STF)	13,059	3	Seed treat potatoes		
aldicarb (SI)	12,906	3	Potatoes		
E.P.T.C. (H)	12,847	3	Potatoes, dried beans, beans		
carbaryl (I)	12,145	3	Vegetables, sweet corn, potatoes, apples		
carbofuran (SI)	12,291	3	Forage corn, potatoes, vegetables		
metalaxvl (F)	11.899	3	Potatoes		
cvanazine (H)	10-684	3	Forage corn. sweet corn		
butrlate (H)	10,645	3	Forage corn, sweet corn		
alachlor (H)	10,250	3	Forage corn sweet corn		
demotion (T)	0,829	2	Oats potatoos applos		
demeton (1)	9,000	2	Vals, potatoes, appies		
giypnosate (h)	9,512	2	beans, vegetables		
endosulfan (I-SI)	8,420	2	Potatoes, apples, vegetables		
dodine (F)	7,341	2	Apples		
thiabendazole (STF)	6,429	2	Potatoes-seed treatment		
simazine (H)	5,985	2	Apples, forage corn, Christmas trees		
dichlone (F)	4.855	1	Apples		
napropamide (H)	4,734	1	Broccoli, strawberries,		
copper sulfate (F)	1.720	1	Apples		
trifluralin (H)	3,8/8	1	Peas, broccoli dried		
or it inter it (it)	9,040		heans veretables		

cupric hydroxide (F)	3,455	1	Apples, dried beans
benomyl (F)	2,597	1	Blueberries, apples,
			dried beans, straw-
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			berries
oxydemeton-methyl (I)	2,340	1	Potatoes, vegetables
diazinon (I)	2,205	1	Vegetables

KEY:

F =	fungicide	SI	=	soil incorporated granular insecticide
H =	herbicide	STF	=	seed treatment fungicide
I =	insecticide	TK	-	topkill

It should be noted that the top six pesticides are all used on potatoes, and that only 14 of this list are <u>not</u> used on potatoes.

The application method and timing is an important variable in determining the likelihood of ground-water transport. Clearly, a foliar application during July, a normally dry season, has less chance of reaching ground water than a spring soil injection of the same material. Each material was ranked based on its dominant use. The highest score would be generated by a soil incorporated pesticide (4) applied in the spring, during recharge (3) at a rate of 8 or more pounds per acre (3) for a total of 10. The lowest rating would be achieved by a foliar application (1) during the summer (1) at a rate of less than 3 lbs/acre (1); for a score of 3. Table 2 shows the results of the application rating.

Table 2

PESTICIDE	APPLICATION METHOD	TIMING	DOSE	SCORE
dalapon	3	3	3	9
E.P.T.C.	4	3	2	9
disulfoton	4	3	1	8
carbofuran	4	3	1	8
cyanazine	3	3	2	8
butylate	3	3	2	8
alachlor	3	3	2	8
aldicarb	4	3	1	8
napropamide	4	3	1	8
trifluralin	4	3	1	8
PCNB	2	3	3	8
dinoseb	2	2.5	3	7.5
hexazinone	3	3	1	7
metribuzin	3	3	1	7
linuron	3	3	1	7
metolachlor	3	3	1	7
glyphosate	3	3	1	7
simazine	3	3	1	7
atrazine	3	3	1	7
captan	1	3	3	7
thiabendazole	2 16	3	1	6

PESTICIDE APPLICATION RATING

manab or mancozeb	1	1	3	5
phosmet	1	1	. 3	5
copper sulfate	1	1	3	5
chlorothalanil	1	1	3	5
carbaryl	1	1	3	5
azinphos-methyl	1	1	2	4
diquat	1	2	1	4
methamidophos	1	1	2	4
endosulfan	1	1	2	4
dodine	1	1	2	4
dichlone	1	1	2	4
benomy1	1	1	2	4
metalaxyl	~ 1	1	1	3
demeton	1	1	1	3
cupric hydroxide	1	1	1	3
oxydemeton	1	1	1	3
diazinon	1	1	1	3

RATING KEY

APPLICATION METHOD	TIMING	DOSE (in maximum number of lbs./ acre/year)		
4 = Soil incorporated	3 = Spring	3 = 8 and above		
3 = Applied to soil	2 = Fall	2 = 3 - 8		
2 = Seed treatment 1 = Foliar application	1 = Summer	1 = 0 = 3		

The leachability score was subdivided into four parts. First, pragmatically, the pesticide was scored on whether it had been found in ground water. A pesticide found in ground water in Maine or on EPA's list of mobile pesticides received a 3.

Secondly, the pesticides were rated on laboratory water solubility on an exponential scale, with those soluble at greater than 300 ppm scored as 2. Thirdly, they were scored on their affinity for organic matter in soils, with a low affinity given 1 point. Finally, they were scored on their stability in the soil system. Sub-components of this score were soil degradation, hydrolysis and photo degradation, and laboratory and field half life. The maximum score was 4. Results of this ranking are shown on Table 4.

Table 4 .

CRITERIA FOR RATING LEACHABILITY

(1) Found in ground Water

MAX Score = 3

1 - Not found in groundwater, but has high leaching potential

- 2 Found in groundwater
- 3 On EPA known "leachers" list or has been found in ground water in Maine.
- (2) Solubility in water

0 - Less than 30 PPM 1 - Greater than 30 PPM 2 - Greater than 300 PPM

(3) Affinity for organic matter

MAX Score = 1

MAX Score = 1

MAX Score = 2

Kd (Soil/water adsorption coefficient) is less than 5 and usually less than 1 or 2. Koc (Kd divided by soil organic carbon content) is less than 300 - 500.

(4) Stability of pesticides

Soil degradation: MAX Score = 2 1 - Soil half life is greater than 2 to 3 weeks but less than 6 months. 2 - Soil half life is greater than 6 months.

Hydrolysis and photo degradation: MAX Score = 1 Hydrolysis half life is greater than 6 months or Photolysis half life is greater than 2 - 3 weeks.

Laboratory/field half life: Greater than 2 - 3 weeks

Pesticide Name		found in groundwater	solubility in water	stability in soils	affinity for organic matter	Total
1	Aldioanh	3	2	٨	1	10
2.	Combofumon	3	2	4	4	10
2.	Atroning	3	1	4	1	0
1.	Motnibugin	2	2	4	1	9
4.	Metholophlop	2	2	4	4	9
5.	Director	2	4	4	1	9
7	Alashlar	3	1	3	4	0
1.	Alachior	3	0	2	1	0
0.	Simazine		1	4		0
9.	Azinophos-meth	yr 5	2	2	0	7
10.	Inibendazoie	0	2	4	1	6
11.	Dinuron	0	2	4	1	6
12.	Paraquat	0	2	4	0	0
13.	Hexazinone	0	2	2	1	5
14.	Dalapon	0	2	4	1	2
15.	Metalaxyl	0	2	2	1	2
10.	Butylate	0	1	2	1	2
17.	Glyphosate	0	2	2	0	2
18.	Meneb	0	1	2		4
19.	Mancozeb	0	1	2	1	4
20.	E.P.T.C.	0	2	2	0	4
21.	Carbaryl	0	1	2	1	4
22.	Cyanazine	0	1	2	1	4
23.	Endosulfan	2	1	2	0	4
24.	Dodine	0	2	2	0	4
25.	Pentachloro- nitrobenzene	-	-	-	-	4
26.	Napropamide	-		-	-	4
27.	Oxydemeton	-	-	-	-	4
28.	Diazinon	-	-	-	-	4
29.	Endothal	-	17.0		-	4
30.	Malathion	-	-	-	-	4
31.	Methamidophos	0	1	1	1	3
32.	Permethrin	0	0	3	0	3
33.	Chlorothalinil	0	0	2	0	2
34.	Disulfoton	2	0	0	0	2
35.	Diquat	0	2	0	0	2
36.	Demeton	0	2	0	0	2
37.	Dichlone	0	0	2	0	2
38.	Triflualin	0	0	2	0	2
39.	Methomyl	0	0	2	0	2
40.	Benomyl	0	0	2	0	2
41.	Phosmet	0	0	0	0	0
42.	Captan	0	0	0	0	0

LEACHABILITY RATING

The scores were combined using a number of techniques in an attempt to develop a realistic ranking of likelihood for ground-water transport. The first attempt utilized a non-parametric, or ordinal, approach, which simply added ranks of pesticides, so that the lowest score was the most likely to be found in groundwater.. There were some objections that this did not fairly represent the range of variablity in the data, so later approaches used the actual scores from each ranking.

The scores of each pesticide for the four parameters were then put into a master matrix (Table 5). Column 1 of Table 5 ranks the pesticides in decreasing score. Column 2 is the pesticide name. Column 3 is the quantity sold score. Column 4 is the pesticide application score. Column 5 is the leachability score. Column 6 is the unweighted score, which is the average of the values in columns 3, 4, and 5. Column 7 is the analyzability of each pesticide, based on Maine Public Health Laboratory capabilities.

A decision was made to screen primarily for the top 20 pesticides. Work is underway to develop analytical methods for those pesticides for which a method is not now available. Pesticide in Ground Water Ranking Matrix

	rank	Pesticide Name	quantity	how	leachable	score	testable
	1.1			applied			
	1	dinoseb	10	1.5	8	8.50	yes
	2	atrazine	8	7	9	8.00	yes
	3	carbofuran	3	8	10	7.00 -	yes
	4	aldicarb	3	8	10	7.00	yes
	5	metribuzin	5	7	9	7.00	yes
1	6	dalapon	6	9	5	6.67	yes
	7	mancozeb	10	5	4	6.33	no
	8	maneb	10	5	4	6.33	no
	9	alachlor	3	8	8	6.33	yes
	10	metolachlor	3	7	9	6.33	?
	11	linuron	5	7	6	6.00	yes
	12	disulfoton	8	8	2	6.00	no
	13	hexazinone	6	7	5	6.00	yes
	14	simazine	2	7	8	5.67	no
	15	butylate	3	8	5	5.33	yes
	16	E.P.T.C.	3	9	4	5.33	yes
	17	chlorothalonil	9	5	2	5.33	yes
	18	azinphos-methyl	4	4	7	5.00	yes
	19	cyanazine	3	8	4	5.00	?
	20	PCNB	3	8	4	5.00	yes
	21	thiabenzadole	2	6	7	5.00	yes
	22	glyphosate	2	7	5	4.67	no
	23	methamidophos	7	4	3	4.67	no
	24 -	captan	6	7	õ	4.33	ves
	25	phosmet	8	5	0	4.33	ves
	26	napropamide	1	8	4	4.33	no
	27	carbaryl	3	4	4	3.67	ves
	28	metalaxvl	3	3	5	3.67	?
	20	trifluralin	í	8	2	3.67	ves
14	30	endosulfan	2	4	Ā	3.33	ves
	31	dodine	2	Ă	Ă	3.33	no
	32	diquat	Ā	Ă	2	3.33	no
	33	diaganon	1	3	1	2.67	Ves
2	31	avadametan	1	3	4	2.67	2
	35	Dagaguat	1	-	6	2.33	no
	36	benomyl	1	1	2	2.33	no
	37	demetor	2	3	2	2.33	no
	21	dichlono	1	1	2	2 33	no
	30	archione	1	5	-	2.00	Ves
	10	copper suitate	1	5	4	1.67	100
	40	endothai	4		4	1 67	Vec
	41	malathion	1		4	1 33	yes
	42	permethrin	1	7	2	1 33	TO
	42	cupric hydroxide		2	2	1.00	Jes
	44	methomyt			6	.00	110