

2000 ANNUAL REPORT

SACO RIVER **FISH PASSAGE ASSESSMENT PLAN**

SH 222

.M2

S34

2001

PREPARED IN ACCORDANCE WITH SACO RIVER FISH PASSAGE AGREEMENT ANNEX 1: ASSESSMENT CRITERIA

BY SACO RIVER COORDINATING COMMITTEE **MARCH 2001**

TABLE OF CONTENTS

Attachmentsii
Executive Summary1-2
Background3-4
2000 Activities and Plans for 2001:
Trends in Population Size and Biological Characteristics
Level of Recent Releases and Future Plans7-8
Fish Passage Efficiency8
Turbine Mortality8-9
Degree of Attrition Due to Multiple Barriers9
Habitat Suitability and Production Estimates
Degree and Location of Salmon Fallback10
Comparison of Saco River with Other Rivers10
Evidence of Limiting Factors10
Effectiveness and Trap and Truck11
Availability of Staff11
Interagency Coordination11-12

,

Attachments

.

	<u>Page</u>
1. Cataract, Springs and Bradbury Fishway Results - 2000	
2. Graphs of Anadromous Fish Counts in the Saco River, 1983-2000	14
3. Graph of Releases of Hatchery-Reared Atlantic Salmon, 1982-2000	15
 4. Releases of Trout, American Shad, and Salmon into the Saco River 1990	
5. DMR Activity Summaries – 2000 American Shad, River Herring, American Eels	32-34
6. Relative Utilization of Fishways	
7. Electrofishing Activity Summary	
8. Saco River – 2000: Water Temperatures and DO's	36-40
9. Comparison of Saco River with Other (East Coast) Rivers	41-42
10. Electrofishing Data for Saco River Tributaries	43-44

2000 ANNUAL REPORT SACO RIVER FISH PASSAGE ASSESSMENT PLAN

Executive Summary

Beginning in July 1993, stakeholders in the Saco River basin hosted a series of meetings to negotiate a consensus plan for the construction of fish passage facilities at dams on the main stem Saco. The Agreement includes specific deadlines and criteria for constructing upstream fish passage facilities at Cataract and Skelton and provides assessment criteria for scheduling construction of upstream fish passage at Bar Mills, West Buxton, Bonny Eagle, Hiram, and Swans Falls. This report summarizes progress made towards addressing these criteria in 2000.

STATUS OF ADULT RETURNS AND HATCHERY RELEASES

There were no major operational problems involving upstream passage at the East and West Channel dams of the Cataract Project. Fish passage facilities in the form of locks continued for the fourth year at Springs and Bradbury dams. Fish passage efficiencies for American shad at Springs and Bradbury continued to be disappointingly low; returns of Atlantic salmon, river herring, and American shad are presented in Attachment 2 for the period 1993-2000.

Shad returns (1,323) were the third highest on record. In 2000, approximately 410 American shad were passed at Cataract during fish passage efficiency investigations at Springs and Bradbury, while 769 were trucked above these dams and 144 were taken to the Waldoboro shad hatchery. For the third consecutive year, adult shad were taken as broodstock, resulting in a release of 259,090 shad fry below Bar Mills.

River herring returns (25,136) were the second highest since 1993 when records were first maintained. These returns were about 6,000 less then the previous high of 31,070 in 1999, but much higher than the 1993-1999 average of 9,300. An unusual event in 2000 was that 18,694 -- 74% of the entire run -- were passed on June 2. A total of 16,693 alewives were transported to Skelton headpond.

In 2000, there were 50 documented returns of adult Atlantic salmon. While less than that of 1999, this was above the average of 42 for the 1993-1999 period. Atlantic salmon releases from 1990-2000, as well as corresponding adult returns, are presented in Attachments 2 and 3. Numbers of parr and smolts released have remained constant over the years, while releases of fry hatched by the Saco River Salmon Club have increased dramatically.

Several assessment criteria such as turbine mortality, attrition at multiple dams, and fallback were deferred for this assessment cycle and not specifically addressed during 2000.

The Saco River Anadromous Fish Restoration Program continues to be one that stresses partnerships among state and federal government agencies, nongovernment agencies, and the Licensee. FPL Energy (FPLE) and nongovernment agencies, such as the Saco River Salmon Club, provide the major initiatives behind this program, as the agencies are not funded to implement it adequately. The Saco River Coordinating Committee, through the Fisheries Agencies Advisory Committee, completed the final assessment and report for the 1996-1999 cycle in 2000.

2000 ANNUAL REPORT SACO RIVER FISH PASSAGE ASSESSMENT PLAN

Background

Beginning in July 1993, Central Maine Power Company (now FPL Energy) hosted a series of meetings to negotiate a consensus plan for fish passage facilities at dams on the main stem of the Saco River. The incentive for this plan was to assist in restoring populations of anadromous fish, including Atlantic salmon, American shad, and river herring; provide a structured, cooperative planning process; and determine how to best utilize available resources. Participants included Central Maine Power Company (CMP); Swans Falls Corporation; the U.S. Fish & Wildlife Service (USF&WS); the National Marine Fisheries Service (NMFS); the Maine Atlantic Sea-Run Salmon Commission (MASRSC), currently known as the Maine Atlantic Salmon Commission (MASC); the Maine Departments of Marine Resources (DMR), Inland Fisheries & Wildlife (IF&W), Environmental Protection (DEP), and State Planning Office (SPO); the Cities of Saco and Biddeford (Cities); a coalition of nongovernmental conservation organizations including the Saco River Salmon Club, Trout Unlimited, the Maine Council of Trout Unlimited, the Atlantic Salmon Federation, the Maine Council of the Atlantic Salmon Federation, and American Rivers, Inc.; the New Hampshire Department of Fish & Game; the Biddeford-Saco Water Company; and the Maine Energy Recovery Company.

The Saco River Fish Passage Agreement, dated May 24, 1994 (the Agreement), was signed by Central Maine Power Company (CMP), Swans Falls Corporation, and 15 other parties, including state and federal fisheries agencies, the Cities of Saco and Biddeford, and a coalition of conservation organizations to settle licensing issues relating to fish passage at seven hydroelectric projects on the main stem of the Saco River. The Agreement includes specific deadlines and criteria for constructing upstream fish passage facilities at Cataract and Skelton and provides conditions for scheduling construction of upstream fish passage at Bar Mills, West Buxton, Bonny Eagle, Hiram, and Swans Falls. Sections 6 and 14 of the Agreement require state and federal fisheries agencies to develop criteria for use in future assessments "to determine the need for timing and design of interim and permanent upstream fish passage facilities at Bar Mills, West Buxton, Bonny Eagle, Hiram, Mills, West Buxton, Bonny Eagle, Hiram, and Swans Falls.

In 1995, the agencies and other parties to the Agreement developed a document entitled, *Annex 1: Assessment Criteria of the Saco Fish Passage Agreement* (the Annex). The Annex is intended to address only upstream fish passage facilities or measures. As described in the Annex, a Coordinating Committee comprised of representatives of all the parties to the Agreement is responsible for implementing the assessment process. In addition, a Fisheries Agency Assessment Committee (FAAC) comprised of the Maine Atlantic Salmon Commission, the Maine Departments of Marine Resources and Inland Fisheries & Wildlife, the U.S. Fish & Wildlife Service, the National Marine Fisheries Service, the U.S. Forest Service, and the New Hampshire Fish & Game Department, functions as the Executive Committee for the full Coordinating Committee. Typically, the FAAC prepares recommendations for the Coordinating Committee to review, revise, and accept by consensus.

The assessment process is designed around a four-year planning/data collection/ assessment cycle. The purpose of the four-year cycle is to plan for and collect appropriate data to prepare an Assessment Report in the fourth year, based on defined assessment criteria. The first cycle began in 1996 and ended in 1999, with an Assessment Report completed in 2000. The second cycle began in 2000 and ends with an Assessment Report in 2003. The criteria of the Saco Fish Passage Agreement for 2000-2003 was not completed by 2000; the Assessment for 2000 addresses the criteria established for 1996-1999. Additional cycles will be completed in 2007 and 2011.

This **2000** Annual Report of the Saco River Coordinating Committee has been developed as part of the assessment process and leads toward the four-year 2003 Assessment Report. Its purpose is to document the status and progress of anadromous fish restoration on the Saco River for 2000 and to outline projected activities for 2001. In addition, proposed modifications to the Assessment Plan and process are noted for incorporation into future assessment cycles.

The annual meeting of the Saco River Coordinating Committee was held on March 21, 2001, at the Department of Marine Resources office in Hallowell, Maine, from 9:30AM to 2:30PM. Objectives of the meeting were to:

- a) review study results from 2000
- b) develop a work plan for 2001
- c) develop format and content of 2000 Annual Report
- d) discuss and refine the assessment criteria for 2000-2003 cycle

Minutes of the March 21, 2001 meeting were prepared by the Chairman and are on file. Attendees included: Sandra Lary (NRCS); Francis Brautigam (IF&W); Michael Brown, Tom Squiers, Lew Flagg (DMR); Paul Christman, Norm Dube, Joan Trial (ASC); Matthew LeBlanc, Bob Richter (FPL); Jerry Marancik, Larry Miller, Dave Bean, Ken Sprankle (USF&WS); and Mark Woodruff (Saco River Salmon Club). Anadromous fish restoration activities for 2000 on the Saco River, as they address the following assessment criteria, are:

A. <u>Trends in Population Size and Biological Characteristics - 2000</u>

Matt LeBlanc distributed and reviewed the "2000 Cataract, Springs, and Bradbury Fishway Monitoring Results" (Attachment 1)

East Channel Fish Passage:

Upstream Passage

Opened May 1; Closed October 27, 2000

River Herring

23,112 river herring were counted May 4 - June 19: 16,391 were trucked above Skelton; 3,316 were trucked above Springs and Bradbury; and 3,405 were passed.

American Shad

1,049 American shad were counted June 2 - July 21: 769 were trucked above Springs and Bradbury; 136 were passed; and 144 were transported to the Waldoboro hatchery.

Atlantic Salmon

30 Atlantic salmon were counted from May 27 - September 18: 12 were trucked, 16 were passed, and two were mortalities.

West Channel Fish Passage:

Upstream Passage

Opened May 1; Closed October 27

River Herring

2,024 river herring were passed from May 7 - June 27

American Shad

274 American shad were passed from June 1 - July 5

Atlantic Salmon

20 Atlantic salmon were passed from May 11 - October 20

Springs and Bradbury:

<u>Upstream Passage</u>

Both upstream passages were open from May 11 - October 27

River Herring

A total of 5,429 river herring were passed through the East and West Channels: 2,809 were detected by an underwater video camera at Springs (52%); 339 were detected by an underwater video camera at Bradbury (6%).

American Shad

A total of 410 American shad were passed through the East and West Channels: 10 were detected by an underwater video camera at Springs (2%); 4 were detected by an underwater video camera at Bradbury (1%).

Atlantic Salmon

A total of 36 Atlantic salmon were passed through the East and West Channels: 3 were detected by an underwater video camera at Springs; 4 were detected by an underwater video camera at Bradbury.

Additional activities are contained in the **2000 Cataract Fishways Report**, which was distributed and is available from FPL. The new fish locks at Springs and Bradbury dams became operational in 1997, but have experienced a number of problems. In 2000, the efficiency of the locks for passing fish was still not as expected. The levels of known adult returns for Atlantic salmon, American shad, and river herring for the years 1993-2000 are presented in Attachment 2.

Electrofishing data collected in tributary streams indicated poorer survival of age 0+ salmon in comparison to 1999. However, age 1+ parr numbers were higher in 2000 than in 1999. The Saco River Salmon Club presented electrofishing data collected from sample activities conducted in Saco tributaries; population estimates are presented in Attachment 7.

DMR released 259,000 American shad fry into the Saco River below Bar Mills to compensate for the 144 adults transferred to the Waldoboro hatchery.

Plans for 2001

FPL will continue to identify and enumerate all species utilizing the Cataract fish passage facilities. The first 15,000 river herring will be passed upstream to evaluate the effectiveness of the Springs and Bradbury fish locks. Alewives will be trapped at the East side lift and trucked to the Skelton headpond until the escapement rate of 35/acre is reached; alewives will then be trucked and released above Springs and Bradbury.

The first 500 American shad will be passed to evaluate the effectiveness of the Springs and Bradbury fish locks. American shad will be trapped, trucked, and released to the river segment above Springs and Bradbury.

Atlantic salmon will be trapped/trucked and released into the Ossipee River, with some allowed to swim freely into the Cataract impoundment, depending upon water temperatures. Once the Skelton fish lift is operational, all Atlantic salmon will be allowed to swim freely into the Cataract impoundment. In addition, alewives, shad, and salmon using the West Channel fishway will be allowed to swim freely upriver. FPL requested that it be allowed to pass a limited number of striped bass at the East Channel in order to facilitate the passage of Atlantic salmon into upstream habitats. The majority of striped bass passed would be in the 12-25 inch range and passage upstream would occur only when it would be impractical to easily separate the Atlantic salmon from the large numbers of stripers. IF&W has no objections at this time, provided this practice is used sparingly.

Monitoring studies will continue at the Springs and Bradbury fish locks. Work proposed at this site for 2001 include continued underwater video, flow alteration/ direction, and lighting. FPL proposed to pass 100-150 cfs into the tailrace of the upper dam (lock) to encourage shad passage. As previously stated, the first 500 American shad will be passed to evaluate the effectiveness of these modifications. Also, the first 15,000 river herring will be passed upstream.

For the 2001 field season, the MASC will be coordinating efforts with Saco River Salmon Club members, FPL, and USF&WS personnel to increase the number of Atlantic salmon fry stocking assessments. Three of the five Saco River tributaries that have been assessed will be discontinued and five new streams will be added.

B. Level of Recent Releases and Future Plans – 2000

In 2000, the Saco River Salmon Club released 599,000 Atlantic salmon fry into the Saco River and its tributaries; releases from 1990-2000 are graphically presented in Attachment 3. A spreadsheet summarizing releases of trout, American shad, Atlantic salmon, and landlocked Atlantic salmon in the Saco River (NH and ME) for the years 1990-2000 is included in Attachment 4. The 2000 report of the Saco River Salmon Club hatchery activities is also included in this attachment.

A summary regarding management activities for American shad and river herring, including a summary of American shad broodstock taken and released as they pertain to the Saco River, is included in Attachment 5.

Plans for 2001

Representatives from the state agencies, as well as the Saco River Salmon Club, will continue to examine potential conflicts between different fish stocking and management programs. Traditionally, 20,000 smolts have been allocated to the Saco River for fish passage evaluation and adult return enhancement. However, with low adult salmon returns to the Penobscot River in 2000, the Craig Brook National Fish Hatchery broodstock program did not meet its target of 600 spawners. Thus, the MASC recommended that smolts reared at the Green Lake National Fish Hatchery be stocked into the Penobscot. It is also unlikely that the Saco River will receive any parr in 2001. Approximately 748,000 Atlantic salmon fry will be stocked in the Saco River Salmon Club, USF&WS, and MASC.

Tom Squiers (DMR) recommended that up to 10% of the adult American shad collected at the Cataract Project be allocated for use as broodstock in the Waldoboro hatchery. As mitigation for the removal of the adult shad from the Saco River system, it was recommended that 1,600 fry per adult removed be stocked into the Saco below Bar Mills. The rationale for this number was based on the number of adults returning to the Susquehanna River from hatchery releases (one adult per 400 fry released). It was also agreed that the natural expansion of the shad run might occur at a rate of 4:1 and thus, the fry release was quadrupled to maintain the projected expansion rate.

C. Fish Passage Efficiency - 2000

Proportional use of East and West Channel fish passage facilities for river herring, American shad, and Atlantic salmon are presented in Attachment 6. Fish lock effectiveness at Springs and Bradbury was lower than anticipated and could be attributed to a number of factors: flows through the Springs and Bradbury gates, which compete with those of the fish lock; possible natural passage through Springs and Bradbury gates; behavioral problems, such as inadequate imprinting to upriver locations; fallback to the estuary after exiting the East Channel fishway; or mechanical and/or flow problems associated with fish lock operation. Additional studies will be conducted in 2001 to gather information to help identify the reasons for low passage effectiveness.

Plans for 2001

Work proposed at this site for 2001 include continued underwater video, flow alteration/direction, and lighting. FPL proposed to pass 100-150 cfs into the tailrace of the upper dam (lock) to encourage shad passage. The first 500 American shad will be passed to evaluate the effectiveness of these modifications. In addition, the first 15,000 river herring will be passed upstream.

D. Turbine Mortality - 2000

The 1999 turbine survival studies at the West Buxton Project documented a 97% survival rate at Unit #6 (fixed propeller type) and an 85% survival rate at Unit #4 (Francis type) for salmon smolts. Passage through the bypass sluice combined with passage through the turbines accounted for a total projected salmon smolt passage survival rate of 96% during the 1999 studies.

The turbine survival study was methodically conducted utilizing state-of-the-art methods (i.e., Normandeau Associates HI-Z Turb'Tag) conducted under turbine flow settings representative of normal project operations for the project's fixed propeller and Francis units. The data collected mirrors that of numerous other turbine survival studies conducted throughout the country that documents that salmon smolt survival through fixed propeller units is generally over 90% and survival through Francis units is generally 80-85%. FPL believes that the West Buxton turbine survival study is complete and provided valuable information that helps us understand and evaluate all potential downstream passage options at the project.

Plans for 2001

Turbine studies will be conducted at Bar Mills in 2001. Tagging and release techniques will follow those used by Normandeau Associates for other turbine survival tests (Normandeau Associates, et al, 1996a; Normandeau Associates and Skalski, 1999) and elsewhere (Heisey, et al, 1992; Mathur, et al, 1996; Normandeau Associates, et al, 1995, 1996b, c, d). Fish anesthetized with MS 222 will be equipped with two uninflated balloon tags; tags will be attached by a stainless steel pin inserted through the musculature beneath the dorsal and adipose fins. Prior to releases through the induction apparatus, fish will be allowed to recover from anesthesia; they will then be placed individually into the induction system holding tub, tags will be activated, and the fish released. Operating conditions at the time of fish release will be recorded.

All tagged fish will be released via an induction apparatus that consists of a 75-liter holding basin attached to a 10-centimeter diameter hose. A continuous flow of river water is supplied to ensure that released fish move quickly through and exit the induction hose. Fish will be released into the Unit 2 intake at a point where they are fully committed to turbine passage. The release hose or pipe will be supported and secured to withstand the hydraulic forces.

A total of two separate turbine survival tests, each utilizing 30 fish, will take place. The two tests will evaluate the turbine survival of salmon smolts at the Unit #2 propeller unit under 100% and 50% gate. Additionally, 30 fish will be used to gather information on handling mortalities associated with tagging technique. Fish will be retrieved downstream of the station by boat crews. Recaptured fish will be placed into an on-board holding facility and tags removed; each fish will be examined for descaling and injuries and held for 48 hours to evaluate any delayed mortalities.

A draft report regarding the results of the study will be submitted to agency personnel for review and comment by January 31, 2002. The final report, including agency comments, will be submitted to FERC by March 31, 2002.

E. Degree of Attrition Due to Multiple Barriers - 2000

Nothing was done in 2000.

Plans for 2001

FPL will begin collecting data in 2001.

F. Habitat Suitability and Production Estimates - 2000

River temperatures and dissolved oxygen in the Saco River at the Cataract Project are reported in Attachment 8. Evaluation of the spring 2000 fry stocking of more than 615,000 fish was completed from August 16 -18, 2000 by U.S. Fish & Wildlife Fisheries Biologist David Bean, assisted by Florida Power and Light Company Biologist Matt LeBlanc and Technicians Dan Breed and Tim Arienti. Members from the SRSC and ASC Biologist Greg Mackey also assisted with collecting data for this year's survey. The preliminary data collected shows good survival of young-of-theyear salmon (YOY) as well as good numbers of parr in the sites surveyed. The data is presented in Attachment 10.

Plans for 2001

To aid in future management decisions, habitat surveys will be initiated in the 2001 field season. The MASC and USF&WS will work with Saco River Salmon Club members to coordinate quantitative habitat surveys on several tributaries that are currently part of the fry stocking program. Electrofishing data will continue to be collected and compiled at approximately the same level as in the past.

<u>Water quality:</u> FPL will continue to collect data, but will not be collecting in the upper Saco or Ossipee Rivers; IF&W will continue to monitor temperatures in the Ossipee River.

In the summer of 1999, the first phase of a habitat improvement project below Skelton Dam was completed. Three four-foot boulders and two boulder clusters were placed along the west side of the river in a 500-foot stretch of river located upstream from where redds were observed during the past few years. This project was outlined in the **Skelton Project - Draft Salmonid Habitat Enhancement Plan**.

G. Degree and Location of Salmon Fallback - 2000

No studies conducted.

Plans for 2001

No studies planned, but FPL will collect incidental data.

H. Comparison of Saco River with Other Rivers - 2000

FPL continued to add annual data to the Program Comparison Table, presented in . Attachment 9.

Plans for 2001

Development of spreadsheets as presented in Attachment 9 will continue and be presented in the 2000-2003 Assessment Report.

I. Evidence of Limiting Factors - 2000

Some of these potential limiting factors were already discussed (i.e., water quality, interspecific interactions, etc.), but there were no specific studies addressed or discussed.

Plans for 2001

Deferred for this cycle; however, anecdotal information will continue to be compiled.

J. Effectiveness and Trap and Truck - 2000

Trap and truck appears to be effective in dealing with the low numbers of fish currently returning each year.

Plans for 2001

Electrofishing surveys for juvenile Atlantic salmon may be conducted to document fry resulting from natural reproduction.

K. Availability of Staff - 2000

<u>Atlantic Salmon Parr Electrofishing:</u> FPL personnel and Saco River Salmon Club members have been assisting USF&WS staff in electrofishing for salmon parr in the upper Saco River tributaries.

<u>Public Tours at the Cataract Fishways</u>: Public tours were again made available in 2000. Open public tours were given five days a week from May 15 to June 30, while educational and recreational group tours were provided throughout the year. Total tour numbers exceeded 1,200 people. Many group and individual tours commented that the Visitors' Center was a nice informative beginning to their fishway tour experience. A facility such as this has become a key tool in educating the public about the fishways and the Saco River in general.

<u>Atlantic Salmon Federation Fish Friends Program:</u> Again this year, FPL personnel will be assisting in the ASF's Fish Friends Program. This project distributes salmon eggs and incubators to local schools. Volunteers provide guidance and knowledge to school children about the Atlantic salmon's life cycle and history. Often a follow-up trip to the Cataract fishways rounds out the activity.

<u>Upper Saco River Water Quality Data:</u> FPL personnel have gathered dissolved oxygen and water temperature data on the Saco and Ossipee Rivers to assist in future evaluations of upper Saco River stocking sites, spawning locations, and yearto-year trends.

Plans for 2001

The MASC will increase its involvement by aiding in juvenile assessments, fry stocking, and overall handling protocols of adult salmon in the Saco River. Operations will continue to be on the same level as in past years of this assessment cycle. Program participants will continue to use a "partnership approach."

L. Interagency Coordination – 2000

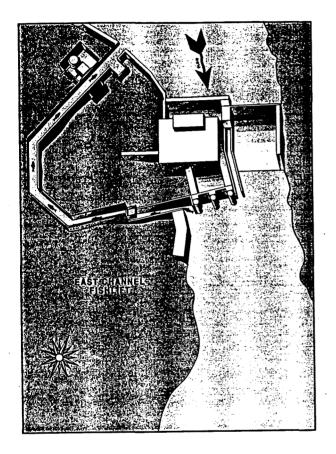
The Saco River Salmon Club, USF&WS, MASC, and IF&W continue to work closely on the Atlantic salmon restoration program on the Saco River.

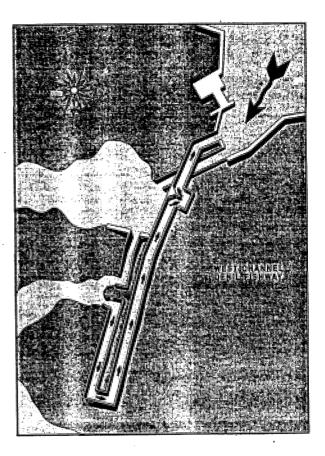
<u>NRCS Saco River Watershed Activities</u>: The Saco River Watershed received funds from the NRCS Environmental Quality Incentive Program (EQIP) to reduce nonpoint source pollution. Agriculture contributes to nonpoint pollution in the watershed due

to poor fertilizer and pesticide handling, soil erosion, improper manure handling and storage, and loss of riparian vegetation. Improvements to riverine habitat will result from installing waste storage and pesticide handling facilities, planting cover crops

on fields, and irrigation water management. Stream bank restoration, protection, and stabilization can also be conducted to improve habitat for fish and wildlife.

The three NRCS Conservation Districts in Oxford, Cumberland, and York Counties are currently working on U.S. Forest Service and Outdoor Heritage Sensitive Areas program grants that were provided for the Saco River riparian buffer restoration and enhancement projects. In 2001, funds were set aside for anadromous fish restoration projects in Oxford, Cumberland, York, and Androscoggin Counties from the NRCS Wetlands Habitat Incentive Program (WHIP). New Hampshire's Department of Fish & Game and the U.S. Forest Service are not actively participating in the program at this time, but are generally supportive.


Plans for 2001


The Saco River Salmon Club, USF&WS, MASC, and IF&W will continue to work closely on the Atlantic salmon restoration program on the Saco River.

ATTACHMENT 1

Cataract, Springs and Bradbury Fishway Results - 2000

2000 Cataract Fishways Report

A Report on the Operation of FPL Energy s Cataract Fishways Saco River, Maine FERC No. 2528

Prepared by FPL Energy Maine Hydro LLC

March 2001

	lumber
Executive Summary 1	
1.0 Introduction	
1.1 Operations of the Cataract East Channel Fishway 2	
1.2 Operation of the Cataract West Channel Fishway	
2.0 River Herring, American Shad, and Atlantic Salmon Information	
2.1 River Herring - East Channel	
2.1.1 River Herring Trap and Transport Operations	
2.1.2 River Herring Biological and Fishway Mortality Data	
2.2 American Shad - East Channel 10	0
2.2.1 American Shad Trap and Transport Operations	3
2.2.2 American Shad Biological and Fishway Mortality Data	4
2.3 Atlantic Salmon - East Channel	4
2.3.1 Atlantic Salmon Trap and Transport Operations	•
2.3.2 Atlantic Salmon Biological Data	•
2.4 River Herring - West Channel	9
2.5 American Shad - West Channel 21	1
2.6 Atlantic Salmon - West Channel	1
2.6.1 Atlantic Salmon Biological Data	1
2.7 Downstream Fish Passage - East and West Channel	5
2.7.1 Salmon Smolts	5
2.7.2 Post-spawned River Herring	5
2.7.3 Post-spawned American Shad 25	-
2.7.4 Post-spawned Atlantic Salmon 27	_
2.7.5 Juvenile Clupeids 27	7
3.0 Non-Target Fish Species	7
3.1 East Channel Fishway 28	-
3.2 West Channel Fishway 29	9
4.0 Skelton Fishway Monitoring 29	9
4.0 Sketton Fishway Montoning	29
4.1 Fost-Spawnice River Herring	
5.0 Atlantic Salmon Redd Survey 30	0
6.0 2001 Fishway Operations	0
6.1 Upstream Passage	1
6.2 Downstream Passage	2

. .

, '

.

TABLE OF CONTENTS

LIST OF FIGURES

Figure 1	Cataract Project Location Map	3
Figure 2	Saco River Basin Map	5
Figure 3	East Channel Lower Flume Underwater Camera Location	12

LIST OF TABLES

Table 1	Daily and Monthly Totals of River Herring	
	Ascending the East Channel Fishway, 1993-2000	8
Table 2	Daily and Monthly Totals of American Shad	
	Ascending the East Channel Fishway, 1993-2000	11
Table 3	Daily and Monthly Totals of Atlantic Salmon	
	Ascending the East Channel Fishway, 1993-2000	15
Table 4	Atlantic Salmon Biological Information	
	East Channel Fishway, 2000	18
Table 5	Daily and Monthly Totals of River Herring	
	Ascending the West Channel Fishway, 1993-2000	20
Table 6	Daily and Monthly Totals of American Shad	
	Ascending the West Channel Fishway, 1993-2000	22
Table 7	Daily and Monthly Totals of Atlantic Salmon	
	Ascending the West Channel Fishway, 1993-2000	23
Table 8	Atlantic Salmon Biological Information	
	West Channel Fishway, 2000	24
Table 9	Non-target Fish Species Ascending	
	the East and West Channel Fishways, 2000	28

ATTACHMENTS

Attachment 1

Executive Summary

In 2000, the Cataract fishways (East Channel fishlift and West Channel Denil) were operated by personnel from FPL Energy's Hydro Operations division (FPLE) and Unity College students.

These fishways were built to pass anadromous target species (Atlantic salmon, American shad, and river herring) as part of resource agency plans to restore these species to the Saco River. 2000 marked the seventh full year of operation of the Cataract fishways.

In 2000, the East Channel fishway successfully passed 23,112 river herring, 1,049 American shad, and 30 Atlantic salmon; and the West Channel fishway successfully passed 2,024 river herring, 274 American shad, and 20 Atlantic salmon.

Currently, remnant populations of American shad and river herring appear to be large enough to serve as the necessary brood stock for Saco River restoration purposes without resorting to outof-basin transfers of adults to the Saco River. The Saco River has the largest documented American shad run in the state of Maine and is an important source of brood stock for shad restoration on the Kennebec River. At this time, the small run of Atlantic salmon returning to the Saco River consists mainly of hatchery strays from other rivers and possibly small numbers of wild fish. In the future, increased Saco River Salmon Club (SRSC) fry releases and natural spawning should increase the local component of the Saco River run.

Data contained in this report and other studies will be used as a basis for meeting the requirements of the Saco River Fish Passage Agreement and Saco River Fish Passage Assessment Plan (2000-2003).

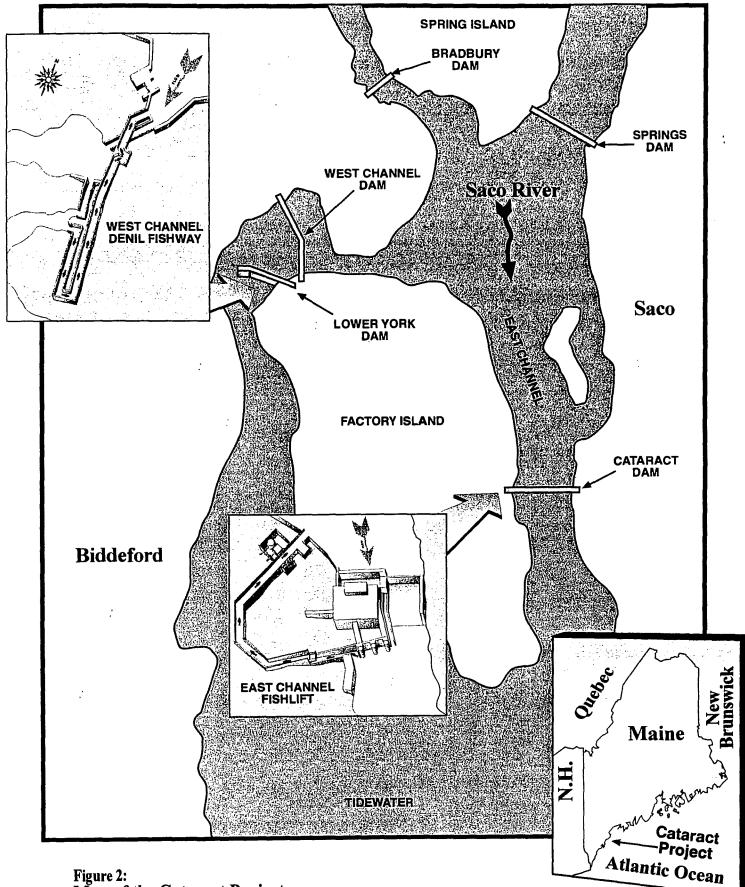
1.0 Introduction

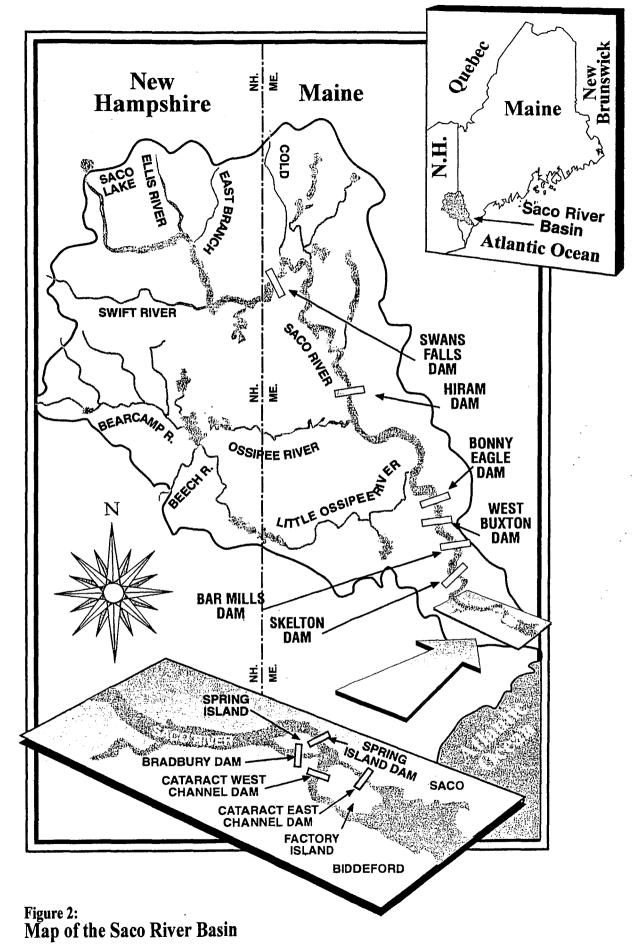
The Cataract Project is located on the Saco River in the cities of Biddeford and Saco and in the towns of Dayton and Buxton in the state of Maine. The project is licensed by the Federal Energy Regulatory Commission (FERC No. 2528) and is owned by FPLE. The project includes the Cataract (East Channel) Dam and East Channel fishlift and an integral intake powerhouse containing a single turbine generator on the northeastern side of Factory Island in the City of Saco; and the West Channel dam and Denil fishway in the cities of Saco and Biddeford (see Figure 1). The impoundment formed by these dams extends upriver in the cities of Biddeford and Saco about 0.3 mile to another set of dams at Spring Island (see Figure 1), referred to as Bradbury and Spring Island dams. Newly completed fishlocks at these two dams were first operational in June 1997. The impoundment formed by these dams extends upriver approximately 9.3 miles through the cities of Biddeford and Saco and the towns of Dayton and Buxton to FPLE's Skelton Project.

In 2000, the Cataract fishways were operated by personnel from FPLE's Hydro Operations division and Unity College students. These fishways were built to pass anadromous target species (Atlantic salmon, American shad, and river herring) as part of resource agency plans to restore these species to the Saco River. 2000 marked the seventh full year of operation of the Cataract fishways. Although fishway construction was completed in the spring of 1993, the fishways were not completely operational until June 2, 1993 (East Channel) and June 25, 1993 (West Channel). Subsequently, 1993 did not constitute a full year of operation.

1.1 Operation of the Cataract East Channel Fishway

The fishways at the Cataract Project are designed to operate up to river flows of 11,000 cubic feet per second (cfs). The fishway at the East Channel dam consists of a lower entrance flume and crowding area, a 45-foot high fishlift or elevator, and an upper exit flume leading to the impoundment. Upper flume water flow is approximately 40 cfs with a




Figure 2: Map of the Cataract Project

velocity of 1 feet per second (fps). Total attraction water flow is approximately 80 cfs with an entrance velocity averaging 5 fps. In an effort to enhance fish passage in 1995, the East Channel fishlift attraction water system was reprogrammed to shut off water flow to the lower flume downstream attraction water diffuser and increase water flow to the upper diffuser. This change increased velocity in the lower flume and eliminated the upwelling flow from the lower diffuser. The modification proved successful in 1995, and has been continued since. (See 1995 Cataract Fishway study report section 4.4 for more detailed information on water flow modification and fish passage observations made at the East Channel fishlift.)

A counting window and sorting, trapping, and trucking facilities are located near the exit of the upper flume. Fish can be released to swim into the Cataract impoundment or can be transported to upstream locations (i.e. Springs and Bradbury impoundment for shad, Skelton impoundment for river herring and the Ossipee River for salmon, see Figure 2). Fish transport takes place in one of two stocking trucks assigned to the fishway. The trucks are equipped with 1,000-gallon circular fiberglass insulated tanks with aeration systems utilizing bottled oxygen and water pumps that circulate water in the tanks.

In 2000, the East Channel fishway was opened on May 1, and ran trouble free until August 11 when a supporting post on the base of the lower flume crowder broke. The lower flume area was drained and the crowder was repaired. Operations resumed on August 21, 2000 and ran trouble free until it was closed for the season on October 27. During the fall, leaves, grass or other debris create fishway operational problems at East Channel. This debris becomes lodged on a flow meter and causes the programmable logic controller (PLC) to actuate an alarm. To prevent nightly visits to the fishways, East Channel fishway flows were shut down nightly from about 3:00 p.m. until about 7:30 am for the last two weeks in October.

4

Two hinged flashboards have been used to facilitate downstream passage at the Cataract facility since 1997. The boards are dropped when adequate numbers of fish appear in the headpond area and fishway personnel are stationed to observe downstream passage. Results of these observations indicate that downstream passage is accomplished by this technique and will be continued in the future.

1.2 Operation of the Cataract West Channel Fishway

The 550-foot-long Denil fishway at the West Channel is 4 feet wide with a 1-foot vertical by 8-foot horizontal slope. The minimum depth of water in the fishway is 2.5 feet with a minimum flow of 12 cfs. The maximum attraction water flow is 33 cfs with an entrance velocity 2 to 6 fps. A counting window and associated trapping structures are located near the exit of the fishway and target species can swim freely into the Cataract impoundment. A floating trash boom was installed in front of the West Channel exit to help keep floating debris from entering the fishway.

In 2000, the West Channel fishway was opened on May 4 and remained in operation (other than very limited down time for general repairs and maintenance) until October 27 when it was closed for the season.

The West Channel flashboards were lost in early April of 2000 and were replaced on June 5. Replacement of flashboards involves drawdown of the headpond to allow hydro workers access to the dam structure. Once the drawdown was completed five FPLE fishway personnel surveyed the area in an attempt to locate stranded fish. Approximately 100 American shad were found stranded below Lower York dam in a tidal area. The majority of the fish were seined out and returned to the tailrace while the remaining fish were monitored until the tide had risen sufficiently to allow exit. Prior to flashboard replacement, West Channel flows continued to pass over the flashboard section (spillway) and occasionally through the West Channel Gate. River flows exiting the West Channel gate and spillway tended to stay towards the opposite side of the river from the fishway entrance location. During this time, most fish migrating up the West Channel were attracted to this location and not the fishway entrance.

The following biological data have been compiled to provide a summary of fishway monitoring information collected at the Cataract fishways in 2000. East and West Channel water temperature, air temperature, and Saco River flow data for 2000 are provided in Attachment 1. Saco River flow data were obtained from USGS gauge in Cornish, Maine and adjusted to reflect downstream tributary flows.

2.0 River Herring, American Shad, and Atlantic Salmon Information

During 2000, fishway operations concentrated on successfully passing and/or transporting target species (Atlantic salmon, American shad, and river herring) slated for restoration on the Saco River.

2.1 <u>River Herring - East Channel</u>

In 2000, a total of 23,112 river herring successfully ascended the East Channel fishlift. The first river herring were lifted on May 4 (see Table 1) when river water temperature was 11.5°C. and the last river herring was lifted on June 19, when river water temperature was 18.5°C. The river herring run encompassed a 47 day period. The peak of the run occurred during May 31 through June 2, when 19,740 fish passed, representing 85% of the river herring passing the East Channel. Maximum daily passage occurred on June 2, when 18,694 river herring were lifted.

The river herring daily lift schedule was adjusted manually by fishway personnel depending on the number of fish observed and the time of the run. This schedule maximized fish

7

TABLE 1

DAILY AND MONTHLY TOTALS OF RIVER HERRING ASCENDING THE CATARACT EAST CHANNEL FISHWAY 1993-2000

-

1				M	AY			<u> </u>		<u> </u>		JU	NE			JULY											
DAY	1993	1994	1995	1996	1997	1998	1999	2000	1993	1994	1995	1996	1997	1998	1999	2000	1993	1994	1995	1996	1997	1998	1999	2000			
1										100	171	4876	7		1084												
2						6			260		55	554	1		33	18694	14										
3					1				280		130				5	130	1										
4			31					29	6	66	1161		251	2	6	50											
5							5	32	103				178	102		1											
6							23	40	81	27					35	150											
7							50	9	37			70	292														
8			20				42	330													1						
9				2		19	40	374		90	196				3		11		•								
10						8	404	8		14							4										
11			11	3			480	7					2			75											
12						65	36	3									9										
13					1	43	1099	77		11			3														
14					9	175	7	11																			
15			266		15	355	420	1																			
16					4	580	1700	52																			
17		4		5		720	3387	200			146										3						
18			18				27	191	1							2	8										
19		2	27		1	38	728	570				1				2	4										
20		1	46	125			3952	675			5																
21	I	7	26	150	1	8133	2260			<u> </u>	8																
22]	<u> </u>		150	372	3053	2412	25	1		4						1										
23	 	10	35	537	77	400	334	125	1	2	<u> </u>																
24	Į	7	549	1704	13	900	510		2	1	. 2																
25	ļ	186	176	1704	191	ļ	40	105	1						L	·											
26	 	20	1128	988			12	165		<u> </u>	2																
27	[24		 				3	4	1	<u> </u>																
28	 	730	74		2	- 210	3	15		<u> </u>	2											{	[
29 30		225	484		200	210	- 20	15		1					[
31	1	432	45		76	 	20	20	1																		
TOTA		1647	2085	2644	151	44705	17004	1046	770	242	1002	EEOA	724	104	1100	10104	60						<u> </u>	<u> </u>			
	0	1647	5021	3514	1114	14/05	11/221	4008	778	313	1883	5501	734	104	1100	19104	52	0	0	0	4	0	0	0			

1993 TOTAL = 8301997 TOTAL = 1,8481994 TOTAL = 1,9601998 TOTAL = 14,8091995 TOTAL = 6,9041999 TOTAL = 19,1571996 TOTAL = 9,0192000 TOTAL = 23,112

* EAST CHANNEL FISHWAY NOT OPERATIONAL UNTIL JUNE 2, 1993

8

.

.

passage while minimizing labor requirements and wear and tear on fishlift components. In May and June, approximately 121 and 195 lifts, respectively, were made to capture river herring.

2.1.1 <u>River Herring Trap and Transport Operations</u>

The majority of the river herring captured at the East Channel lift were transported to the Skelton impoundment stocking location (approximately 9 miles upstream of the fishway).

Transport operations began on May 11, 2000 and ended on June 3, 2000 with 16,391 river herring successfully transported from East Channel to the Skelton impoundment. A total of 13 separate transport trips were made and no transport mortalities were observed. All trucks operated without any mechanical problems. Maximum river herring trucking tank densities occurred on June 2 when 2,300 river herring were transported and minimum river herring trucking tank densities occurred on May 29 when 255 herring were transported. The trucking trip to Skelton takes approximately 18 minutes. In addition to the 16,391 river herring transported to Skelton, 3,316 were trucked above the Springs and Bradbury Dams.

Also, 3,405 river herring were allowed to pass into the Cataract impoundment. These fish were allowed to pass as part of the evaluation studies for the Springs and Bradbury fishlocks.

2.1.2 River Herring Biological and Fishway Mortality Data

In addition to the 23,112 river herring successfully utilizing the East Channel lift, a total of 46 river herring fishway mortalities were noted. This represents a fishway mortality

of 0.2% which is similar to 1999 (0.2%), 1998 (0.3%), 1997 (0.2%), 1996 (0.5%) and 1995 (0.4%). Most mortalities are a result of the river herring trying to swim through the 1 inch by 2-inch square wire overlay on the existing gates or becoming pinched in gates during normal operations.

Scale samples from 14 river herring mortalities will be aged by the Maine Department of Marine Resources and are not available at this time. The majority of the mortalities drifted downstream and were discovered at the end of the upper flume area on the water diffusion screen. These fish can only be sampled when the upper flume is drained. As a result, many of these fish are in various stages of decomposition and biological data collection is difficult.

2.2 American Shad - East Channel

In 2000, a total of 1,049 American shad successfully ascended the East Channel fishlift. The first shad was lifted on June 1, (see Table 2) when river water temperature was 16.3°C. and the last shad was lifted on August 24, when river water temperature was 22.3 °C. The shad run encompassed an 86-day period. The peak of the run occurred during June 6 through June 23 when 685 fish passed, representing 65% of the total run. Maximum daily passage occurred on June 9, 2000, when 103 were lifted.

The shad lifting daily schedule was adjusted manually by fishway personnel depending on the number of fish observed and the time of the run. This schedule maximized fish passage while minimizing labor requirements and wear and tear on fishlift components. In May, June, and July, approximately 121, 195, and 64, respectively, were made to capture shad.

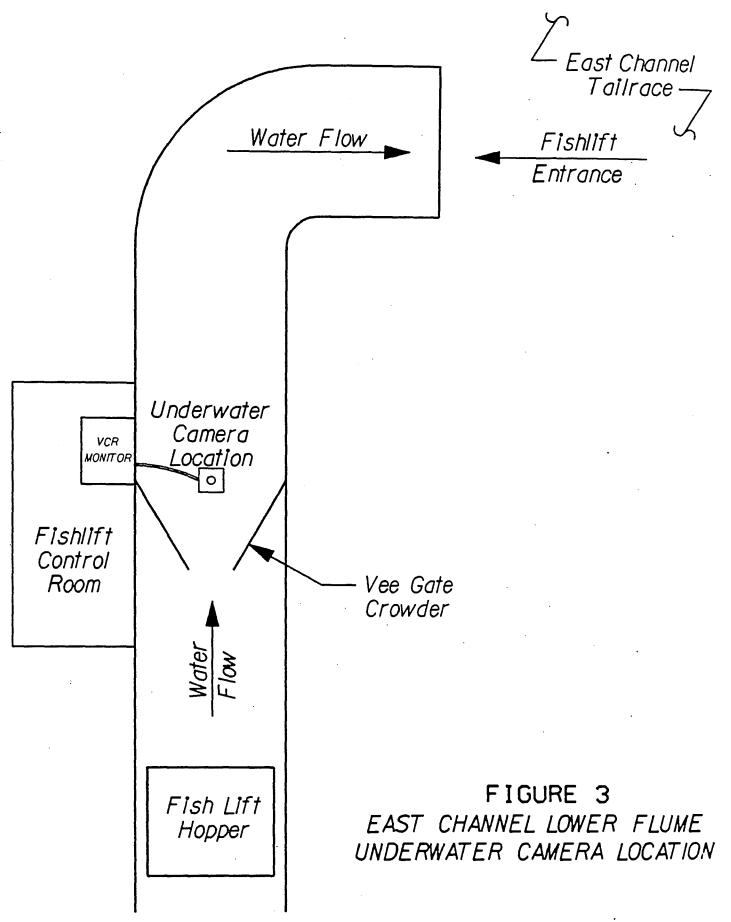
An underwater camera connected to a television monitor and VCR was first used in 1995 to gather information on fish behavior within the lower flume of the East Channel fishlift (see Figure 3). The camera documented that shad exhibit a fallback behavior in and around the

DAILY AND MONTHLY TOTALS OF AMERICAN SHAD ASCENDING THE EAST CHANNEL FISHWAY 1993 - 2000

ſ				M	٩Y							JU					JULY 1993 1994 1995 1996 1997 1998 1999 2000									AUGUST									
Day	1993	1994	1995	1996	1997	1998	1999	2000	1993*	1994	1995	1996	1997	1998	1999			1994	1995	1996		1998		2000	1993	1994	1995	1996	1997	1998	1999	2000			
1												1				16	14	11			40		11	2											
2												2		295	303	35	34		4	35	39			15											
3													1		248		29	9	11				40												
4									5		36	32	1	88	440		17							19											
5														104	149		9	17		59				12	1			3	13						
6										2	40	58	2		146	26	6	9					110												
7									10		4				18		5	8	4	35								2							
8											34		7	62		14	3	1		41	66		36						7						
9											27		31	7	97	103				37															
10										2			62	56	119	59	13	2	1	67	21			35											
11														56	99	71	1	1	4		25			25											
12										66	33		76		70	55	3	3		50				13											
13										17	34		26		119	24		23		2	25			12				2							
14										28		33	4			80		3		2	16	20		10											
15			2							13		76	48		122	34		11			9														
16				_						25			57		78	21						46													
17										10	55	70			148	35	3			23				6					32						
18									76	7	1				152	58			8					5											
19									159	3	32	95			149	4	5							4											
20									88	25	55	12	_77		105	_2			6			61	36	2				4				<u> </u>			
21							_53		66		14				300	39																			
22				1			360		67	34	18				150	53																2			
23				L			130		25	28		6	166		102	_7			1																
24									65	1	7				61				3																
25	L								47	2	13		53		81	30.								18								1			
26				1		55			11	26	18	26	58		105	7			2																
27					-				32			2	4		80	14				ļ															
28	<u> </u>	ļ			1		43		30	5	14	L			48	52																			
29		1	7			284	57		29	2		33	21			23	2		5																
30		<u> </u>	51	L	1	182		L	21	1	2		46	L		9			6				130												
31	<u> </u>	1	19	<u> </u>		54	39		I	[L	[L	L		· · · · ·				36														
Tota	0	0	79	2	0	575	682	0	731	297	437	446	740	668	3489	871	145	98	55	348	277	127	363	178	1	0	0	11	52	0	0	3			

 1993 TOTAL = 877
 1997 T

 1994 TOTAL = 395
 1998 T


 1995 TOTAL = 571
 1999 T

 1996 TOTAL = 807
 2000 T

1997 TOTAL = 1069 1998 TOTAL = 1370 1999 TOTAL = 4534 2000 TOTAL = 1049 - -

*EAST CHANNEL FISHWAY NOT OPERATIONAL UNTIL JUNE 2, 1993

۰.

East Channel lower flume vee gate crowder. On occasion, shad would swim upstream through the vee gate crowder into the hopper area, then within minutes (and sometimes seconds) swim back downstream through the vee gates and out of the lower flume into the tailrace. Also, on many occasions, shad were reluctant to pass through the vee gate crowder in the fishing position. (See 1995 Cataract fishways study report Sections 3 and 4 for detailed information on camera study and results).

Since 1996, the underwater video camera, combined with keeping the vee gate crowder wide open, was a very important technique that increased East Channel fishway efficiency. Fishway personnel observed that by keeping the vee gate crowder open, shad moved readily into the trapping area. Utilizing the underwater camera, fishway personnel could observe shad as they passed through the wide open vee gate crowder, then close the crowder and trap before the shad had a chance to fall back. This technique will continue in 2001.

2.2.1 American Shad Trap and Transport Operations

The majority of American shad captured at the East Channel fishlift were transported to the Diamond Riverside Boat Ramp stocking location (approximately 1 mile upstream of the fishway) and some were allowed to freely swim through the fishway into the Cataract impoundment. Transport operations began on June 9, 2000 and ended on July 12, 2000 with 769 shad successfully transported. A total of 14 transport trips were made and no transport mortalities were observed. Both trucks operated without any mechanical problems. A total of 136 American shad were allowed to swim freely through the fishway during the 2000 season. These fish were allowed to pass as part of the evaluation for the Springs and Bradbury fish locks. Maximum shad trucking tank densities occurred on June 15 with 105 shad transported and minimum shad trucking tank density occurred on June 18 when 28 shad were taken to the Diamond Riverside stocking site. The trucking trip to Diamond Riverside takes about 10 minutes and a round trip takes about 40 minutes.

Maine Department of Marine Resources (MDMR) transported 144 American Shad to the Medomak river shad hatchery in Waldoboro, Maine. These fish served as brood stock to produce 1,572,517 shad fry for stocking efforts on the Saco and Kennebec rivers. Approximately 259,090 (16%) shad fry were stocked into the Saco River below the Bar Mills dam in Buxton by the MDMR.

2.2.2 <u>American Shad Biological and Fishway Mortality Data</u>

In addition to the 1,049 American shad successfully passing through the Cataract East Channel fishway, a total of 28 shad mortalities were noted. This represents a total fishway mortality of 2.7%, which is similar to 1995 (3.5%), 1996 (4.8%), 1997 (2.7%), 1998 (3.5%) and 1999 (2.6%).

Scale samples from 3 fishway mortalities as well as hatchery mortalities will be aged by the Maine Department of Marine Resources and are not available at this time. The majority of the mortalities drifted downstream and were discovered at the end of the upper flume area on the water diffusion screen. These fish can only be sampled when the upper flume is drained. As a result, many of these fish are in various stages of decomposition and biological data collection is difficult.

2.3 Atlantic Salmon - East Channel

In 2000, a total of 28 Atlantic salmon successfully ascended the East Channel fishlift. The first Atlantic salmon was lifted on May 27 (see table 3) when river water temperature was 15°C and the last salmon was lifted on September 18 when river water temperature was 20.2°C.

DAILY AND MONTHLY TOTALS OF ATLANTIC SALMON ASCENDING THE EAST CHANNEL FISHWAY 1993 - 2000

Day 63 94 95 96 97 98 99 90 93 94 95 96 97 98 99 93 94 95 96 97 98 99 93 94 95 96 97 98 99 00 93 94 95 96 97 98 99 00 93 94 95 96 97 98 99 00 93 94 95 96 97 98 99 00 93 94 95 96 97 98 99 00 93 94 95 96 97 98 99 00 93 94 95 96 97 98 99 00 93 94 95 96 97 98 90 00 93 94 95 96 97 98 90 00 93 94 95 96 97 98 97 <th< th=""><th colspan="7">OCTOBER</th></th<>	OCTOBER						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	98 99 00						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
4							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
8							
9 1 3 1 1 2 1 2 1 1 2 1							
9 1 1 1 1 2 1 1 2 1							
11 1 2 1 1 2 1 2 1							
12 1 1 1 2 1							
13 1							
14 1							
15 6 2 6 1							
16 2 6 1							
17 3 3 3 1							
18 1 2 1							
19 1 2 5 1 2 1							
20 4 2 1							
21 2 1							
22 1							
24 1							
24 1							
26 1							
26 1							
27 1 4 1 2 8 1							
28 1 </th <th></th>							
29 1 2							
Tota 0 0 3 0 1 0 1 1 9 5 8 23 10 6 22 21 6 0 0 8 4 5 0 7 0 0 0 1 0 0 1 0 0 5 0 1 0 0 1 0 0 2 1 0	0 0 0						

15

 1993 TOTAL = 15
 1997

 1994 TOTAL = 5
 1998

 1995 TOTAL = 18
 1999

 1996 TOTAL = 33
 2000

1997 TOTAL = 16 1998 TOTAL = 11 1999 TOTAL = 24 2000 TOTAL = 30 *EAST CHANNEL NOT OPERATIONAL UNTIL JUNE 2, 1993

The salmon lifting daily schedule was adjusted manually by fishway personnel depending on the number of fish observed and the time of the run. This schedule maximized fish passage while minimizing labor requirements and wear and tear on fishlift components. In May, June, July, August, September, and October, approximately 121, 195, 64, 36, 51, and 47 lifts, respectively, were made to capture Atlantic salmon. An underwater camera connected to a television monitor and VCR was first used in 1995 to gather information on fish behavior within the fishway (see Figure 3). The camera documented that Atlantic salmon exhibit a strong fallback behavior in and around the East Channel lower flume vee gate crowder. Salmon regularly would swim upstream through the vee gate crowder into the hopper area, then within minutes (and sometimes seconds) swim back downstream through the vee gates and out of the lower flume into the tailrace. (See 1995 Cataract fishways efficiency report for detailed information on camera study and results).

Utilizing the underwater camera, fishway personnel could observe salmon as they passed through the vee gate crowder, then close the gate and trap the salmon before they had a chance to fall back. This technique proved to be very effective and resulted in the majority of the captures on the East Channel in 2000, which was the fifth full year that the underwater camera was utilized for the entire season.

In 2000, camera operations started as soon as the fishway opened, and continued from early May through October. When fish activity was slow (August through October), a videotape would record all fish activity in the lower trap area. These videotapes would be reviewed at the end of the day or at an earlier convenient time. When a salmon was spotted using the fishway, fishway personnel would be stationed in front of the TV monitor to wait for and capture the fish. This process almost always resulted in a salmon capture within a 24-hour period. The fact that only one salmon was captured in the months of August, September, and October may be the result of capturing most salmon in the spring. Before 1996, there was no way to identify how many salmon were entering and leaving the lower trap area, or

how long they would stay in the area. Using the underwater camera greatly increased the efficiency of East Channel fishway and will be continued in 2001.

2.3.1 Atlantic Salmon Trap and Transport Operations

Twelve of the 28 Atlantic salmon captured at the East Channel fishlift were transported to the Ossipee River in Kezar Falls. A total of 8 separate trucking trips were made and no trucking mortalities were observed. An additional salmon trucked to the Ossipee River was later determined to be a landlocked salmon. ŀ

2.3.2 Atlantic Salmon Biological Data

Biological information on the 28 salmon that ascended the East Channel fishway is presented in Table 4. The sex of these salmon was determined to be 20 males and 8 females. Lengths of the 28 salmon indicated that 9 were multi-sea winter fish and 19 were grilse. Scale samples from 12 fish indicated that five were multi-seawinter fish of hatchery origin, and seven were single sea-winter fish of hatchery origin. Scale samples were not taken from the other 16 fish because water temperatures had exceeded safe handling levels.

Two Atlantic salmon mortalities were noted in 2000. These were the first two Atlantic salmon mortalities encountered at the East Channel fishway since operations began in 1993.

On June 15, 2000 a grilse was lifted at the lower hopper and safely deposited into the upper flume. This fish was not seen again for three days. In an attempt to find out the disposition of the fish, the upper flume was very slowly and carefully drained down to approximately three feet. At this point, visibility to the bottom of the flume was fair and yet the shad, river herring, striped bass and any other species remaining in the flume

Table 4

	DATE	A OR G	LENGTH	MARKS	SEX	PASS	TRUCK
1	27-May	A	754	1	F		Х
2	28-May	Landlocked	458		M	1	X
3	12-Jun	G	480	DD	M	1	X
4	15-Jun	G	557		M	M	ort
5	15-Jun	G	502		M	X	
6	16-Jun	G	509	DD	M		X
7	16-Jun	G	480		M]	X
8	16-Jun	G	466	DD	M		X
9	16-Jun	A	743	DD	F		X
10	16-Jun	A	761	DD	F		X
11	16-Jun	A	721	DD	F		X
12	19-Jun	G	505	DD	M		X
13	19-Jun	A	828		F		X
14	22-Jun	G	560		M		X
15	27-Jun	G	511		М	X	
16	27-Jun	G	517		М	X	
17	27-Jun	G	498		M	Х	
18	27-Jun	G	475		M	X	
19	27-Jun	G	504		M	X	
20	27-Jun	A	761	DD	M	X	
21	27-Jun	A	795	DD	F	X	
22	27-Jun	A	755		F	X	
23	30-Jun	A	782		F	M	ort
24	2-Jul	G	463		M	Х	
25	2-Jul	G	478		М	X	
26	2-Jul	G	521	DD	М	Х	
27	2-Jul	G	482		М	X	
28	5-Jul	A	894	DD	F	<u> </u>	
29	19-Jul	G	499		М	X	
30	20-Jul	G	492		M	X	
31	18-Sep	G	522	DD	M		· X

ATLANTIC SALMON BIOLOGICAL DATA EAST CHANNEL FISHWAY 2000

A or G = Adult or Grilse

could continue to swim up and down the flume without additional stress. The Salmon was found dead at the end of the flume without any apparent abrasions or hemorrhaging.

The second salmon mortality occurred on June 30, 2000 when the water temperature was 23.8°C. This fish was lifted with several striped bass, and there were already many striped bass in the upper flume area. With so many striped bass in the upper flume area, there were two options regarding salmon handling/passage. The first option was to lift this salmon into the upper sorting area, quickly pull out all the stripers, and sluice the salmon back into the headpond. The second option was to allow the salmon direct passage into the headpond, while also allowing many striped bass on the Saco River). The decision was made to lift the salmon and quickly sluice it into the headpond. The salmon appeared fine when sluiced, but quickly fell back against the upper gate of the trap area. The fish was immediately allowed to drop back into the flume, and the water velocity of the flume was dropped to allow the salmon to regain its strength. The salmon was found dead shortly thereafter at the end of the flume.

2.4 River Herring - West Channel

١.

In 2000, a total of 2,024 river herring successfully ascended the West Channel Denil fishway. The first river herring passed the viewing window on May 7, 2000 (see Table 5) when river water temperature was 11.8 °C and the last river herring passed the viewing window on June 27 when river water temperature was 22.8 °C. The river herring run encompassed a 52-day period. The peak of the run occurred during June 6 through June 13, when 1,466 fish passed, representing 72% of the river herring passing the West Channel. Maximum daily passage occurred on June 11, 2000 when 1,116 river herring passed the viewing window. No river herring mortalities were noted.

DAILY AND MONTHLY TOTALS OF RIVER HERRING ASCENDING THE WEST CHANNEL FISHWAY

1				M	AY							JU	NE			
Day	1993*	1994	1995	1996	1997	1998	1999	2000	1993*	1994	1995			1998	1999	2000
1											47	58	1		730	29
2										4	2	10		973	148	4
3														21	39	
4													69	67	25	
5													158			· ·
6										90			39			86
7								25							13	12
8			1					67		11			5		3	
9			2					100								
10			16				22	97		11		10	9			52
11			7					55		70			1		2	1116
12								25		5			3			159
13			1				13	73								30
14			1	·			15								3 .	10
15							13				·					
16		1	1			157	1511									
17			17			14	1086									
18		1	17			7	895									
19			16				1588	4								
20			4			30	1018	1								
21		1	1	32			519									
22			88	10			88									
23			25	1			8									
24			1647	4			13									
25		6	348	4			140									
26			264	9			699	98	1							
27		1	8	2			446	31								6
28			69	1			1210									
29	,	47	278				813									
30		32	47				652									
31			9	6			201	3								
Totals	0	89	2867	69	0	208	10950	519	1	191	49	79	282	1061	963	1505

1993-2000

1993 TOTAL = 1 1994 TOTAL = 280 1995 TOTAL = 2,916 1996 TOTAL = 148 1997 TOTAL = 282 1998 TOTAL = 1,269 1999 TOTAL = 11,913 2000 TOTAL = 2,024

*WEST CHANNEL FISHWAY NOT OPERATIONAL UNTIL JUNE 25, 1993

ı.

.

TABLE 5

2.5 American Shad - West Channel

:

In 2000, a total of 274 American shad successfully ascended the West Channel Denil Fishway. The first shad passed the viewing window on June 1 (see Table 6) when river water temperature was 16.7 °C and the last shad passed the viewing window on July 5 when river water temperature was 25 °C

2.6 Atlantic Salmon - West Channel

A total of 20 Atlantic salmon (see Table 7) successfully ascended the West Channel Denil fishway in 2000. The first salmon passed the window on May 11, 2000, when the water temperature was 13.3°C and the last salmon passed the viewing window on October 20, when water temperature was 12.5°C. All salmon utilizing the West Channel fishway were observed for appropriate biological data and then allowed to pass directly into the Cataract impoundment.

2.6.1 Atlantic Salmon Biological Data

Biological data collected from the 20 salmon ascending the West Channel fishway is presented in Table 8. In general, length data indicated that 8 were multi-sea winter fish and 12 were grilse. The sex of the 20 salmon was determined to be 14 males and 6 females. One grilse had a tag indicating that it was a stray from the Merrimack river. Four multi-sea winter fish and four grilse had deformed dorsal fins indicating fish of hatchery origin. Also, one multi-sea winter fish and one grilse had right ventral fin clips, indicating fish of hatchery origin. The remaining 9 salmon showed no marks or clips. TABLE 6

DAILY AND MONTHLY TOTALS OF AMERICAN SHAD ASCENDING THE WEST CHANNEL FISHWAY 1993 - 2000

1				M	AY							JU								JU	LY			
Day	1993*	1994	1995	1996	1997	1998	1999	2000	1993	1994	1995	1996	1997	1998	1999	2000	1993	1994	1995	1996	1997	1998	1999	2000
1															7	1				2				
2															5					2				2
3											_						1			1				
4															1									
5															1		1							1
6															1	46	1							
7											2	1	2			2								
8													4		1	27		2						
9													7	2		39				_				
10													3			48								
11											1					36								
12											_	15	4			17								
13																1								
14													5			7								
15																8								
16							7				3		1			6								
17							3	•			1	1	3			19								
18							3					2												
19							18					2	1			1								
20							7					1	1			7						_		
21											1		1			3								
22							2									1								
23							130						1		1									
24				Į		2	79			1			1		3									
25															1									
26							9		1							1								
27			L				59		1							1								
28			1	I			51			1														
29							23																	
30							33		1															
31							15														1			
Total	0	0	1	0	0	2	439	0	3	2	8	22	34	2	21	271	3	2	0	5	1	0	0	3

 1993 TOTAL = 6
 1997 TOTAL = 35

 1994 TOTAL = 4
 1998 TOTAL = 4

 1995 TOTAL = 9
 1999 TOTAL = 460

 1996 TOTAL = 27
 2000 TOTAL = 274

* WEST CHANNEL FISHWAY NOT OPERATIONAL UNTIL JUNE 25, 1993

.

.

DAILY AND MONTHLY TOTALS OF ATLANTIC SALMON ASCENDING THE WEST CHANNEL FISHWAY 1993 - 2000

. . .

				M/	١Y								JŪŅ	IE				JULY 93 94 95 96 97 98 99 00 93								AU					Τ		SE	PT	EME	BER	2	·					OB						
Day 93	19	94	95	96	97	98	99	00	93	* 94	49	5 9	96	97	98	99	00	93	94	95	96	97			00	93	3 94	4 9	5 96	6 9	79	8 9	9 00	93	94	95	96	97	98	99	00	93	94	95	96	97	98	99	00
1	Т	T						Γ	Г	Τ	12	2		Т									1																			1							\Box
2	Т	Т						Γ	Γ	Г	Τ							1					1	1	Γ				Т						Τ.	Γ		1											
3	T							Î	Г				1	T		3		1				Γ	2	1	Г			Т	Τ	Т	Т			Т	T				Γ	1	Γ	2	Γ	Γ	Γ	Τ	Γ		\square
4	T	T						1	Τ	Т		Т	Т		1	1	1								Γ		Τ	Т	Т	Т	Т			T	2					Γ			Γ	Γ	Γ				
5	Т							1	Γ			Τ	Т	1			2							Τ	Γ		Τ	Т		1	Т		Т	T	Т			Γ				1		Г	Γ		\square		
6	T						1		Γ			2	Т	1	1							Γ	Γ	Γ	Τ		Τ	T	T	Т	Т				Τ							—		1	Γ				
7	T									1	T				1	2					2		2		Γ				Τ	Т	Т			T	1				—			Γ	1	Γ	Г		Γ		\square
8	T	1							Г	2	2	Τ	1		1								Γ				Τ	Т			Τ		2		Γ			1		1		1		T			1		
9	T							Γ	Г							3							3		Τ	Γ	Τ			Τ	Τ			T	Γ				<u> </u>			2	1		1	1			
10	Т					T		Γ	Г	Т	1	1	Ţ			3																		T	1							1							
11	Т						Τ	1		T	Т	Т		1	1																Τ	T	Γ																
12								1	Т	Τ	Т	T	4	1		2								Τ	Τ	Г	Τ	Т	Τ	Τ	Т		Τ	4	Γ								1	Γ	Γ				
13	Т						1	Γ				2	2				1									1		Γ		Τ	Т		Τ	3	2								Γ	Γ	Ι				
14	Т							1	T	T		T	3									Γ			Τ	Γ	Τ	T		Т	Т		Т		Τ								1					2	
15	Т							Τ	Г	Т	1	1	1			·													1														1		1	1			
16	Т				Γ			Τ	Т	Τ			1			2											Т				Т												1			Γ			1
17	Т				Γ	<u> </u>		Τ	Т	Τ	Т											1	Γ		Τ	Γ			Τ		Т			1	Γ				2						1		\square	1	
18					Γ		1		Г							1										Γ	Т	Т		Τ	Т												1					1	
19							2		Γ			2							1			1												1															
20										1	1					1	2	1		1				2							Γ			1									Γ						1
21							Τ									1	1	1																										[
22				1												1							1						1					1															
23																																		1								2					\square		
24							1										1					1					3						1			1													
25				1					1				1				1														Γ	1																	
26								1	2	2				2		2											1				Γ																		
27																											1							1							.1								
28 29			1					1	2	2							1								2						Τ					2						1							
29																																		1											· ·		\square		
30									Γ		Τ					1		2														3															\square		
31							1		Γ									1									1																				\square		
Tot	0	0	1	2	0	0	6	3	5	; ;	3 1	10	14	6	5	23	10	7	1	1	2	3	10	3	2	1	6	0	2	1	10	0 4	3	14	6	3	0	1	2	2	1	11	0	1	1	1	0	4	2
	I Te	от	AL	AL = 38 1997 TOTAL = 12 *EAST CHANNEL NOT OPERATIONAL UNTIL JUNE 2, 1993 AL = 16 1998 TOTAL = 17																																													

 1995 TOTAL = 16
 1999 TOTAL

 1996 TOTAL = 21
 2000 TOTAL

1999 TOTAL = 42 ... 2000 TOTAL = 20

ATLANTIC SALMON BIOLOGICAL DATA WEST CHANNEL FISHWAY 2000

.

	DATE	A OR G	LENGTH	MARKS	SEX	PASS	TRUCK
1	11-May	G	475	AC	M	X	
2	26-May	G	491		M	X	
3	4-Jun	A	718	DD	F	X	
4	5-Jun	A	741	DD	F	X	
5	5-Jun	A	778	DD	М	X	
6	13-Jun	G	531		М	Х	
7	20-Jun	G	489	Tag*	М	X	•
8	20-Jun	A	727		F	X	
9	21-Jun	А	846		F	X	
10	24-Jun	G	525	DD	M	X	
11	25-Jun	G	490	DD	M	X	
12	28-Jun	A	739	DD	F	X	
13	28-Jul	G	471	DD	М	X	
14	28-Jul	G	521	RV	М	X	
15	8-Aug	G	502		М	X	
16	8-Aug	G .	459		М	X	
17	24-Aug	G	519		М	X	
18	27-Sep	A	892	RV	F	X	
19	16-Oct	A	784		М	Х	
20	20-Oct	G	486	DD	М	X	•

*Tagged fish from the Merrimack River

.

.

,

,

As agreed upon during the March 1999 Saco River Coordinating Committee (SRCC) meeting, the East and West Channel downstream bypass remained closed during the 2000 season, and controlled spills using the East Channel hinged flashboards were conducted.

2.7.1 Salmon Smolts

Fishway personnel observed concentrations of cormorants in the Saco River between the Route 5 bridge and the Cataract tailrace beginning in late April. This concentration of cormorants coincided with the USFWS stocking of 22,600 salmon smolts on April 19, 2000. Three salmon smolts were seen going downstream in the West Channel denil fishway. One on May 8, 2000, and two on May 14, 2000.

2.7.2 Post-spawned River Herring

Post-spawned river herring were observed periodically in the Cataract impoundment for the entire month of June in 2000 in small schools of 20 to 50 fish. Overall, a very small percentage of river herring that were passed upriver were observed in the Cataract headpond area in 2000.

2.7.3 Post-spawned American Shad

Post-spawned shad were first seen in the East Channel forebay on June 11, 2000 when river water temperature was 22.2 °C. The last post-spawned shad was seen on August 22, when river water temperature was 22.6 °C. As discussed in the January 1996 agency consultation meeting, controlled spills were to be attempted as an alternative to the present downstream passage sluices.

Experiments with controlled spills conducted in 1997, 1998, 1999, and 2000 have documented that effective passage for shad can be accomplished if the taintor gate is closed, spills are conducted on sunny days, and when adequate numbers of fish are present.

The controlled spills consisted of 2 hinged flashboards being dropped for a period of time ranging from 2.5 hours to 3 hours long. The time period for spills was dependent upon river conditions and visual observations of shad numbers and behavior. Two hinged flashboards pass a combined flow of 400 cfs. Fishway personnel would be positioned directly above the downed boards, which provide a clear view of the fish and an accurate count of passage numbers.

On three separate occasions, controlled spills were conducted at the Cataract East Channel with 348 American shad successfully passed downriver. The spills were conducted on July 18 (2.5hrs), August 1 (3hrs) and August 22 (3hrs) and passed 274 shad, 43 shad, and 31 shad respectively.

American Shad numbers seen during controlled spills in 2000 were not as high as in previous years. After the initial spill on July 18 very few American Shad were observed in the Cataract East Channel headpond. The date of the initial controlled spill was later than usual due to 10 radio-tagged American shad being released into the Cataract East Channel headpond for a Springs and Bradbury fishlock effectiveness study. The taintor gate on East Channel was also opened for short periods during July and August. American shad may have passed downstream undetected through the taintor gate.

Experiments conducted in 1997, 1998, 1999, and 2000 using two downed flashboards have shown that American shad and river herring will use this route to migrate downstream if conditions are correct (i.e. taintor gate shut, clear weather, full headpond

and adequate numbers of fish). FPLE plans to continue to use this method to pass river herring and American shad downstream.

2.7.4 <u>Post-spawned Atlantic Salmon</u>

No post-spawned Atlantic salmon were seen in the vicinity of the East or West Channel forebay areas.

2.7.5 Juvenile Clupeids

From July 20 through early October, fishway personnel observed juvenile clupeids in the Cataract headpond as well as in the upper flume of the East Channel fishlift. In 1995, visual observations combined with underwater camera observations indicated that large numbers of juveniles were passing downstream through the East Channel upper flume. In 2000, moderate numbers of juveniles were observed in the East Channel upper flume, but very few were actually caught on tape passing through into the tailrace. Small schools (50-200) of juvenile clupeids were observed passing downstream during the controlled spill on August 22.

Since juvenile numbers in the upper flume varied greatly from day to day, it is assumed that most juveniles migrated down the fishway during late evening and low light conditions.

Juvenile clupeids were sampled on three different occasions, once in July, once in August and once in October. The sample size ranged from 26 to 83 fish. Identification of the juveniles indicated that all 156 were alewives. The smallest river herring was sampled on July 20 and was 28 mm. long, while the largest (102 mm.) was sampled on August 24, 2000.

3.0 Non-Target Fish Species

3.1 East Channel Fishway

Nine non-target species totaling 523 fish ascended the East Channel fishway in 2000 (see Table 8). Striped bass (272 fish) which were returned to the tailrace, were the most numerous of these non-target species. The white perch (110 fish), smallmouth bass (55 fish), brown trout (16 fish), eel (7 fish), sunfish (13 fish), white sucker (4 fish), largemouth bass (2 fish) were released to the headpond. An additional 275 striped bass were captured in the fishlift hopper, but not lifted to the upper flume area. On these occasions, fishway personnel would lower the hopper back into the lower flume and allow the striped bass to swim back into the tailrace. These striped bass ranged from 10 to 28 inches with the vast majority averaging approximately 12 inches. The eels ranged from 8 to 18 inches and appeared to be in the trap area to feed on the dead herring that occasionally fall underneath the elevator into the hopper pit. Forty-four gizzard shad were captured at the East Channel lift in 2000, and all were culled. No carp or lampreys were caught in 2000.

TABLE 9

NON-TARGET FISH SPECIES ASCENDING THE EAST AND WEST CHANNEL FISHWAYS 2000

Strined Bass

EAST CHANNEL

Sulpeu Dass		212
White Perch		110
Smallmouth Bass		55
Gizzard Shad		44
Brown Trout		16
Sunfish		13
American Eel		7
White Sucker		4
Largemouth Bass		2
	Total	523
Gizzard Shad		8
White Sucker		7
Brown Trout		6
Smallmouth Bass		4
Rainbow Trout		1
	Total	26

272

WEST CHANNEL

3.2 West Channel Fishway

Five non-target species totaling 26 fish utilized the West Channel Denil in 2000 (see Table 8). White Suckers (7 fish), brown trout (6 fish), smallmouth bass (4 fish), and rainbow trout (1 fish) constituted the majority of West Channel non-target species. Eight gizzard shad were also viewed in the West Channel viewing window. All gizzard shad were culled and not allowed to pass into the headpond. No sea lamprey or carp were caught in 2000, however two sea lamprey were observed in the West Channel tailrace during the board job on June 5.

4.0 Skelton Fishway Monitoring

Due to the limited number of salmon passing the Skelton fishway in previous years and the limited amount of salmon habitat between Skelton and Bar Mills, the Skelton Fishway remained closed in 2000. Eight Atlantic salmon were observed in a spring hole located in the Skelton tailrace on August 28. Construction of the new Skelton fishway began in 2000 and will be operational for the 2001 migration season.

4.1 Post-Spawned River Herring

River herring were observed actively spawning in the Skelton impoundment during early morning and late evening periods. Construction of the new Skelton fishway began in 2000, as a result, the downstream passage became non-operational on August 8, 2000. Taintor gates were periodically open throughout the downstream migration period allowing adult river herring passage past Skelton.

4.2 Juvenile River Herring

Construction of the Skelton fishway began in 2000, as a result, the downstream passage became non-operational on August 8, 2000. Juvenile clupeid downstream passage was facilitated through the use of taintor gates. Taintor gates were periodically open as part of minimum flow requirements throughout the migration period. Juvenile clupeids were observed throughout the entire Skelton impoundment for the entire months of August and September and were occasionally seen near the taintor gates or in front of the unit intake racks. Large numbers of juvenile clupeids were observed using the Skelton bypass in 1996, 1997 and 1998. The Skelton bypass will be operational for the 2001 migration season.

The downstream passage structure at Skelton consists of a 16-foot long channel, which is 13 feet wide at its upstream end and tapers to 6 feet wide at its downstream end. At the downstream end, an overflow gate controls the depth and amount of water exiting the structure. The trash sluice passes approximately 1 foot (18 cfs) of water, down a flume that discharges into the tailrace.

5.0 Atlantic Salmon Redd Survey

On November 20 and December 7, 2000, personnel from the Cataract fishways attempted to locate Atlantic salmon spawning redds in the Saco mainstem below Skelton dam. Sixteen salmon redds were located in front of the Skelton tailrace carry-in boat access. This site has held redds since 1993. The Ossipee River below Kezar Falls dam was not surveyed for Atlantic Salmon redds in 2000.

6.0 2001 Fishway Operations

The East and West Channel fishways will be operated in 2001 with the benefit of experience and insight gained since 1993. General operational plans are summarized below.

6.1 Upstream Passage

Utilize the underwater camera with the intention of regulating the fishway vee gate crowder operation to increase shad, river herring, and Atlantic salmon capture efficiency.

Allow 15,000 river herring to swim freely into the Cataract impoundment for the evaluation of the new Skelton fishway. River herring in excess of 15,000 will be trucked to the Skelton impoundment if the new Skelton fishway is non-operational.

Allow the first 500 American shad to swim freely into the Cataract impoundment during the evaluation of the Springs and Bradbury fishlocks. Disposition of American shad in excess of 500 will be determined after evaluation of passage at the fishlocks.

Collect biological information (i.e. sex, fork length, and scale sample) from river herring and shad mortalities only.

Allow Atlantic salmon from the East and West Channel fishways to swim freely into the Cataract impoundment. Trap and truck operations to the Ossipee River will resume from the new Skelton fishway. Biological information (i.e., sex, fork length, and marks only) will be collected from Atlantic salmon utilizing the East and West Channel fishways.

Identify and enumerate all fish species utilizing the fishways. Striped bass will be returned to the estuary unless safe passage of Atlantic salmon or American shad is compromised. In the event passage is compromised; limited numbers of Striped bass will be allowed access to the East Channel headpond. Allow all other species (i.e., trout, black bass, etc.) to pass into the Cataract impoundment at both the East and West Channel fishways. Cull out sea lamprey and gizzard shad.

Conduct an Atlantic salmon redd survey in the Saco and Ossipee Rivers during November or December.

6.2 Downstream Passage

Continue to use two downed flashboards on the East Channel to pass outmigrating American shad and river herring. Also, continue to gather information on juvenile clupeids downstream passage through the East Channel upper flume and continue to obtain and document information on emigration routes, timing, and numbers of adult and juvenile shad, river herring, and Atlantic salmon exiting the Cataract impoundment.

Operate the Skelton trash sluice as a downstream passage route for emigrating adult and juvenile river herring when fish are observed in the Skelton forebay area. Continue to obtain and document information on emigration routes, timing, and numbers of adult and juvenile river herring exiting the Skelton impoundment.

EAST AND WEST CHANNEL WATER, AIR TEMPERATURE AND SACO RIVER FLOW DATA 2000

MAY

	WA TE	AST TER EMP C	WA TE	EST TER MP C	TOTAL SACO RIVER FLOW	AIR TEMP C
DAY	MIN.	MAX.	MIN.	MAX.	CFS	AVG
1	*	*	*	*	6450	6.1
2	*	*	*	*	5870	10
3	*	*	*	*	5520	7.2
4	*	*	*	*	5200	10.6
5	*	*	*	*	4910	18.3
6	*	*	*	*	4420	13.3
7	*	*	* .	*	4280	16.7
8	*	*	*	*	4270	18.9
9	*	*	*	* .	4370	11.1
10	*	*	*	*	4620	7.8
11	*	*	*	*	5220	10.6
12	*	*	*	*	6010	9.4
13	*	*	*	*	6030	10.6
14	*	*	*	*	6130	13.9
15	*	*	*	*	5990	10.6
16	*	*	12.4	13	5540	10
17	*	*	12	13.4	5260	13.3
18	*	*	12.9	13	5010	13.3
19	*	*	12.5	13	4850	8.9
20	*	*	13.2	13.5	4660	8.3
21	*	*	12.5	12.9	4590	11.1
22	13.7	14.3	12.5	13.3	4340	13.3
· 23	13.3	14.8	12	14.8	4000	12.8
24	13.9	14.1	13.8	14.1	4060	10
25	14	14.4	13.8	14.1	4730	14.4
26	13.8	14.8	13.8	15.2	4680	16.1
27	14.2	15.3	14.2	15.7	4610	15
28	14.7	15.4	14.7	15.5	4510	13.9
29	15	15.7	14.9	16	4340	11.7
30	15.3	16.6	15	16.9	3790	10.6
31	15.6	17	15.6	17.2	3410	11.7
AVG	14.4	15.2	13.5	14.5	4893	12.8

* Data not available

•

EAST AND WEST CHANNEL WATER, AIR TEMPERATURE AND SACO RIVER FLOW DATA 2000

JUNE

	WA TE	AST TER MP C	WA TE	EST TER MP C	TOTAL SACO RIVER FLOW	AIR TEMP C
DAY	MIN.	MAX.	MIN.	MAX.	CFS	AVG
1	16.3	17.1	16.4	18	3300	20.6
2	16.9	17.9	17.2	18.3	3200	18.3
3	17.6	18.5	17.8	19.2	3230	16.7
4	18.2	18.9	18.4	19	2640	12.8
5	12.3	18.8	13.6	18.9	2410	13.3
6	18.1	18.9	17.9	18.7	2310	11.1
7	17.7	18.4	17.5	18.6	3030	14.4
8	17.8	18.3	17.8	18.4	2740	13.9
9	17.1	18	17.8	18.4	2620	20.6
10	17.4	18.3	17.8	18.6	2530	15.6
11	17.2	17.7	17.3	18	2460	11.1
12	17.2	17.5	17.4	17.6	2490	10.6
13	17.5	17.9	17.3	18.2	2220	11.7
14	17.6	17.8	17.8	17.9	2140	13.9
15	17.6	17.8	17.7	17.9	2050	14.4
16	17.4	18.5	17.4	19	1870	21.1
17	18,7	19.2	18.9	19.9	1830	24.4
18	18.5	19	18.9	19.5	2020	17.2
19	18.1	18.8	18.2	19	2150	17.8
20	18.5	19.5	18.7	19.9	1950	18.9
21	19.6	20	19.6	20.6	1900	19.4
22	19.9	21	19.8	21.3	1860	23.9
23 .	20.8	21.6	21	22.2	1680	21.7
24	21.3	22.2	21.3	22.4	1640	18.9
25	21.3	22.3	21.6	22.1	1710	19.4
26	22	22.7	21.4	22.4	1730	22.8
27	22.4	23.1	22.5	23.2	1690	24.4
28	22.8	23.8	22.7	23.6	1550	20
29	22.9	24.2	23	23.6	1590	21.1
30	23.2	24.3	23.3	24.2	1480	18.9
AVG	18.8	19.7	18.9	20	2201	17.6

* Data not available

EAST AND WEST CHANNEL WATER, AIR TEMPERATURE AND SACO RIVER FLOW DATA 2000

AUGUST

	WA [.] TE	AST TER MP C	WA TE	EST ITER IMP C	TOTAL SACO RIVER FLOW	AIR TEMP C
DAY	MIN.	MAX.	MIN.	MAX.	CFS	AVG
1	21.8	22	22	22.1	2480	16.1
2	21.8	22.1	*	*	2290	20
3	21.5	22.1	*	*	1920	24.4
4	21.9	22.3	22	22.8	1830	21.7
5	21.8	22.2	22.4	22.6	1710	20
6	21.8	22.5	22.2	23	1470	20
7	22.1	22.6	22.4	23	1530	21.7
8	22	23.6	22.4	23.5	1450	24.4
9	22.6	24.7	23.6	24.2	1330	23.3
10	22.7	24	23.2	24.8	1400	22.8
11	23.1	23.8	24	24.6	1370	20
12	23.3	23.7	23.9	24.6	1300	18.9
13	23.3	23.4	23.4	23.7	1195	18.9
14	*	*	22.9	23.4	1420	18.3
15	*	*	22.9	23.1	1320	20.6
16	*	*	22.8	23.5	1550	20
17	*	*	22.8	23.5	1500	17.2
18	*	*	22.7	23.2	1350	15
19	*	*	22.6	23.4	1290	18.9
20	*	*	22.5	22.9	1279	16.7
21	23	23.1	21.9	22.9	1196	17.8
22	22.2	23	22.2	23.4	1161	18.9
23	22.1	22.3	*	*	1105	18.9
24	22	22.6	22.3	23.1	1031	20.6
25	21.8	23	22.2	23.3	1124	19.4
26	22.4	23.1	22.9	23.9	1029	20.6
27	22.5	22.8	22.9	23.5	1081	21.1
28	22.6	23.1	23.3	23.8	979	18.3
29	22.5	23	23.3	23.6	973	17.2
30	22.3	22.8	22.6	23.3	940	18.3
31	22.3	22.8	23	23.9	934	22.2
AVG	22.3	22.9	22.8	23.5	1372	19.7

* Data not available

EAST AND WEST CHANNEL WATER, AIR TEMPERATURE AND SACO RIVER FLOW DATA 2000

SEPTEMBER

	WA TE	AST TER MP C	WA TE	EST TER MP C	TOTAL SACO RIVER FLOW	AIR TEMP C
DAY	MIN.	MAX.	MIN.	MAX.	CFS	AVG
1	*	*	23.9	24.2	897	26.7
2	*	*	*	*	882	20.6
3	*	*	*	*	883	17.8
4	*	*	*	*	913	16.7
5	21.4	22.3	*	*	926	13.3
6	21.4	21.7	21.8	22.2	912	12.2
7	21.1	21.9	*	*	854	13.3
8	21.1	22.1	*	*	773	18.9
9	· 21.8	22.6	*	*	734	21.1
10	22	22.6	*	*	732	.17.8
11	22.3	22.7	22.4	23.2	731	15
12	22.2	22.6	22.4	23.1	739	20
13	21.9	22.6	22.8	23.2	776	18.9
14	22	22.6	22.4	23.3	763	15.6
15	21.7	22.4	21.7	22.5	794	16.1
16	20.7	21.6	20.9	21.3	965	14.4
17	19.9	21	20	20.5	1360	13.3
18	19.8	20.7	20	21	1310	17.8
19	20.4	21	20,6	21.4	1203	16.7
20	20.2	20.8	20.8	20.9	1310	21.7
21	20.3	20.7	20.7	21	1294	19.4
22	19.7	20.1	19.9	20.2	1118	15 .
23	19.4	19.7	19.4	19.8	925	14.4
24	19.4	19.5	19.3	19.8	936	15
25	19	19.3	19.2	19.6	856	10.6
26	18.6	19	18.6	19	796	10.6
27	18	18.7	18.1	19	848	11.1
28	18	18.6	17.7	18.5	818	7.8
29	17.5	17.9	17.1	18.1	813	6.1
30	17.1	17.5	16.1	18	751	10.6
AVG	20.3	20.9	20.3	20.9	920	15.6

* Data not available

EAST AND WEST CHANNEL WATER, AIR TEMPERATURE AND SACO RIVER FLOW DATA 2000

SEPTEMBER

	WA' TE	NST TER MP C	WE WA [*] TEI	TER MP	TOTAL SACO RIVER FLOW	AIR TEMP C
DAY	MIN.	MAX.	MIN.	MAX.	CFS	AVG
1	*	*	23.9	24.2	897	26.7
2	*	*	*	*	882	20.6
3	*	*	*	*	883	17.8
4	*	*	*	*	913	16.7
5	21.4	22.3	*	*	926	13.3
6	21.4	21.7	21.8	22.2	912	12.2
7	21.1	21.9	* .	*	854	13.3
8	21.1	22.1	*	*	773	18.9
9	21.8	22.6	*	*	734	21.1
10	22	22.6	*	*	732	17.8
11	22.3	22.7	22.4	23.2	731	15
12	22.2	22.6	22.4	23.1	739	20
13	21.9	22.6	22.8	23.2	776	18.9
14	22	22.6	22.4	23.3	763	15.6
15	21.7	22.4	21.7	22.5	794	16.1
16	20.7	21.6	20.9	21.3	965	14.4
17	19.9	21	20	20.5	1360	13.3
18	19.8	20.7	20	21	1310	17.8
19	20.4	21	20.6	21.4	1203	16.7
20	20.2	20.8	20.8	20.9	1310	21.7
21	20.3	20.7	20.7	21	1294	19.4
22	19.7	20.1	19.9	20.2	1118	15
23	19.4	19.7	19.4	19.8	925	14.4
24	19.4	19.5	19.3	19.8	936	15
25	19	19.3	19.2	19.6	856	10.6
26	18.6	19	18.6	19	~ 796	10.6
27	18	18.7	18.1	19	848	11.1
28	18	18.6	17.7	18.5	818	7.8
29	17.5	17.9	17.1	18.1	813	6.1
30	17.1	17.5	16.1	18	751	10.6
AVG	20.3	20.9	20.3	20.9	920	15.6

* Data not available

*

. .

2000 SPRINGS AND BRADBURY FISH LOCKS REPORT

A Report on the Operation of FPL Energy's Springs and Bradbury Fish Locks Saco River, Maine FERC No. 2528

Prepared by FPL Energy Maine Hydro LLC

March 2001

TABLE OF CONTENTS

<u>Page Number</u>

Executive Summary	. 1
1.0 Introduction	.3
1.1 Operation of the Springs and Bradbury Fish Locks	.3
2.0 Underwater Camera Installation and Operation	6
3.0 Springs Dam Fish Lock - River Herring, American Shad, and Atlantic Salmon	
Information	.8
3.1 River Herring - Springs	9
3.2 American Shad - Springs	.11
3.3 Atlantic Salmon - Springs	.15
4.0 Bradbury Dam Fish Lock - River Herring, American Shad, and Atlantic Salmon	
Information	.15
4.1 River Herring - Bradbury	.15
4.2 American Shad - Bradbury	
4.3 Atlantic Salmon - Bradbury	19
5.0 2001 Fishway Operations	

LIST OF FIGURES

Figure 1	Cataract Project Location Map4
Figure 2	Fish Lock Overview5

LIST OF TABLES

Table 1Daily and Monthly Totals of River Herring Ascending the Spr				
	Fish Locks 1997-200010			
Table 2	American Shad passed through Springs Fish Lock VS.			
	East and West Channel Fishways12			
Table 3	2000 American Shad Radio Tagging Data14			
Table 4	Daily and Monthly Totals of Atlantic Salmon Ascending the Springs			
	Fish Lock 1997-200016			
Table 5	Daily and Monthly Totals of River Herring Ascending the			
	Bradbury Fish Lock 1997-200018			
Table 6	Daily and Monthly Totals of Atlantic Salmon Ascending the			
	Bradbury fish lock 1997-200020			

ATTACHMENTS

Springs and Bradbury Gate Openings for May and June 20002	2
Springs and Bradbury Water and Air Temperatures and Flow Data2	:4

Executive Summary

In 2000, the Springs and Bradbury fish locks were operated by personnel from FPL Energy Maine Hydro (FPLE) and Unity College students.

These fish locks were built to pass anadromous target species (Atlantic salmon, American shad, and river herring) as part of resource agency plans to restore these species to the Saco River. 2000 marked the fourth year of operation for the Springs and Bradbury fish locks.

In 1997, a number of mechanical, electrical, and hydraulic problems were encountered during startup and shakedown of the Springs and Bradbury fish locks. Many of these problems were resolved by the end of the 1997 season, however, they limited the ability to successfully evaluate fish lock efficiency.

During the 1998 season, efforts to identify and resolve mechanical, electrical, and flow problems with the fish locks continued. Additional information on fish behavior and passage effectiveness was gathered through underwater video camera monitoring. Fish lock effectiveness in 1998 was lower than anticipated and could be attributed to a number of reasons including: flows through the Springs and Bradbury gates which compete with fish lock flows; natural passage through Springs and Bradbury gates; behavioral problems such as inadequate imprinting to upriver locations; fallback to the estuary after exiting the East Channel fishway; or mechanical and flow problems associated with fish lock operation. Additional evaluation studies were proposed for the 1999 season in an attempt to gather information to help identify the reasons for the apparent low passage effectiveness.

During the 1999 season, river herring passage numbers (78% passage effectiveness) increased significantly over 1998 passage numbers (20% passage effectiveness) due in part to various operational changes made at the fish locks and possible behavioral reasons such as imprinting to upriver locations and schooling activity. In 1998 only 3,218 river herring were allowed to pass into the Cataract impoundment to evaluate the Springs and Bradbury fish locks, however in 1999

12,567 river herring were allowed to pass into the Cataract impoundment. It is believed that this increased number of fish and associated river herring schooling behavior contributed to increased passage in 1999. American shad passage numbers remained lower than expected.

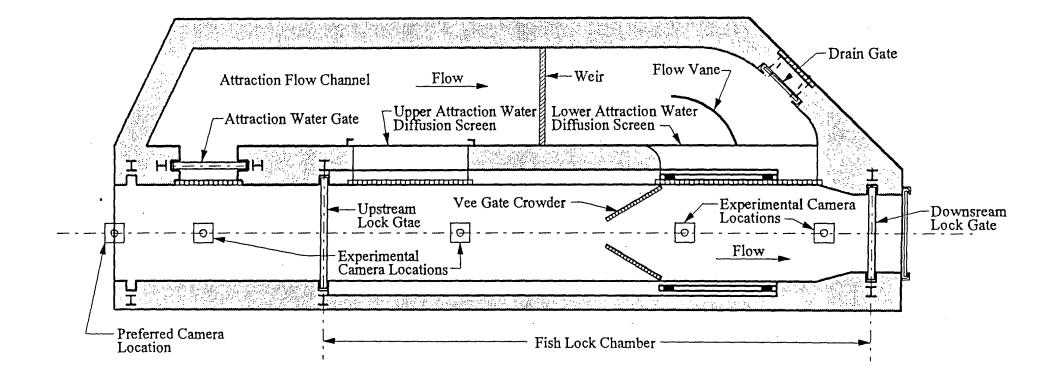
During the 2000 season, river herring passage numbers (58% passage effectiveness) were lower than those encountered in 1999 (78% passage effectiveness). We believe that this is largely due to the smaller numbers seen at the Cataract East Channel fishlift in 2000. Of the 5,429 river herring passed at the Cataract East and West Channel fishways in 2000, 3,148 were observed passing through the Springs and Bradbury fish locks. Based on previous observations at the Cataract fishlift and the Springs and Bradbury fishlocks it appears that increased numbers of fish and associated river herring encountered at Cataract East Channel in 2000 were captured during a two-hour period on June 2. At that time, the decision was made to truck these fish to the Skelton headpond assuming that the following days would provide more fish that could be used in the evaluation of the Springs and Bradbury fish locks. Unfortunately, very few river herring were observed after this day thus limiting the numbers that could be used for fish lock evaluation and the numbers and associated schooling behavior that we believe is necessary to increase fish lock effectiveness.

American shad passage numbers remained lower than expected. The low passage rate for shad could be attributed to a number of reasons including: flows through the Springs and Bradbury gates which compete with fish lock flows; natural fish passage through the Spring Island gates; behavioral problems such as inadequate imprinting to upriver locations and not enough shad released into the Cataract impoundment to take advantage of the schooling behavior; or mechanical and flow problems associated fish lock operation.

Data contained in this report and other studies will be used as a basis for meeting the requirements of the Saco River Fish Passage Agreement and Saco River Fish passage Assessment Plan (2000-2003).


1.0 Introduction

The Cataract Project (FERC No. 2528) is located on the Saco River in the cities of Biddeford and Saco and in the towns of Dayton and Buxton in the state of Maine. The project is licensed by the Federal Energy Regulatory Commission (FERC) and is owned by FPLE. The project includes the Cataract (East Channel) dam and East Channel fishlift and an integral intake powerhouse containing a single turbine generator on the northeastern side of Factory Island in the City of Saco; and the West Channel dam and Denil fishway in the cities of Saco and Biddeford . The impoundment formed by these dams extends upriver in the cities of Biddeford and Saco about 0.3 mile to another set of dams at Spring Island (see Figure 1), referred to as Bradbury and Spring Island dams. These dams are also part of the Cataract Project, and fish locks at these two sites were first operational in June, 1997. The impoundment formed by these dams extends upriver about 9.3 miles through the cities of Biddeford and Saco and Buxton to FPLE's Skelton Station.


1.1 Operation of the Springs and Bradbury Fish Locks

The fish locks at Springs and Bradbury dams are designed to operate at river flows up to 11,000 cubic feet per second (cfs) and consist of a 5.0 foot wide by 28.0 foot long lock chamber and a 5.0 foot wide by 11.0 foot long exitway (Figure 2). The lock fluctuates water elevation allowing salmon, shad, and river herring to be lifted the 5.0-ft elevation difference at the dams. The locks have a minimum water depth of 5.0 ft and operate with a flow of approximately 80-cfs. Fishway entrance velocities are 4 to 6 feet per second (fps).

The 80-cfs attraction water attracts the fish through the downstream lock gate. The fish then swim through the crowder and remain in the lock chamber. During the cycling process, the downstream gate closes and the water elevation in the lock chamber rises from 44.0 to 49.2 ft. The upstream gate then opens and the crowder slowly moves toward the upstream gate and guides the fish into the upstream reservoir. The upstream gate then closes and the crowder moves back to its original position (referred to as the fishing position). The

Map of the Cataract Project

Figure 2 Fish Lock Overview

discharge gate then opens, returning the water elevation in the lock chamber to 44.0 ft. and the downstream gate opens to complete the process.

The hydraulic capacity of the Bradbury gate is approximately 2,060 cfs. River flows up to 2,060 cfs are normally passed through the Bradbury gate because the flows from this gate are directly in line with the Cataract East Channel power house intake structure. This operation produces a more efficient flow pattern than flows out of the Spring Island gates which are directed towards the West Channel. In addition, river flows are normally passed via the Bradbury gate because these flows help dilute the thermal effluent of the Maine Energy Recovery Corporation (MERC) plant. FPLE has an agreement with MERC to provide this water at the Bradbury gate so MERC can be in compliance with its permit conditions. River flows in excess of 2,060 cfs are passed via gates at the Spring Island gatehouse.

River water temperature data (see Attachment 1) is collected at each site via subsurface probes located near the fish lock exits in the impoundment water. River flow data (see Attachment 1) is collected at each site and calculated via the programmable logic controllers (PLC) located at each site. Gate openings at both Springs and Bradbury Dams are documented daily throughout the fish migration season and are included in Attachment 2.

2.0 Underwater Video Camera Installation and Operations

Underwater video cameras identical to the models presently being used at the Cataract East Channel fishlift (Subsea Video Systems models S-603) were utilized during the fish lock evaluation in 1997-2000. Each camera measures 2-3/16 in. by 2-1/4 in. by 2-5/16 in. deep. The cameras were wired to a VCR and monitor located in the gate houses of the Springs and Bradbury dams. This setup provided constant monitoring of fish activity as well as a chance to record and review fish behavior when fishway personnel were not in the immediate area In 1997, a total of four experimental underwater video camera monitoring locations were utilized at each fish lock (see Figure 2). The four locations evaluated were: the fish lock entrance: just down stream of the vee gate crowder: the lock chamber: and upstream of the lock gate. One location at each fish lock was monitored at a time. The camera at each lock was moved periodically between the study locations. Movement of the camera between several locations was done to allow collection of behavioral information from several sites and identify potential trouble areas which may hinder fish passage within the fish lock.

Due to increased velocities in and around the fish locks, it was not possible to use a cement block to anchor the camera to the fish lock floor (as was done on the Cataract East Channel). To resolve these problems, the camera was mounted to the end of a long metal pipe with the lens oriented upwards towards the water surface. The pipe could then be secured above the desired viewing location. This mounting technique provided the best viewing and coverage at both Springs and Bradbury dams. Entrained air and a narrow field of view were limiting factors during camera placement. The entrained air is caused by the turbulence created when water rushes through the upper attraction water gate and screen.

After evaluating the pipe mounted underwater camera effectiveness in several different locations throughout the fish locks, fishway personnel decided that the lock exit provided the best overall view. The camera was mounted to a metal pole which was moved to the hand rail above the lock exit. The camera lens was oriented upwards and provided clear visibility to fish leaving the fishway.

Although the fish lock exit camera placement provides the best view of fish passing through the trap, it appears that some fish are being missed in the blind spots created by the camera angle. The camera provides 120° of view, and when the camera is in place, the lens is four to five inches from the bottom of the flume. The underwater camera must face in an upward position to utilize the light as an appropriate background. Often, the fish will begin to swim under the upstream lock gate as soon as it starts to open, therefore, they stay close to the bottom of the flume and

through the camera blind spot. On several occasions in 1998, 1999, and 2000 schools of river herring were observed passing on the outside edge of the cameras field of view.

On three occasions in 1999, 50 river herring were deliberately placed in the fish lock area ahead of the closed crowder doors in an attempt to develop an estimate regarding the percentage of the fish the camera could see. During these tests the river herring did not swim directly through the lock, as is the case when fish are passing on their own. They appeared disoriented and milled around before exiting the lock. Schools of river herring would circle the camera passing in and out of its field of view several times before leaving. However, even under these circumstances, it was obvious that some fish passed by the camera undetected. Also, after viewing hundreds of hours of videotape and counting thousands of river herring passing through the fish locks, a fair estimate could be based on general observations. Based on the above tests and other visual observations, it appears that the camera is approximately seventy five percent effective in detecting fish passing through the locks. Fish lock effectiveness numbers presented in this report are adjusted upward by a 25% correction factor to reflect this observation.

On June 11, 2000, it had become obvious that the American shad were not passing through the fish locks at anticipated levels. At this point, an additional camera was then placed at the Springs Dam fishway entrance to gain more insight on the shad's behavior at the entrance area. The findings are included in section 3.2. Also on June 11, 2000, the camera at the Bradbury dam was moved to the fishway entrance. These findings are included in section 4.2.

3.0 Springs Dam Fish Lock - River Herring, American Shad, and Atlantic Salmon Information

In 2000, the Springs dam fish lock was opened on May 11 and ran without major operational problems until October 27 when it was closed for the season. Fish lock cycle time was adjusted daily and ranged from every 30 minutes to twice a day. It appeared that when river herring were in the area, a one half hour to one hour cycle time captured the most fish. Occasionally fishway personnel would observe the video monitor directly as a cycle was occurring, and other times the underwater video camera would record every cycle and was reviewed at the end of every day.

The Springs dam fish lock was closed on June 2 and June 5 when the water was lowered to replaced the flashboards at the West Channel, Springs and Bradbury dams. On June 2, 2000 head differential at Springs and Bradbury dams achieved a low of 2.7 feet during the board job.

3.1 River Herring - Springs Dam Fish Lock

In 2000, approximately 5,429 river herring were passed at the East and West Channel fishways during the evaluation studies for the Springs and Bradbury fish locks. During the 1998 and 1999 evaluation studies, it appeared that more fish in the study area could increase fish passage effectiveness. In 1998, only 3,218 herring were passed at the East and West Channel projects, of which 14% were passed at Springs dam, where as in 1999, 12,567 river herring passed at the East and West Channel fishways and 70% were documented passing through the Springs dam fish lock. The majority of river herring encountered at Cataract East Channel in 2000 were captured during a two-hour period on June 2. At that time, the decision was made to truck these fish to the Skelton headpond assuming that the following days would provide more fish that could used in the evaluation of the Springs and Bradbury fish locks. Unfortunately, very few river herring were observed after this day thus limiting the numbers that could be used for fish lock evaluation and the numbers and associated schooling behavior that we believe is necessary to increase fish lock effectiveness.

Of the 5,429 river herring passed at the East and West Channel fishways, the underwater camera documented 2,809 (52%) passing through the Springs dam fish lock (see Table 1). This was a significant increase over the 1997 and 1998 passage numbers in which 14% of the test fish passing the Cataract fishways used the Springs fish lock, but it was lower than the 70% documented in 1999.

In an attempt to gather additional information on fish movements, daily surveys were conducted to look for river herring around the entire headpond from the Cataract dam up to the Springs and Bradbury dams. Some fish were observed around the Springs fish lock

MAY JUNE

.

DAILY AND MONTHLY TOTALS OF RIVER HERRING ASCENDING THE SPRINGS FISH LOCK 1997-2000

TABLE 1

1997 TOTAL = 31 1998 TOTAL = 406 1999 TOTAL = 8,857 2000 TOTAL = 2,809

TOTAL

Note: 25% correction factor on river herring daily passage numbers is taken into account

entrance and in the immediate tailrace area and also occasionally around the Jubilee park area, but were not seen in any other area between Cataract and Springs and Bradbury dams.

In 1999, a river herring fallback study was conducted at the Cataract East and West Channel fishways to identify if fallback contributed to the low fish lock passage rates observed in 1997 and 1998 (see 1999 Springs and Bradbury fishway reports). This study consisted of tagging 1,511 river herring and releasing them into the Cataract headpond to observe whether the fish were falling back into the tailrace and being captured in the fishway for a second time. The results of the study indicated that only a very small percentage (3%) of river herring dropped out of the impoundment and reentered the fishways. The majority of these fish dropped out when an East Channel gate was open. It does not appear that fallback is a contributing factor for low river herring passage rates.

3.2 American Shad - Springs Dam Fish Lock

In 2000, approximately 410 American shad were passed at the East and West Channel fishways during evaluation studies for the Springs and Bradbury fish locks. Of these 410 American shad approximately 10 (2%) were documented passing through the Springs fish lock. As discussed in the 1997, 1998, and 1999 Springs and Bradbury reports, the low passage rate in 2000 could also be attributed to the following: flows through the Springs and Bradbury gates which compete with fish lock flows; natural fish passage through the Spring Island gates; behavioral problems such as inadequate imprinting to upriver locations or not enough test fish in the study area; or mechanical and flow problems associated with fish lock operations.

Approximately 90 of the 410 American shad passed through the East and West Channel fishways in 2000 were first handled at the Cataract Project. In 2001, all American shad will be allowed free passage (without handling) through the Cataract facilities in an attempt to reduce any stress or other unnatural delays that may reduce migratory drive or result in other behavioral problems.

DAILY AND MONTHLY TOTALS OF AMERICAN SHAD PASSED AT THE EAST AND WEST CHANNEL FISHWAYS VS. SPRINGS AND BRADBURY FISHLOCKS 2000

		JUNE				JULY	
	PASSED AT				PASSED AT		
	EAST&WEST	SPRINGS	BRADBURY		EAST&WEST	SPRINGS	BRADBURY
1							T
2	35	·····			2		
3	15	***					
4	14	2	1				
5					1	o	
6	62	1					
7	2						
8	29	2					1
9	39						
10	48						
11	36	· · · · · · · · · · · · · · · · · · ·					
12	17				1		
13	1	1			·		
14	52		3				
15	8						
16	6						
17	19						
18							
19	1	1					
20	7						
21	3						
22	1						
23				-			
24	5						
25							
26	1	1		•			
27	4						
28							
29		2					
30							
31							<u> </u>
AL:	406	10	· 4]	4	0	0

TOTA

In an attempt to gather additional information on the low passage effectiveness, 10 American shad were radio tagged, released at the Cataract fishlift, and tracked manually for two weeks in June of 2000 (see Table 3). In short, the ten shad swam a circuit that ran from the East Channel forebay up past Jubilee Park and to the Spring Island fishway. Although nine of the ten-tagged fish made appearances at the Spring Island fishlock, and two at the Bradbury fishlock, radio telemetry data indicated that shad spent most of their time between the East Channel forebay and the upper end of Jubilee Park. It did not appear that shad were "holding up" in any particular location for long periods of time. All Spring Island gates were closed during the tracking period and no fish passed through the open Bradbury gate.

In an attempt to gather additional information on the low passage effectiveness, daily surveys were conducted to look for American shad around the entire headpond from the Cataract dam up to the Springs and Bradbury dams. On very few occasions were American shad observed schooling in this area but were occasionally seen near the fish lock entrance or near the Jubilee park area.

On June11, 2000, an additional underwater camera was added at the entrance of the fishway in an attempt to help establish whether the shad were entering and leaving the fishway entrance, or not finding the entrance at all. The results were similar to those encountered in 1999. On a few occasions, small schools of 2 to 5 shad were observed entering and very quickly leaving the fishway entrance, however, the number of shad observed was only a small percentage of 410 shad contained in the Cataract headpond area. It was also evident in the timing of entrance/exit movements, that these fish were not even passing into the trap area of the fish lock.

A shad fallback study was conducted at the Cataract East and West Channel fishways in 1999 to identify if fallback contributed to the low fish lock passage rates observed in 1998. This study consisted of tagging 247 American shad and releasing them into the Cataract headpond to observe whether the fish were falling back into the tailrace and being captured in the fishway for a second time. None of the 247 tagged American shad were recaptured at the

TABLE 3

2000 SHAD TAGGING DATA

٠

.

Tag #	14-Jun	15-Jun .	16-Jun	17-Jun	18-Jun	19-Jun	20-Jun	21-Jun
114	forebay	forebay	forebay	forebay	forebay	forebay	forebay	not found
124	н	F#	forebay	forebay	above jubilee	beside jubilee	si	si
135	11	"	above jubilee	forebay	forebay	beside jubilee	forebay	si
145	11	11	forebay	forebay	forebay	forebay	forebay	near jubilee
155	**	jubilee park	above jubilee	above jubilee	above jubilee	si	bradbury	near jubilee
164	11	between ec and jubilee	forebay	forebay	forebay	forebay	forebay	forebay
174	11	forebay	forebay	above jubilee	above jubilee	si	above jubilee	beside jubilee
185	1	between ec and jubilee	forebay	above jubilee	above jubilee	above jubilee	si	si
193	Dead	· · · · · · · · · · · · · · · · · · ·						
205	"	jubilee park	above jubilee	close to si	above jubilee	below bradbury	beside jubilee	beside jubilee

Tag #	22-Jun	23-Jun	24-Jun	26-Jun	27-Jun	29-Jun	2-Jul	6-Jul
114	forebay	forebay	forebay	forebay	forebay		forebay	forebay
124	si	si	si	above jubilee	forebay	jubilee area	forebay	Si
135	forebay	si	forebay	above jubilee	forebay	forebay	forebay	forebay
145	dropout							
155	around jubilee	si 🖣	bradbury	si	jubilee area	jubilee area	forebay	forebay
164	forebay	si	forebay	forebay	forebay	forebay	not found	not found
174	si	si	si	above jubilee	forebay	forebay	forebay	forebay
185	around jubilee	si	si	si	jubilee area	jubilee area	forebay	forebay
193			retagged forebay	si	jubilee area	forebay	forebay	forebay
205	around jubilee	si	· si	above jubilee	si	forebay	forebay	forebay

Tag #	11-Jul	18-Jul	28-Jul		
114	forebay	tailrace	1		
124	forebay	si	forebay		
135	believed out	tailrace			
145		tailrace			
155	forebay	forebay	forebay		
164	believed out	tailrace			·
174	believed out	not found			
185	forebay	forebay	forebay		
193	si	Si	forebay		
205	forebay	tailrace			

si = Spring Island ec = East Channel

.

.

Cataract East or West Channel fishways. It does not appear that fallback is a contributing factor for the low shad passage rates at Springs and Bradbury fish locks.

3.3 Atlantic Salmon - Springs

In 2000 a total of 36 Atlantic salmon was passed through the Cataract East and West Channel fishways during the evaluation studies for the Springs and Bradbury fish locks. Three of these fish passed through the Springs dam fish lock. As in previous years, it was theorized that most salmon passed through open gates at Springs or Bradbury dams or over the dam's flashboards during spill conditions. Atlantic salmon redd surveys conducted in the fall of 2000 found 16 salmon redds in the Skelton tailrace area confirming FPLEs' theory.

4.0 Bradbury Dam Fish Lock - River Herring, American Shad, and Atlantic Salmon Information

In 2000 the Bradbury dam fish lock was opened on May 11 and ran without major operational problems until October 27 when it was closed for the season. Fish lock cycle time was adjusted daily and ranged from every 30 minutes to twice a day. It appeared that when river herring were in the area, a one half hour to one hour cycle time captured the most fish. Occasionally fishway personnel would observe the video monitor directly as a cycle was occurring, and other times the underwater video camera would record every cycle and was reviewed at the end of every day.

The Bradbury dam fish lock was closed on June 2 and June 5 when the water was lowered to replaced the flashboards at the West Channel, Springs and Bradbury dams.

4.1 River Herring - Bradbury

In 2000, approximately 5,429 river herring were passed at the East and West Channel fishways during the evaluation studies for the Springs and Bradbury fish locks. Of the 5,429 river herring passed at the East and West Channel fishways, the under water camera

15

TABLE 4

Γ	JUNE			1	JUI	Y			AUG	JST		
Í	1997	1998	1999	2000	1997	1998	1999	2000	1997	1998	1999	2000
1									1			
2												
3												
4												
5									1			
6			1							·		
7												
8			1									
9	*							•				
10												
11			1									
12												
13				1								
14												
15									l			
16			1									
17	1											
18												
19	1					_						
20	1											
21												
22												
23												
24				1								
25			1	1	1							
26					ļ							
27												
28												
29												
30					ļ						•	
31							<u> </u>	<u> </u>			0	
TOTAL	3	0	5	3	1	0	0	0	2	0	0	0

DAILY AND MONTHLY TOTALS OF ATLANTIC SALMON ASCENDING THE SPRINGS FISH LOCK 1997-2000

1997 SPRINGS TOTAL = 6 1998 SPRINGS TOTAL = 0 1999 SPRINGS TOTAL = 5 2000 SPRINGS TOTAL = 3

* FIRST DAY OF OPERATION

.

documented 339 (6%) passing through the Bradbury dam fish lock (see Table 5). During the 1997, 1998 and 1999 seasons, 0%, 6% and 8% respectively, used the Bradbury fish lock

Regarding the significant difference in passage numbers between the two fish locks, it is theorized that because the Spring Island gates are used on a limited basis during the migration season, their flow does not compete with the Springs fish lock attraction flow. This situation allows fish to find the flow from the fish lock. On the other hand, the Bradbury gate is operated during the entire migration season because it is the gate that is used to supply water to the Cataract station. The flow from this gate competes with the Bradbury fish lock flow.

4.2 <u>American Shad – Bradbury</u>

In 2000, approximately 410 American shad were passed at the East and West Channel fishways during evaluation studies for the Springs and Bradbury fish locks. Of these 410 shad passed at the Cataract fishways, 4 (1%) passed at the Bradbury fishway. As discussed in the 1997, 1998, and 1999 Springs and Bradbury reports, this absence of fish could be attributed to: flows through the Springs and Bradbury gates which compete with fish lock flows; natural fish passage through the Spring Island gates; behavioral problems such as inadequate imprinting to upriver locations or not enough fish in the study area; or mechanical and flow problems associated with fish lock operations.

On June 11, 2000 the underwater video camera was moved from the fishway exit to the fishway entrance in attempt to help establish whether the shad were entering and leaving the fishway entrance, or not finding the entrance at all. The results were similar to those encountered at the Springs fishway. Only seven shad were seen on the camera and it was also evident in the timing of entrance/exit movements, that these fish were not even passing into the trap area of the fish lock.

TABLE 5

Ţ		· M	AY			JUN	IE	T
[1997	1998	1999	2000	1997	1998	1999	2000
1	·						51	
2						6	139	
3							25	
4							4	44
5							34	
6							6	
7					•		18	. 23
8							23	110
9							18	14
10							54	2
11			19	44		1	**	3
12				38			**	9
13							**	
14							**	
15							**	8
16		99	288				**	1
17		31	28				**	7
18		19	111					
19		15	147					
20			*					
21			*					
22			*					
23		1	*					
24		10	*					
25			*					
26		19	*	37				
27			*					
28			*					
29			*					
30		10	* *					
31			*					
TOTAL	0	204	593	119	0	7	372	220

DAILY AND MONTHLY TOTALS OF RIVER HERRING ASCENDING THE BRADBURY FISH LOCK 1997-2000

1997 TOTAL = 0 1998 TOTAL = 211 1999 TOTAL = 965 2000 TOTAL = 339

* SHUT DOWN TO REPAIR GATE OPERATOR ** CAMERA NOT OPERATING

1

Note: 25% correction factor on river herring daily passage numbers is taken into account

.

18

4.3 Atlantic Salmon - Bradbury

In 2000 a total of 36 Atlantic salmon was passed through the Cataract East and West Channel fishways during the evaluation studies for the Springs and Bradbury fish locks. Four of these fish passed through the Bradbury dam fish lock. As in previous years, it was theorized that most salmon passed through open gates at Springs or Bradbury dams or over the dam's flashboards during spill conditions. Atlantic salmon redd surveys conducted in the fall of 2000 found 16 salmon redds in the Skelton tailrace area confirming FPLEs' theory.

5.0 2001 Fishway Operations

The Springs and Bradbury fish locks will be operated in 2001 with the benefit of experience and insight gained in 1997, 1998, 1999 and 2000. General operational plans are summarized below.

- Allow the first 500 American shad and 15,000 river herring migrating through the Cataract fishways free passage (do not lift and sort or handle) into the Cataract headpond to be used as evaluation species for Springs and Bradbury fishlock studies and evaluation species for the new Skelton fishway studies.
- 2.) Utilize four underwater cameras simultaneously to observe American shad behavior in and around the fish locks in an attempt to gather information on fish lock effectiveness.
- 3.) Document gate settings and associated flows through the Springs and Bradbury Dams during the fish migration period.
- 3.) Use the deep gate adjacent to the Springs lock entrance to provide a continuous attraction flow throughout the fish migration period.
- 4.) Illuminate the fish lock entrances in an attempt to attract fish into the fish lock trap area.

TABLE 6

1	JUNE				t	SEPTE	MBER		[осто	OBER	
	1997	1998	1999	2000	1997	1998	1999	2000	1997	1998	1999	2000
1												
2	*											
3			1									
4		1										
5							1					
6		1										
7		1										
8												
9		1										
10												
11												
12												
13												
14				1								
15												
16	2											
17						1						
18				2								
19			2									
20											1	
21			1									
22			1									
23			1						ļ			
24					L							
25				1								
26			1		L				ļ			
27												
28		ļ	L									
29			1		·							
30					L							
31									<u>-</u>			
TOTAL	2	4	8	4	0	1	1	0	0	0	1	0

DAILY AND MONTHLY TOTALS OF ATLANTIC SALMON ASCENDING THE BRADBURY FISH LOCK 1997-2000

1997 BRADBURY TOTAL = 2 1998 BRADBURY TOTAL = 5 1999 BRADBURY TOTAL = 10 2000 BRADBURY TOTAL = 4

* FIRST DAY OF OPERATION

20

- 5.) Collect additional velocity measures throughout each fish lock, in the area immediately downstream of the fish locks, and along the face of the dams.
- 6.) Obtain Maine Energy Recovery Corporation (MERC) temperature data for the thermal river effluent and river reach upstream and downstream of the diffuser pipe.
- 7.) Video record normal fish lock operations, and any test runs for later review.
- 8.) Explore possible changes in flow release patterns at the Springs and Bradbury dams that would facilitate better fish passage.

SPRINGS AND BRADBURY GATE OPENINGS FOR MAY OF 2000

SPRINGS

BRADBURY

	DEEP GATE	#1	#2	#3	BOARDS
1	6	7	7	7	20'
2	2.6	7	7	7	20'
3	1.7	7	7	7	20'
4	1.7	7	7	7	20'
5	1.7	7	7	7	20'
6	1.7	7	7	7	20'
7	1.7	7	7	7	20'
8	1.7		7	7	20'
9	1.7		7	7	20'
10	1.7		7	7	20'
11	1.7		7	7	20'
12	6		7	7	20'
13	6		7	7	20'
14	6		7	7	20'
15	6		7	7	20'
16	6		7	7	20'
17	[·] 6		7	7	20'
18	6		7	7	20'
19	6		7	7	20'
20	1		3.5	7	20'
21	1		3.5	7	20'
22	1			7	20'
23	1			7	20'
24	1			7	20'
25	3.4			7	20'
26	4.2			7	20'
27	5.1			7	20'
28	5.1			7	20'
29	5.1			7	20'
30	2.4			7.	20'

GATE	BOARDS
10	30'
10	30'
10	30'
10	30'
10	30'
10	30'
10	30'
10	30'
10	30'
10	30'
10	30'
10	30'
10	30'
10 10	30'
10	30'
10 10	30'
10	30'-
10	30'
10	30'
10 10	30'
10	30'
10	30'
10	30'
10	30'
10	30'
10	30'
10	30'
10	30'
10	30'
10	30'

SPRINGS AND BRADBURY GATE OPENINGS FOR JUNE OF 2000

SPRINGS

BRADBURY

	DEEP GATE	#1	#2	#3	BOARDS
1	2.4			7	20'
2	6	3.5		7	20'
3	2.7	7	3.5		
4	1.8	7	3.5		
5	4.8	7			
6	3.8	7			
7	3.4	7			
8	1.8	7			
9	1.8	7			
10	2.7	3.5			
11	1				
12	1				
13	3.6				
14	2.4				
15					
16					
17			<u> </u>		
18					
19					
20					
21					
22					
23					
24				<u> </u>	
25			L		
26					
27			<u> </u>		
28			<u> </u>	<u> </u>	
29					
30				1	1

GATE	BOARDS
10	30'
8	30'
9.9	
4.6	
9.8	· ·
9.8	
9.8	
9.8	
9.8	
9.9	
9.8	
9.8	
9.8	
8.8	
8.8	
8.4	
6.3	
5.1	
8.8	
9.8	
8.4	
7.6	
6.7	
5.6	
6.5	
7.2	
8.5	
6	
5.7	
6.9	

SPRINGS AND BRADBURY WATER AND AIR TEMPERATURE AND FLOW DATA 2000

MAY

	WA ⁻ TE	TER MP	FLC THRC DA	UGH	AIR
		2	CF		TEMP
DAY	SPRINGS	BRADBURY	SPRINGS	BRADBURY	C
1	*	*	*	*	*
2	*	*	*	*	*
3	*	*	*	*	*
4	*	*	*	*	*
5	*	*	*	*	*
6	*	*	*	*	*
7	*	*	*	*	*
8	*	*	*	*	*
9	16.9	15.2	2414	2068	11.1
10	16.7	15.4	2447	2125	7.8
11	16	15.6	2446	2147	10.6
12	15.7	15	2896	2218	9.4
13	14	14.4	2970	2235	10.6
14	13.6	13.3	2970	2395	13.9
15	13.5	12.7	2896	2394	10.6
16	15.2	13.7	2797	2330	10
17	14.7	13.7	2731	2732	13.3
18	14.9	13.9	2731	2615	13.3
19 ·	15.1	14.3	2632	2223	8.9
20	15.3	14	1996	2938	8.3
21	15.3	14.3	1831	2608	11.1
22	14.6	13.9	1397	2940	<u> 13.3 </u>
23	14.5	13.3	1717	3206	12.8
24	14.6	13.4	1570	3072	10
25	14.6	13.1	1856	3369	14.4
26	14.1	13.9	1956	3159	16.1
27	14.6	13.9	2048	3289	15
28	14.6	14.3	1796	3025	13.9
29	15.5	14.7	1830	2926	11.7
	15.7	15.1	1530	2770	10.6
31	16.2	15.4	1530	2377	11.7
AVG	15	14.2	2217	2659	11.7

* DATA NOT AVAILABLE

SPRINGS AND BRADBURY WATER AND AIR TEMPERATURE AND FLOW DATA 2000

JUNE

	FLOW						
	WA.	TER	THRC	UGH			
	TE	MP	DA	м	AIR		
	(5	CF	S	TEMP		
DAY	SPRINGS	BRADBURY	SPRINGS	BRADBURY	С		
1	17	16.1	3027	1862	20.6		
2	19.4	18.3	3728	1490	18.3		
3	18	17.4	2043	1866	16.7		
4	16.9	17.7	1933	1912	12.8		
5	16.4	17.8	1655	2148	13.3		
6	18.8	17.6	1390	2054	11.1		
7	18.7	17.3	1362	1960	14.4		
8	18.1	17.1	1368	1960	13.9		
9	17.8	16.8	1368	2054	20.6		
10	18.6	16.8	871	2054	15.6		
11	18.3	16.9	166	2242	11.1		
12	17.9	16.4	166	2148	10.6		
13	17.8	16.8	396	2054	11.7		
14	18.4	17.7	69	1960	13.9		
15	18.3	17.7	0	2069	14.4		
16	19.5	18.8	52	1965	21.1		
17	21.2	20.6	49	2147	24.4		
18	19.1	18.5	57	2063	17.2		
19	19.6	18.9	50	2088	17.8		
20	20	19.2	71	1994	18.9		
21	20.2	19	93	2014	<u> 19.4 </u>		
22	21.4	20.3	55	2268	23.9		
23	21.7	20.7	54	2272	21.7		
24	21.7	21	44	2148	18.9		
25	22.7	20.7	46	2242	19.4		
26	23.5	21.5	59	2148	22.8		
27	23.6	22	59	2148	24.4		
28	23.9	22.3	57	2242	20		
29	24.1	22.6	64	2054	21.1		
30	24.2	_22.8	61	2054	18.9		
31							
AVG	19.9	18.9	680	2056	17.6		

* DATA NOT AVAILABLE

SPRINGS AND BRADBURY WATER AND AIR TEMPERATURE AND FLOW DATA 2000

JULY

			FLC	W	
	WA ⁻	ΓER	THRC	UGH	
	TE	MP	DA	М	AIR
	(C	CF	TEMP	
DAY	SPRINGS	BRADBURY	SPRINGS	BRADBURY	C .
1	24	22.7	352	1844	19.4
2	24.4	24.2	440	1840	20.6
3	25	24	287	1840	23.3
4	25.7	23.9	82	2020	22.2
5	25.3	24	207	1935	18.9
6	25	23.8	342	2028	18.3
7	25.2	23.8	378	1926	19.4
8	24.6	23.2	300	1930	18.9
9	23.3	23.1	93	1925	17.8
10	22.8	23.4	421	1924	21.1
- 11	24.4	23.5	352	1569	20
12	24.7	23.6	232	1844	21.7
13	24.2	23.5	248	1840	22.8
14	24.8	23.6	212	1837	22.2
15	24.5	23.5	364	1926	19.4
16	24	22.7	369	1927	17.2
17	24.2	21.9	408	1935	18.3
18	24	22.4	536	2040	19.4
19	24.1	21.9	511	1858	18.3
20	*	21.1	*	2043	16.7
21	*	21	*	1952	17.8
22	*	21	*	2045	20
23	*	21	*	2127	19.4
24	*	21.1	*	2141	19.4
25	*	21.4	*	1958	20
26	*	21.4	*	2042	17.8
27	*	21.2	*	1954	17.2
28	*	21.1	*	1859	21.1
29	*	21.3	*	2037	21.7
30	*	21.6	*	2224	18.9
31	*	21.2	*	2047	17.8
AVG	24.4	22.5	323	1949	19.6

* DATA NOT AVAILABLE

÷

.

SPRINGS AND BRADBURY WATER AND AIR TEMPERATURE AND FLOW DATA 2000

AUGUST

		TER MP C	FLC THRC DA CF	UGH M	AIR TEMP
DAY	SPRINGS	BRADBURY	SPRINGS	BRADBURY	С
1	22.6	21.2	189	2060	16.1
2	22.6	21	274	2181	20
3	22.8	21.1	558	2161	24.4
4	22.8	21.2	284	2057	21.7
5	22.5	21.2	276	2059	20
6	22.1	21.4	274	1963	20
7	23	21.3	290	2147	21.7
8	22.9	21.9	209	2142	24.4
9	23.9	22.4	211	2053	23.3
10	23.6	22.4	356	2151	22.8
11	24	22.9	286	2153	20
12	23.9	23	212	1987	18.9
13	23.6	22.3	255	1974	18.9
14	23.5	22.2	318	2053	18.3
15	23	21.6	203	2250	20.6
16	23.5	21.9	284	1982	20
17	23.4	22	368	1987	17.2
18	22.9	21.6	327	2106	15
19	23.6	22	362	2056	18.9
20	23.3	22.8	387	1965	16.7
21	22.8	21.7	392	1969	17.8
22	23.2	22	392	2047	' 18.9
23	22.6	21.5	412	2020	18.9
, 24	22.4	22.1	454	2113	20.6
25	21.1	20.1	499	1878	19.4
26	23	21.5	456	1966	20.6
27	23	21.8	445	1825	21.1
28	23.3	22.1	423	1879	18.3
29	22.8	22.3	408	1994	17.2
30	22.7	*	499	*	18.3
31	23	*	423	*	22.2
AVG	23	21.8	346	2041	19.7

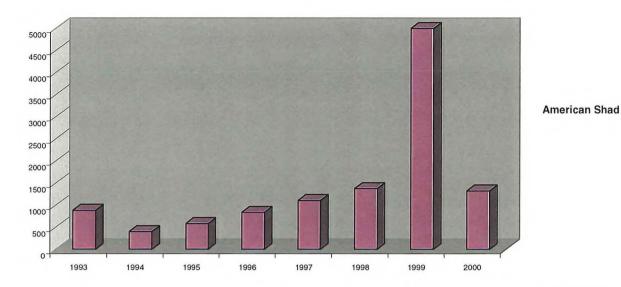
*DATA NOT AVAILABLE

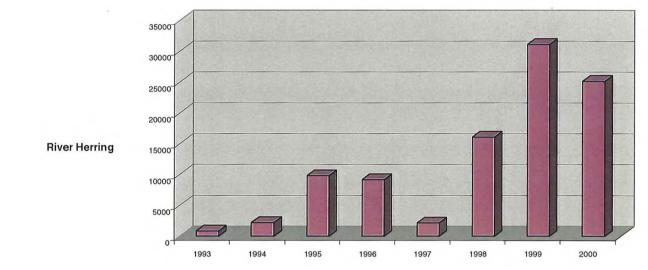
SPRINGS AND BRADBURY WATER AND AIR TEMPERATURE AND FLOW DATA 2000

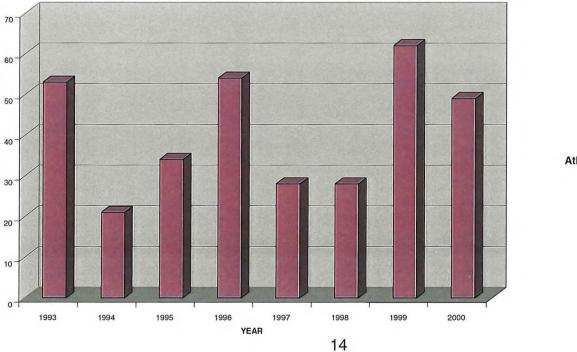
SEPTEMBER

	TE	TER MP C	FLC THRC DA CF	DUGH M	AIR TEMP
DAY	SPRINGS	BRADBURY	SPRINGS	BRADBURY	С
1	23.6	*	271	*	26.7
2	23.3	*	237	*	20.6
3	23.5	*	317	*	17.8
4	22.7	*	172	*	16.7
5	23.5	20.6	222	1854	13.3
6	21.8	19.9	189	872	12.2
7	22	20	316	1193	13.3
8	21.5	19.7	241	2131	18.9
9	22.8	20.4	172	2220	21.1
10	22.6	20.4	186	1093	17.8
11	22.5	20.8	253	2200	15
12	22.7	21	182	2115	20
13	22.3	21.1	212	2300	18.9
14	22.5	21	263	1536	15.6
15	22.2	20.8	377	1533	16.1
16	21.6	19.9	314	2289	14.4
17	20.1	18.1	202	2030	13.3
18	20.4	19	430	1858	17.8
19	21	19.6	264	2139	16.7
20	20.7	19.3	428	2228	21.7
21	20.9	19.5	375	2139	19.4
22	20.5	19.1	. 198	1853	15
23	20	18.6	198	1938	14.4
24	20	18.5	252	1847	15
25	19.2	18	236	1931	10.6
26	19	17.8	289	1838	10.6
27	16.3	17.2	121	1933	11.1
28	12.4	17.1	311	1843	7.8
29	16.4	16.2	310	1938	6.1
30	15.5	16	272	1433	10.6
31					
AVG	20.8	19.2	260	1857	15.1

* DATA NOT AVAILABLE

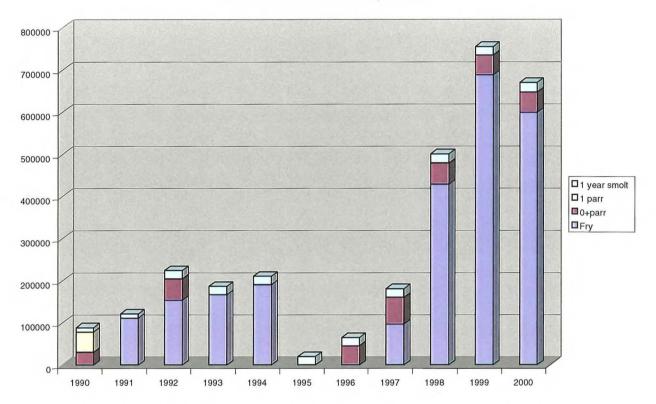

SPRINGS AND BRADBURY WATER AND AIR TEMPERATURE AND FLOW DATA 2000


OCTOBER


	WA' TE	TER MP	FLC THRC DA	UGH	AIR
		C	CF		TEMP
DAY	SPRINGS	BRADBURY	SPRINGS	BRADBURY	С
1	16.1	15.7	472	1850	11.7
2	15.2	15.1	307	1843	12.2
3	17.5	16.3	307	1933	17.2
4	*	*	*	*	15
5	*	*	*	*	10.6
6	16.6	15.3	317	1804	9.4
7	16.2	15.2	222	1142	. 10
8	15.6	14.5	384	1517	7.2
9	15.2	13.9	405	1404	3.9
10	14.2	13.1	499	2057	5.6
11	13.9	12.9	536	2346	10
12	13.7	12.7	507	2169	10
13	13.5	12.5	486	2169	12.8
14	13.7	12.6	501	2165	18.9
15	13.7	12.6	522	2153	14.4
16	13.1	12.4	485	2153	4.4
17	12.1	12	498	2166	5.6
18	12.3	12	516	2053	8.9
19	12.4	11.5	527	2053	11.1
20	12.5	11.5	510	2131	8.9
21	12.5	11.5	491	2132	14.4
22	12.2	11.4	485	2035	6.7
23	11.7	10.9	473	2039	4.4
24	11.9	11	525	2135	7.8
25	11.6	10.8	472	2037	11.1
26	11.8	10.8	454	2132	12.8
27	11.6	10.8	449	1944	11.7
28	11.5	10.4	500	2029	7.2
29	10.3	9.3	519	2029	1.7
30	9.5	8.5	543	2031	4.4
31	9.8	*	475	*	6.1
AVG	12.3	12.4	462	1988	9.5

* DATA NOT AVAILABLE

ATTACHMENT 2. Graphs of Anadromous Fish Counts in the Saco River, 1983-2000



Atlantic Salmon

ATTACHMENT 3. Graph of Releases of Hatchery-Reared Atlantic Salmon, 1982-2000

Saco River Salmon Hatchery Releases

ATTACHMENT 4. Releases of Trout, American Shad and Salmon into the Saco River

1990 Saco River Stocking

Stocking Year	Source	Species Stocked	Age/Size	Sub-Drainage Stocked	Release Location	Number Stocked	Pounds stocked	Marks/Comment:
1990	NHE&G	вкт	1 year		Bartlett, Conway Hart's Location	2.715		
1990	NHF&G	вкт	2 year		Bartlett, Conway Hart's Location	225		
1990	NHF&G	BNT	. 1		Bartlett, Conway Hart's Location	1,380		
	MDIEW	BNT	SY	mainstem	· •	10,600		
1990	MDIFW	ВКТ	SY	mainstem		5,600		
1990	MDIEW	BNT	SY	Little Ossipee R	Terre Landerson	2,700		
1990	MDIFW	BNT	FY	Little Ossipee R.		700		
1990	MDIEW	ВКТ	SY	Little Ossipee R	· · · · · · · · · · · · · · · · · · ·	2,500		<u>_</u>
1990	MDIEW	ВКТ	SY	Ossipee R	······	1,330		···· ··· ·····························
4/18/90	CBNFH	ATS	1smolt	Mainstem	Route 5 Bridge	3,330	427.0	LVclip
4/20/90	CBNFH	ATS	1smolt	Mainstern	Route 5 Bridge	7,293	935.0	Lvclip
5/16/90	CBNEH	ATS	1parr	Ossipee	Kezar Falls	12,800	400.0	
5/16/90	CBNEH	ATS	1parr	Ossipee	Kezar Falls	12,800	400.0	
5/17/90	CBNFH	ATS	1parr	Mainstem	-Limington	10,270		
5/18/90	CBNFH	ATS	1parr	Mainstem	Limington	9,100	350,0	
5/22/90	CBNFH	ATS	1parr	Little C .sipee		2,860	110.0	
10/17/90	GLNEH	ATS	0+parr	Mainstem	Limington	10,010	258.0	
	GLNEH	ATS	0+parr	Little Ossipee		5,160	133.0	
10/17/90	GLNFH	ATS	0+parr	Ossipee	Porter	7,534	182.0	
10/17/90	GLNFH	ATS	0+parr	Ossipee	Hiram	7,411	191.0	
/ = Spring yearli	ng; FY = Fall yearling;	FING = Fingerling						
				Summaries	Numbers Stocked	Pounds Stocked	Fish per pound	
				BKT stocked	12,370			
					aa			
· · · · · · · · · · · · · · · · · · ·				BNT stocked	15,380			
				ATS stocked		3,781	n/a	
				1smolt	10,623	1,362	7.80	
				1parr	47,830	1,655	28.90	
				0+parr	30,115	764	39.42	

Stocking Year	Source	Species Stocked	Age/Size	Sub-Drainage Stocked	Release Location	Number Stocked	Pounds stocked	Marks/Commen
1991	NHF&G	вкт	1 vear		Bartlett.Conway Hart's Location	2,215		
	NHF&G	BKT	2 year		Bartlett, Conway Hart's Location	30		
	INHF&G	BNT	1		Bartlett, Conway Hart's Location	1,120		
	MDIFW	BNT	SY	mainstem		11,900		
	MDIFW	BKT	SY	mainstem		3,300		
	MDIFW	BNT	SY	Little Ossipee R.		1,800		
	MDIFW	BKT	SY	Little Ossipee R.		2,500		
	MDIFW	ВКТ	SY	Ossipee R.		2,000		
4/16/91	GLNFH	ATS	1smolt	Mainstem	Biddeford	4,910	682.0	RVclip
	GLNFH	ATS	1smolt	Mainstem	Dayton, below dam	5,410	751.0	RVclip
	Kennebec Aquaculture	ATS	ffry	Shepherds River	Brownfield	12,000	16.0	
	Kennebec Aquaculture	ATS	ffry	Ossipee	Kezar Falls	39,000	53.0	
	New England Fish Farming	ATS	ffry	mainstem	Brownfield	40,000	148.0	
	New England Fish Farming	ATS	ffry	Cold River	Fryeburg (Swan Falls)	20,000	74.0	
				Summaries	Fish stocked	Pounds stocked	Fish per pound	
				BKT stocked	10,045		·	<u> </u>
				BNT stocked	14,820			
				ATS stocked	121,320	1,724	n/a	
				1 smolt	10,320	1,433	7.20	
				ffrv	111,000	291	381.44	

Stocking Year	Source	Species Stocked	Age/Size	Sub-Drainage Stocked	Release Location	Number Stocked	Pounds stocked	Marks/Comments
1992	NHF&G	ВКТ	1 year		Bartlett,Conway Hart's Location	2,798		
1992	NHF&G	BNT	1 year		Bartlett,Conway Hart's Location	788		
. 1992	MDIFW	BNT	FY	mainstem		1,500		
1992	MDIFW	BNT	SY	mainstem		4,500		
1992	MDIFW	BKT	SY	mainstem		5,600		
1992	MDIFW	BNT	SY	Little Ossipee R.		1,800		
1992	MDIFW	ВКТ	SY	Little Ossipee R.		2,900		
1992	MDIFW	ВКТ	SY	Ossipee R.		2,000		
4/1/92	CBNFH	ATS	1smolt	Mainstem	Dayton, below dam	9,045	932.0	
4/1/92	CBNFH	ATS	1parr	mainstem	Dayton, below dam	425	18.0	
4/1/92	CBNFH	ATS	1smolt	mainstem	Dayton, below dam	10,803	969.0	
5/20/92	Saco River Hatchery	ATS	ffry	mainstem	Hiram	153,600	51.0	
9/25/92	GLNFH	ATS	0+parr	Mainstem	E. Brownfield	22,372	547.0	
9/25/92	GLNFH	ATS	0+parr	Mainstem	Fryeburg	27,834	549.0	
						•		
				Summaries	Number Stocked	Pounds Stocked	Fish per pound	
				BKT stocked	13,298			
				BNT stocked	8,588			
				ATS Stocked	273,860	3,066	n/a	
				1smolt	19,848	1.901	10.4	
				1parr	425	18	23.6	
· · · · · · · · · · · · · · · · · · ·				0+parr	50,206	1,096	45.8	
				ffry	153,600	51	3,011.8	
					100,000		0,011.0	1

Stocking Year	Source	Species Stocked	Age/Size	Sub-Drainage Stocked	Release Location	Number Stocked	Pounds stocked	Marks/Comments
4000	N I F &G	вкт	1.000		Bartlett, Conway Hart's Location	2,000		
			1 year		•	30		
	NHF&G	BKT	2 year		Bartlett, Conway Hart's Location			
	NHF&G	BNT	1		Bartlett, Conway Hart's Location	3,062		
	MOIFW	BNT	FY	mainstem		1,950	·····	
	MDIFW	BKT	SY	mainstem	·····, ······	3,100		
	MDIFW	BNT	SY			1,800		
	MDIFW	BKT	SY			2,900		
1993	MDIFW	BKT	SY	Ossipee R		2,100		
4/14/93	GLNFH	ATS	1smolt	mainstem	Route 5 bridge	14,209	1,893.0	LVdip
4/14/93	GLNFH	ATS	1smolt	mainstem	Route 5 bridge	5,844	779.0	
5/20/93	Saco River Hatchery	ATS	ffry	mainstem	Hram	166,500	67.0	
							· · · · · · · · · · · · · · · · · · ·	
				Summaries	Number Stocked	Pounds Stocked	Fish per Pound	
				BKT stocked	10,130			
				BNT stocked	6,812			
				ATS stocked	186,553		n/a	
				1 smolt ffry	20,053		299.3 2,485.1	

Stocking Year	Source	Species Stocked	Age/Size	Sub-Drainage Stocked	Release Location	Number Stocked	Pounds stocked	Marks/Comments
100/	NHF&G	ВКТ	1 year		Bartlett,Conway Hart's Location	4,950		
	NHF&G	вкт	2 year		Bartlett,Conway Hart's Location	4,930		
	NHF&G	BNT	2 year 1		Bartlett, Conway Hart's Location	2.770		
	MDIFW	BNT	SY	mainstem	Datiet, conway haits Location	11,900		
	MDIFW	BNT	FY	mainstem		1,800		
	MDIFW	вкт	SY	mainstem		3,100		
	MDIFW	BNT	SY	Little Ossipee R.	[1,300		
	MDIFW	BKT	SY	Little Ossipee R.		1,000		
	MDIFW	BNT	FY	Ossipee R.		500		
	MDIFW	BKT	SY	Ossipee R.	(1,500		
	GLNFH	ATS	1smolt	mainstem	Route 5 bridge	20.000	3,205.0	RVclip
	Saco River Hatchery	ATS	ffry	Ossipee River	Hiram	190,354	76.0	
				Summaries	Number stocked	Pounds Stocked	Fish per Pound	
				BKT stocked	10,560			
		<u> </u>						
				BNT stocked	18,270			
							}	
		<u> </u>		ATS stocked	210,354	3,281	n/a	
				1 smolt	20,000	3,205	6.2	
•		-		ffry	190,354	76	2,504.7	
		l				L	<u> </u>	

Stocking Year	Source	Species Stocked	Age/Size	Sub-Drainage Stocked	Release Location	Number Stocked	Pounds stocked	Marks/Comments
1995	NHF&G	ВКТ	1 vear		Bartlett,Conway Hart's Location	10,175		
	NHF&G	BNT	fingerling		Bartlett, Conway Hart's Location	1,600		
1995	NHF&G	BNT	1		Bartlett,Conway Hart's Location	750		
1995	MDIFW	BNT	SY	mainstem		1,300		
1995	MDIFW	ВКТ	SY	mainstem		900	•	
1995	MDIFW	BNT	SY	Little Ossipee R.		2,800	(
1995	MDIFW	<u>BKT</u>	SY	Little Ossipee R.		1,100		
1995	MDIFW	BNT	SY	Ossipee R.		2,000		
1995	MDIFW	ВКТ	SY	Ossipee R.		1.850		
4/13/95	GLNFH	ATS	1smolt	Mainstem	Route 5 bridge	19,676	3,345.0	
				Summaries	Number stocked	Pounds stocked	Fish per pound	
				BKT stocked	14,025			
				BNT stocked	8,450			
				ATS stocked	19,676	3,345	n/a	
				1smolt	19,676	3,345	5.9	

4/22/96	GLNFH	ATS 1	smolt	Saco River	Rte 5 Bridge	20,000	3,651.0	RVclip
10/10/96	GLNFH			Saco River	Hiram	15,229	358.0	
10/10/96	GLNFH	ATS 0	+parr	Saco River	E. Limington (Rips)	14,875	350.0	
10/10/96	GLNFH	ATS 0	+parr	Saco River	Steep Falls	14,875	350.0	
1996	NHF&G	BKT		Swift River	Albany	3,400	1,550.0	
1996	NHF&G	вкт		Swift River	Albany	275	278.0	
1996	NHF&G	RBT		Swift River	Albany	500	510.0	
1996	NHF&G	BKT		Swift River	Conway	800	367.0	
1996	NHF&G	RBT		Swift River	Conway	250	255.0	
1996	NHF&G	BKT		Swift River	Livermore	1,000	435.0	
1996	NHF&G	BKT		Swift River	Tamworth	385	201.3	
1996	NHF&G	BKT		Swift River	Tamworth	100	99.0	
1996	NHF&G	BKT		Saco River	Bartlett	1,350	608.0	
1996	NHF&G NHF&G	BKT		Saco River Saco River	Bartlett	300	280.0	
1996	NHF&G	BNT		Saco River	Bartlett Bartlett	1,600	480.0	
1996 1996	NHF&G	<u>RBT</u> BKT		Saco River	Conway	400 2,752	<u>417.9</u> 1,266.0	
1996	NHF&G	BKT		Saco River	Conway	374	350.0	
1996	NHF&G	BNT		Saco River	Conway	2,200	638.0	
1996	NHF&G	RBT		Saco River	Conway	710	742.5	
1996	NHF&G	BKT		Saco River	Harts Location	1,500	635.0	
1996	NHF&G	BKT		Saco River	Harts Location	1,000	126.0	
1996	NHF&G	BKT		E. Branch Saco River	Bartlett	300	150.0	· · ·
1996	NHF&G			E. Branch Saco River	Bartlett	200	107.0	
1996	NHF&G	BKT		E. Branch Saco River	Jackson	700	364.0	
1996	NHF&G	BKT		Ellis River	Bartlett	1,000	438.0	
1996	NHF&G	BKT		Ellis River	Bartlett	150	140.0	
1996	NHF&G	RBT		Ellis River	Bartlett	100	103.0	
1996	NHF&G	BKT		Ellis River	Jackson	1,000	445.0	
1996	NHF&G	ВКТ		Ellis River	Jackson	150	130.0	
1996	NHF&G	RBT		Ellis River	Jackson	200	206.3	
1996_	NHF&G	вкт		Ellis River	Pinkhams Grant	400	146.0	
1996	MDIFW	BKT	SY	Saco River	Barr Mills/Dayton/Cornish	700		<u> </u>
1996	MDIFW	BKT	SY	Saco River	Hiram	250		
1996	MDIFW	BKT	_SY	Saco River	Steep Falls	250		
1996	MDIFW	BKT		Saco River	Fryburg	200		
1996	MDIFW	BNT		Saco River	Hiram	300		
1996	MDIFW	BNT		Saco River	West Buxton	200		
1996	MDIFW	BNT		Saco River	Baldwin/Cornish	300		
1996	MDIFW	BNT		Saco River	Steep Falls	300		
1996	MDIFW	BNT		Saco River	Dayton	500		
1996	MDIFW	BNT		Saco River	Bar Mills	200		
1996	MDIFW	BKT		Little Ossipee River	Limerick	700		
1996	MDIFW	BKT		Little Ossipee River	Newfield/Shapleigh	<u>400</u> 1,900		
<u>1996</u> 1996	MDIFW	BNT BNT		Little Ossipee River	Limerick/Newfield/Shapleigh	1,800		
1996	MDIFW	BKT		Ossipee River	Kezar Falls/Cornish	1,800	{	
1996	MDIFW	BNT		Ossipee River	Kezar Falls/Cornish	2,000		
1990	MDIFW	BNT		Ossipee River	Kezar Falls/Cornish	500		
1000								
	1+			······································				
	1							•
				Summaries	Numbers Stocked	Pounds Stocked	Fish per Pound	
				BKT stocked	20,261			
				BNT stocked	11,800			
				RBT stocked	2,160			
				ATS stocked	64,979	4,709		
				1 smolt	20,000	3,651	5.48	
				0+parr	44,979	<u>1,05</u> 8	42.51	

Stocking Year	Source	Species Stocked	Age/Size	Sub-Drainage Stor	Release Location No.	stocked	Lbs. stocke
1	NHF&G	ВКТ	1	Ellis River	Pinkhams Grant	400	120.
	NHF&G	RBT	1 .	Ellis River	Bartlett	1,400	472.
	NHF&G	BKT	11	Ellis River	Jackson	2,000	708.
	NHF&G	RBT	1	Ellis River	Jackson	350	292.
	NHF&G	BKT	2	Ellis River	Jackson	85	102.
	NHF&G	RBT	11	Ossipee Lake	Freedom	250	179.
	NHF&G	LLS	11	Ossipee Lake	Freedom	1,000	173.
	NHF&G	BKT	11	Saco River	Bartlett	2,635	775.
	NHF&G	BKT	2	Saco River	Bartlett	300	390.
	NHF&G	BNT	1	Saco River	Bartlett	750	234.
	NHF&G NHF&G	BKT	1	Saco River	Conway	2,000	582.
1	NHF&G	BKT RBT	2	Saco River	Conway Conway	165 300	179. 250.
1997	NHF&G	BNT	1	Saco River	Conway	1,250	391.
	NHF&G	BKT	1	Saco River	Hart's Location	1,000	271.
	NHF&G	BKT	2	Saco River	Hart's Location	100	141.
	NHF&G	BKT	1	E.Branch Saco	Bartlett	700	285.
	NHF&G	BKT	1	E.Branch Saco	Jackson	700	285.
	NHF&G	BKT	1	Swift River	Albany	3,125	841.
	NHF&G	BKT	2	Swift River	Albany	300	312.
	NHF&G	BKT	1	Swift River	Livermore	500	123.
	NHF&G	BNT	1	Swift River	Conway_	200	62.
	NHF&G	BKT	1	Swift River	Tamworth	300	153.
	NHF&G	RBT	1	Swift River	Tamworth	340	234.
	NHF&G	BKT	1	Little Swift River	Tamworth	440	133.
	NHF&G	ВКТ	1	Saco Lake	Carroll	750	242.
1	NHF&G	BKT	2	Saco Lake	Carroll	100	63.
1997	Saco River Hatchery	ATS	fry	Doug Hill Brook		5,000	
1997	Saco River Hatchery	ATS	fry	Strout Brook	· .	5,000	
1997	Saco River Hatchery	ATS	fry	Pease Brook		10,000	
1997	Saco River Hatchery	ATS	fry	Pugsley Brook		10,000	
1997	Saco River Hatchery	ATS	fry	Back Brook		10,000	
1997	Saco River Hatchery	ATS	fry	Shepards River		35,000	
1997	Saco River Hatchery	ATS	fry	Ten Mile River		20,000	
1997	Saco River Hatchery	ATS	fry	Ossippee	Comish Station	428	0.1
1997	Saco River Hatchery	ATS	fry	Little Ossippee		578	0.2
1997	Saco River Hatchery	ATS	fry	Saco	Hiram	190	0.0
1997	Saco River Hatchery	ATS	fry	Ossippee	Cornish	573	0.2
	GLNFH	ATS	0+parr	Saco	Cornish Station	11,884	30
	GLNFH	ATS	0+parr	Saco	Below Hiram Dam	12,808	30
	GLNFH	ATS	0+parr	Saco	Steep Falls	5,679	13
	GLNFH	ATS	0+parr	Saco	Limington Rips Rt	15,078	47
1997	GLNFH	ATS	0+parr	Ossippee River	Kezar Falls	17,863	47
	GLNFH	ATS	1smolt	Saco	Rte. 5 Bridge	8,018	1,256.
1997	GLNFH	ATS	1smolt	Saco	Rte 5 Bridge	11,982	1,795.
1997	GLNFH	ATS	1smolt	Saco	Bonny Eagle Proje	150	3.
1997	GLNFH	ATS	1smolt	Saco	Saco	87	2
1	MDIFW	BKT	SY	Saco	Rt 11 xing - Stand	200	
1997		BKT	SY SV	Saco	Below Dam - Hire	200	
	MDIFW	BKT	SY SY	Saco	Swan Falls - Fryel	150 200	
		<u>ВКТ.</u> ВКТ	SY	Saco Saco	Below Skelton Da Below Dam - Hira	200	
	MDIFW MDIFW	BKT	SY SY	Saco	Rt 11 xing - Stand	200	
		BNT	5Y FY	Saco	Below Dam - Hira	300	
	MDIFW	BNT	FY	Saco	Rte 117 xing - Bal	300	
	MDIFW	BNT	FY	Saco	Steep Falls - Rt 1'	300	
	MDIFW	BNT	FY	Saco	Below W.Buxton c	200	
	MDIFW	BNT	FY	Saco	Below Bar Mills da	200	
	MDIFW	BNT	FY	Saco	Below Skelton dar	500	
	MDIFW	BKT	SY	Little Ossipee Rive		200	
	MDIFW	BNT	SY	Little Ossipee Rive		300	
	MDIFW	BNT	SY		MDIFW mgmt are	500	
	MDIFW	BNT	SY		Rt 5 xing - Limeric	400	
	MDIFW	BNT	SY	Little Ossipee Rive	Rt. 11 xing- Limer	500	· · · · · · · · · · · · · · · · · · ·
	MDIFW	BKT	SY	Little Ossipee Rive		125	
	MDIFW	BKT	SY	Little Ossipee Rive		150	
	MDIFW	BKT	SY	Little Ossipee Rive		125	
	MDIFW	BKT	SY	Little Ossipee Rive	-	100	

1997 Saco River Stocking (Cont)

.

1997	MDIFW	ВКТ	SY	Little Ossipee Rive	MDIFW momt are	100	
1997	MDIFW	BKT	SY	Little Ossipee Rive			
1997	MDIFW	BNT	SY	Little Ossipee Rive		500	
1997	MDIFW	BNT	SY	Little Ossipee Rive			
1997	MDIFW	BNT	SY	Little Ossipee Rive			
1997	MDIFW	BNT	SY	Little Ossipee Rive			
1997	MDIFW	BNT	SY		E. Range Rd-Lime		
1997	MDIFW	BNT	SY	Ossipee River	S. Hiram Rd. xing	800	
1997	MDIFW	BNT	SY	Ossipee River	Dirt Rd off S. Hira	800	
1997	MDIFW	ВКТ	SY	Ossipee River	S. Hiram Rd. xing	400	
1997	MDIFW	ВКТ	SY	Ossipee River	Dirt Rd. off S. Hira	200	
1997	MDIFW	BKT	SY	Ossipee River	S. Hiram Rd. xing	200	
1997	MDIFW	ВКТ	SY	Ossipee River	Dirt Rd. off S Hira	400	
1997	MDIFW	ВКТ	SY	Ossipee River	Dirt Rd. off S Hira	200	
1997	MDIFW	ВКТ	SY	Ossipee River	S. Hiram Rd xing	200	
1997	MDIFW	BNT	FY	Ossipee River	Sacopee HS -Hira	500	
1997	MDIFW	BNT	Adult	Ossipee River	Hiram [.]	40	
		Summaries	Numbers Stocked	Pounds Stocked	Fish per Pound		
		BKT Stocked	19,300				
	. 	BNT Stocked	10.240				
		LLS Stocked	1,000	173.00	5.78		
1		fry	96,769	38,67	2,502.43		
		1 smolt	20,150	3,054.80	6.60		
		<u>0+parr</u>	63,312	1,676.00	37.78		
·	<u> </u>	ATS Stocked	180,231	4,769.47	n/a		
		RBT Stocked	2.640	1,428,00	1.85		

.

.

Stocking Year	Source	Species Stocke	d Age/Size	Sub-Drainage Stocked	Release Location	No. Stocked	Marks/Comments
1998	MDIFW	BKT	SY	Saco	Swan Falls	300	
1998	MDIFW	BKT	SY	Saco	Below Skelton Dam	400	
1998	MDIFW	BKT	SY	Saco	Below Dam	400	· ·
1998	MDIFW	BKT	<u>SY</u>	Saco	Rte 11 crossing	400	
1998	MDIFW	BNT	FY	Saco	Below Hiram Dam	300	
1998	MDIFW	BNT	FY_	Saco	Rte 117 crossing	300	
<u>1998</u> 1998	MDIFW MDIFW	BNT BNT	<u> </u>	Saco Saco	Rte 11 crossing Below W. Buxton dam	<u>300</u> 200	
1998	MDIFW	BNT	FY	Saco	Below Bar Mill dam	200	
1998	MDIFW	BNT	FY	Saco	Below Sketton dam	500	
1998	MDIFW	BNT	SY	Saco	Below Bonny Eagle dam	1,000	
1998	MDIFW	BNT	SY	Little Ossipee River	Clarks Bridge Rd. Crossing	300	
1998	MDIFW	BNT	SY	Little Ossipee River	MDIFW Mgmt. Area	500	
1998	MDIFW	BKT	SY	Little Ossipee River	Clarks Bridge Rd. Crossing	300	
1998	MDIFW	BKT	SY	Little Ossipee River	Off Foss Road	300	
1998	MDIFW	BKT	SY	Little Ossipee River	Bridge Street crossing	200	
1998	MDIFW	BKT	SY	Little Ossipee River	MDIFW Mgmt. Area	200	
<u>199</u> 8	MDIFW	BNT	SY	Little Ossipee River	Off Foss Road near Pendexter	500	
1998	MDIFW	BNT	SY	Little Ossipee River	Bridge Street crossing	500	
1998	MDIFW	BNT	SY	Little Ossipee River	at mouth of Davis Brook	500	
1998	MDIFW	BNT	SY	Little Ossipee River	Old Rte. 11 crossing	500	
1998	MDIFW	BNT	SY	Ossipee River	South Hiram Rd. Crossing	800	
1998	MDIFW	BNT	SY	Ossipee River	Dirt Rd, Off South Hiram Rd.	800	
1998	MDIFW	BKT	<u>SY</u>	Ossipee River	South Hiram Rd. Crossing	800	
1998	MDIFW	BKT	<u>SY</u>	Ossipee River	Dirt Rd. Off South Hiram Rd.	800	
1998	MDIFW	BNT	FY	Ossipee River	Sacopee High School	500	
<u>1998</u> 1998	MDIFW DMR	BNT AMS	AD fry	Ossipee River Saco	Below Bar Mills dam	<u>40</u> 503,730	
1998	DMR	AMS	Spent Adult		Below Cataract Dam		0076851-77; 0077955-75; 0080054-
1998	GLNFH	ATS	1smolt	Saco	Rte 5 Bridge	21,318	0070001-11,0071900-10,0000004
1998	SRSC	ATS	ffry	Shepards	Rte 5	5,000	domestics
1998	SRSC	ATS	ffry	Shepards	Back of River Rd. Steel Bridge	5,000	domestics
1998	SRSC	ATS	ffry	Shepards	Main st. Forks	5,000	domestics
1998	SRSC	ATS	ffry	Shepards	County Rd. Bridge	5,000	domestics
1998	SRSC	ATS	ffry	Shepards	Center Rd access	5,000	domestics
1998	SRSC	ATS	ffry	Shepards	Above bridge Center rd.	5,000	domestics
1998	SRSC	ATS	ffry	Shepards	Eaton Ctr. Rd. Bridge	5,000	domestics
1998	SRSC	ATS	ffry	Shepards	Billy Brook; Billy Rd. Bridge	7,500	domestics
1998	SRSC	ATS	ffry	Shepards	Quint Brook	7,500	domestics
1998	SRSC	ATS	ffry	Hancock Brook	Wards Hill Road Bridge	15,000	domestics
1998	SRSC	ATS	ffry	Hancock Brook	Sebago Rd. Bridge	2,500	domestics
1998	SRSC	ATS	ffry	Hancock Brook	Barker Pond Outlet	5,000	domestics
1998	SRSC	ATS	ffry	Hancock Brook	Sebago Rd. Access	6,200	domestics
1998	SRSC	ATS	ffry	Little Ossipee River	Black Brook	5,000	domestics
1998	SRSC	ATS	ffry	Little Ossipee River	Hill Road	5,000	domestics
1998	SRSC	ATS		Little Ossipee River	Eider Mill Brook, Rt. 11 xing	10,000	domestics ·
<u>1998</u> 1998	SRSC SRSC	ATS ATS	ffry ffry	Little Ossipee River	Hamlin Brook Hardscrabble Rd. Access	5,000 25,000	domestics domestics
1998	SRSC	ATS	ffry	Big Ossipee River	Ossipee, Kezar Falls hydro	20,000	domestics
1998	SRSC	ATS	ffry	Big Ossipee River	Ossipee, Hydro to S. Hiram Br.	200,000	domestics
1998	SRSC	ATS	ffry	Big Ossipee River	Ossipee, So. Hiram Br. To confl.	50,000	domestics
1998	SRSC	ATS	ffry	Saco	conf. Big Ossipee to Rt. 5 bridge		domestics
1998	GLNFH	ATS	0+parr	Saco	Limington Rips	27,815	
1998	GLNFH	ATS	0+parr	Saco	Skelton Dam	22,185	
1998	NHF&G		1	Davis Pond	Madison	120	
1998	NHF&G		1	Davis Pond	Madison	200	
1998	NHF&G	BKT	1	Ellis River	Pinkhams Grant	450	
1998	NHF&G		1	Ellis River	Bartlett	300	
1998	NHF&G		1	Ellis River	Jackson	1,600	· ····
1998	NHF&G		1	Ellis River	Jackson	200	
1998	NHF&G		1	E.B. Saco River	Bartlett	1,500	
1998	NHF&G		1	Little Swift River	Tamworth	550	
1998	NHF&G		1	Ossipee River	Freedom	1,500	
1998	NHF&G		1	Ossipee River	Freedom	1,000	
1998	NHF&G		2	Saco Lake	Carroll	200	
1998	NHF&G		1	Saco Lake	Carroll Carroll	<u>1,710</u> 63	brood
1998	NHF&G	BKT	3+	Saco Lake	Californ	<u> </u>	

1998 Saco River Stocking (Cont)

	J					······
1998	NHF&G	RBT	1	Saco	Bartlett	200
1998	NHF&G	BKT	1	Saco	Bartlett	3,050
1998	NHF&G	BKT	2	Saco	Bartlett	150
1998	NHF&G	BNT	1	Saco	Conway	2,150
1998	NHF&G	BKT	1	Saco	Conway	2,500
1998	NHF&G	вкт	2	Saco	Conway	150
1998	NHF&G	RBT	1	Saco	Conway	550
1998	NHF&G	BKT	1	Saco	Harts Location	1,750
1998	NHF&G	BKT	2	Saco	Harts Location	25
1998	NHF&G	BKT	1	Slippery Brook	Chatham	250
1998	NHF&G	BKT	1	Swift River	Albany	4,510
1998	NHF&G	BKT	1	Swift River	Tamworth	1,090
1998	NHF&G	BKT	1	Wildcat River	Jackson	1,300
1998	NHF&G	BKT	1	Willey House Pond	Harts Location	155
* these are flo	oy tags					
				Summaries	Number stocked	
						·
				BKT Stocked	25,103	
				BNT Stocked	10,910	
				ffry	428,700	
				1smolt	21,318	
				0+ parr	50,000	
				ATS Stocked	500,018	
				LLS Stocked	1,000	
				RBT Stocked	2,950	
				American Shad stocked		
				fry	503,730	
				Adult	50	
				AMS Stocked	503,780	

king Year	Source	Species Stocked Ac	ge/Size	Sub-Drainage Stocked	Release Location	No. Stocked	Marks/Comments
1999	SRSC	ATS fry		Reach I, Saco	Moors Brook	3,000	57 F
	SRSC	ATS fry		Reach II, Saco	Deep Brook	14,700	
	SRSC	ATS fry		Reach II, Saco	Swans Pond Brook	18,400	57 F
	SRSC	ATS fry		Reach II, Saco	Stackpole Creek	23,600	54 F
	SRSC	ATS fry		Reach II. Saco	Haines Meadow Brook	7,000	58 F
	SRSC	ATS fry		Reach II, Saco	Buzzell Road Brook	14,000	57 F
	SRSC	ATS fry	• I	Reach II, Saco	Cold Water Brook	4,200	48 F
	SRSC			Reach II, Saco	Berry Brook	17,200	48 F
	SRSC	ATS fry	•	Reach II, Saco	Red Brook	32,000	60 F
	SRSC	ATS fry		Reach III, Saco	Cooks Brook	10,400	
	SRSC	ATS fry		Reach III, Saco	Locke Brook	2,800	58 F
	SRSC	ATS fry	· ·	Reach III, Saco	Junkins Brook	3,200	58 F
	SRSC	ATS fry		Reach III, Saco	Killick Brook	13,200	
	SRSC	ATS fry	y	Reach IV, Little Ossipee	Little Ossipee River	28,000	56 F
1999	SRSC	ATS fry	y	Reach IV, Little Ossipee	Hamlin Brook	4,000	
1999	SRSC	ATS fry	y	Reach IV, Saco	Strout Brook	7,000	58 F
1999	SRSC	ATS fry	v	Reach IV, Saco	Tucker Brook	4,000	58 F
	SRSC	ATS fry		Reach IV, Saco	Quaker Brook	4,000	56 F
	SRSC	ATS fry		Reach IV, Saco	Pigeon Brook	13,000	56 F
	SRSC	ATS fry		Reach IV, Saco	Back Brook	12,000	56 F
	SRSC	ATS fry		Reach IV, Saco	Pugsley Brook	13,000	55 F
							55 F
	SRSC	ATS fry		Reach IV, Saco	Breakneck Brook	21,000	50 F
	SRSC	ATS fry	•	Reach IV, Saco	Dug Hill Brook	18,000	
	SRSC	ATS fry		Reach IV, Saco	Pine Hill Brook	4,000	
	SRSC	ATS fry		Reach IV, Big Ossipee	Watchic Pond Brook	4,000	
1999	SRSC	ATS fry	у	Reach IV, Big Ossipee	Big Ossipee	215,000	57 F
1999	SRSC	ATS fry	y	Reach IV, Big Ossipee	Ridlon Brook	5,000	
1999	SRSC	ATS fry	y I	Reach IV, Big Ossipee	Wadworth Brook	20,000	
1999	SRSC	ATS fry		Reach IV, Saco	Plains Pond Brook	1,000	
	SRSC	ATS fry	· I	Reach IV, Saco	Clay Pit Brook	3,000	•
	SRSC	ATS fry		Reach IV, Saco	Pendexter Brook	15,000	
	SRSC			Reach IV, Saco	Mudgett Meadow Brook	12,000	
			-	· · · · · · · · · · · · · · · · · · ·			50.5
	SRSC	ATS fry		Reach V, Saco	Hancock Brook	8,000	56 F
	SRSC	ATS fry		Reach V, Saco	Mill Brook	7,000	
	SRSC	ATS fry	· 1	Reach V, Saco	Ten Mile Brook	18,000	
	SRSC	ATS fry	<u>y</u>	Reach V, Saco	Shepards River Area	81,000	55 F
	SRSC	ATS fry	У	Reach V, Saco	Bull Ring Brook	4,000	
1999	FF	ATS fry	y	Little Ossipee	Hiram	182	6/8/1999 (Kennebunk Middle Sch
1999	FF	ATS fry	y I	Little Ossipee	Hiram		6/8/99 (Harrison Middle School
1999	FF	ATS fry	v	Swan Pond Brook	Saco	121	6/9/99 (C.K. Burns School)
1999		ATS fry		Swan Pond Brook	Saco	185	5/18/1999 (St. James School)
1999		ATS fry		Little Ossipee	Hiram	119	6/10/99 (Saco Sweetser Children
1999				Little Ossipee	Hiram	110	6/10/99 (Windham Sweetser Child
1999			-)		Limington	249	5/28/99 (Windham Primary
				Limington Rips			
1999		ATS fry		Little Ossipee	Hiram	300	5/18/1999 (Congin School)
	Adopt A Salmon	ATS fry	, ,	Swan Pond Brook	Saco	454	6/2/99 (Village Elementary Scho
1999		ATS fry	· .	Little Ossipee	Hiram	289	6/3/99 (King Middle School)
1999		ATS fry		Swan Pond Brook	Saco	271	5/25/99 (Central School)
1999	9 FF	ATS fry	у	Swan Pond Brook	Saco	202	5/18/99 (Lunt School)
1999		ATS fry	у	Swan Pond Brook	Saco	286	5/19/99 (Frank Brown School)
1999	Adopt A Salmon	ATS fry	у	Swan Pond Brook	Saco	300	6/14/99 (Coastal Ridge Elementa
	GLNFH			Saco	East Limington Rips	4,766	10/5/99
	GLNFH		+ parr		Steep Falls	8,316	10/5/99
	GLNFH				Comish Station	6,878	10/5/99
	GLNFH			Big Ossipee	Cornish Station	9,384	10/5/99
	GLNFH			Big Ossipee	Kezar Falls	17,636	10/5/99
	GLNFH		smolt		Rte. 5 Bridge	19,779	4/19/99
		BNT F		Saco	Below Hiram dam	300	10/7/99
	MDIFW	BNT F		Saco	Below West Buxton dam	200	10/7/99
	MDIFW	BNT F		Saco	Below Bar Mills dam	200	10/7/99
	MDIFW	BNT F		Saco	Below Skelton dam	500	10/7/99
1999	MDIFW	BNT F	Y	Saco	Rte. 117 Xing	300	10/6/99
1999	MOIFW	BNT F	Y	Saco	Rte. 11 Xing	300	10/6/99
1990	MDIFW	BKT S	SY	Saco	Swan Falls	150	6/2/99
	MDIFW	BKT S		Saco	Below Skelton Dam	200	6/2/99
					Below Dam	200	6/2/99
1999	MDIFW	IBKI S	ίΥ i	15800	Delow Dam		
<u>1999</u> 1999	9 MDIFW 9 MDIFW	BKT S' BKT S'		Saco	Rte. 11 Xing	200	

1999 Saco River Stocking (Cont)

	MDIFW	BKT	SY	Saco	Below Dam	200	5/6/99
	MDIFW	BKT	SY	Saco	Swan Falls	150	5/6/99
1999	MDIFW	BKT	SY	Saco	Below Skelton Dam	200	5/6/99
1999	MDIFW	BNT	SY	Saco	Bonney Eagle by-pass	500	4/12/99
1999	MDIFW	<u>BKT</u>	SY	Reach IV,Big Ossipee		200	5/6/99
1999	MDIFW	BKT	SY	Reach IV,Big Ossipee	Dirt Rd. off South Hiram Rd.	200	5/6/99
1999	MDIFW	BNT	SY	Reach IV, Big Ossipee	Dirt Rd. off South Hiram Rd.	800	5/13/99
1999	MDIFW	BNT	SY	Reach IV, Big Ossipee	South Hiram Rd. Xing	800	5/13/99
	MDIFW	ВКТ	SY	Reach IV, Big Ossipee	Dirt Rd. off South Hiram Rd.	200	6/2/99
	MDIFW	ВКТ	SY	Reach IV, Big Ossipee	South Hiram Rd. Xing	400	6/2/99
	MDIFW	ВКТ	SY	Reach IV,Big Ossipee	Dirt Rd, off South Hiram Rd.	200	6/2/99
	MDIFW	BNT	FY	Reach IV,Big Ossipee	South Hiram Rd. Xing	500	10/18/99
	MDIFW	BNT	SY	Reach IV, Little Ossipee	Clarks Bridge Rd. Xing	150	4/14/99
	MDIFW	BNT	SY	Reach IV. Little Ossipee	MDIFW Mgmt, Area	250	4/14/99
	MDIFW	BNT	SY	Reach IV, Little Ossipee	Off Foss Rd. near Pendexter Bk	250	4/14/99
	MDIFW	BNT	SY	Reach IV, Little Ossipee	Bridge Street Xing	250	4/14/99
	MDIFW	BNT	SY	Reach IV, Little Ossipee	@ mouth of Davis Bk.	250	4/14/99
	MDIFW	BNT	SY	Reach IV, Little Ossipee	Old Rte. 11 Xing	250	4/14/99
	MDIFW	BNT	SY	Reach IV, Little Ossipee	Clarks Bridge Rd, Xing	150	5/4/99
			SY				
	MDIFW	BNT		Reach IV, Little Ossipee	MDIFW Mgmt, Area	250	5/4/99
	MDIFW	BNT	SY SY	Reach IV, Little Ossipee	Off Foss Rd. near Pendexter Bk	250	5/4/99
	MDIFW	BNT	SY	Reach IV, Little Ossipee	Bridge Street Xing	250	5/4/99
	MDIFW	BNT	SY	Reach IV, Little Ossipee	@ mouth of Davis Bk.	250	5/4/99
	MDIFW	BNT	SY	Reach IV, Little Ossipee	Old Rte. 11 Xing	250	5/4/99
	MDIFW	BKT	SY	Reach IV, Little Ossipee	Clarks Bridge Rd. Xing	125	5/6/99
	MDIFW	BKT	SY	Reach IV, Little Ossipee	Off Foss Rd.	150	5/6/99
	MDIFW	BKT	SY	Reach IV, Little Ossipee	Bridge Street Xing	100	5/6/99
	MDIFW	<u>BKT</u>	SY	Reach IV, Little Ossipee	MDIFW Mgmt. area	100	5/6/99
	MDIFW	BKT	SY	Reach IV, Little Ossipee	Off Foss Rd.	150	5/6/99
	MDIFW	BKT	SY	Reach IV, Little Ossipee	Clarks Bridge Rd. Xing	125	6/2/99
	MDIFW	BKT	SY	Reach IV, Little Ossipee	Bridge Street Xing	100	6/2/99
1999	MDIFW	BKT	SY	Reach IV, Little Ossipee	MDIFW Mgmt. area	100	6/2/99
1999	MDIFW	BKT	SY	Reach IV, Little Ossipee	·	400	6/2/99
1999	MDMR	AMS	fry	Reach III, Saco	Below Bar Mills Dam	21,354	7/19/99
1999	MDMR	AMS	fry	Reach III, Saco	Below Bar Mills Dam	81534	7/26/99
1999	MDMR	AMS	fry	Reach III, Saco	Below Bar Mills Dam	48886	8/10/99
1999	NHF&G	BNT	1		Davis Pond	100	
1999	NHF&G	RBT	1	1	Davis Pond	200	
1999	NHF&G	BKT	1		Ellis River	1235	
1999	NHF&G	ВКТ	2		Ellis River	175	
1999	NHF&G	BKT	3		Ellis River	100	
1999	NHF&G	вкт	FING		Ellis River	600	Surplus
	NHF&G	RBT	1		Ellis River	200	
	NHF&G	BKT	1		Ellis River	1050	
	NHF&G	BKT	2		Ellis River	195	
	NHF&G	BKT	3		Ellis River	50	
	NHF&G	BKT	FING		Ellis River	1086	Surplus
	NHF&G	BKT	1		Ellis River	1050	
	NHF&G	BKT	2	l	Ellis River	195	
	NHF&G	BKT	3	<u> </u>	Ellis River		
				<u> </u>			Sumlus
	NHF&G	BKT	FING		Ellis River	1086	Surplus
	NHF&G NHF&G		1		Ossipee Lake	1000	
		RBT	1		Ossipee Lake		
	NHF&G	BKT			Saco Lake	1000	
	NHF&G	BKT	2		Saco Lake	100	
	NHF&G	BNT			Saco River	400	
	NHF&G	BKT	1		Saco River	• 1900	
	NHF&G	BKT			Saco River	. 400	Surplus
	NHF&G	BKT	2		Saco River	150	
	NHF&G	BKT	2		Saco River	40	Surplus
	NHF&G	BKT	3		Saco River	100	
1999	NHF&G	BKT	FING		Saco River	1686	Surplus
			1.		Wildcat Pond	150	
	NHF&G	BKT	1		Willucat r Uliu	100	

Summary	
	Number stocked
BKT Stocked	16448
BNT Stocked	7700
Atlantic Salmon Stocked	
fry	687,885
0 + parr	46,980
1 smolt	20,079
ATS Stocked	773,964
RBT Stocked	1,900
LLS	1,000
American Shad Stocked	
fry	151,774
AMS Stocked	151,774

1999 Saco River Stocking (Cont)

ł

·

Stocking Year	Stocking Date	Source	Species Stocked	Lifestage	Sub-Drainage Stocked	Release Location	No. Stocked
2000	5/12/00	SRSC	ats	ffry	Swan Pond Brk	Buzzel Brk South St	500
2000	5/12/00			ffry	Swan Pond Brk	Rte 35, Goodwin Mills below dam	1000
2000	5/12/00	SRSC	ats	ffry	Cold Water Brk	Buzzell Rd	
2000	5/12/00		ats	ffry	Berry Brk	Hollis Rd	500
2000	5/12/00		ats	ffry	Red Brk	Hollis Rd	4000
2000	5/12/00		ats	ffry	Big Ossipee	Behind Little Red School House	300
2000	5/12/00		ats	ffry	Big Ossipee	Below Lower Dam	1000
2000	<u>5/12/00</u> 5/12/00		ats	ffry	Big Ossipee	Intown Kezar Falls, above bridge	500
2000 2000	5/12/00		ats	ffry ffry	Big Ossipee Big Ossipee	Rte 25 upstream of Claypit Brk Rte 25 across from Eastmans store	400
2000	5/12/00		ats	ffry	Big Ossipee	Rte 25 across from mailbox #381	300
2000	5/12/00		ats	ffry	Big Ossipee	Blue trailer site, below covered bridge	1000
2000	5/12/00		ats	ffry	Big Ossipee	Mouth of and downstream of Mill Brook	300
2000	5/12/00		ats	ffry	Big Ossipee	Jim Hadlock property	500
2000	5/12/00		ats	ffry	Big Ossipee	Big Bend Rapids 0.5 miles from ME/NH border	1000
2000	5/12/00	SRSC	ats	ffry	Big Ossipee	Rte 25 dwnstrm from ME/NH border	500
2000	5/12/00	SRSC	ats	ffry	Big Ossipee	Wedgewood Brk Rte 25 bridge	500
2000	5/12/00	SRSC	ats	ffry	Big Ossipee	Wedgewood Brk. Pendexter Rd	500
2000	5/12/00		ats	ffry	Big Ossipee	Little River Behind Wendy's Seafood	400
2000	5/12/00		ats	ffry	Big Ossipee	Wadsworth Brk South Hiram Rd	400
2000	5/12/00		ats	ffry	Big Ossipee	Wadsworth Brk Rick Kennedy property	200
2000	5/12/00		ats	ffry	Big Ossipee	Ridlon Brk Below Dowel Mill Dam	300
2000	5/12/00		ats	ffry	Big Ossipee	Claypit Brk. Colcord Pond Rd	100
2000	5/12/00		ats	ffry	Big Ossipee	Mill Brk. Porter Store	500
2000	5/12/00		ats	ffry	Big Ossipee	Mill Brk. Below Bickford Pond Dam	. 5000
2000	5/12/00 5/12/00		ats	ffry	Big Ossipee	South River Pratt Rd South River Demars Rd	5000
2000	5/12/00		ats	ffry ffry	Big Ossipee	South River Demars Ro	500
2000	5/12/00		ats	ffry	Saco	Hancock Brk. Sebago Rd at old bridge crossing	300
2000	5/12/00		ats	ffry	Saco	Breakneck Brk Crawford Rd bridge crossing	5000
2000	5/12/00		ats	ffry	Saco	Pugsley Brk Rte 25	19250
2000	5/12/00		ats	ffry	Saco	Dug Hill Brk. Rie 113 bridge crossing	2000
2000	5/12/00		ats	ffry	Saco	Back Brk. Rte 25 bridge crossing to Hanscom School Rd	11000
2000	5/12/00		ats	ffry	Saco	Pigeon Brk. River Rd bridge crossing	3000
2000	5/13/00	1	ats	ffry	Saco	Ten Mile River Notch Rd	5000
2000	5/13/00	SRSC	ats	ffry	Saco	Shepherds River Main St. downstream from Billy Brk	2000
2000	5/13/00	SRSC	ats	ffry	Shepherds River	Billy Brk. Main St. & Merrill Corner Rd	500
2000	5/13/00	SRSC	ats	ffry	Saco	Stackpole Creek Simpson Rd at stone bridge	8000
2000	5/13/00		ats	ffry	Saco	Cooks Brk. Rte 35	400
2000	5/13/00		ats	ffry	Saco	Cooks Brk. Hollis Rd	2400
2000	5/13/00		ats	ffry	Saco	Red Brk. Hollis Rd	1000
2000	5/13/00		ats	ffry	Saco	Red Brk. Rte 5	1000
2000	5/13/00		ats	ffry	Saco	Locke Brk. Bear Hill Rd	3000
2000	5/13/00		ats	ffry	Saco	Cold Water Brk. Buzzell Rd	1000
2000	5/13/00		ats	ffry	Saco	Deep Brk. Rte 112	2400
2000 2000	<u>5/13/00</u> 5/13/00		ats	ffry ffry	Saco Saco	Deep Brk. Rte 5 Cold Water Brk. Buzzell Rd (Ham's Farm)	400
2000	5/13/00		ats ats	πry ffry	Saco	Cold Water Brk, Buzzell Rd (Charles Corner)	2000
2000	5/13/00		ats	ffry	Saco	Cold Water Brk. Buzzell Rd (Charles Comer)	500
2000	5/13/00		ats	ffry	Saco	Cold Water Brk, Buzzell Rd (Clint's House)	2000
2000	5/13/00		ats	ffry	Saco	Mainstern at Buzzell Road Rapids	4000
2000	5/13/00		ats	ffry	Saco	Locke Brk Rte 117	100
2000	5/13/00		ats	ffry	Little Ossipee	Hardscrabble Rd	30000
2000	5/13/00		ats	ffry	Little Ossipee	Black Brk. Boothby Rd	500
2000	5/13/00	SRSC	ats	ffry	Saco	Josies Brk. Saco Rd bridge crossing (?)	500
2000	5/13/00		ats	ffry	Saco	Josies Brk Rte 25 (?)	500
2000	5/13/00		ats	ffry	Saco	Killick Brk. Downstream from Killick Pond	2000
2000	5/13/00		ats	ffry	Saco	Watchic Brk. Manchester Rd (?)	5000
2000	<u>5/13/00</u>		ats	ffry	Saco	Mill Pond Brk, ?	2000
2000	<u>5/13/00</u>		ats	ffry	Saco	Mill Pond Brk, ?	200
2000	5/13/00		ats	ffry	Little Ossipee	Hamlin Brk. Rte 25	200
2000	5/13/00		ats	ffry	Big Ossipee	By cance: Kezar Falls to Cornish	111720
2000		SRSC	ats	ffry	Saco	Swan Pond Brk Rte 35, Goodwin Mills below dam	3000
2000	<u>5/13/00</u> 5/13/00		ats	ffry	Saco Saco	Red Brk, ?	10000
2000 2000	5/13/00		ats	ffry ffry	Saco	Red Brk, Union Falls Rd	10000
2000		SRSC	ats	ffry	Saco	Swan Pond Brk, Wadlin Rd	5000

2000 Saco River Stocking (Cont)

		SRSC	ats	ffry	Saco	Swan Pond Brk, South St	50
2000	5/13/00		ats	ffry	Saco	Shepherds River County Rd off River Rd	110
2000	5/13/00		ats	ffry	Saco	Shepherds River Eaton Center Rd	300
2000 2000	5/13/00 5/10/00		ats	ffry	Saco	Ten Mile River Rte 160	50
2000	5/10/00		ats	ffry ffry	Saco Saco	Hancock Brk, Wards Hill Rd bridge crossing Breakneck Brk. Weeman Rd bridge crossing	96 50
2000	5/10/00		ats	ffry	Saco	Breakneck Brk Douglas Hill Rd bridge cossing	51
2000	5/10/00		ats	ffry	Saco	Dug Hill Brk Black Rd bridge crossing	40
2000	5/12/00	SRSC	ats	ffry	Saco	Pigeon Hill Brk. Rte 113 road crossing	25
2000	5/12/00	SRSC	ats	ffry	Saco	Back Brk Hanscorn School Rd bridge crossing	55
2000	19-Apr-00		ats	1smolt	Saco	rte 5 bridge	81
2000	19-Apr-00		ats	1smolt	Saco	rte 5 bridge	41
2000	19-Apr-00		ats	1smolt	Saco	rte 5 bridge	102
2000	27-Sep-00	GLNFH	ats	0+parr	Big Ossipee	Kezar Falls (accidental stocking above dam)	241
2000	27-Sep-00	GLNFH	ats	0+parr	Saco	Hiram Dam	241
2000	10/23/00	MDIFW	BNT	FY	Saco	Below Hiram dam	1
2000	10/23/00	MDIFW	BNT	FY	Saco	Rte. 117 Xing	1
2000	10/23/00	MDIFW	BNT	FY	Saco	Rte. 11 Xing	1
2000	10/23/00		BNT	FY	Saco	Below West Buxton dam	1(
2000	10/23/00		BNT	FY	Saco	Below Bar Mills dam	10
2000	10/23/00		BNT	FY	Saco	Below Skelton dam	2!
			1				
2000	5/26/00		BNT	SY	Saco	Bonney Eagle by-pass	2
2000		MDIFW	вкт	SY	Saco	Swan Falls	1
2000	5/25/00		вкт	SY	Saco	Below Skelton Dam	2
2000	5/25/00	MDIFW	вкт	SY	Saco	Below Dam	2
2000	5/25/00	MDIFW	вкт	SY	Saco	Rte. 11 Xing	2
2000	5/25/00	MDIFW	вкт	SY	Saco	Bonney Eagle by-pass	5
2000	5/4/00	MDIFW	вкт	SY	Saco	Rte. 11 Xing	2
2000	5/4/00	MDIFW	вкт	SY	Saco	Below Dam	2
2000	5/4/00	MDIFW	вкт	SY	Saco	Swan Falls	1
2000	5/4/00	MDIFW	вкт	SY	Saco	Below Skelton Dam	2
2000	5/4/00	MDIFW	вкт	SY	Reach IV, Big Ossipee	Sacopee High School	3
2000		MDIFW	вкт	SY		Dirt Rd. off South Hiram Rd.	3
2000	5/25/00		вкт	SY	Reach IV, Big Ossipee	1	3
2000	5/25/00		вкт	SY		Dirt Rd. off South Hiram Rd.	3
2000			BNT				8
	5/30/00			SY	Reach IV, Big Ossipee		
2000	5/30/00		BNT	SY	Reach IV, Big Ossipee		8
2000	10/23/00		BNT	FY	1	Dirt Rd. off South Hiram Rd.	2
2000	5/25/00		вкт	SY		Clarks Bridge Rd. Xing	1
2000	5/25/00	MDIFW	вкт	SY	Reach IV, Little Ossipe	Off Foss Rd.	1
2000	5/25/00	MDIFW	вкт	SY	Reach IV, Little Ossipe	Bridge Street Xing	1
2000	5/25/00	MDIFW	вкт	SY	Reach IV, Little Ossipe	MDIFW Mgmt. area	1
2000	5/23/00	MDIFW	BNT	SY	Reach IV, Little Ossipe	Clarks Bridge Rd. Xing	1
2000			BNT	SY	Reach IV, Little Ossipe	MDIFW Mgmt. Area	2
2000			BNT	SY		Foss Rd. near Pendex. Bk.	2
2000			BNT	SY	Reach IV, Little Ossipe		2
2000		MDIFW	BNT	SY	Reach IV, Little Ossipe		2
1				SY			
2000		MDIFW	BNT		Reach IV, Little Ossipe		2
2000			BKT	SY			1
2000		MDIFW	BKT	SY	Reach IV, Little Ossipe		1
2000		MDIFW	вкт	SY	Reach IV, Little Ossipe		1
2000			вкт	SY	Reach IV, Little Ossipe	-	1
2000		MDIFW	BNT	SY	Reach IV, Little Ossipe	Clarks Bridge Rd. Xing	<u> </u>
2000	4/20/00	MDIFW	BNT	SY	Reach IV, Little Ossipe		2
2000	4/20/00	MDIFW	BNT	SY	Reach IV, Little Ossipe	Foss Rd. near Pendex. Bk.	2
2000	4/20/00	MDIFW	BNT	SY	Reach IV, Little Ossipe		2
2000		MDIFW	BNT	SY	Reach IV, Little Ossipe	1	2
2000		MDIFW	BNT	SY	Reach IV, Little Ossipe		2
2000	7/10/00		AMS	fry	Reach III, Saco River		259,0
						Summary	

2000 Saco River Stocking (Cont)

2000	NHF&G BNT	1	Davis Pond	120
2000	NHF&G RBT	1	Davis Pond	100
2000	NHF&G BKT	1	Ellis River	1200
2000	NHF&G BKT	2	Ellis River	125
2000	NHF&G RBT	1	Ellis River	900
2000	NHF&G BKT	1	Ellis River	1500
2000	NHF&G BKT	2	Ellis River	150
2000	NHF&G RBT	1	Ellis River	900
2000	NHF&G BKT	1	Ellis River	400
2000	NHF&G LLS	1	Ossipee Lake	969
2000	NHF&G RBT	1	Ossipee Lake	2000
2000	NHF&G BKT	1	Slippery Brook	400
2000	NHF&G BKT	1	Saco Lake	1000
2000	NHF&G BKT	2	Saco Lake	100
2000	NHF&G BNT	1	Saco River	1000
2000	NHF&G BKT	1	Saco River	2440
2000	NHF&G BKT	2	Saco River	175
2000	NHF&G RBT	1	Saco River	200
2000	NHF&G BNT	1	Saco River	1650
2000	NHF&G BKT	1	Saco River	4160
2000	NHF&G BKT	2	Saco River	325
2000	NHF&G RBT	1	Saco River	400
2000	NHF&G BKT	1	Saco River	200
2000	NHF&G BKT	2	Saco River	75
2000	NHF&G BKT	1	Saco River, East Branch	650
2000	NHF&G BKT	11	Saco River, East Branch	750
2000	вкт	1	Wildcat River	2300
2000	ВКТ	1	Wildcat Pond	150

Summary	
Saco River Stocking Summary -2000	
Atlantic salmon	Number Stocked
fry	598720
0+parr	48222
1smolt	22622
Brook trout	20250
Brown trout	8570
Rainbow trout	4500
Landlocked salmon	969
American shad	
fry	259.090

.

.

Saco River Salmon Club Hatchery P.O. Box 115, Saco ME 04072 Web address: <u>http://www.sacosalmon.org/</u> Phone: 207-282-6085

Background: The Saco River Salmon Club was established in 1980 as a club with a vision. The members started to work with state representatives to appropriate funds for hatchery construction, as well as find a suitable site. The Bar Mills site was located in 1990; modifications to the existing structure were started. During the fall of 1992, the SRSC received its first allotment of eggs, and with these 200,000-eyed eggs, the SRSC was spawned. The club received eggs for the next four years, increasing its capacity to 500,000. The Saco River Salmon Club moved into its new location at the Marble Head boat launch in 1997, following its completion by SRSC members. In the fall of 1997, the club received 100,000-eyed eggs to start up the new hatchery. Everything went well and the club has increased its capacity ever since. In 1998, it received 500,000 eggs to reach full capacity. New modifications to the hatchery in 1999 increased eyed egg incubation space to 1.2 million and trough-rearing space has allowed the club to start feeding the fry before they are stocked out. During the summer of 1999, the SRSC installed an oxygen injection system at the hatchery, increasing the capacity to feed 750,000. Atlantic salmon fry. The SRSC successfully stocked over 600,000 feeding fry in 1999 and 2000.

Hatchery Specifications: The Saco River Salmon Club Hatchery is a recirculating facility that operates at 120gpm flows. The water is monitored daily for chemical composition as well as oxygen levels and temperature. Water temperature is controlled by chilling units; the flow is supplied by pumps that are backed up with a generator. Water is purified through sand filtration and ultra violet sterilization. Ammonia is controlled through zeolite filters as well as biological filtration. Exchange of pure water can be controlled by four 4000-gallon holding tanks. Additional pure water can be supplied by a well on site that has a 7gpm exchange capability; city water can also be dechlorinated to allow a 5gpm exchange. Feeding troughs have become fully automated with the addition of feeders.

Hatchery Production Goals and Request for Eggs: The Saco River Salmon Club is formally requesting that 750,000 eyed-eggs be allocated to the production of feeding fry for the SRSC to raise and stock into the Saco River and its tributaries. These numbers take into consideration the current production levels at the GLNFH and the fish production goals set by the SRSC. These target numbers are requested over the next four years, at which time the club would like to increase them to further fulfill the restoration goals of the Saco River effort. These goals could be further refined through cooperation with Inland Fish & Wildlife, the Atlantic Salmon Commission, and the U.S. Fish & Wildlife Service.

Any further questions or ideas are welcome. Contact David Bean, Fisheries Biologist, Craig Brook NFH at 207- 469-2803 or Mark Woodruff, President SRSC, at 207-929-5300.

SACO RIVER SALMON CLUB HATCHERY

Four-Year Plan

- Operate a recirculating hatchery that annually raises 700,000 to 750,000 Atlantic salmon fry to be stocked in the Saco River watershed. This will be accomplished by:
- Recruiting additional volunteers from the existing membership role and new members.
- Financing an annual operating budget of approximately \$20,000 through business donations and membership dues.
- Maintaining or purchasing hatchery equipment with funding from grants, business donations, membership dues.
- Compiling a technical manual that describes how to operate the hatchery in the event of an emergency.
- > Conduct habitat surveys to identify suitable locations to release fry.
- Sample the health and survival of fry by electrofishing the stocking sites under study by the US Fish & Wildlife Service.
- > Establish a learning partnership with the University of New England's aquaculture program.
- Continue to assist the Atlantic Salmon Federation's Fish Friends Program with incubators in local elementary schools.
- Annually evaluate the restoration program with the Maine Atlantic Salmon Commission, Maine Department of Inland Fisheries & Wildlife, and US Fish & Wildlife Service to develop future stocking densities and upstream passage facilities.

Five- to Ten-Year Plan

- Increase the number of fry raised in the hatchery to 1.2 million. This is contingent upon increasing active participation of membership, expanding the size of the hatchery within the existing building footprint, and enlarging the feeding trough capacity.
- > Computerize the monitoring and chemical control of the hatchery's water system.
- > Pay back the construction loan from Biddeford-Saco Savings and Loan Institution.

Department of Marine Resources Activity Summaries - 2000

American Shad, River Herring, American Eels

.

Maine Department of Marine Resources 2000 Saco River Summary Report

The Saco River, the sixth largest river in the State of Maine, originates in the White Mountains of New Hampshire and has a drainage area of 1,703 square miles. This is the eighth consecutive year of the operation of fish passage facilities on the Saco River at the head-of-tide in Biddeford and Saco, Maine. Fish passages were constructed at the Cataract Project's four dams by Central Maine Power Company as part of federal relicensing requirements to expedite the restoration of American shad, river herring, and Atlantic salmon to the Saco River. Collection and counting facilities at the Cataract Project are now staffed by personnel from Florida Power and Light (FPL), the current owner of the project. Annual program activities are developed and coordinated through the Saco River Coordinating Committee, which consists of FPL, state and federal fisheries agencies, and participating nongovernmental organizations.

American Shad and River Herring. The 2000 adult returns of American shad were the third highest on record and returns of river herring were the second highest on record since the Cataract Project fishways became operational in 1993 (Table 1). A total of 1,323 American shad and 25,136 river herring were captured at Cataract and passed into the headpond or trucked upriver. Of the total number of shad and river herring ascending the Saco, 79% and 92% respectively, utilized the East Channel fish lift.

For the third consecutive year, FPL staff collected American shad broodstock from the Saco River for transfer by DMR staff to the Waldoboro shad hatchery. A total of 144 American shad were collected on three dates (Table 2) and transferred to the hatchery; only one fish died in transit. Approximately 259,090 fry from the broodstock were released on July 10 into the Saco River immediately below the Bar Mills Dam. To date, 914,594 fry have been stocked in the Saco River (Table 3). Based on data from other rivers, DMR expects these fry will result in 2,286 adult returns. Of the 143 Saco brood fish held at the hatchery, 58 (41%) died. The remaining 85 fish, which had been treated with formalin, were not released for human health reasons; they were instead sacrificed for biological samples.

American Eel. American eel management on the Saco River is guided by the "*State of Maine American Eel (Anguilla rostrata) Species Management Plan"* (November, 1996), prepared by the Departments of Marine Resources and Inland Fisheries & Wildlife, and the Atlantic States Marine Fisheries Commission's *American Eel Fisheries Management Plan*. The plans contain nearly identical goals that are:

- 1) To maintain and enhance the abundance of American eels in inland and coastal waters of Maine to contribute to the viability of the American eel spawning population; and
- 2) To provide sustainable recreational and commercial fisheries for American eels.

The plans also contain similar objectives that are:

- 1) To maintain or enhance American eel abundance in all watersheds where eels now occur;
- 2) To restore American eels to all waters where they had historical presence, but may now be absent; and
- 3) To provide adequate upstream passage and escapement to inland waters for elvers and eels as well as adequate downstream passage and escapement to the ocean of prespawning adult eels.

In response to concerns about overharvesting, emergency legislation was passed in 1999 to limit entry into the elver (juvenile eel) fishery and reduce the amount of gear available to each harvester. This legislation will ensure that a sizable population of eels will be available to migrate into Maine's rivers and coastal streams in the future.

Current research and management initiatives underway by the DMR and IF&W are designed to improve knowledge of the life history, behavior, habitat requirements, and fisheries for American eel. As information becomes available, management measures will be implemented on the Saco and other rivers to achieve the goals and objectives of the two management plans.

			West Channel Fishway					East Channel Fish Lift					
	Grand				Sub						Sub		
Year	Total	May	June	July	Total	%	May	June	July	August	Total	%	
1993	882	0	3	3	6	0.7	0	731	144	1	876	99.3	
1994	399	0	2	2	4	1.0	0	297	98	0	395	99.0	
1995	580	1	8	0	9	1.6	79	437	55	-0	571	98.4	
1996	837	0	22	5	27	3.2	2	446	351	11	810	96.8	
1997	1,104	0	34	1	35	3.2	0	740	277	52	1,069	96.8	
1998	1,374	2	2	0	4	0.3	575	668	127	0	1,370	99.7	
1999	4,994	439	21	0	460	9.2	682	3,489	363	0	4,534	90.8	
2000	1,323	0	271	3	274	20.7	0	871	178	0	1,049	79.3	

Table 1A. Use of Fish Passage by American Shad at the Cataract Project, Saco River

Table 1B. Use of Fish Passage by River Herring (Alewife & Blueback Herring) at theCataract Project, Saco River

		1	Nest Ch	annel I	- ishway			East Cha	nnel F	ish Lift	
	Grand				Sub			,		Sub	
Year	Total	May	June	July	Total	%	May	June	July	Total	%
1993	831	0	1	0	1	0.1	0	778	52	830	99.9
1994	2,204	89	191	0	280	12.5	1,647	313	0	1,960	87.5
1995	9,820	2,867	49	0	2,916	29.7	5,021	1,883	0	6,904	70.3
1996	9,162	69	78	0	147	1.6	3,514	5,501	0	9,015	98.4
1997	2,137	0	285	. 0	285	13.3	1,114	734	4	1,852	86.7
1998	16,078	208	1,061	0	1,269	7.9	14,705	104	0	14,809	92.1
1999	31,070	10,950	963	0	11,913	38.3	17,991	1,166	0	19,157	31.7
2000	25,136	519	1,505	0	2,024	8.1	4,008	19,104	0	23,112	91.9

Table 2. Collection of American Shad Broodstock from the Saco River - 2000

Date	Number collected
June 12	81
June 30	41
July 21	22

Table 3. Annual Collection and Stocking of American Shad in the Saco River

	Number Broodstock	Number Fry	Release
Year	Collected	Released	Location
1998	178	503,730	Below Bar Mills
1999	401	151,774	Below Bar Mills
2000	144	259,090	Below Bar Mills
Total	723	914,594	

ATTACHMENT 6. Relative Utilization of Fishways

		١	West Ch		Fishway	/		Ea	st Cha	nnel Fish	Lift	
	Grand				Sub						Sub	
Year	Total	May	June	_July	Total	%	May	June	July	August	Total	%
1993	882	0	3	. 3	6	0.7	0	731	144	1	876	99.3
1994	399	0	2	2	4	1.0	0	297	98	0	395	99.0
1995	580	1	8	0	9	1.6	79	437	55	0	571	98.4
1996	837	0	22	5	27	3.2	2	446	351	11	810	96.8
1997	1,104	0	34	1	35	3.2	0	740	277	52	1,069	96.8
1998	1,374	2	2	0	4	0.3	575	668	127	0	1,370	99.7
1999	4,994	439	21	0	460	9.2	682	3,489	363	. 0	4,534	90.8
2000	1,323	0	271	3	274	20.7	0	871	178	0	1,049	79.3

Use of Fish Passage by American Shad at the Cataract Project, Saco River

Use of Fish Passage by River Herring (Alewife and Blueback Herring) at the Cataract Project, Saco River

		١	Nest Cha	annel I	Fishway			East Cha	nnel F	ish Lift	
l	Grand				Sub					Sub	
Year	Total	May	June	July	Total	%	May	June	July	Total	%
1993	831	0	1	0	1	0.1	0	778	52	830	99.9
1994	2,204	89	191	0	280	12.5	1,647	313	0	1,960	87.5
1995	9,820	2,867	49	0	2,916	29.7	5,021	1,883	0	6,904	70.3
1996	9,162	69	78	0	147	1.6	3,514	5,501	0	9,015	98.4
1997	2,137	0	285	0	285	13.3	1,114	734	4	1,852	86.7
1998	16,078	208	1,061	. 0	1,269	7.9	14,705	104	0	14,809	92.1
1999	31,070	10,950	963	0	11,913	38.3	17,991	1,166	0	19,157	31.7
2000	25,136	519	1,505	0	2,024	8.1	4,008	19,104	0	23,112	91.9

Use of Fish Passage by Atlantic Salmon at the Cataract Project, Saco River

 	Grand				West Cl	hannel Fishway			
 Year	Total	May	June	July	August	September	October	Total	%
1993	53	0	5	7	1	14	11	38	71.7
1994	21	0	3	1	6	6	0	16	76.2
1995	34	1	10	1	0	3	1 '	16	47.1
1996	54	2	14	2	2	0	1	21	38.9
1997	28	0	6	3	1	1	1	12	42.9
1998	28	0	5	10	0	2	0	17	60.7
1999	66	6	23	3	4	2	4	42	63.6
2000	50	2	10	2	3	1	2	20	40.0

	Grand		-		East Ch	annel Fish Lift			
Year	Total	May	June	July	August	September	October	Total	%
1993	53	0	9	6	0	0	0	15	28.3
1994	21	0	5	0	0	0	0	5	23.8
1995	34	3	8	0	0	5	2	18	52.9
1996	54	0	23	8	1	0	1	33	61.1
1997	28	1	10	4	0	1	0	16	57.1
1998	28	0	6	5	0	0	0	11	39.3
1999	66	1	22	0	1	0	0	24	36.4
2000	50	1	21	7	0	1	0	30	60.0

ATTACHMENT 7. Electrofishing Activity Summary

YOY Population estimate

Parr Population estimate

	1997	1999	2000	1999	2000
Back River	12	59	14	3	11
Shepards River	5	8	7	1	3
Breackneck Stream		188	88	1	49
Pugsley Stream	17	29	19	2	18
Red Brook			8		12
Linscott Stream	4				

ATTACHMENT 8. Saco River – 2000 Water Temperatures and DO's

WATE	R, AIR TEM	EAST AN	CATARACT ND WEST C E AND SAC	HANNEL	LOW DAT	A 2000
	EAST		WEST		TOTAL	
	WATER		WATER		SACO	AIR
	TEMP		TEMP		RIVER	TEMP
	С		С	·····	FLOW	С
DAY	MIN.	MAX.	MIN.	MAX.	CFS	AVG
5/1/00	*	*	*	*	6450	6.1
5/2/00	*	*	*	*	5870	10
5/3/00	*	*	*	*	5520	7.2
5/4/00	*	*	*	*	5200	10.6
5/5/00	*	*	*	*	4910	18.3
5/6/00	*	*	*	*	4420	13.3
5/7/00	*	*	*	*	4280	16.7
5/8/00	*	*	* .	*	4270	18.9
5/9/00	*	*	*	*	4370	11.1
5/10/00	*	*	*	*	4620	7.8
5/11/00	*	*	*	*	5220	10.6
5/12/00	*	*	*	*	6010	9.4
5/13/00	*	*	*	*	6030	10.6
5/14/00	*	*	*	*	6130	13.9
5/15/00	*.	*	*	*	5990	10.6
5/16/00	*	*	12.4	13	5540	10
5/17/00	*	*	12	13.4	5260	13.3
5/18/00	*	*	12.9	13	5010	13.3
5/19/00	*	*	12.5	13	4850	8.9
5/20/00	* .	*	13.2	13.5	4660	8.3
5/21/00	*	*	12.5	12.9	4590	11.1
5/22/00	13.7	14.3	12.5	13.3	4340	13.3
5/23/00	13.3	14.8	12	14.8	4000	12.8
5/24/00	13.9	14.1	13.8	14.1	4060	10
5/25/00	14	14.4	13.8	14.1	4730	14.4
5/26/00	13.8	14.8	13.8	15.2	4680	16.1

5/27/00	14.2	15.3	14.2	15.7	4610	15
5/28/00	14.7	15.4	14.7	15.5	4510	13.9
5/29/00	15	15.7	14.9	16	4340	11.7
5/30/00	15.3	16.6	15	16.9	3790	10.6
5/31/00	15.6	17	15.6	17.2	3410	11.7
6/1/00	16.3	17.1	16.4	18	3300	20.6
6/2/00	16.9	17.9	17.2	18.3	3200	18.3
6/3/00	17.6	18.5	17.8	19.2	3230	16.7
6/4/00	18.2	18.9	18.4	19	2640	12.8
6/5/00	12.3	18.8	13.6	18.9	2410	13.3
6/6/00	18.1	18.9	17.9	18.7	2310	11.1
6/7/00	17.7	18.4	17.5	18.6	3030	14.4
6/8/00	17.8	18.3	17.8	18.4	2740	13.9
6/9/00	17.1	18	17.8	18.4	2620	20.6
6/10/00	17.4	18.3	17.8	18.6	2530	15.6
6/11/00	17.2	17.7	17.3	18	2460	11.1
6/12/00	17.2	17.5	17.4	17.6	2490	10.6
6/13/00	17.5	17.9	17.3	18.2	2220	11.7
6/14/00	17.6	17.8	17.8	17.9	2140	13.9
6/15/00	17.6	17.8	17.7	17.9	2050	14.4
6/16/00	17.4	18.5	17.4	19	1870	21.1
6/17/00	18.7	19.2	18.9	19.9	1830	24.4
6/18/00	18.5	19	18.9	19.5	2020	17.2
6/19/00	18.1	18.8	18.2	19	2150	17.8
6/20/00	18.5	19.5	18.7	19.9	1950	18.9
6/21/00	19.6	20	19.6	20.6	1900	19.4
6/22/00	19.9	21	19.8	21.3	1860	23.9
6/23/00	20.8	21.6	21	22.2	1680	21.7
6/24/00	21.3	22.2	21.3	22.4	1640	18.9
6/25/00	21.3	22.3	21.6	22.1	1710	19.4
6/26/00	22	22.7	21.4	22.4	1730	22.8
6/27/00	22.4	23.1	22.5	23.2	1690	24.4
6/28/00	22.8	23.8	22.7	23.6	1550	20
6/29/00	22.9	24.2	23	23.6	1590	21.1
6/30/00	23.2	24.3	23.3	24.2	1480	18.9
7/1/00	23.1	24.4	23.7	24.8	1520	19.4
7/2/00	23.7	24.9	24.1	25.4	1400	20.6
7/3/00	23.9	25.3	24.7	25.2	1520	23.3
7/4/00	24.4	25.3	24.7	25.7	1470	22.2
7/5/00	24.7	25.4	25	25.8	1460	18.9
7/6/00	24.3	25.4	24.7	25.6	1178	18.3
7/7/00	24.4	25.3	24.9	25.1	1125	19.4
7/8/00	24.1	24.8	24.5	25.1	1070	18.9
7/9/00	24	24.5	24.2	25.2	904	17.8
7/10/00	24.1	24.7	24.5	25.7	1218	21.1
7/11/00	24	25	24.3	25.3	1068	20
7/12/00	24	25.1	24.4	25.9	957	21.7
7/13/00	24.2	25	24.9	25.7	1044	22.8
7/14/00	24.1	25.1	24.6	25.7	937	22.2
7/15/00	24.3	24.9	25	25.5	979	19.4

7/4 0/00		24.6	02.7	04.2	1105	47.0
7/16/00	23.2	24.6	23.7	24.3	1195	17.2
7/17/00	22.6	23.1	22.9	23.6	2620	18.3
7/18/00	22.9	23.4	23.3	23.6	3160	19.4
7/19/00	22.1	23.2	22.3	23.2	3410	18.3
7/20/00	21.3	22.5	21.6	22.9	3090	16.7
7/21/00	21.1	22.4	21.3	22.7	2670	17.8
7/22/00	21.2	22.3	21.9	22.4	2140	20
7/23/00	21.8	22.4	22	22.9	1990	19.4
7/24/00	21.6	22.3	21.8	22.9	1770	19.4
7/25/00	22.2	22.6	22.4	23.1	1460	20
7/26/00	22.2	22.6	22.4	22.8	1250	17.8
7/27/00	21.6	22.4	21.8	22.1	1940	17.2
7/28/00	21.3	22.4	21.5	22.5	1600	21.1
7/29/00	22.2	23.2	22.5	23.5	1500	21.7
7/30/00	22.3	23.1	22.6	23.1	1890	18.9
7/31/00	21.9	22.3	22.1	22.4	2060	17.8
8/1/00	21.8	22	22	22.1	2480	16.1
8/2/00	21.8	22.1	*	*	2290	20
8/3/00	21.5	22.1	*	*	1920	24.4
8/4/00	21.9	22.3	22	22.8	1830	21.7
8/5/00	21.8	22.2	22.4	22.6	1710	20
8/6/00	21.8	22.5	22.2	23	1470	20
8/7/00	22.1	22.6	22.4	23	1530	21.7
8/8/00	22	23.6	22.4	23.5	1450	24.4
8/9/00	22.6	24.7	23.6	24.2	1330	23.3
8/10/00	22.7	24	23.2	24.8	1400	22.8
8/11/00	23.1	23.8	24	24.6	1370	20
8/12/00	23.3	23.7	23.9	24.6	1300	18.9
8/13/00	23.3	23.4	23.4	23.7	1195	18.9
8/14/00	*	*	22.9	23.4	1420	18.3
8/15/00	*	*	22.9	23.1	1320	20.6
8/16/00	*	*	22.8	23.5	1550	20
8/17/00	*	*	22.8	23.5	1500	17.2
8/18/00	*	*	22.7	23.2	1350	15
8/19/00	*	*	22.6	23.4	1290	18.9
8/20/00	*	*	22.5	22.9	1279	16.7
8/21/00	23	23.1	21.9	22.9	1196	17.8
8/22/00	22.2	23	22.2	23.4	1161	18.9
8/23/00	22.1	22.3	*	*	1105	18.9
8/24/00	22	22.6	22.3	23.1	1031	20.6
8/25/00	21.8	23	22.2	23.3	1124	19.4
8/26/00	22.4	23.1	22.9	23.9	1029	20.6
8/27/00	22.5	22.8	22.9	23.5	1081	21.1
8/28/00	22.6	23.1	23.3	23.8	979	18.3
8/29/00	22.5	23	23.3	23.6	973	17.2
8/30/00	22.3	22.8	22.6	23.3	940	18.3
8/31/00	22.3	22.8	23	23.9	934	22.2
9/1/00	*	*	23.9	24.2	897	26.7
9/2/00	*	*	*	*	882	20.6
9/3/00	*	*	*	*	883	17.8

9/4/00 * * * 913 16.7 9/5/00 21.4 22.3 * * 926 13.3 9/6/00 21.4 21.7 21.8 22.2 912 12.2 9/7/00 21.1 22.1 * * 854 13.3 9/8/00 21.1 22.1 * * 773 18.9 9/9/00 21.8 22.6 * * 734 21.1 9/10/00 22 22.6 22.4 23.2 776 18.9 9/11/00 22 22.6 22.4 23.3 763 15.6 9/15/00 21.7 22.4 21.7 22.5 794 16.1 9/15/00 20.7 20 21 1310 17.8 9/17/00 19.9 21 20 20.5 1360 13.3 9/19/00 20.4 21 20.6 21.4 1203 16.7 9/19/00				,	•••		
9/6/00 21.4 22.3 12.3 32.0 13.3 9/6/00 21.4 21.7 21.8 22.2 912 12.2 9/7/00 21.1 22.1 * * 854 13.3 9/8/00 21.1 22.1 * * 773 18.9 9/9/00 21.8 22.6 * * 734 21.1 9/10/00 22.2 22.6 2.4 23.2 731 15 9/11/00 22.2 22.6 22.4 23.3 763 15.6 9/11/00 22.2 22.6 22.4 23.3 763 15.6 9/14/00 20.7 21.6 20.9 21.3 965 14.4 9/17/00 19.8 20.7 20 21 1310 17.8 9/18/00 19.8 20.7 20.2 11310 17.8 9/19/00 20.4 21 20.6 21.4 1203 16.7	9/4/00						16.7
9/7/00 21.1 21.9 * * 854 13.3 9/8/00 21.1 22.1 * * 773 18.9 9/9/00 21.8 22.6 * * 773 18.9 9/10/00 22 22.6 * * 734 21.1 9/10/00 22.2 22.6 22.4 23.2 776 18.9 9/11/00 22.2 22.6 22.4 23.3 763 15.6 9/13/00 21.7 22.4 21.7 22.5 794 16.1 9/14/00 20.7 21.6 20.9 21.3 965 14.4 9/18/00 19.8 20.7 20 21 1310 17.8 9/18/00 19.8 20.7 20.9 1118 15 9/12/00 20.2 20.8 20.9 1310 21.7 9/21/00 19.4 19.7 19.4 19.8 925 14.4 <td< th=""><th>9/5/00</th><th>21.4</th><th>22.3</th><th>*</th><th>*</th><th>926</th><th>13.3</th></td<>	9/5/00	21.4	22.3	*	*	926	13.3
9/8/00 21.1 22.1 * * 773 18.9 9/9/00 21.8 22.1 * * 773 18.9 9/9/00 21.8 22.6 * * 734 21.1 9/10/00 22 22.6 * * 732 17.8 9/11/00 22.2 22.6 22.4 23.1 739 20 9/13/00 21.9 22.6 22.4 23.3 763 15.6 9/13/00 21.7 22.6 22.4 23.3 763 15.6 9/15/00 21.7 22.4 21.7 22.5 794 16.1 9/16/00 20.7 21.6 20.9 21.3 965 14.4 9/17/00 19.8 20.7 20 21 1310 17.8 9/19/00 20.4 21 20.6 21.4 1203 16.7 9/20/00 19.7 20.1 19.9 20.2 1118 <t< th=""><th>9/6/00</th><th>21.4</th><th>21.7</th><th>21.8</th><th>22.2</th><th>912</th><th>12.2</th></t<>	9/6/00	21.4	21.7	21.8	22.2	912	12.2
9/9/00 21.8 22.6 * * 734 21.1 9/10/00 22 22.6 * * 732 17.8 9/11/00 22.3 22.7 22.4 23.2 731 15 9/12/00 22.2 22.6 22.4 23.3 763 15.6 9/13/00 21.9 22.6 22.4 23.3 763 15.6 9/14/00 22 22.6 22.4 23.3 763 15.6 9/15/00 21.7 22.4 21.7 22.5 794 16.1 9/16/00 20.7 21.6 20.9 21.3 965 14.4 9/17/00 19.8 20.7 20 21 1310 17.8 9/12/00 20.2 20.8 20.9 1310 21.7 9/21/00 20.3 20.7 20.7 21 1294 19.4 9/22/00 19.7 20.1 19.9 20.2 11118 15 <th>9/7/00</th> <th>21.1</th> <th>21.9</th> <th>*</th> <th>*</th> <th>854</th> <th>13.3</th>	9/7/00	21.1	21.9	*	*	854	13.3
9/10/00 22 22.6 * * 732 17.8 9/11/00 22.3 22.7 22.4 23.2 731 15 9/12/00 22.2 22.6 22.4 23.1 739 20 9/13/00 21.9 22.6 22.4 23.1 739 20 9/13/00 21.7 22.6 22.4 23.3 763 15.6 9/15/00 21.7 22.4 21.7 22.5 794 16.1 9/16/00 20.7 21.6 20.9 21.3 965 14.4 9/17/00 19.9 21 20 20.5 1360 13.3 9/18/00 19.8 20.7 20 21 1310 17.8 9/19/00 20.2 20.8 20.8 20.9 1310 21.7 9/21/00 19.7 20.1 19.9 20.2 1118 15 9/21/00 19.4 19.5 19.3 19.8 936 </th <th>9/8/00</th> <th>21.1</th> <th>22.1</th> <th>*</th> <th>*</th> <th>773</th> <th>18.9</th>	9/8/00	21.1	22.1	*	*	773	18.9
9/11/00 22.2 22.3 22.7 22.4 23.2 731 15 9/11/00 22.3 22.6 22.4 23.1 739 20 9/13/00 21.9 22.6 22.4 23.3 763 15.6 9/13/00 21.7 22.4 21.7 22.5 794 16.1 9/14/00 20.7 21.6 20.9 21.3 965 14.4 9/17/00 19.9 21 20 20.5 1360 13.3 9/18/00 19.8 20.7 20 21 1310 17.8 9/19/00 20.4 21 20.6 21.4 1203 16.7 9/20/00 20.2 20.8 20.9 1310 21.7 9/21/00 20.3 20.7 20.7 21 1294 19.4 9/20/00 20.3 20.7 20.7 21 1294 19.4 9/21/00 19.7 20.1 19.9 20.2 <	9/9/00	21.8	22.6	*	. *	734	21.1
9/12/00 22.2 22.6 22.4 23.1 739 20 9/13/00 21.9 22.6 22.8 23.2 776 18.9 9/14/00 22 22.6 22.4 23.3 763 15.6 9/15/00 21.7 22.4 21.7 22.5 794 16.1 9/16/00 20.7 21.6 20.9 21.3 965 14.4 9/17/00 19.9 21 20 20.5 1360 13.3 9/18/00 20.4 21 20.6 21.4 1203 16.7 9/20/00 20.2 20.8 20.8 20.9 1310 21.7 9/21/00 20.3 20.7 20.7 21 1294 19.4 9/22/00 19.7 20.1 19.9 20.2 1118 15 9/23/00 19.4 19.5 19.3 19.8 936 15 9/26/00 18.6 19 19.6 856 <td< th=""><th>9/10/00</th><th>22</th><th>22.6</th><th>· *</th><th>*</th><th>732</th><th>17.8</th></td<>	9/10/00	22	22.6	· *	*	732	17.8
9/13/00 21.9 22.6 22.8 23.2 776 18.9 9/14/00 22 22.6 22.4 23.3 763 15.6 9/15/00 21.7 22.4 21.7 22.5 794 16.1 9/16/00 20.7 21.6 20.9 21.3 965 14.4 9/17/00 19.9 21 20 20.5 1360 13.3 9/18/00 19.8 20.7 20 21 1310 17.8 9/19/00 20.4 21 20.6 21.4 1203 16.7 9/20/00 20.2 20.8 20.9 1310 21.7 9/21/00 20.2 20.8 20.9 1310 21.7 9/21/00 19.7 20.1 19.9 20.2 1118 15 9/22/00 19.4 19.5 19.3 19.8 936 15 9/25/00 18 18.6 17.7 18.8 818 11.1	9/11/00	22.3	22.7	22.4	23.2	731	15
9/14/00 22 22.6 22.4 23.3 763 15.6 9/15/00 21.7 22.4 21.7 22.5 794 16.1 9/16/00 20.7 21.6 20.9 21.3 965 14.4 9/17/00 19.9 21 20 20.5 1360 13.3 9/18/00 19.8 20.7 20 21 1310 17.8 9/19/00 20.4 21 20.6 21.4 1203 16.7 9/20/00 20.2 20.8 20.8 20.9 1310 21.7 9/21/00 19.7 20.1 19.9 20.2 1118 15 9/22/00 19.7 20.1 19.9 20.2 1118 15 9/22/00 19.4 19.5 19.3 19.8 936 15 9/26/00 18.6 19 19.6 856 10.6 9/26/00 18.7 18.1 19 848 11.1	9/12/00	22.2	22.6	22.4	23.1	739	20
9/15/00 21.7 22.4 21.7 22.5 794 16.1 9/16/00 20.7 21.6 20.9 21.3 965 14.4 9/17/00 19.9 21 20 20.5 1360 13.3 9/18/00 19.8 20.7 20 21 1310 17.8 9/19/00 20.4 21 20.6 21.4 1203 16.7 9/20/00 20.2 20.8 20.8 20.9 1310 21.7 9/21/00 20.3 20.7 20.7 21 1294 19.4 9/22/00 19.7 20.1 19.9 20.2 1118 15 9/23/00 19.4 19.7 19.4 19.8 936 15 9/26/00 18.6 19 18.6 19 796 10.6 9/26/00 18 18.7 18.1 19 848 11.1 9/28/00 18 18.6 17.7 18.5 818 </th <th>9/13/00</th> <th>21.9</th> <th>22.6</th> <th>22.8</th> <th>23.2</th> <th>776</th> <th>18.9</th>	9/13/00	21.9	22.6	22.8	23.2	776	18.9
9/16/0020.721.620.921.396514.49/17/0019.9212020.5136013.39/18/0019.820.72021131017.89/19/0020.42120.621.4120316.79/20/0020.220.820.820.9131021.79/21/0020.320.720.721129419.49/22/0019.720.119.920.21118159/23/0019.419.719.419.892514.49/24/0019.419.719.419.892514.49/24/0019.419.519.319.8936159/25/001919.319.219.685610.69/26/0018.61918.61979610.69/27/001818.718.11984811.19/28/0017.517.917.118.18136.19/29/0017.517.917.118.18136.19/29/0017.117.516.11875110.610/10016.717.416.717.774412.210/3/0017.117.416.817.474610.610/6/0016.216.916.116.68669.410/7/0016.116.515.916.510601010/8/001	9/14/00	22	22.6	22.4	23.3	763	15.6
9/17/0019.9212020.5136013.39/18/0019.820.72021131017.89/19/0020.42120.621.4120316.79/20/0020.220.820.820.9131021.79/21/0020.320.720.721129419.49/22/0019.720.119.920.21118159/23/0019.419.719.419.892514.49/24/0019.419.519.319.8936159/25/001919.319.219.685610.69/26/0018.61918.61979610.69/27/001818.718.11984811.19/28/0017.517.917.118.58187.59/29/0017.517.917.118.18136.19/29/0017.117.516.11875110.610/10016.717.416.717.775711.710/20017.117.717.5187321510/5/001717.416.817.474610.610/6/0016.216.916.116.510601010/8/0015.716.215.616.29907.210/9/0014.815.514.415.210473.910/10013.6	9/15/00	21.7	22.4	21.7	22.5	794	16.1
9/18/0019.820.72021131017.89/19/0020.42120.621.4120316.79/20/0020.220.820.820.9131021.79/21/0020.320.720.721129419.49/22/0019.720.119.920.21118159/23/0019.419.719.419.892514.49/24/0019.419.519.319.8936159/25/001919.319.219.685610.69/26/0018.61918.61979610.69/27/001818.718.11984811.19/28/0017.517.917.118.18136.19/30/0017.117.516.11875110.610/10016.717.416.717.775711.710/2/0017.117.717.317.774412.210/3/0017.218.117.618.174917.210/4/0017.517.717.5187321510/5/001717.416.817.474610.610/6/0016.216.916.116.68669.410/7/0016.116.515.916.510601010/8/0015.716.215.616.29907.210/9/0014.1	9/16/00	20.7	21.6	20.9	21.3	965	14.4
9/19/0020.42120.621.4120316.79/20/0020.220.820.820.9131021.79/21/0020.320.720.721129419.49/22/0019.720.119.920.21118159/23/0019.419.719.419.892514.49/24/0019.419.519.319.8936159/25/001919.319.219.685610.69/26/0018.61918.61979610.69/27/001818.718.11984811.19/28/0017.517.917.118.58187.89/29/0017.517.917.118.18136.19/29/0017.117.516.11875110.610/10016.717.416.717.775711.710/2/0017.117.717.317.774412.210/3/0017.218.117.618.174917.210/4/0017.517.717.5187321510/5/001717.416.817.474610.610/6/0016.216.916.116.68669.410/7/0016.116.515.916.210473.910/10/0013.61413.314.114001010/13/001	9/17/00	19.9	21	20	20.5	1360	13.3
9/19/0020.42120.621.4120316.79/20/0020.220.820.820.9131021.79/21/0020.320.720.721129419.49/22/0019.720.119.920.21118159/23/0019.419.719.419.892514.49/24/0019.419.519.319.8936159/25/001919.319.219.685610.69/26/0018.61918.61979610.69/27/001818.718.11984811.19/28/0017.517.917.118.58187.89/29/0017.517.917.118.18136.19/29/0017.117.516.11875110.610/10016.717.416.717.775711.710/20017.117.717.317.774412.210/3/0017.218.117.618.174917.210/4/0017.517.717.5187321510/5/001717.416.817.474610.610/6/0016.216.916.116.516.29907.210/9/0014.815.514.415.210473.910/10/0013.61413.314.114001010/12/	9/18/00	19.8	20.7	20	21	1310	
9/20/0020.220.820.820.9131021.79/21/0020.320.720.721129419.49/22/0019.720.119.920.21118159/23/0019.419.719.419.892514.49/24/0019.419.519.319.8936159/25/001919.319.219.685610.69/26/0018.61918.61979610.69/27/001818.718.11984811.19/28/0017.517.917.118.58187.89/29/0017.517.917.118.18136.19/29/0017.117.516.11875110.610/10016.717.416.717.775711.710/20017.117.717.317.774412.210/30017.218.117.618.174917.210/40017.517.717.5187321510/5001717.416.817.474610.610/6/0016.216.916.116.68669.410/7/0016.116.515.916.510601010/8/0015.716.215.616.29907.210/9/0014.815.514.415.210473.910/10/0013.6		20.4	21	20.6	21.4		
9/21/0020.320.720.721129419.49/22/0019.720.119.920.21118159/23/0019.419.719.419.892514.49/24/0019.419.519.319.8936159/25/001919.319.219.685610.69/26/0018.61918.61979610.69/27/001818.718.11984811.19/28/001818.617.718.58187.89/29/0017.517.917.118.18136.19/30/0017.117.516.11875110.610/1/0016.717.416.717.775711.710/2/0017.117.717.317.774412.210/3/0017.218.117.618.174917.210/4/0017.517.717.5187321510/5/001717.416.817.474610.610/6/0016.216.916.116.68669.410/7/0016.116.515.916.510601010/8/0015.716.215.616.29907.210/9/0014.815.514.415.210473.910/10/0013.41413.314.114601010/13/0013.2			20.8		20.9		
9/22/0019.720.119.920.21118159/23/0019.419.719.419.892514.49/24/0019.419.519.319.8936159/25/001919.319.219.685610.69/26/0018.61918.61979610.69/27/001818.718.11984811.19/28/001818.617.718.58187.89/29/0017.517.917.118.18136.19/30/0017.117.516.11875110.610/1/0016.717.416.717.775711.710/2/0017.117.717.317.774412.210/3/0017.218.117.618.174917.210/4/0017.517.717.5187321510/5/001717.416.817.474610.610/6/0016.216.916.116.68669.410/7/0016.116.515.916.510601010/8/0015.716.215.616.29907.210/9/0014.815.514.415.210473.910/10/0013.414.113.314.114601010/13/0013.214.113.314.3136018.910/15/00 <td< th=""><th></th><th></th><th></th><th>20.7</th><th></th><th></th><th></th></td<>				20.7			
9/23/0019.419.719.419.892514.49/24/0019.419.519.319.8936159/25/001919.319.219.685610.69/26/0018.61918.61979610.69/27/001818.718.11984811.19/28/001818.617.718.58187.89/29/0017.517.917.118.18136.19/30/0017.117.516.11875110.610/1/0016.717.416.717.775711.710/2/0017.117.717.317.774412.210/3/0017.218.117.618.174917.210/4/0017.517.717.5187321510/5/001717.416.817.474610.610/6/0016.216.916.116.68669.410/7/0016.116.515.916.510601010/8/0015.716.215.616.29907.210/9/0014.815.514.415.210473.910/10/0013.61413.314.114401010/13/0013.214.113.314.3136018.910/15/0013.514.113.914.3128414.410/16/00 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>							
9/24/0019.419.519.319.8936159/25/001919.319.219.685610.69/26/0018.61918.61979610.69/27/001818.718.11984811.19/28/001818.617.718.58187.89/29/0017.517.917.118.18136.19/30/0017.117.516.11875110.610/1/0016.717.416.717.775711.710/2/0017.117.717.317.774412.210/3/0017.218.117.618.174917.210/3/0017.218.117.618.174917.210/4/0017.517.717.5187321510/5/001717.416.817.474610.610/6/0016.216.916.116.68669.410/7/0016.116.515.916.510601010/8/0015.716.215.616.29907.210/9/0013.61413.31414601010/12/0013.414.113.114.1138012.810/14/0013.214.113.914.3136018.910/15/0013.514.113.914.312255.610/16/00							14.4
9/25/001919.319.219.685610.69/26/0018.61918.61979610.69/27/001818.718.11984811.19/28/001818.617.718.58187.89/29/0017.517.917.118.18136.19/29/0017.517.917.118.18136.19/30/0017.117.516.11875110.610/1/0016.717.416.717.775711.710/2/0017.117.717.317.774412.210/3/0017.218.117.618.174917.210/4/0017.517.717.5187321510/5/001717.416.817.474610.610/6/0016.216.916.116.68669.410/7/0016.116.515.916.510601010/8/0015.716.215.616.29907.210/9/0014.114.9**14205.610/11/0013.61413.31414601010/12/0013.214.113.314.3136018.910/14/0013.214.113.914.3128414.410/15/0013.514.113.914.312255.610/14/006.7<							
9/27/001818.718.11984811.19/28/001818.617.718.58187.89/29/0017.517.917.118.18136.19/30/0017.117.516.11875110.610/1/0016.717.416.717.775711.710/2/0017.117.717.317.774412.210/3/0017.218.117.618.174917.210/4/0017.517.717.5187321510/5/001717.416.817.474610.610/6/0016.216.916.116.68669.410/7/0016.116.515.916.510601010/8/0015.716.215.616.29907.210/9/0014.815.514.415.210473.910/10/0013.61413.31414601010/13/0013.214.113.314.3136018.910/15/0013.514.113.914.3128414.410/15/0013.514.113.914.3128414.410/16/006.713.712.11313204.410/15/009.91111.912.313608.9	· · · · · · · · · · · · · · · · · · ·	19	19.3	19.2	19.6	856	10.6
9/27/001818.718.11984811.19/28/001818.617.718.58187.89/29/0017.517.917.118.18136.19/30/0017.117.516.11875110.610/1/0016.717.416.717.775711.710/2/0017.117.717.317.774412.210/3/0017.218.117.618.174917.210/4/0017.517.717.5187321510/5/001717.416.817.474610.610/6/0016.216.916.116.68669.410/7/0016.116.515.916.510601010/8/0015.716.215.616.29907.210/9/0014.815.514.415.210473.910/10/0013.61413.31414601010/13/0013.214.113.314.3136018.910/15/0013.514.113.914.3128414.410/15/0013.514.113.914.3128414.410/16/006.713.712.11313204.410/15/009.91111.912.313608.9	9/26/00	18.6	19	18.6	19	796	10.6
9/28/001818.617.718.58187.89/29/0017.517.917.118.18136.19/30/0017.117.516.11875110.610/1/0016.717.416.717.775711.710/2/0017.117.717.317.774412.210/3/0017.218.117.618.174917.210/4/0017.517.717.5187321510/5/001717.416.817.474610.610/6/0016.216.916.116.68669.410/7/0016.116.515.916.510601010/8/0015.716.215.616.29907.210/9/0014.815.514.415.210473.910/10/0013.61413.31414601010/12/0013.414.113.114.1138012.810/14/0013.214.113.914.3128414.410/15/0013.514.113.914.3128414.410/16/006.713.712.11313204.410/16/009.91111.912.313608.9		18	18.7	18.1	19	848	
9/29/0017.517.917.118.18136.19/30/0017.117.516.11875110.610/1/0016.717.416.717.775711.710/2/0017.117.717.317.774412.210/3/0017.218.117.618.174917.210/4/0017.517.717.5187321510/5/001717.416.817.474610.610/6/0016.216.916.116.68669.410/7/0016.116.515.916.510601010/8/0015.716.215.616.29907.210/9/0014.815.514.415.210473.910/10/0013.61413.31414601010/13/0013.214.113.214.1138012.810/14/0013.214.113.914.3128414.410/15/006.713.712.11313204.410/16/006.713.712.11313204.410/17/006.21012.112.512255.610/18/009.91111.912.313608.9		18	18.6		18.5		
10/1/0016.717.416.717.775711.710/2/0017.117.717.317.774412.210/3/0017.218.117.618.174917.210/4/0017.517.717.5187321510/5/001717.416.817.474610.610/6/0016.216.916.116.68669.410/7/0016.116.515.916.510601010/8/0015.716.215.616.29907.210/9/0014.815.514.415.210473.910/10/0014.114.9**14205.610/11/0013.61413.31414601010/12/0013.214.113.214.1138012.810/14/0013.214.113.914.3136018.910/15/0013.514.113.914.3128414.410/16/006.713.712.11313204.410/17/006.21012.112.512255.610/18/009.91111.912.313608.9	9/29/00	17.5	17.9	17.1	18.1	813	6.1
10/2/0017.117.717.317.774412.210/3/0017.218.117.618.174917.210/4/0017.517.717.5187321510/5/001717.416.817.474610.610/6/0016.216.916.116.68669.410/7/0016.116.515.916.510601010/8/0015.716.215.616.29907.210/9/0014.815.514.415.210473.910/10/0014.114.9**14205.610/11/0013.61413.31414601010/12/0013.414.113.114.1138012.810/13/0013.214.113.914.3136018.910/15/0013.514.113.914.3128414.410/16/006.713.712.11313204.410/17/006.21012.112.512255.610/18/009.91111.912.313608.9	9/30/00	17.1	17.5	16.1	18	751	10.6
10/3/0017.218.117.618.174917.210/4/0017.517.717.5187321510/5/001717.416.817.474610.610/6/0016.216.916.116.68669.410/7/0016.116.515.916.510601010/8/0015.716.215.616.29907.210/9/0014.815.514.415.210473.910/10/0014.114.9**14205.610/11/0013.61413.31414601010/13/0013.214.113.214.1138012.810/14/0013.514.113.914.3128414.410/16/006.713.712.11313204.410/17/006.21012.112.512255.610/18/009.91111.912.313608.9	10/1/00	16.7	17.4	16.7	17.7	757	11.7
10/4/0017.517.717.5187321510/5/001717.416.817.474610.610/6/0016.216.916.116.68669.410/7/0016.116.515.916.510601010/8/0015.716.215.616.29907.210/9/0014.815.514.415.210473.910/10/0014.114.9**14205.610/11/0013.61413.31414601010/12/0013.414.113.114.1138012.810/14/0013.214.113.314.3136018.910/15/0013.514.113.914.3128414.410/16/006.713.712.11313204.410/17/006.21012.112.512255.610/18/009.91111.912.313608.9	10/2/00	17.1	17.7	17.3	17.7	744	12.2
10/5/001717.416.817.474610.610/6/0016.216.916.116.68669.410/7/0016.116.515.916.510601010/8/0015.716.215.616.29907.210/9/0014.815.514.415.210473.910/10/0014.114.9**14205.610/11/0013.61413.31414601010/12/0013.414.113.114.1138012.810/13/0013.214.113.314.3136018.910/15/0013.514.113.914.3128414.410/16/006.713.712.11313204.410/17/006.21012.112.512255.610/18/009.91111.912.313608.9	10/3/00	17.2	18.1	17.6	18.1	749	17.2
10/6/0016.216.916.116.68669.410/7/0016.116.515.916.510601010/8/0015.716.215.616.29907.210/9/0014.815.514.415.210473.910/10/0014.114.9**14205.610/11/0013.61413.31414601010/12/0013.414.113.114.114101010/13/0013.21413.214.1138012.810/14/0013.214.113.914.3136018.910/15/0013.514.113.914.3128414.410/16/006.713.712.11313204.410/17/006.21012.112.512255.610/18/009.91111.912.313608.9		17.5	17.7	17.5	18	732	- 15
10/7/0016.116.515.916.510601010/8/0015.716.215.616.29907.210/9/0014.815.514.415.210473.910/10/0014.114.9**14205.610/11/0013.61413.31414601010/12/0013.414.113.114.114101010/13/0013.21413.214.1138012.810/14/0013.214.113.914.3136018.910/15/0013.514.113.914.3128414.410/16/006.713.712.11313204.410/17/006.21012.112.512255.610/18/009.91111.912.313608.9	10/5/00	17	17.4	16.8	17.4	746	10.6
10/8/0015.716.215.616.29907.210/9/0014.815.514.415.210473.910/10/0014.114.9**14205.610/11/0013.61413.31414601010/12/0013.414.113.114.114101010/13/0013.21413.214.1138012.810/14/0013.214.113.314.3136018.910/15/0013.514.113.914.3128414.410/16/006.713.712.11313204.410/17/006.21012.112.512255.610/18/009.91111.912.313608.9	10/6/00	16.2	16.9	16.1	16.6	866	9.4
10/9/0014.815.514.415.210473.910/10/0014.114.9**14205.610/11/0013.61413.31414601010/12/0013.414.113.114.114101010/13/0013.21413.214.1138012.810/14/0013.214.113.314.3136018.910/15/0013.514.113.914.3128414.410/16/006.713.712.11313204.410/17/006.21012.112.512255.610/18/009.91111.912.313608.9	10/7/00	16.1	16.5	15.9	16.5	1060	10
10/9/0014.815.514.415.210473.910/10/0014.114.9**14205.610/11/0013.61413.31414601010/12/0013.414.113.114.114101010/13/0013.21413.214.1138012.810/14/0013.214.113.314.3136018.910/15/0013.514.113.914.3128414.410/16/006.713.712.11313204.410/17/006.21012.112.512255.610/18/009.91111.912.313608.9						990	
10/10/0014.114.9**14205.610/11/0013.61413.31414601010/12/0013.414.113.114.114101010/13/0013.21413.214.1138012.810/14/0013.214.113.314.3136018.910/15/0013.514.113.914.3128414.410/16/006.713.712.11313204.410/17/006.21012.112.512255.610/18/009.91111.912.313608.9		14.8	15.5	14.4	15.2	1047	3.9
10/12/0013.414.113.114.114101010/13/0013.21413.214.1138012.810/14/0013.214.113.314.3136018.910/15/0013.514.113.914.3128414.410/16/006.713.712.11313204.410/17/006.21012.112.512255.610/18/009.91111.912.313608.9		14.1	14.9	*	*	1420	5.6
10/12/0013.414.113.114.114101010/13/0013.21413.214.1138012.810/14/0013.214.113.314.3136018.910/15/0013.514.113.914.3128414.410/16/006.713.712.11313204.410/17/006.21012.112.512255.610/18/009.91111.912.313608.9	10/11/00	13.6	14	13.3	14	1460	10
10/13/0013.21413.214.1138012.810/14/0013.214.113.314.3136018.910/15/0013.514.113.914.3128414.410/16/006.713.712.11313204.410/17/006.21012.112.512255.610/18/009.91111.912.313608.9		13.4	14.1	13.1	14.1	1410	10
10/15/0013.514.113.914.3128414.410/16/006.713.712.11313204.410/17/006.21012.112.512255.610/18/009.91111.912.313608.9		13.2	14	13.2	14.1	1380	12.8
10/16/006.713.712.11313204.410/17/006.21012.112.512255.610/18/009.91111.912.313608.9	10/14/00	13.2	14.1	13.3	14.3	1360	18.9
10/17/006.21012.112.512255.610/18/009.91111.912.313608.9	10/15/00	13.5	14.1	13.9	14.3	1284	14.4
10/18/00 9.9 11 11.9 12.3 1360 8.9	10/16/00	6.7	13.7	12.1	13	1320	4.4
	10/17/00	6.2	10	12.1	12.5	1225	5.6
	10/18/00	9.9	11	11.9	12.3	1360	8.9
10/19/00 10.9 12.6 12 12.6 1590 11.1	10/19/00	10.9	12.6	12	12.6	1590	11.1
10/20/00 12.2 12.9 11.7 12.7 1570 8.9	10/20/00	12.2	12.9	11.7	12.7	1570	8.9
10/21/00 12.3 12.7 12.1 12.9 1550 14.4	10/21/00	12.3	12.7	12.1	12.9	1550	14.4
10/22/00 12 12.5 11.7 12.6 1430 6.7	10/22/00	12	12.5	11.7	12.6	1430	6.7
10/23/00 11.5 12.2 11.7 12.2 1410 4.4	10/23/00	11.5	12.2	11.7	12.2	1410	4.4

10/24/00	10.5	12	11.6	12.2	1310	7.8
10/25/00	8.7	11.8	11.5	12.1	1320	11.1
10/26/00	9.9	14.3	11.8	12.2	1244	12.8
10/27/00	10.5	14.1	11.9	12.1	1197	11.7
10/28/00	10.9	13.2	11	12.2	1056	7.2
10/29/00	*	*	9.6	10.3	1018	1.7
10/30/00	*	*	9.4	9.6	1013	4.4
10/31/00	*	*	9.6	9.9	1039	6.1

40

ı.

AMERICAN SHAD, RIVER HERRING AND ATLANTIC SALMON NUMBERS IN EAST COAST RIVERS

1983 - 2000

SUSQUEHANNA RIVER, PA CONOWINGO DAM	CONNECTICUT RIVER, MA HOLYOKE DAM	MERRIMACK RIVER, MA LAWRENCE DAM	SACO RIVER, ME	ANDROSCOGGIN RIVER, ME BRUNSWICK DAM	PENOBSCOT RIVER, ME VEAZIE DAM
Year Shad R. Herr.	Shad Shad R. Salm #1 #2 Herr. on	Shad R. Salm Herr. on	Shad R. Salm Herr. on	Shad R. Salm Herr. on	Shad R. Salm Herr. on
1983 413 567	1,574, 528,1 454,2 25 460 85 42	5,629 4,700 114	1	2 601 20	X X 799
1984 167 337	1,231, 500,0 480,0 66 110 00 00	5,497 1,800 115	2	1 2,650 94	X X 1,451
1985 1,546 7,142	727,5 480,0 630,0 285 60 00 00 00	12,79 23,00 213 3 0	60	0 23,89 25 5	X X 3,020
1986 5,195 9,149	748,4 350,0 520,0 280 40 00 00	18,17 16,00 103 3 0	37	0 35,4 7 80 1	X X 4,125
1987 7,667 6,218	587,5 280,0 360,0 208 20 00 00 00	16,90 77,00 139 9 0	40	0 63,52 27 3	X X 2,341
1988 5,146 15,24 4	647,6200,0340,072400000	12,35 361,0 65 9 00	38	0 74,34 14	X X 2,688
1989 8,218 5,500	979,4350,0290,08040000000	7,875 388,0 84 00	19	0 100,8 19 95	X X 2,752
1990 15,71 10,08 9 3	816,4 360,0 390,0 188 80 00 00	6,013 254,0 248 00	73	0 95,57 185 4	X X 2,953

r	r													T				11
1991	27,22	31,73	1,195,		410,0	152	16,09	379,0	332			4	0	77,51	21	X	Х	1,578
+	9	7	920	00	00		8	00						1				1 1
L		L		l	L					· ·			L			·····		
4000	05 70		4 000	700 0	240.0	270	20.70	102.0	100					45.05	45			0.000
1992	25,72	38,50	1,628,		310,0	370		102,0	199				0	45,05	15	X	Х	2,233
	1	9	039	00	00		6	00						0				
1993	13.54	9,198	749,2	340,0	103,0	169	8,599	14.00	61	877	831	53	0	5,202	44	X	X	1,650
	6	,	27	00	00		-,	0	•••			•••	l I	-,				.,
L		I.,	<u> </u>	00	00						[I (L			
	I												·	·······				
1994	32,33	2,926	325,5	180,8	31,76	263	4,349	89,00	21	399	2,224	21	1	19,19	25	X	Х	1,042
	0		58	00	6			0						0				
•			<u></u>															
1995	61,65	103 4	303,9	190,2	112,1	151	13.85	33,42	34	587	9,820	34	3	31,32	16	X	Х	1,342
1335	01,00	38	· ·	95	36	101	7	5	37	001	9,020	54			10		~	1,042
L	0		73	95	30			່ງ						9				
			,							. <u>,</u>								
1996	37,10	3,000	553,0	276,2	56,30	260	11,32	51	76	837	9,163	54	2	10,19	38		Х	2,045
	Ó		00	89	Ó		2				ŕ			8				
L	1	L	L				· •			I L			L		l			<u></u>
4007	400.0	070 4		000 4	00.04	400	00.50	400	74	4 404	0.400	00		5 540				
1997		376,1			63,94	199	22,58	403	71	1,104	2,130	28	2	5,540	1	X	Х	1,355
	70	46	00	48	5		6										· · ·	
1998	46.48	6,248	642.8	311.7	11,17	298	27,89	1.632	123	1.374	15,58	28	5	25,17	4	X	X	1,210
1.000	1	0,	90	04	0		1	.,	.=0		1	20	Ŭ	7			~	1,210
L	<u> </u>	لــــــا	<u> </u>				·	L					I I	<u> </u>	L	L		
1005	170 07		475.0	400 -	0.700	450	50.40		100	1 005	04.07			10 000				
1999	79,37	140,9	475,0		2,760	153		7,898	190	4,629		62	87	8,909	6	X	Х	969
	0	80	95	49			5				0		L					
2000	153.5	14,96	427,3	225.0	10,58	52	72.57	23,58	85	1.323	25,13	50	88	9,151	4	X	X	532
	46	5	81	42	7		1	7		1,020	6			0,101	-		~	
L										L								1

+ Conowingo East Lift began operating in 1991. Shad #1 = estimated numbers entering the river Shad #2 = Holyoke fish lift count

The new Saco River fishways were not operational until 1993. The West Channel trap was not operational until 1992. X = No effective mechanism to count clupeids at Veazie

ATTACHMENT 10. Electrofishing Data for Saco River Tributaries

Evaluation of the spring 2000 fry stocking of more than 615,000 fish was completed on August 16,17 & 18, 2000 by U.S. Fish & Wildlife Fisheries Biologist David Bean, assisted by Florida Power and Light Company Biologist Matt Leblanc and Technicians Dan Breed and Tim Arienti. Members from the SRSC and ASC Biologist Greg Mackey also assisted with collecting data for this year's survey.

The method of evaluation was standard electrofishing techniques using blocking seines at each end of the site to eliminate immigration and emigration of targeted species. Data was collected using the standard three run depletion technique. All salmonid data was taken and will be used interagency in cooperation with Inland Fisheries & Wildlife.

The electrofishing survey was conducted within small stream habitat, where pool and riffle gradation is present; some of the sites were duplicated from previous years. The sites that are in the survey are very typical of the salmon habitat throughout the drainage and were chosen during the initial survey of several streams in the drainage. The SRSC would like to further the survey to include temperature profiles for these study sites and plans to purchase remote temperature monitors for this purpose.

This year's data contains parr collection totals that will be used to calculate parr population estimates. These estimates will help with future fry stocking management for the tributaries of the Saco River. The preliminary data collected shows good survival of young-of-the-year salmon (YOY) as well as good numbers of parr in these sites. Coordination between IF&W, ASC, SRSC and USF&WS is increasing and additional new survey sites will be added. These future sites will address some of the key issues of concern. Preliminary data is summarized and population estimates are contained in Table 1.

Site 1: Back Brook, Baldwin, Whales Back Rd.

Temperature 56 f			· · ·	
1.5 units salmon habitat	- Salmon (YOY):	: 16	Mean length: 64mm	Range: 57-69 mm
			Mean wgt: 2.4g	Range: 1.7-2.7g
	Parr:	11	Mean length: 100mm	Range: 88-120mm
			Mean wgt: 9.5g	Range: 6.7-14.1g
Site 2. Duralay Brook	Cornich Bto 25		Pridao	
Site 2: Pugsley Brook, Temperature 55 f	Comisii, Rie 25	, O lu	Bhage	
1.0 units salmon habitat	- Salmon (YOY):	: 16	Mean length: 63mm	Range: 48-65mm
			Mean wgt: 2.3g	Range: 1.8-3.8g
	Parr:	15	Mean length: 123mm	Range: 95-55mm
			Mean wgt. 29.6g	Range: 6.9-35.9g
Site 3: Shenards River	Brownfield W	ost M	ain St., Bridge Crossing	
Temperature 56 f	Brownield, W	53L W	um ou, bhuge crossing	
1.7 units salmon habitat	- Salmon (YOY):	: 6	Mean length: 67.5mm	Range: 60-76mm
			Mean wgt: 2.9g	Range: 1.8-4.1g
	Parr:	3	Mean length: 140mm	Range: 123-157mm
			Mean wgt: 26.5g	Range: 18.5-36.9g

Site 4: Breakneck Brook, Baldwin, Weeman Rd., Bridge Crossing Site

Temperature 57 f

Parr:

80 Mean length: 63mm Mean wgt: 2.5g48 Mean length: 110mm Mean wgt: 12.2g Range 55-70mm Range 2.2-2.6g Range 90-131mm Range 6.2-20g

Site 5: Red Brook, Dayton, Dyer Rd., Old Dam Site

Temperature 68 f

.55 units salmon habitat - Salmon (YOY):	8	Mean length: 61mm	Range 53-67mm
		Mean wgt: 2.6g	Range 1.4-2.8g
Parr:	7	Mean length: 118mm	Range 95-152mm
		Mean wgt: 14.2g	Range 7.6-33.5g

Table 1: YOY ParrDensities of Salmon Per Unit of Habitat

	1997	1999	2000	1999	2000
Back River	17	39.5	9.5	2	7.5
Shepards	4	5	4	.6	2
Breakneck		103	48	.5	26
Pugsley	23	27	18	2	17
Red Brook			15		21
Linscott	4.5				

All electrofishing data collected for the tributaries of the Saco River is represented as population estimates shown in Table 1. Population estimates are based on the number of fish per unit of habitat; these totals show the population within the site that was sampled. The data indicates an increase in parr densities in 2000, a reflection of the established fry that survived over winter to become parr. The data for 1998 is not present due to the limited number of fish collected (N=3) and may be attributed to the extreme flooding following the spring stocking. Sample sites were duplicated over the three-year period to help establish baseline fry densities to later determine survival to parr.