

DIOXIN MONITORING PROGRAM

(Including data on Dioxin-like PCBs collected in the Surface Water Ambient Toxics Monitoring Program)

2006

REPORT

DEPARTMENT OF ENVIRONMENTAL PROTECTION AUGUSTA, MAINE

March 2007

DEPLW0828

TABLE OF CONTENTS	PAGE				
List of figures and tables Glossary	3 4				
OVERVIEW AND FINDINGS Human Health Trends Discharges from Bleached Kraft Pulp and Paper Mills	5 5 7 9				
BACKGROUND ON DIOXIN	10				
DIOXIN MONITORING PROGRAM	10				
DIOXIN/COLOR LAW	11				
ABOVE/BELOW (A/B) TEST	12				
FISH CONSUMPTION ADVISORIES					
WORKPLAN DESIGN	13				
SAMPLING PROCEDURES	15				
CALCULATIONS	15				
RESULTS AND DISCUSSION	16				

REFERENCES

- APPENDIX 1. Fish Consumption Advisories
- APPENDIX 2A Species and station codes
- APPENDIX 2. Dioxin and furan concentrations in 2006 fish samples
- APPENDIX 3. TCDD and TCDF in sludge from Maine wastewater treatment plants
- APPENDIX 4. TCDD and TCDF in wastewater from Maine pulp and paper mills
- APPENDIX 5. Lengths and weights for 2006 fish samples
- APPENDIX 6. Summary of dioxins and furans in fish and shellfish samples, 1984-2006
- APPENDIX 7. Certifications of bleach plant operation

LIST OF FIGURES

1	Dioxin (DTEh) and coplanar PCB (CTEh) toxic equivalents (95th UCL) in bass					
	(and brown trout BNT, rainbow trout RBT, and white perch WHP) in the					
	Androscoggin, Kennebec, Sebasticook, Presumpscot, and Salmon Falls rivers, 2006	6				
2	Dioxin (DTEh) and coplanar PCB (CTEh) toxic equivalents (95th UCL) in white					
	suckers from the Androscoggin, Kennebec, and Penobscot rivers, 2006	7				
3	Mean dioxin concentration (DTEhucl) in bass from the Androscoggin, Kennebec,					
	and Penobscot rivers	8				
4	Mean concentrations of dioxin (DTEh, 95th UCL) in white suckers from the					
	Androscoggin, Kennebec, and Penobscot rivers	8				
5	Dioxin concentrations (DTEhcul) in rainbow trout from the Androscoggin River at					
	Gilead	17				
6	Dioxin concentrations (DTEhucl) in smallmouth bass from the Androscoggin River					
	below Rumford	18				
7	Dioxin concentrations (DTEhucl) in smallmouth bass from the Androscoggin River					
	at Riley, above Jay	19				
8	Dioxin concentrations (DTEhucl) in white suckers from the Androscoggin River					
	at Riley, above Jay	20				
9	Dioxin concentrations (DTEhucl) in smallmouth bass from the Androscoggin					
	River at Livermore Falls	21				
1(Dioxin concentrations (DTEhucl) in white suckers from the Androscoggin River at					
	Livermore Falls	22				
11 Dioxin concentrations (DTEhucl) in smallmouth bass from the Androscoggin River at						
	Gulf Island Pond, Auburn	23				
	2 Dioxin concentrations (DTEhucl) in smallmouth bass from Androscoggin Lake, Wayne	24				
	Dioxin concentrations (DTEhucl) in white perch from Androscoggin Lake, Wayne	25				
	Dioxin concentrations (DTEhucl) in brown trout from the Kennebec River at Fairfield	27				
	Dioxin concentrations (DTEhucl) in white suckers from the Kennebec River at Fairfield					
16 Dioxin concentrations (DTEhucl) in white suckers from the Penobscot River at S Lincoln 30						
	Dioxin concentrations (DTEhucl) in white suckers from the Penobscot River at Veazie	31				
18 Dioxin concentrations (DTEhucl) in largemouth bass from the West Branch						
	Sebasticook River at Palmyra, Maine	34				

LIST OF TABLES

PAGE

1.	2006 Dioxin Monitoring Program
. .	2000 Biomin Monitoring Fiogram

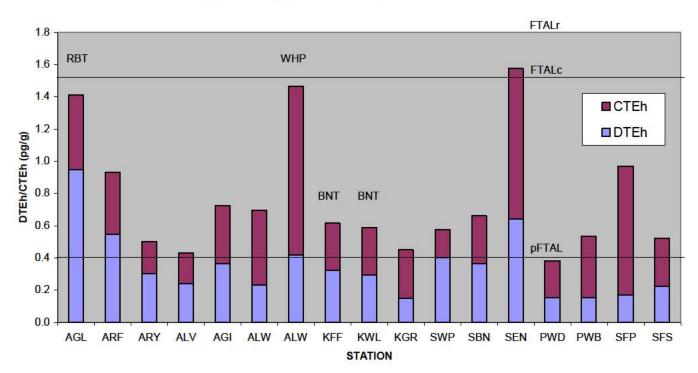
GLOSSARY

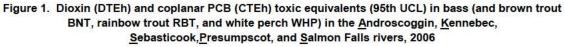
- CTEh- Coplanar PCB toxic equivalents with non-detects at half the detection level
- DMP- Dioxin Monitoring Program
- DTEd- Dioxin toxic equivalents with non-detects at the detection level
- DTEh- Dioxin toxic equivalents with non-detects at half the detection level
- DTEo- Dioxin toxic equivalents with non-detects as zero
- FTALr- Fish Tissue Action Level for reproduction
- FTALc- Fish tissue Action Level for cancer
- pFTAL- potential Fish Tissue Action Level
- MCDC- Maine Center for Disease Control and Prevention (formerly Maine Bureau of Health)
- SWAT- Surface Water Ambient Toxics monitoring program
- TAG- SWAT Technical Advisory Group
- TCDD-2378-tetrachlorodibenzo-p-dioxin, i.e. the most toxic dioxin
- TCDF-2378-tetrachlorodibenzofuran
- TEF- Toxicity equivalency factor

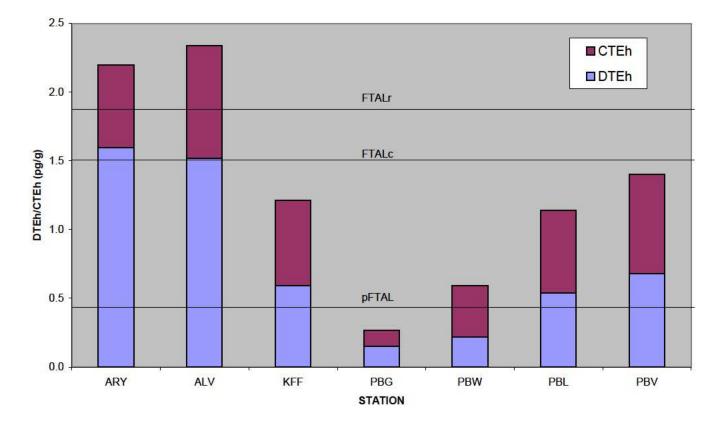
<u>OVERVIEW</u>

This report contains the findings from the 2006 Dioxin Monitoring Program with respect to the goal of the program, "to determine the nature of dioxin contamination in the waters and fisheries of the State". The three primary objectives are:

- 1. Human health assessment, Fish Consumption Advisories
- 2. Trends evaluation
- 3. 1997 Dioxin law, no discharge provision, continued compliance


The figures in this report also contain the (dioxin-like) coplanar PCB data gathered as part of DEP's Surface Water Ambient Toxics (SWAT) monitoring program. Coplanar PCB data are included in order to show the total exposure to dioxin-like compounds from consumption of certain fish from several Maine rivers in order for the Maine Center for Disease Control (MCDC) to make a complete assessment of the fish consumption advisories. The coplanar PCB data are distinct from the dioxin data and the reporting requirements of the Dioxin Monitoring Program. Sources of the coplanar PCBs are not known, but likely include historic use and discharge in Maine and long range transport and atmospheric deposition.


1. HUMAN HEALTH ASSESSMENT, FISH CONSUMPTION ADVISORIES


- MCDC has issued Fish Consumption Advisories for the Androscoggin, Kennebec, Penobscot, Sebasticook, and Salmon Falls Rivers, due to dioxins or a combination of dioxins and dioxin-like coplanar PCBs. These advisories are more restrictive than the statewide mercury advisory.
- An evaluation of the health implications of dioxin/furan concentrations in fish in Maine Rivers requires a comparison to a health benchmark. MCDC uses a health benchmark that is expressed as a specific fish tissue concentration of dioxins and furans, referred to as a "Fish Tissue Action Level" or FTAL¹. For the present report, MCDC compares the most recent data on dioxins and furan levels in fish tissue to its current FTALc of 1.5 parts per trillion (ppt) for protection of cancer-related effects. MCDC also compares the sum of dioxin, furans, and coplanar PCB levels to its FTALr of 1.8 parts per ppt for protection of noncancer or reproductive related effects. MCDC additionally compares all data to a lower pFTAL of 0.4 ppt, which is under consideration as a potential revision to current FTALr, to account for background dietary exposure to dioxins and furans.
- Concentrations of dioxins and furans (DTEh) in bass, trout and white perch at all sampling locations were below the current FTALc of 1.5 ppt (Figure 1). Concentrations in white suckers below the bleached kraft pulp and paper mills on the Androscoggin River were at or exceeded the FTALc but concentrations in white suckers on the Kennebec and Penobscot rivers were below the FTALc (Figure 2).
- Concentrations of dioxins and furans in fish from some stations on the Androscoggin and Sebasticook rivers below pulp and paper mills, a tannery, and a former textile mill were at or

above the pFTAL of 0.4 ppt (Figure 1). They were also above levels found in fish at reference stations unaffected by point source discharges (~0.2 ppt).

- When the concentrations of dioxin-like coplanar PCBs (CTEh) were added to the dioxin concentrations, total toxic equivalents approached or exceeded the current FTALr of 1.8 ppt at 3 locations (Sebasticook River, Androscoggin River, and Androscoggin Lake) (Figure 1). Coplanar PCB data were collected in the Surface Water Ambient Toxics (SWAT) monitoring program. Sources are unknown but likely include historic use and discharge in Maine and long-range transport and atmospheric deposition.
- Mean dioxin and furan levels in Androscoggin Lake have not been reported above the current FTALc in any species since 1996, but the mean concentration was at the pFTAL in white perch in 2006 (Figure 1). Addition of coplanar PCBs resulted in an exceedance of the pFTAL in bass and a near exceedance of the FTALr in white perch.

2. TRENDS

There is a trend of generally declining concentrations of dioxins and furans in smallmouth bass and white suckers averaged over all stations for each of the Androscoggin, Kennebec and Penobscot rivers since 1997 (Figures 3, 4) no doubt due to reductions in discharges at the mills. Despite the overall declining trend, concentrations sometimes increase from one year to the next, due to variability or unknown cause. Trends at specific locations may not follow the general trend and will be discussed for each in the following sections.

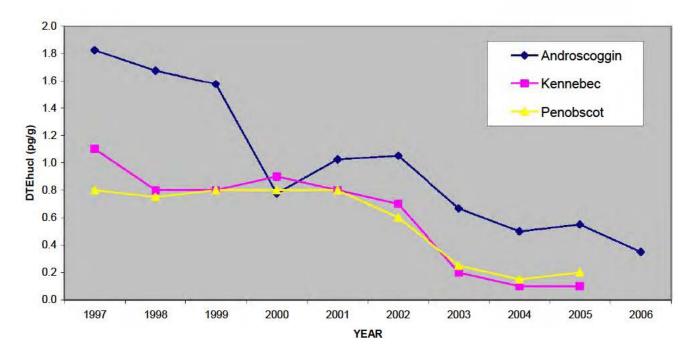
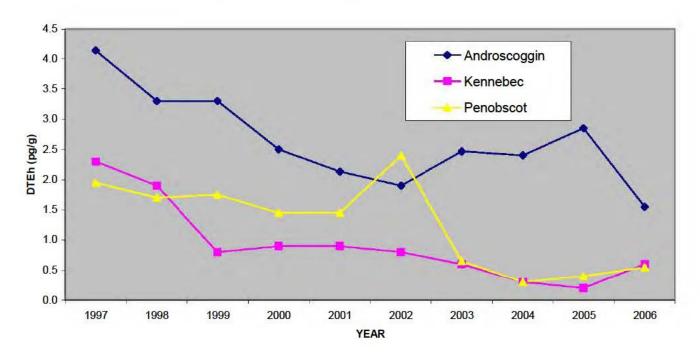



Figure 3. Mean dioxin concentration (DTEhucl) in bass below bleached kraft pulp and paper mills on the Androscoggin, Kennebec, and Penobscot rivers

Figure 4. Mean concentrations of dioxin (DTEh, 95th UCL) in white suckers below bleached kraft pulp and paper mills on the Androscoggin, Kennebec, and Penobscot rivers

3. 1997 DIOXIN LAW, NO DISCHARGE PROVISION, CONTINUED COMPLIANCE

- The 2003-2005 results indicate that all the mills passed the A/B test and were not discharging measurable amounts of dioxin .
- Continued annual compliance with the no-discharge provision in 38 MRSA section 420 may be demonstrated by either of three methods. 1) Bleach plant effluent concentrations, monitored at quarterly and reported at the actual concentrations rather than the nominal 10 ppq limit, must remain as low as in the years in which a mill demonstrated compliance with the A/B test. 2) Bleach plant effluent concentrations must be tested as above at least once a year. In addition, the mills must provide a dioxin/furan certification that the bleach plant and defoamers continue to be operated and used in a manner similar to that in 2003 and 2004. 3) A facility may repeat and must pass the A/B fish test. Continued compliance in 2006 was demonstrated by all mills by methods 1 or 2. Nevertheless, fish samples from below Lincoln Paper and Tissue had slightly higher dioxin levels than fish upstream, unlike recent years, and warrants repeat sampling in 2007.
- Continued elevated levels above background at some locations below mills in these rivers are the legacy of the long history of discharges to the rivers.
- The current Dioxin Monitoring Program is scheduled to end in 2007. Monitoring needs to be continued to allow the Maine Center for Disease Control and Prevention's (MCDC) periodic review of Fish Consumption Advisories that are due wholly or in part to dioxin. Due to interannual variability, at least two consecutive years of monitoring data that show levels of dioxins below the appropriate Fish Tissue Action Level are needed before advisories should be relaxed.

BACKGROUND ON DIOXIN

Due to continuing controversy over the effects of dioxin on human and ecological health, the US Environmental Protection Agency (EPA) announced in 1991 it would begin a thorough scientific reassessment of dioxin. EPA proposed that the process would be open to the public and consequently held several meetings to share information and receive comments. A draft report was issued in 1994 and subsequent review in 1995 by EPA's Science Advisory Board called for revisions of some chapters. Revised drafts published in 2000 indicate that dioxin may exhibit reproductive and developmental effects, immuno-toxic effects, neuro-toxic effects, and cancer. In addition, the report found that concentrations of dioxin in the environment have decreased since the 1970s. Also 'EPA currently estimates that the amount of dioxin in tissues of the general human population approaches, within a factor of 10, the levels at which adverse effects might be expected to occur'. In March 2001 EPA's Scientific Advisory Board published its draft review of EPA's new revisions and is divided on whether or not dioxin is a carcinogen, but does believe EPA has underestimated non-cancer effects. The Scientific Advisory Board also does not agree that there is enough evidence to support EPA's statement about current body burdens and probable adverse health impacts.

DIOXIN MONITORING PROGRAM

Dioxin was first discovered to be a problem in Maine in 1985, when the results of an analysis of fish collected in 1984 from the Androscoggin River by the Maine Department of Environmental Protection (the Department), used as a reference station for EPA's National Dioxin Study, documented significant concentrations of dioxin. Consequently, the Maine Center for Disease Control and Prevention issued Maine's first fish consumption advisory in 1985. Additional sampling in 1985 and 1986 found similar levels in fish from other rivers below bleached kraft pulp and paper mills, but not from rivers or lakes without such sources. This led to including parts of the Kennebec River and Penobscot River in a revised fish consumption advisory in 1987. As a result there was a bill before the Maine legislature in 1988 to ban the discharge of dioxin. The bill was amended to establish a monitoring program, Maine's Dioxin Monitoring Program (DMP) and enacted into law (38 MRSA section 420-A) to end in 1990. Discovery of continuing significant concentrations in fish from these and other rivers resulted in the DMP being reauthorized in 1990, 1995, 1997, and most recently in 2002 extending until 2007. The Department has issued reports of the results of monitoring annually. Fish consumption advisories have been issued or modified in 1985, 1987, 1990, 1992, 1994, 1997, and 2000.

The goal of Maine's Dioxin Monitoring Program is "to determine the nature of dioxin contamination in the waters and fisheries of the State". Charged with administration of the program, the Department is required to sample fish once a year below no more than 12 bleached pulp mills, municipal wastewater treatment plants, or other known or likely sources of dioxin. Costs for equipment, supplies, and analysis are assessed to the selected facilities annually, and could not exceed \$168,000 until 1997 when the limit was raised to \$250,000 to incorporate development of the Above/Below (A/B) fish test. In recent years, much less has been spent.

The Department is advised by the Surface Water Ambient Toxic (SWAT) Monitoring Program Technical Advisory Group in implementation of the program. An annual report is required to be submitted to the Natural Resources Committee of the Maine Legislature by March 31 with the results from the previous year, including status of progress toward meeting the requirements of the Dioxin/Color law.

The primary objective of the Dioxin Monitoring Program is to monitor dioxin in fish for assessment of human health and ecological impact.

A second objective is to measure trends, progress toward reduction in environmental concentrations, and effectiveness and need for further controls.

The monitoring program is coordinated with other ongoing programs conducted by the Department, US Environmental Protection Agency (EPA), or dischargers of wastewater. The proposed annual monitoring plan must be submitted to the Surface Water Ambient Toxic (SWAT) monitoring program Technical Advisory Group (TAG), created under 38 MRSA section 420-B, for review and advice. The selected facilities must be notified of their inclusion in the proposed program at least 30 days prior to submittal to the TAG. The Department must incorporate the results of all studies into a report due the Natural Resources Committee by March 31 of the following year. A draft of the report is reviewed by the TAG before completion of the final report. Costs of sample collection and analysis are assessed as a fee to the selected facilities. Payment of the fees is a condition of the waste discharge license granted by the State for continued operation and discharge of wastewater to waters of the State. However, if the selected facility is a publicly owned treatment works (POTW), then the fees may be assessed to the known or likely industrial generator of dioxin, and payment will not be a condition of the waste discharge license of the POTW.

1997 DIOXIN/COLOR LAW

A third objective, integrated into the DMP, comes from the Dioxin/Color law. In 1997 the Maine Legislature enacted LD 1633 "An Act to Make Fish in Maine Rivers Safe to Eat and Reduce Color Pollution", the Dioxin/Color law [38 MRSA section 420(2)(I)]. The key requirement is that 'a (bleach kraft pulp) mill may not discharge dioxin into its receiving waters after December 31, 2002. To determine compliance, there are interim tests and a final test. Two interim tests, of effluent from the bleach plant require that 1) TCDD (2378-tetrachlorodibenzo-p-dioxin, the most toxic of the 17 toxic dioxins and furans) must be below 10 ppq, parts per quadrillion or picograms per gram, pg/g by July 31, 1998 and 2) TCDF (2378-tetrachlorodibenzofuran) must be below the same detection limit by December 31, 1999. As the final test to confirm that there is no discharge, by December 31, 2002 fish (or surrogate) below a bleached kraft pulp mill must have no more dioxin than fish (or surrogate) above the mill, the so-called "above/below (A/B) fish test".

Since contamination levels in fish are likely to be highest in late summer to early fall, sampling for compliance with the December 31, 2002, deadline could not begin until summer 2003. Because laboratory results of summer data are not available in time to report by December 31 of any given year, the legislature amended the 1997 Dioxin/Color law in 2003 to delay the date of DEP's report by a year, to February 16, 2004. The amendment also delayed the date by which a mill must demonstrate it no longer discharges, if the Department finds that it does in fact discharge, for a year after that. The amendment also requires the mills to make the demonstration annually. Additional legislation has combined reporting of compliance with the law with the annual Dioxin Monitoring Program report due March 31 of the year following data collection.

ABOVE/BELOW (A/B) TEST

DEP's report 'Dioxin Monitoring Program 2002-2003, Status of Dioxin in Maine's Rivers' dated February 25, 2004 established the A/B test as follows:

1) The test will measure contaminant concentrations in 3 separate species: a) bass b) suckers, and c) caged mussels.

2) A preponderance of evidence (POE) approach will be used where passage of 2 of the 3 tests will be used to indicate no discharge.

3) To achieve an overall 95% confidence with the POE approach, the level of significance for each individual test is 0.135 for both type I and II errors.

4) Compounds to be measured will be 2378-TCDD and 2378-TCDF, combined into a single metric, TCDD + (TEF x TCDF), to equivalently weight both congeners.

5) Concentrations of these compounds will be based on lipid normalized values if there is a significant relationship between contaminant concentration and lipid from linear regression, or wet weight values if there is no significant correlation.

6) Concentrations less than the detection limit (<DL) will be calculated at $\frac{1}{2}$ the DL.

7) Where all of the values for the samples at an above or below station are <DL, no statistical determination will be made.

8) To compensate for the sensitivity of the tests, a mill must show no evidence of a discharge for 2 consecutive years before being deemed in compliance. Once a mill has passed the A/B test, continued compliance may be demonstrated by annual (1/year) testing of the bleach plant effluent that shows concentrations are below 10 ppq and certification that the bleach plant operation meets the following criteria:

CRITERIA FOR CERTIFICATION OF BLEACH PLANT OPERATION

In lieu of 1/Month monitoring of the bleach plant waste stream for 2,3,7,8 TCDD (dioxin) and 2,3,7,8 TCDF (furan) (40 CFR Part 430), by December 31 of each calendar year (*PCS Code* 95799), the permittee shall sample (1/year) and report the results for said parameters and provide the Department with a certification stating:

a. Elemental chlorine gas or hypochlorite was not used in the bleaching of pulp.

b. The chlorine dioxide (ClO2) generating plant has been operated in a manner which minimizes or eliminates byproduct elemental chlorine generation per the manufacturers/suppliers recommendations.

c. Documented and verifiable purchasing procedures are in place for the procurement of defoamers or other additives without elevated levels of known dioxin precursors.

d. Fundamental design changes that affect the ClO2 plant and/or bleach plant operation have been reported to the Department prior to their implementation and said reports explained the reason(s) for the change and any possible adverse consequences.

FISH CONSUMPTION ADVISORIES

There is a statewide fish consumption advisory due to mercury for all fresh waters. There are additional advisories for a number of rivers due to 1) dioxins and dioxin-like (coplanar) PCBs, 2) total PCBs, and 3) DDTs (Appendix 1).

There are 75 dioxins and 135 related furans, 17 of which are considered toxic, but with different toxicity potencies. The total toxicity of a sample (dioxin toxic equivalents=DTE or toxic equivalents=TEQ) can be calculated as the sum of the product of the concentration and toxicity equivalency factor (TEF, relative to the most toxic dioxin, TCDD) for each of the 17 dioxin and furans.

The Maine Center for Disease Control and Prevention (MCDC) publishes fish consumption advisories to inform the public about potential risk from consuming fish contaminated with dioxin and dioxin-like compounds. These advisories are based on a comparison of a Fish Tissue Action Level (FTAL) for dioxin toxic equivalent (DTE) concentrations with the 95th percentile upper confidence limit on the mean DTE in fish tissue. Should a tissue concentration exceed an FTAL, a fish consumption rate (e.g., # meals per month), which is unlikely to result in toxic effects, is determined. Two FTALs have been derived for evaluating potential toxic effects from exposure to dioxins and dioxin-like compounds. Both FTALs were developed using standard USEPA risk assessment methods (EPA 1997). For potential carcinogenic effects associated with long-term exposure, MCDC has developed a FTALc of 1.5 ppt, while for reproductive and developmental effects potentially arising from shorter exposure durations, MCDC has developed a FTALr of 1.8 ppt (Frakes, 1990). The FTALr for reproductive and developmental effects is relevant to women of childbearing age, pregnant women, and lactating women. The FTALs are compared to the concentration of DTE in edible portions of the fish, skinless filet data. Where whole fish data are reported, the DTE concentration is divided by a factor of 3.5, determined from previous studies with white suckers, to estimate skinless filet concentration. In this report all comparisons with DTE in fish are made with FTALc, since that is the lower of the two and protective against both effects.

WORKPLAN DESIGN

The primary emphasis of the 2006 workplan was to collect fish samples from the appropriate stations and species from each river such that accurate, complete, and current data are available to assess impact to wildlife and human consumers. The workplan design included sampling at least one station below each major source to document trends and sampling of historic stations that showed dioxin above background whether or not any fish consumption advisories were issued.

The 2006 workplan was initially drafted by DEP according to the objectives listed above and sent to participating facilities for comment in early May 2006. After discussion of the draft workplan at a meeting of the SWAT Technical Advisory Group (TAG) on June 20, 2006, a final workplan was determined by the Commissioner. In 2006, many historical stations were monitored for ecological and/or human health assessment and trends under this program. Fish were also collected at other stations as part of the SWAT program at the request of MCDC, for assessment of the Fish Consumption Advisories. The workplan directed at least 5 fish to be collected from each station (Table 1).

STATION	SMB	WHS	MUSSELS	OTHER	FUNDING SOURCE
Androscoggin R Gilead Rumford Riley Livermore Falls Turner (GIP)	5 5 5 5	5 5		5 RBT	SWAT Rumford Paper Co. SWAT/Rumford Paper Co. SWAT/International Paper International Paper
Androscoggin L	2C5			2C5 WHP	IP & Rumford Paper Co
Kennebec R Fairfield Sidney		5		5 BNT 5 BNT	SAPPI KSTD
Penobscot R E Br Woodville S Lincoln Veazie Bangor		5 5 5 5		5 EELS	SWAT SWAT Lincoln Paper & Tissue Georgia Pacific Georgia Pacific
Presumpscot R Windham Westbrook	5 5				SWAT SWAT
Salmon Falls R Lebanon, Spaulding P S Berwick Somersworth	5 5		SWAT	4 sludge 4 sludge	SWAT SWAT/Prime Tanning SWAT
E Br Sebasticook R Corinna W Br Sebasticook R	5				SWAT
Palmyra	5				Town of Hartland
Sebasticook R Burnham	5				SWAT

Table 1. 2006 Dioxin Monitoring Program and SWAT monitoring program

We were able to collect all samples except that we collected only 3 brown trout of the right size from the Kennebec River at Fairfield and no eels from the Penobscot River in Bangor.

All samples were analyzed for all 2378-substituted dioxins and furans as skinless filets.

The preferred sampling time is late in the summer when fish are likely to be most contaminated after being exposed to higher concentrations of dioxin during low river flows and after significant growth has occurred. At some locations there has been a problem collecting enough fish later in the summer. At

those locations sampling began in mid-May to try to insure that a suitable sample was collected. These stations were also visited after the beginning of July if there was time. If fish were captured during the later period, those samples were submitted for analyses. Otherwise, the fish collected during the early period were used. Sampling at other stations began in July. Actual dates of collection are shown in Appendix 5.

SAMPLING PROCEDURES

Fish were collected by DEP with assistance of the Penobscot Indian Nation on the Penobscot River. Upon capture, fish were immediately killed, weighed and measured, rinsed in river water, wrapped in aluminum foil with the shiny side out, labeled, and placed in a cooler on ice for transport to the DEP lab. Chain-of-custody forms were used to record all field information and document all transfers. In the lab, all fish samples were frozen and later transported whole to the Pace Analytical Services lab in Minneapolis, Minnesota for analysis. All other procedures followed EPA's Sampling Guidance Manual for the National Dioxin Study (July 1984). A laboratory log was kept for an inventory of samples in the lab at any time and final disposition.

Most of the facilities in the program already sample sludge or effluent as part of their Maine Sludge Spreading Permit or Waste Discharge License or Federal NPDES permit. Data from those programs provide adequate information about sources of dioxin. Therefore, no additional sludge samples were collected as part of this program in 2006. Effluent data are also used when available to indicate sources and any trends.

CALCULATIONS

In this report, dioxins are reported in different ways for each goal of the program. Given the uncertainty of true values when results are below the detection level, for the purpose of determining the range of possible concentrations, DTE are shown as a range with non-detects calculated at zero (DTEo) and at the detection limit (DTEd) as a mean for all samples of a given species at each station (Appendix 6). For human health assessment, DTEh, calculated using non-detects at 1/2 the detection limit consistent with the policy of the Maine Center for Disease Control (MCDC, formerly Maine Bureau of Health) were compared with the FTALc. The upper 95th percentile confidence limit (UCL) was used for these comparisons, consistent with the policy of the BOH. For trends analysis TCDD and DTEh were evaluated.

A related issue is that of estimated maximum possible concentrations (EMPC). Some compounds, particularly hydroxydiphenyl ethers (DPEs), are coextracted with furans. Various steps have successfully been taken to minimize these interferences, but some DPEs remain. In this report, EMPCs were treated as non-detects.

Statistical analyses of differences in DFTEh between stations were performed using either the t-test or non-parametric Mann-Whitney test at p=0.05.

RESULTS AND DISCUSSION.

Results for each sampling station are discussed with respect to the three objectives of the program, 1) human health assessment, 2) trends, and 3) 1997 Dioxin law, no discharge provision, continued compliance. See Appendix 2 for raw dioxin data for 2006, Appendix 5 for fish sample data, and Appendix 6 for all historical dioxin data.

Dioxin concentrations in fish generally continued to decline from previous years, but there is some yearto-year variation among species and stations within the trends. Concentrations remained elevated above natural background levels in fish at some stations, particularly on the Androscoggin and Sebasticook rivers, but approached background levels at some stations on other rivers. Dioxin toxic equivalents (DTEh), most likely from historical discharges from the mills, exceeded or, combined with (dioxin-like) coplanar PCBs (CTEh) contributed significantly to exceedances of the Bureau of Health's Fish Tissue Action Levels at several stations (Figures 1 & 2). DTEh are compared to existing FTALc and potentially new pFTAL for the cancer endpoint. The sum of DTEh and CTEh are compared to the existing FTALr for the reproductive endpoint. Sources of CTEh, measured in DEP's SWAT program, are unknown but likely include combustion with long range transport and atmospheric deposition from local, regional, and national sources. Details are discussed below for each river and station.

Androscoggin River

<u>Gilead -</u> (AGL) A total of 5 rainbow trout were collected near Peabody Island in Gilead (Appendix 5). This station is downstream of Fraser Paper Co's bleached kraft mill in Berlin, New Hampshire, but upstream of all Maine mills.

DTEh concentrations were below the FTALc (63%) but exceeded the pFTAL (Figure 1, Appendix 2). They were the highest of all fish species and stations in the state. The addition of dioxin-like (coplanar) PCBs to DTEh results in even higher levels of total toxic equivalents (TTEh).

Every year measured, DTEh in fish have been significantly higher at this station than in fish from reference stations in Maine (Appendix 6). There was no significant trend for the period 1997-2006 for rainbow trout or any other species captured at this station in the past, although concentrations of DTEh have decreased significantly in the past 3 years (Figure 5). The mill in Berlin, New Hampshire, has reported the switch to elemental chlorine free (ECF) bleaching (chlorine dioxide) in 1994. The mill closed in 2001 but the paper and pulp mills were purchased by Fraser and reopened in 2002 and 2003 respectively and then the pulp mill closed again in September 2006. The paper mill uses pulp purchased from a variety of sources including post consumer waste.

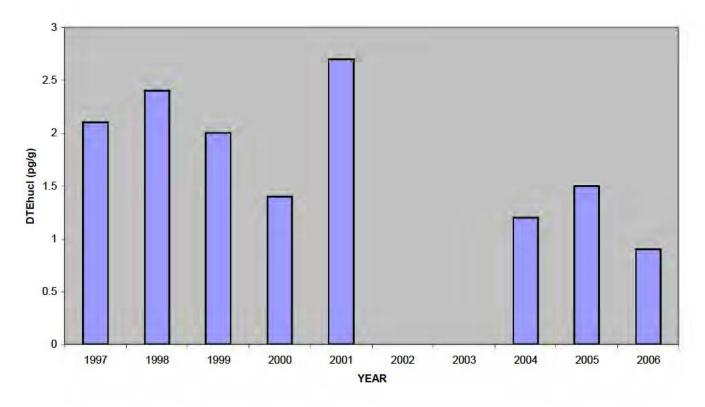


Figure 5. Dioxin concentrations (DTEhcul) in rainbow trout from the Androscoggin River at Gilead, Maine (AGL)

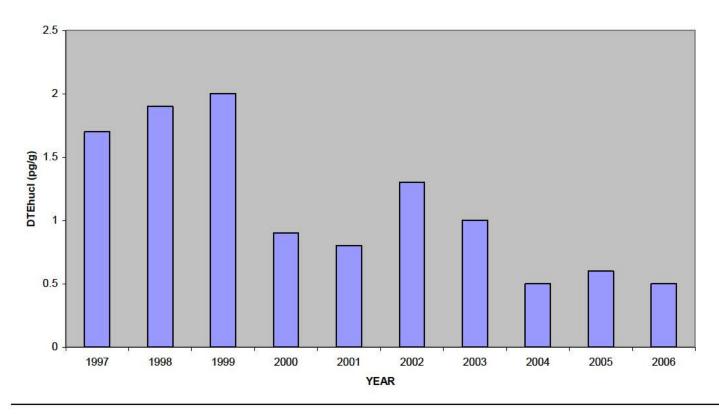
<u>Rumford -</u> (ARF) A total of 5 smallmouth bass were collected from the river reach from just below the discharge from NewPage Corporation's bleached kraft pulp and paper mill in Rumford downstream about 4 miles to Dixfield (Appendix 5).

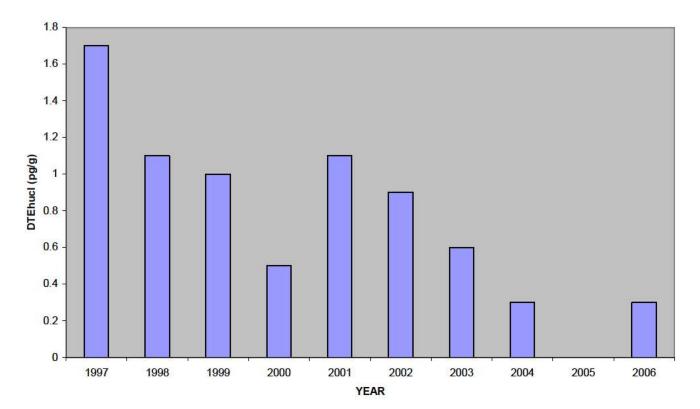
Concentrations of DTEh in the bass were 36% of the FTALc but exceeded the pFTAL (Figure 1, Appendix 2). The addition of dioxin-like (coplanar) PCBs to DTEh resulted in higher levels of total toxic equivalents (TTEh) that were still well below (52%) the FTALr.

There is a significant declining trend for TCDD and DTEh for bass during the period 1997-2006 (Figure 6). TCDD was no longer much greater than reference stations unimpacted by point source discharges on other Maine rivers but DTE are still elevated (Appendix 6). Continued elevated levels of DTE below the mill are likely the legacy of the long history of discharges. This fact warrants some continued monitoring for assessing the fish consumption advisories, and can also be used to document continuing compliance with the no discharge provision, all within the Dioxin Monitoring Program.

Fish sampling in 2003 and 2004 documented that the mill was no longer discharging measurable amounts of dioxins. In a letter dated December 15, 2006, the mill partially demonstrated continued compliance with the 'no discharge' provision of the 1997 Dioxin law by certifying that it has met the

performance criteria established by DEP for the bleaching process and defoamer usage (Appendix 7). An annual sample of the bleach plant effluent was analyzed for dioxins within 1 year of issuance of the Maine Pollution Discharge Elimination System permit September 21, 2005 on January 1, 2006. Concentrations of both TCDD and TCDF have been reported below a nominal 10 ppq detection limit in bleach plant effluent from 1998-2005 and below an actual and lower detection limit for the 2006 sample, all showing continued compliance (Appendix 4).




Figure 6. Dioxin concentrations (DTEhucl) in smallmouth bass from the Androscoggin River below Rumford

<u>Riley</u> - (ARY) A total of 5 smallmouth bass and 5 white suckers were collected from the river above the Riley Dam about 19 miles downstream of NewPage Corporation and upstream of the Verso Paper (formerly International Paper Company) discharge as part of the SWAT monitoring program and the DMP respectively (Appendix 5).

Concentrations of TCDD in bass were similar to those of historical reference stations unimpacted by point source discharges (Appendix 6). Concentrations of DTEh not much higher than those reference stations (20% of the FTALc) and below the pFTAL. When combined with dioxin-like coplanar PCBs, DTEh exceeded the pFTAL (Figure 1).

Concentrations of TCDD in suckers were slightly elevated over historical data from reference stations (Appendix 6). DTEh in the suckers exceeded the FTALc (107%, Figure 2, Appendix 2). The addition of dioxin-like (coplanar) PCBs to DTEh results in total toxic equivalents (TTEh) that exceeded the FTALr.

There is a trend of declining TCDD and DTEh concentrations in bass but not in white suckers at Riley for the period 1997-2006 (Figures 7,8). Nevertheless, TCDD and DTEh concentrations in suckers continue to be greater than those at reference stations on other Maine rivers (Appendix 6). The difference between species may reflect the impounded nature of this station, which may result in a greater exposure of the benthic dwelling suckers than the more pelagic bass to contaminated sediments.

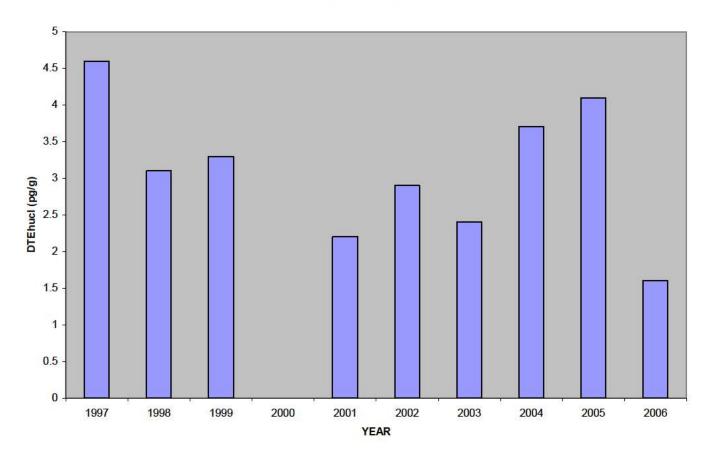


Figure 8. Dioxin concentrations (DTEhucl) in white suckers from the Androscoggin River at Riley, above Jay, Maine

Given that this station is below NewPage Corporation's discharge with no known intervening discharges of dioxins, then the demonstration of continued compliance with the 1997 Dioxin Law discussed above for the Rumford station applies here as well.

<u>Livermore Falls-</u> (ALV) A total of 5 smallmouth bass and 5 white suckers were captured in the Otis Impoundment approximately 2 miles downstream of the discharge from Verso Paper's Jay mill discharge as part of the SWAT monitoring program and the DMP respectively (Appendix 5).

Concentrations of TCDD and DTEh in bass were below the pFTAL and not significantly different than those from historical reference stations unimpacted by point source discharges (Appendix 6, Figure 1). The addition of dioxin-like (coplanar) PCBs to DTEh results in total toxic equivalents (TTEh) that exceeded the pFTAL.

Concentrations TCDD in suckers were slightly elevated over those of historical reference stations unimpacted by point source discharges (Appendix 6). DTEh in the suckers were 101% of the FTALc

(Figure 2, Appendix 2). The addition of dioxin-like (coplanar) PCBs to DTEh results in total toxic equivalents (TTEh) that exceeds the FTALr.

There is a significant declining trend for TCDD and DTEh in bass and suckers for the period 1997-2006 (Figure 9,10). Nevertheless, TCDD and DTEh in suckers are still significantly greater than reference stations on other Maine rivers (Appendix 6), likely the legacy of the long history of discharges. This fact warrants some continued monitoring, which can also be used to document continuing compliance with the no discharge provision.

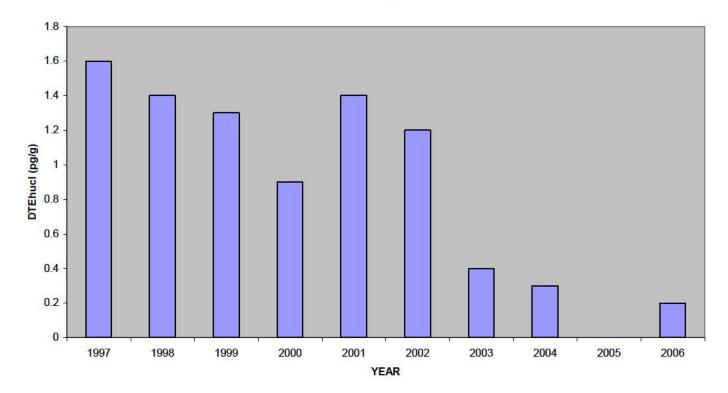


Figure 9. Dioxin Concentrations (DTEhucl) in smallmouth bass from the Androscoggin River at Livermore Falls, Maine

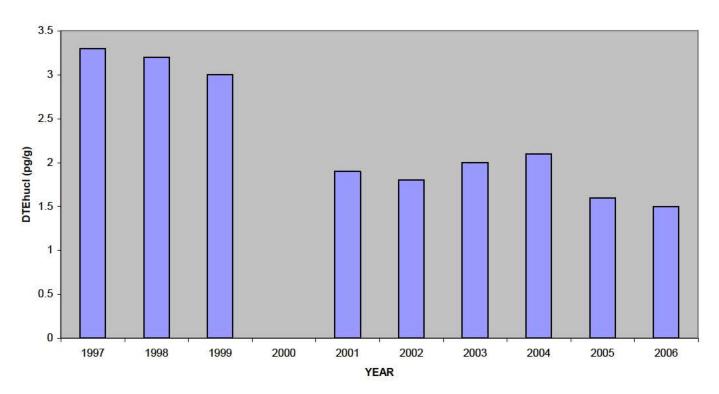
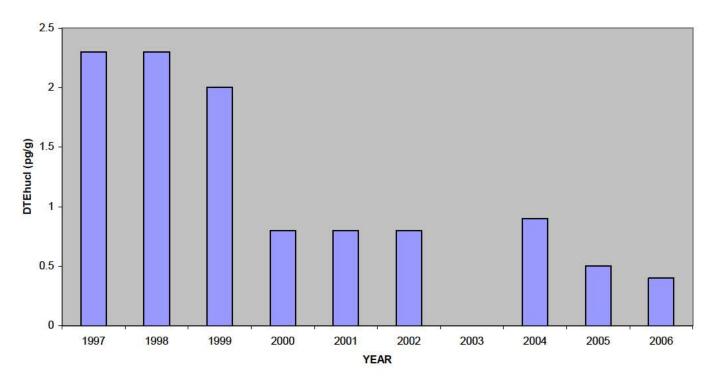
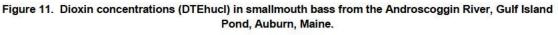


Figure 10. Dioxin concentrations (DTEhucl) in white suckers from the Androscoggin River, Livermore Falls, Maine

Fish sampling in 2003 and 2004 documented that the mill was no longer discharging measurable amounts of dioxins. In a letter dated December 21, 2006 the mill partially demonstrated continued compliance with the 'no discharge' provision of the 1997 Dioxin law by certifying that it has met the performance criteria established by DEP for the bleaching process and defoamer usage (Appendix 7). The bleach plant effluent, analyzed for dioxins in February and March 2006, documented that concentrations of both TCDD and TCDF have been reported below a 10 ppq detection limit in bleach plant effluent since 2002 and below much lower limits since 2004 (Appendix 4). There are no new sludge data since 1996.


<u>Auburn-GIP-</u> (AGI) A total of 5 smallmouth bass were collected in Gulf Island Pond near the deep hole at Seagull Island, approximately 30 miles downstream of Verso Paper (Appendix 5).


Concentrations of TCDD were similar to those of historical reference stations unimpacted by point source discharges, but DTEh remained slightly elevated at the pFTAL (Figure 1, Appendix 2). The addition of dioxin-like (coplanar) PCBs to DTEh results in higher levels of total toxic equivalents (TTEh) that are still well below (40%) the FTALr.

There is a declining trend in TCDD and DTE in bass during the period 1997-2006 (Figure 11). Elevated DTEh concentrations are likely the legacy of the long history of discharges. As this station is a

popular fishing spot, it warrants some continued monitoring for assessment of the Fish Consumption Advisories.

Given that this station is below Verso Paper's discharge with no known intervening discharges of dioxins, then the demonstration of continued compliance with the 1997 Dioxin Law discussed above for the Livermore Falls station applies here as well.

Androscoggin Lake

<u>Wayne-</u> Androscoggin Lake in Wayne (ALW) and Leeds is a 4000-acre, 38-foot-deep meso-trophic lake with a unique reverse delta at the outlet formed by centuries of periodic backflow from the Androscoggin River via the Dead River into the lake. There is a dam on the Dead River that reduces, but does not prevent, the backflow into the lake, which usually occurs once or twice every year. Significant amounts of dioxin were found in fish from the lake beginning in 1996, but have been somewhat lower since.

In 2006, 10 smallmouth bass and 10 white perch were collected from the lake and analyzed as 2 composites of 5 fish each (Appendix 5). TCDD concentrations were similar to those of historical reference stations unimpacted by point source discharges for both species (Appendix 6). DTEh

concentrations were below the pFTAL in smallmouth bass but exceeded it in white perch (Figure 1, Appendix 2). The addition of dioxin-like (coplanar) PCBs to DTEh results in an increase in total toxic equivalents (TTEh) that exceeded the pFTAL in bass and approached (81%) the FTALr in white perch.

There is a trend for the perioid 1996-2006 of declining concentrations in bass but not in white perch (Figures 12, 13). In 2006 concentrations of TCDD and DTEh in bass were no longer significantly greater than in game fish from all other lakes (n=8) or river reference stations that have been sampled, but concentrations in white perch appear slightly higher (Appendix 6). DTEh in bass were lower than those in bass from AGI, the nearest station on the river sampled in 2006, but concentrations in white perch were similarly elevated. Continued monitoring is needed for this popular fishing lake.

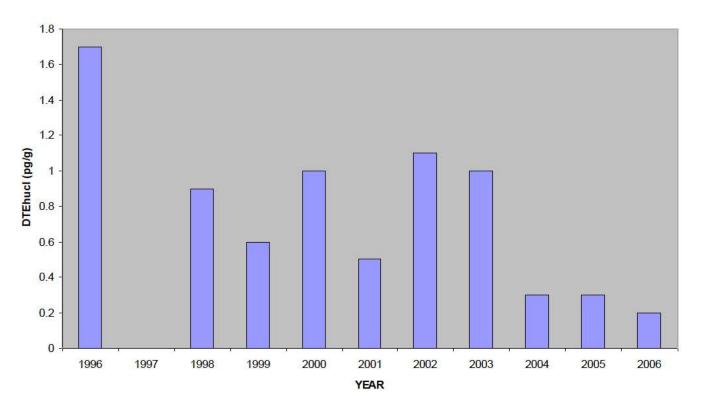


Figure 12 Dioxin concentrations (DTEhucl) in smallmouth bass from Androscoggin Lake, Wayne, Maine

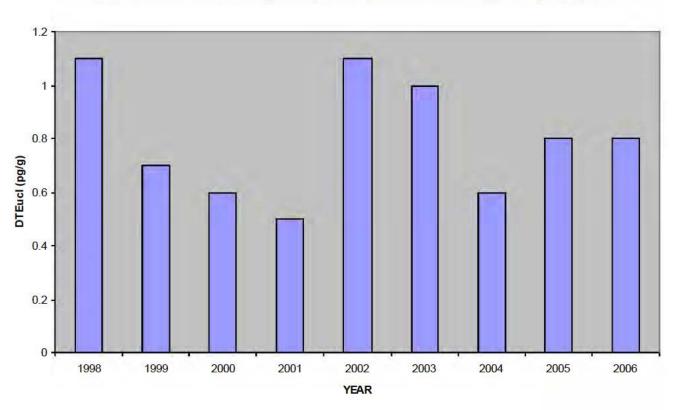


Figure 13. Dioxin concentrations (DTEhucl) in white perch from Androscoggin Lake, Wayne, Maine

Kennebec River

<u>Fairfield-</u> (KFF) A total of 3 brown trout and 5 white suckers were collected from the river between the Shawmut Dam and the I-95 bridge, approximately 7-8 miles below SAPPI Somerset's bleached kraft pulp and paper mill in Skowhegan (Appendix 5).

TCDD concentrations in brown trout were slightly elevated above those in historical reference stations unimpacted by point sources (Appendix 6). DTEh were also slightly elevated at just below the pFTAL (Figure 1, Appendix 2). The addition of dioxin-like (coplanar) PCBs to DTEh results in an increase in total toxic equivalents (TTEh) that are still well below (34%) the FTALr.

TCDD in white suckers were also slightly elevated above those in historical reference stations unimpacted by point sources (Appendix 6). DTEh exceeded the pFTAL (Figure 2, Appendix 2). The addition of dioxin-like (coplanar) PCBs to DTEh results in an increase in total toxic equivalents (TTEh) that further exceed the pFTAL but are below (67%) the FTALr.

There is no declining trend with brown trout, but DTEh from 2005 and 2006 appear lower than those from previous years (Figure 14). Concentrations in 2005 were similar to those of the reference station at Madison and Norridgewock from previous years, but concentrations in 2006 were slightly elevated. There was a significant declining trend for TCDD and DTEh (Figure 15) for suckers for the period 1997-2006.

Fish sampling in 2003 and 2004 documented that the mill was no longer discharging measurable amounts of dioxins. The mill has demonstrated continued compliance with the 'no discharge' provision of the 1997 Dioxin law. In a letter dated March 6, 2006 the mill certified that it has met the performance criteria established by DEP for the bleaching process and defoamer usage (Appendix 7). Sampling bleach plant effluent was conducted in 2006 documented that concentrations of both TCDD and TCDF were below detection at a low sample specific detection level (Appendix 4). Additional periodic monitoring should be continued to confirm low levels in brown trout and rainbow trout, which are fished heavily in this river reach.

Winslow- (KWL) (aka Sidney-KSD- in previous years) A total of 5 brown trout (Appendix 5) were collected below the Lockwood dam in Winslow in an area of the river receiving the discharge from the Kennebec Sanitary Treatment District, which processes effluent from the Huhtamaki paper mill.

Concentrations of TCDD were similar to those at historical reference stations unimpacted by point sources (Appendix 6). DTEh were slightly elevated at just below the pFTAL (Figure 1, Appendix 2). The addition of dioxin-like (coplanar) PCBs to DTEh results in an increase in total toxic equivalents (TTEh) that further exceed the pFTAL but are below (33%) the FTALr.

There are not enough data for trends analysis, but concentrations in 2006 were significantly lower than when last sampled in 2000 and 2001.

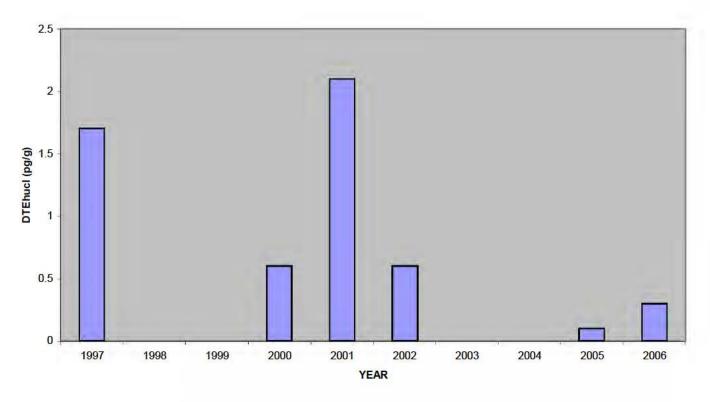
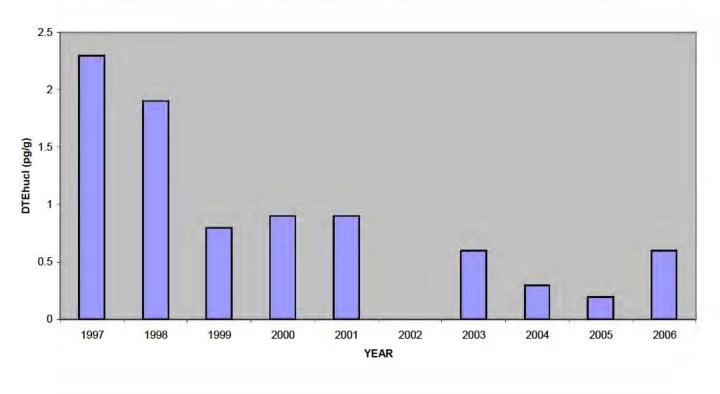



Figure 14. Dioxin concentrations (DTEhucl) in brown trout from the Kennebec River at Fairfield, Maine

Figure 15. Dioxin concentrations (DTEhucl) in white suckers from the Kennebec River in Fairfield, Maine

<u>Gardiner-</u> (KGD) As part of the SWAT monitoring program 5 smallmouth bass (Appendix 5) were collected from the river at Gardiner, approximately 6 miles below the discharge of the former (Statler, Tree-Free, American Paper) recycled paper mill in Augusta. Concentrations of TCDD and DTEh (Figure 1) were similar to those of historical reference stations unimpacted by point source discharges and below the pFTAL. Both were also significantly lower than those about 3 miles upstream at Augusta/Hallowell from 1997-99 (Appendix 6). The addition of dioxin-like (coplanar) PCBs to DTEh results in an increase in total toxic equivalents (TTEh) that exceeded the pFTAL but was well below (25%) the FTALr. Elevated concentrations of total PCBs in fish from the Kennebec River below Augusta has been previously well documented. Consequently, MCDC has issued a Fish Consumption Advisory recommending no consumption of freshwater fish from this river reach (Appendix 1).

Penobscot River

East Branch at Grindstone- (PBG) The East Branch of the Penobscot River at Grindstone has no point source discharges and was used as a reference station for the Lincoln Paper and Tissue mill from 1995-1998. Due to concerns about discharges from the Millinockett mills into the West Branch that might be ascribed to the Lincoln mill, dioxin concentrations in fish from the Woodville station on the main stem below the confluence of the East and West branches was compared to those from the Grindstone station in 1997 and 1998. With a finding of no significant difference in dioxin concentrations between the two stations, the Woodville station has been used as the reference for Lincoln since 1999. In some recent years, concentrations of DTEh in white suckers from the Woodville station were elevated above historical levels and above those from Grindstone. Consequently, in 2006, as part of the SWAT program, both stations were resampled.

In 2006 5 white suckers (Appendix 5) from Grindstone were captured and analyzed for dioxins, furans and coplanar PCBs. Concentrations of TCDD and DTEh were below the pFTAL (Figure 2, Appendix 2) and similar to historical levels (Appendix 6).

<u>Woodville (Mattaceunk Impoundment)- (PBW)</u> As part of the SWAT monitoring program, 5 white suckers (Appendix 5) were collected from the river at Woodville, downstream of Katahdin Paper's pulp and paper mills in Millinocket and East Millinockett to compare to those from Grindstone, as described above. Fish collected at this station from 1997-2001 had similarly low concentrations of dioxin as the historical reference station at Grindstone on the East Branch, uninfluenced by any mill. Therefore, this station had served as a reference station for the Penobscot River and the upstream station for Lincoln Paper and Tissue above/below (A/B) test. Finding DTEh in suckers in 2002, 2003, and 2005 elevated above historical levels at Woodville and Grindstone, both stations were resampled in 2006.

In 2006 5 white suckers were collected from the Woodville impoundment. Concentrations of TCDD and DTEh were below the pFTAL (Figure 2, Appendix 2) and similar to those from Grindstone and to those at Woodville prior to 2002 (Appendix 6). The elevated levels seen in recent years were not measured in 2006. The addition of dioxin-like (coplanar) PCBs to DTEh results in an increase in total toxic equivalents (TTEh) that exceeds the pFTAL and is significantly higher than that at Grindstone, however.

Given the varied results since 2002 and changes at the mills in Millinockett during this time, monitoring should be continued in 2007.

<u>South Lincoln- (PBL)</u> A total of 5 white suckers (Appendix 5) were collected from the river near the boat ramp in South Lincoln, approximately 4 miles downstream of Lincoln Paper and Tissue Company's bleached kraft mill in Lincoln

Concentrations of TCDD and DTEh were significantly elevated above those at Grindstone and Woodville, sampled in the SWAT monitoring program (Appendix 2). Concentrations of DTEh were also above the pFTAL (Figure 2). The addition of dioxin-like (coplanar) PCBs to DTEh results in an increase in total toxic equivalents (TTEh) that are still well below (63%) the FTALr.

There were declining trends in TCDD and DTE for the period 1997-2006, although levels increased significantly in 2006 (Figure 16).

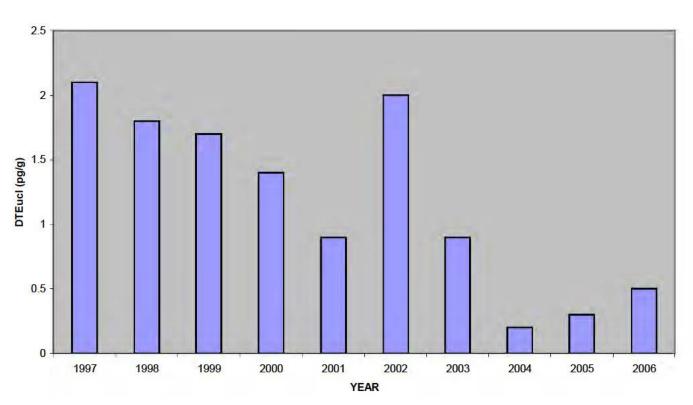


Figure 16. Dioxin concentrations (DTEhucl) in white suckers from the Penobscot River at S Lincoln, Maine

The mill passed the A/B test in 2003 and 2005, and must demonstrate continuing compliance annually. Reduced discharge of dioxin from the mill has been documented by decreased concentrations of TCDD and TCDF in sludge (Appendix 3) and in effluent (Appendix 4) since a change in the mill's bleaching process from chlorine based bleaching to primarily oxygen based bleaching in 1999. These results are consistent with the declining trend seen in fish, and the finding of no measurable discharge by 2005. The results of the 2006 fish testing are conflicting. This warrants a close review of the discharge from the mill and repeat testing both above and below in 2007.

<u>Veazie-</u> (PBV) A total of 5 white suckers (Appendix 6) were collected from the Veazie Impoundment about 7-8 miles below the former Fort James' bleached kraft mill in Old Town (Appendix 5). This mill closed in March 2006. It was purchased by Red Shield in November 2006 and currently is operated as a biomass boiler producing power for the grid.

Concentrations of TCDD were similar to those at background stations unimpacted by point source discharges (Appendix 6). DTEh, however, were elevated and exceeded the pFTAL (Figure 2),

Appendix 2). The addition of dioxin-like (coplanar) PCBs to DTEh results in an increase in total toxic equivalents (TTEh) that are still below (78%) the FTALr.

There was a declining trend for TCDD for the period 1997-2006, but none for DTEh (Figure 17). This is a bit surprising since TCDD and TCDF bleach plant effluent concentrations at the Georgia Pacific mill have continued to decline since early 1998 and remain below suitably low detection levels (Appendix 4). Nevertheless, concentrations are significantly lower since 2003 compared to previous years.

The 2003 and 2004 A/B tests had documented that there was no longer a measurable discharge of dioxin from the mill. Continued compliance in 2006 was documented by non-detected concentrations in bleach plant effluent (Appendix 4). Additional periodic monitoring and certification of bleach plant operation will be necessary to confirm continued reduced concentrations under new owners and operations if the facility will be operated as a pulp and or paper mill, which may occur.

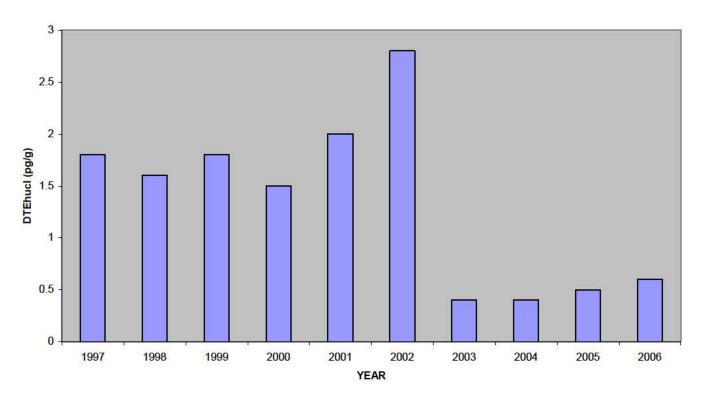


Figure 17. Dioxin concentrations (DTEhucl) in white suckers from the Penobscot River at Veazie, Maine

Presumpscot River

The Presumpscot River has not been sampled since 2002, when the A/B fish test found no significant difference in dioxin concentrations above and below SD Warrens' paper mill for the second year. The pulp mill had closed in 1999, and the paper mill continued with purchased pulp. In 2006, at the request of MCDC, fish were sampled again as part of the SWAT monitoring program.

<u>Windham</u>-(PWD) A total of 5 smallmouth bass (Appendix 5) were collected from the Dundee Impoundment in the river in Windham, upstream of the mill. Concentrations of TCDD and DTEh were similar to those from historical reference stations unimpacted by point source discharges (Appendix 6). This was not always the case for some unknown reason. This "reference" station had no point source discharges above it, but often had higher concentrations than all other reference stations with no point sources. The addition of dioxin-like (coplanar) PCBs to DTEh resulted in an increase in total toxic equivalents (TTEh) that approached only the pFTAL. There are not enough recent data for meaningful trends analysis.

<u>Westbrook-</u> (PWB) A total of 5 smallmouth bass (Appendix 5) were collected from the river below SD Warren's paper mill in Westbrook. Concentrations of TCDD and DTEh were similar to those from Windham (Appendix 2, Figure 1). The addition of dioxin-like (coplanar) PCBs to DTEh resulted in an increase in total toxic equivalents (TTEh) that exceeded the pFTAL. There was no trend in either TCDD or DTEh.

Salmon Falls River

There is currently a fish consumption advisory on the Salmon Falls River below Berwick due to a combination of dioxins and PCBs. Up through 2002, fish samples have been collected from the Salmon Falls River about 2 miles below the discharge from the Berwick Sewer District's municipal wastewater treatment plant in Berwick, whose discharge ranged from 65-70% effluent from Prime Tanning Company in the past to ~40% currently. Sampling was scheduled for 2003 and 2004 but fish were not captured. DEP's long standing policy has been that where there is a single discharger of dioxin in a river, fish sampling is the best way to determine the status of any discharge. Where there is more than one source, sampling of sludge may be used to determine discharge status. Prime Tanning Company notified DEP that there was an additional source historically in Somersworth NH. Consequently, after discussion with the New Hampshire Department of Environmental Services, testing of both Berwick and Somersworth, NH wastewater treatment plant sludge was substituted for fish testing on a quarterly basis. The results of the first 4 quarters' sampling show that concentrations from both are relatively low but similar to those from the Town of Hartland (with the discharge from Irving Tanning) below which are significantly elevated concentrations in fish (Appendix 3). Samples will be collected in the next 4 quarters as well.

In 2006 at the request of MCDC as part of DEP's SWAT monitoring program, fish were also collected above and below the Berwick discharge for analyses for dioxins and PCBs.

<u>Spaulding Pond-</u> SFP A total of 5 largemouth bass (Appendix 5) were collected from Spaulding Pond in Lebanon, upstream of the Berwick discharge. There are no known significant point source discharges above this station. Concentrations of TCDD and DTEh were similar to those previously reported at another reference station upstream at Acton) (Appendix 6). DTEh were below the pFTAL (Figure 1). The addition of dioxin-like (coplanar) PCBs to DTEh resulted in an increase in total toxic equivalents (TTEh) that exceeded the pFTAL but was well below (54%) the FTALr There are not enough recent data for meaningful trends analysis.

<u>South Berwick</u>- A total of 5 largemouth bass (Appendix 5) were collected from the Rollinsford Impoundment about 2 miles below the discharge from the Berwick Sewer District's municipal wastewater treatment plant in Berwick, whose discharge is dominated by effluent from Prime Tanning Company. Concentrations of TCDD and DTEh were similar to those at Acton (Appendix 6, Figure 1). DTEh were below the pFTAL (Figure 1). Concentrations were also significantly lower than in previous years (Appendix 6), which is consistent with low levels found in the sludge (Appendix 4). The addition of dioxin-like (coplanar) PCBs to DTEh resulted in an increase in total toxic equivalents (TTEh) that exceeded the pFTAL but was well below (29%) the FTALr. There was no trend in either TCDD or DTEh.

Sebasticook River

Historical discharges of dioxin have been documented on both the East and West Branches of the Sebasticook River. In 2006, at the request of MCDC as part of DEP's SWAT monitoring program, fish were sampled from the East Branch and main stem. Sampling of the West Branch continued under the Dioxin Monitoring Program.

East Branch at Newport- (SEN) A total of 5 largemouth bass (Appendix 5) were collected from the river just above the County Road Bridge, a popular fishing spot at the inlet to Sebasticook Lake. This station is approximately 2 miles below the Corinna Sewer District discharge, 80% of which was from the Eastland Woolen Mill. This facility treated the waste from the Eastland Woolen Mill in Corinna until 1996, when the mill ceased operation. Since then groundwater and river sediments have been found to be contaminated with a number of pollutants from the mill including dioxin. The site was placed on the National Priorities List of Superfund sites in 1999, and extensive remediation included removal of contaminated soil and the buildings in the 'downtown area' and relocation of a portion of the riverbed. In addition, the Corinna discharge was removed from the river, going to land treatment in 2005.

Concentrations of TCDD in 2006 were similar to those of historical reference stations unimpacted by point source discharges and lower than previous levels (Appendix 6). DTEh, however, were elevated above the pFTAL (Appendix 2, Figure 1). The addition of dioxin-like (coplanar) PCBs to DTEh resulted in an increase in total toxic equivalents (TTEh) that approached (88%) the pFTALr.

Although there are not enough recent data for meaningful trends analysis, in 2006 DTEh were somewhat lower than previous levels (Appendix 6) likely documenting the effects of remediation.

<u>West Branch at Palmyra</u> (SWP) A total of 5 largemouth bass were collected from the river near the US Route 2 bridge about 3-4 miles below the discharge from the Town of Hartland, whose effluent is about 85% effluent from Irving Tanning Company (Appendix 5).

TCDD concentrations were elevated slightly above those of historical reference stations unimpacted by point source discharges (Appendix 6). Concentrations of DTEh were also elevated and right at the pFTAL (Figure 1, Appendix 2). The addition of dioxin-like (coplanar) PCBs to DTEh results in total toxic equivalents (TTEh) that exceed the pFTAL but are well below (32%) the FTALr. Concentrations are still higher than those from the upstream reference station in previous years or from other reference stations in Maine.

There is no declining trend due to the wide variation among the years, but concentrations in 2006 were also much lower than in previous years (Figure 18). These results document a current or historical local source of dioxin to this reach of the river, most likely the Irving Tanning discharge. Although the only effluent sample result reported (1996) showed no detectable amount of dioxin in effluent (Appendix 4), low solubility and high bioconcentration of dioxin make effluent data less meaningful than sludge data. Sludge data from 1989 show measurable levels of TCDF (Appendix 3), but more recent data in 2000 show concentrations below reasonably low detection levels. If these recent data are representative of reduced discharges, concentrations in fish should decrease in time, the length of which will be determined by how much residual dioxin remains in the system. Because the West Branch is heavily fished, continued monitoring is warranted.

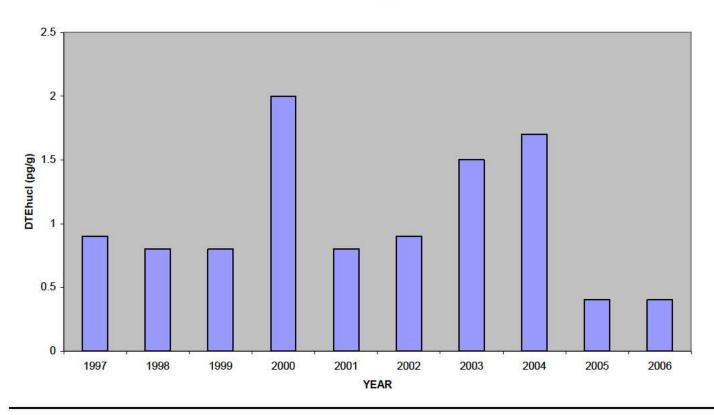


Figure 18. Dioxin concentrations (DTEhucl) in largemouth bass from the West Branch Sebasticook River at Palmyra, Maine

<u>Burnham</u>- (SEB) A total of 5 smallmouth bass (Appendix 5) were collected from the main stem of the Sebasticook River below the confluence of the East Branch and West Branch (Appendix 5) at the request of the MCDC as part of Maine's Surface Water Ambient Toxics (SWAT) monitoring program. This reach, then, receives water from upstream sources from SEN and SWP.

Concentrations of TCDD were slightly elevated above those at historical reference stations unimpacted by point source discharges (Appendix 6). Concentrations of DTEh were also elevated at the pFTAL (Figure 1, Appendix 2). There results are not surprising given the existence of sources upstream on each branch of the river. The addition of dioxin-like (coplanar) PCBs to DTEh results in total toxic equivalents (TTEh) that further exceed the pFTAL but are well below (37%) the FTALr.

There are not enough data for trends analysis, but concentrations were similar to those from 2005 and slightly lower than those in 2004.

APPENDIX 1.

FISH CONSUMPTION ADVISORIES

MAINE BUREAU OF HEALTH

WARNING About Eating Freshwater Fish

Warning: Mercury in Maine freshwater fish may harm the babies of pregnant and nursing mothers, and young children.

SAFE EATING GUIDELINES

Pregnant and nursing women, women who may get pregnant, and children under age 8 SHOULD NOT EAT any freshwater fish from Maine's inland waters. Except, for brook trout and landlocked salmon, 1 meal per month is safe.

All other adults and children older than 8 CAN EAT 2 freshwater fish meals per month. For brook trout and landlocked salmon, the limit is 1 meal per week.

It's hard to believe that fish that looks, smells, and tastes fine may not be safe to eat. But the truth is that fish in Maine lakes, ponds, and rivers have mercury in them. Other states have this problem too. Mercury in the air settles into the waters. It then builds up in fish. For this reason, older fish have higher levels of mercury than younger fish. Fish (like pickerel and bass) that eat other fish have the highest mercury levels.

Small amounts of mercury can harm a brain starting to form or grow. That is why unborn and nursing babies, and young children are most at risk. Too much mercury can affect behavior and learning. Mercury can harm older children and adults, but it takes larger amounts. It may cause numbness in hands and feet or changes in vision. The Safe Eating Guidelines identify limits to protect everyone.

See http://www.maine.gov/dhs/ehu/fish/2KFCA.shtml

Warning: Some Maine waters are polluted, requiring additional limits to eating fish.

Fish caught in some Maine waters have high levels of PCBs, Dioxins or DDT in them. These chemicals can cause cancer and other health effects. The Bureau of Health recommends additional fish consumption limits on the waters listed below. Remember to check the mercury guidelines. If the water you are fishing is listed below, check the mercury guideline above and follow the most limiting guidelines.

SAFE EATING GUIDELINES

APPENDIX 2.

DIOXIN AND FURAN CONCENTRATIONS IN 2004 FISH AND SHELLFISH SAMPLES

ng/kg ng/kg ng/kg mean ng/kg ng/kg Compound 4.82 4.65 4.735 1.24 2.15 1,2,3,7,8-PeCDF 0.726 0.78 0.753 0.575 0.244 2,3,7,8-PeCDF 1.31 1.33 1.32 1.3 0.567 0.244 2,3,7,8-PeCDF 0.14 0.122 0.131 0.126 0.0638 1,2,3,6,7,8-HxCDF 0.0836 <0.0838 <0.0837 <0.0903 0.0731 2,3,4,6,7,8-HxCDF 0.0904 <0.0906 <0.0905 <0.0907 <0.0791 1,2,3,4,7,8-HxCDF <0.124 <0.125 <0.1245 <0.134 <0.109 1,2,3,4,7,8,9-HxCDF <0.09062 <0.0905 <0.0977 <0.0791 1,2,3,4,7,8,9-HxCDF <0.124 <0.125 <0.124 <0.109 1,2,3,4,7,8,9-HxCDF <0.104 <0.104 <0.109 <0.109 1,2,3,4,7,8-HxCDF <0.124 <0.125 <0.134 <0.091 QCDF <0.126 <0.127 <th></th> <th></th> <th>AGL RBT 4</th> <th></th> <th>AGL RBT 4 (Duplicate)</th> <th></th> <th>AGL RBT 4</th> <th></th> <th>AGL RBT 1</th> <th></th> <th>AGL RBT 2</th>			AGL RBT 4		AGL RBT 4 (Duplicate)		AGL RBT 4		AGL RBT 1		AGL RBT 2
Compound A.82 A.65 A.735 1.24 2.15 2.3,7,8-TCDF 0.726 0.78 0.753 0.575 0.244 2.3,7,8-PeCDF 0.712 0.78 0.753 0.575 0.244 2.3,4,7,8-PeCDF 0.14 0.122 0.131 0.126 0.0638 1.2,3,6,7,8-HxCDF 0.14 0.122 0.131 0.126 0.0638 2.3,4,7,8-HxCDF <0.0836	EXT ID		L9459-78 (A)		WG20719-103 (DUP L9459-78)				L9459-75		L9459-76
23.7.8-TCDF 4.82 4.65 4.735 1.24 2.15 1.2.3.7.8-PeCDF 0.726 0.78 0.753 0.575 0.244 2.3.4.7.8-PeCDF 1.31 1.33 1.32 1.3 0.547 1.2.3.6.7.8-HxCDF 0.144 0.122 0.131 0.126 <0.0638			ng/kg		ng/kg		mean	1	ng/ĸg		ng/kg
1,2,3,7,8-PeCDF 0.726 0.78 0.763 0.575 0.244 2,3,4,7,8-PeCDF 1.31 1.33 1.32 1.3 0.547 1,2,3,4,7,8-HxCDF 0.014 0.122 0.131 0.126 <0.0633							. = . =				0.45
2,3,4,7,8-PeCDF 1,31 1,33 1,32 1,3 0,547 1,2,3,6,7,8-HxCDF 0,14 0,122 0,131 0,126 <0.0638											
1,2,3,4,7,8-HxCDF 0.14 0.122 0.131 0.126 < 0.0638											
1,2,3,6,7,8-HxCDF <											
2,3,4,6,7,8-HxCDF <											
1,2,3,7,8,9-HxCDF <				<		<					
1,2,3,4,6,7,8-HpCDF <	2,3,4,6,7,8-HxCDF	<	0.0748		0.119		0.0969	<	0.0809	<	0.0655
1,2,3,4,7,8,9-HpCDF <	1,2,3,7,8,9-HxCDF	<	0.0904	<	0.0906	<	0.0905	<	0.0977	<	0.0791
OCDF < 0.0962 < 0.0965 < 0.09635 < 0.104 < 0.0842 2,3,7,8-TCDD 0.142 0.139 0.1405 0.188 K 0.093 1,2,3,7,8-TCDD <	1,2,3,4,6,7,8-HpCDF	<	0.124	<	0.125	<	0.1245	<	0.134	<	0.109
2,3,7,8-TCDD 0.142 0.139 0.1405 0.188 K 0.093 1,2,3,7,8-PeCDD < 0.126	1,2,3,4,7,8,9-HpCDF	<	0.104	<	0.104	<	0.104	<	0.112	<	0.091
1,2,3,7,8-PeCDD <	OCDF	<	0.0962	<	0.0965	<	0.09635	<	0.104	<	0.0842
1,2,3,4,7,8-HxCDD < 0.194	2,3,7,8-TCDD		0.142		0.139		0.1405		0.188	K	0.093
1,2,3,6,7,8-HxCDD <	1,2,3,7,8-PeCDD	<	0.126	<	0.127	<	0.1265	<	0.137	<	0.111
1,2,3,7,8,9-HxCDD <	1,2,3,4,7,8-HxCDD	<	0.194	<	0.195	<	0.1945	<	0.21	<	0.17
1,2,3,4,6,7,8-HpCDD <	1,2,3,6,7,8-HxCDD	<	0.121		0.124		0.1225	<	0.13	<	0.105
OCDD < 0.328 < 0.328 < 0.328 < 0.328 < 0.287 DTEo 1.05 1.06 1.055 0.732 0.386 DTEd 1.25 1.24 1.245 0.943 0.606 DTEh 1.15 1.15 1.15 0.837 0.496 DTEh sd 2 2 2 2 2 2 DTEh sd 2 2 2 2 2 2 2 Motifience 2 <th2< th=""> 2 2 <th< td=""><td>1,2,3,7,8,9-HxCDD</td><td><</td><td>0.0865</td><td><</td><td>0.0867</td><td><</td><td>0.0866</td><td><</td><td>0.0935</td><td><</td><td>0.0757</td></th<></th2<>	1,2,3,7,8,9-HxCDD	<	0.0865	<	0.0867	<	0.0866	<	0.0935	<	0.0757
DTEo 1.05 1.06 1.055 0.732 0.386 DTEd 1.25 1.24 1.245 0.943 0.606 DTEh 1.15 1.15 1.15 0.837 0.496 DTEh sd 1 1 1 1 1 1 V\$ FTAL 1 1 1 1 1 1 1 % Lipid 3.45 3.42 3.435 0.97 1.81 Sample weight (g) 10.3 10.3 10.3 10.5 11.8 % Moisture 75.8 76.8 76.3 79.1 77.2 FLAGS =not detected, but did not meet quantification criteria, result reported represents the estimated maximum poss	1,2,3,4,6,7,8-HpCDD	<	0.109	<	0.109	<	0.109	<	0.118	<	0.0952
DTEd 1.25 1.24 1.245 0.943 0.606 DTEh 1.15 1.15 1.15 0.837 0.496 DTEh sd 0 1 0 0.837 0.496 DTEh sd 0 0 0 0 0 0 DTEh sd 0 0 0 0 0 0 0 Motion Completion Comple	OCDD	<	0.328	<	0.328	<	0.328	<	0.354	<	0.287
DTEh 1.15 1.15 1.15 0.837 0.496 DTEh sd Image: state of the state	DTEo		1.05		1.06		1.055		0.732		0.386
DTEh sd DTEh confidence DTEh 95 UCL Image: Confidence DTEh 95 UCL	DTEd		1.25		1.24		1.245		0.943		0.606
DTEh confidence DTEh 95 UCL % FTAL Image: Constraint of the set of the	DTEh		1.15		1.15		1.15		0.837		0.496
DTEh 95 UCL % FTAL Image: Second	DTEh sd										
% FTAL Image: style="text-align: center;">Image: style="text-align: style="text-align: style="text-align: center;">Image: style="text-align: style="text-align: style="text-align: center;">Image: style="text-align: style="text-align: style="text-align: center;">Image: style="text-align: style="text-align: style="text-align: style="text-align: center;">Image: style="text-align: style="	DTEh confidence										
% FTAL Image: style="text-align: center;">Image: style="text-align: style="text-align: style="text-align: center;">Image: style="text-align: style="text-align: style="text-align: center;">Image: style="text-align: style="text-align: style="text-align: center;">Image: style="text-align: style="text-align: style="text-align: style="text-align: center;">Image: style="text-align: style="	DTEh 95 UCL										
Sample weight (g) 10.3 10.3 10.3 10.5 11.8 % Moisture 75.8 76.8 76.3 79.1 77.2 FLAGS < =not detected	% FTAL										
Sample weight (g) 10.3 10.3 10.3 10.5 11.8 % Moisture 75.8 76.8 76.3 79.1 77.2 FLAGS < =not detected											
Sample weight (g) 10.3 10.3 10.3 10.5 11.8 % Moisture 75.8 76.8 76.3 79.1 77.2 FLAGS < =not detected	% Lipid		3.45		3.42		3.435		0.97		1.81
% Moisture 75.8 76.8 76.3 79.1 77.2 FLAGS < =not detected											
FLAGS < =not detected Image: Second se											
K =peak detected, but did not meet quantification criteria, result reported represents the estimated maximum possible D =dilution data J =concentration less than LMCL		< =n0									
D =dilution data J =concentration less than LMCL				did	not meet quantification criteria. res	ult rep	orted represer	nts th	e estimated n	naxi	mum possible
J =concentration less than LMCL						· •					1
				thar							

DEP ID	AGL RBT 3	AGL RBT 5	AGL RBT	ARF SMB 1		ARF SMB 2	ARF SMB 3
EXT ID	L9459-77	L9459-79		L9459-80		L9459-81	L9459-82
	ng/kg	ng/kg	MEAN	ng/kg		ng/kg	ng/kg
Compound							
2,3,7,8-TCDF	1.55	0.822	2.10	1.19		0.72	1.5
1,2,3,7,8-PeCDF	0.317	K 0.161	0.41	0.496		0.161	0.472
2,3,4,7,8-PeCDF	0.548	0.312	0.81	1.1		0.434	0.825
1,2,3,4,7,8-HxCDF	0.114	< 0.0727	0.10	0.073		0.0721	0.116
1,2,3,6,7,8-HxCDF	< 0.0769	< 0.0833	0.08	< 0.0785		0.0827	< 0.0817
2,3,4,6,7,8-HxCDF	< 0.0688	< 0.0746	0.08	K 0.091	<	0.074	0.082
1,2,3,7,8,9-HxCDF	< 0.0831	< 0.0901	0.09	< 0.0849		0.0894	< 0.0883
1,2,3,4,6,7,8-HpCDF	< 0.114	< 0.124	0.12	< 0.117	<	0.123	< 0.122
1,2,3,4,7,8,9-HpCDF	< 0.0956	< 0.104	0.10	< 0.0977	<	0.103	< 0.102
OCDF	< 0.0885	< 0.0959	0.09	< 0.0904	<	0.0952	< 0.094
2,3,7,8-TCDD	K 0.07	K 0.077	0.11	K 0.137	K	0.104	K 0.131
1,2,3,7,8-PeCDD	< 0.116	< 0.126	0.12	< 0.119	<	0.125	< 0.123
1,2,3,4,7,8-HxCDD	< 0.179	< 0.194	0.19	< 0.183	<	0.192	< 0.19
1,2,3,6,7,8-HxCDD	< 0.111	< 0.12	0.12	< 0.113	<	0.119	< 0.118
1,2,3,7,8,9-HxCDD	< 0.0795	< 0.0862	0.08	< 0.0813	<	0.0856	< 0.0845
1,2,3,4,6,7,8-HpCDD	< 0.1	< 0.109	0.11	< 0.102	<	0.108	< 0.106
OCDD	< 0.301	< 0.327	0.32	< 0.308	<	0.324	< 0.32
DTEo	0.34	0.176	0.54	0.471		0.207	0.431
DTEd	0.564	0.429	0.76	0.7		0.455	0.662
DTEh	0.452	0.302	0.65	0.586		0.331	0.547
DTEh sd			0.34				
DTEh confidence			0.30				
DTEh 95 UCL			0.95				
% FTAL			63				
% Lipid	1.75	1.48	1.89	0.76		1.11	1.27
Sample weight (g)	11.2	10.3	10.82	11		10.4	10.5
% Moisture	76.9	78	77.50	78.3		77.9	79.1
FLAGS							
	concentration						
		I I	1	I		1	

DEP ID	ARF SMB 4	ARF SMB 5	ARF SMB		ARY SMB 1		ARY SMB 2		ARY SMB 3		ARY SMB 4
EXT ID	L9459-83	L9459-84			L9459-15		L9459-16		L9459-17		L9459-18
	ng/kg	ng/kg	MEAN	1	ng/kg	1	ng/kg	1	ng/kg	1	ng/kg
Compound											
2,3,7,8-TCDF	0.724	K 0.154	0.86		0.416		0.726		0.734		0.415
1,2,3,7,8-PeCDF	0.225	0.113	0.29		0.113		0.189		0.177	<	0.0913
2,3,4,7,8-PeCDF	0.532	0.287	0.64		0.207		0.248		0.447		0.169
1,2,3,4,7,8-HxCDF	< 0.0674	< 0.0673	0.08		0.0741		0.0742		0.0725		0.0713
1,2,3,6,7,8-HxCDF	< 0.0773	< 0.0772	0.08		0.085		0.0851		0.0832		0.0818
2,3,4,6,7,8-HxCDF	< 0.0692	< 0.0691	0.08		0.0761		0.0762		0.0745		0.0732
1,2,3,7,8,9-HxCDF	< 0.0836	< 0.0835	0.09		0.0919		0.092		0.0899		0.0884
1,2,3,4,6,7,8-HpCDF	< 0.115	< 0.115	0.12		0.126	<	0.127		0.124	<	0.122
1,2,3,4,7,8,9-HpCDF	< 0.0961	< 0.0961	0.10		0.106	<	0.106	<	0.103	<	0.102
OCDF	< 0.089	< 0.0889	0.09	K	0.099	<	0.0979	<	0.0957	<	0.0941
2,3,7,8-TCDD	K 0.113	K 0.081	0.11	K	0.056	В	0.068	KB	0.105	KB	0.074
1,2,3,7,8-PeCDD	< 0.117	< 0.117	0.12	<	0.128	<	0.129	<	0.126	<	0.124
1,2,3,4,7,8-HxCDD	< 0.18	< 0.18	0.19	<	0.198	<	0.198	<	0.193	<	0.19
1,2,3,6,7,8-HxCDD	< 0.111	< 0.111	0.11	<	0.123	<	0.123	<	0.12	<	0.118
1,2,3,7,8,9-HxCDD	< 0.08	< 0.0799	0.08	<	0.0879	<	0.088	<	0.0861	<	0.0846
1,2,3,4,6,7,8-HpCDD	< 0.101	< 0.101	0.10	<	0.111	В	0.15	<	0.108	В	0.127
OCDD	< 0.303	< 0.303	0.31	<	0.333	В	0.692	<	0.326	В	0.487
DTEo	0.239	0.0895	0.29		0.0655		0.15		0.213		0.0936
DTEd	0.471	0.326	0.52		0.325		0.36		0.463		0.341
DTEh	0.355	0.208	0.41		0.195		0.255		0.338		0.217
DTEh sd			0.16								
DTEh confidence			0.14								
DTEh 95 UCL			0.54								
% FTAL			36								
% Lipid	0.62	0.25	0.80		0.57		0.64	1	0.69		0.44
Sample weight (g)	11.1	11.1	10.82		10.1		10.1	1	10.3		10.5
% Moisture	78.1	78.4	78.36		57.6		78.4	1	77.3		77.2
FLAGS								1			
								1			
								1			
								+			
								+			

	ARY SMB 5	ARY SMB	ARY WHS 1		ARY WHS 1 (Duplicate)		ARY WHS 1		ARY WHS 2
EXT ID	L9459-19		L9459-20 (A		WG20672-103 (DUP L9459-20)				L9459-21
	ng/kg	MEAN	ng/kg	1 1	ng/kg	1 1	mean		ng/kg
Compound	0.570	o 57	0.70		1.00	_	0.4544		
2,3,7,8-TCDF	0.573	0.57	3.73		4.08	_	2.1514		7.62
1,2,3,7,8-PeCDF	0.122	0.14	0.281		0.333		0.20973		0.73
2,3,4,7,8-PeCDF	0.229	0.26	0.407		0.453		0.3335		1.04
1,2,3,4,7,8-HxCDF	< 0.0729	0.07	K 0.088		0.139	K	0.0805		0.256
1,2,3,6,7,8-HxCDF	< 0.0836	0.08	< 0.0823		0.0816	<	0.08302		0.0837
2,3,4,6,7,8-HxCDF	< 0.0748	0.07	< 0.0737		0.0731	<	0.07433		0.075
1,2,3,7,8,9-HxCDF	< 0.0904	0.09	< 0.089		0.0882	<	0.08976		0.0906
1,2,3,4,6,7,8-HpCDF	< 0.124	0.12	< 0.122		0.121	<	0.1233		0.125
1,2,3,4,7,8,9-HpCDF	< 0.104	0.10	< 0.102		0.102	<	0.1031		0.104
OCDF	< 0.0962	0.10	< 0.0947		0.0939	<	0.09564		0.0964
2,3,7,8-TCDD	KB 0.054	0.07	B 0.145	KB	0.147	KB	0.1082	В	0.206
1,2,3,7,8-PeCDD	< 0.126	0.13	< 0.124	۸	0.123	<	0.1253	<	0.127
1,2,3,4,7,8-HxCDD	< 0.194	0.19	< 0.191	<	0.19	<	0.1928	<	0.195
1,2,3,6,7,8-HxCDD	< 0.121	0.12	< 0.119	<	0.118	<	0.12	K	0.171
1,2,3,7,8,9-HxCDD	< 0.0865	0.09	< 0.0852	<	0.0844	<	0.08591	<	0.0867
1,2,3,4,6,7,8-HpCDD	< 0.109	0.12	KB 0.153	KB	0.119	KB	0.137	В	0.29
OCDD	B 0.417	0.45	< 0.322	<	0.32	<	0.3865	KB	0.412
DTEo	0.13	0.13	0.649		0.554		0.38971		1.33
DTEd	0.38	0.37	0.847		0.798		0.6104		1.53
DTEh	0.255	0.25	0.748		0.676		0.5		1.43
DTEh sd		0.05							
DTEh confidence		0.05							
DTEh 95 UCL		0.30							
% FTAL		20							
		-							
% Lipid	0.6	0.59	2.18		2.33		1.384		4.22
Sample weight (g)	10.3	10.26	10.5		10.5		10.38		10.3
% Moisture	78.8	73.86	77.7		77.6		75.78		75.3
FLAGS									
			1 1						

ARY WHS 3	ARY WHS 4	ARY WHS 5	ARY WHS	ALV SMB 1	ALV SMB 2	ALV SMB 3
						L9459-37
ng/kg	ng/kg	ng/kg	MEAN	ng/kg	ng/kg	ng/kg
4.00		0.70			0.070	0.407
						0.187
						< 0.0943
						K 0.167
						< 0.0737
						< 0.0845
						< 0.0756
						< 0.0914
						< 0.126
						< 0.105
						< 0.0973
						K 0.065
						< 0.128
						< 0.196
		< 0.12	0.13	< 0.124	< 0.123	< 0.122
< 0.0769		< 0.0861	0.08	< 0.0888	< 0.0881	< 0.0874
KB 0.146		B 0.165	0.18			< 0.11
B 0.318	< 0.312	B 0.614	0.41	< 0.336	< 0.334	< 0.331
0.571	1.54	1.37	1.04	0.0842	0.146	0.0187
0.781	1.74	1.62	1.26	0.347	0.402	0.305
0.676	1.64	1.5	1.15	0.216	0.274	0.162
			0.52			
			0.46			
			1.61			
			107			
2.33	3.76	3.29	3.00	0.32	0.58	0.55
11.6	10.8	10.3	10.68	10	10.1	10.2
75.3	74.1	75.4	75.18	79	77.9	78
	L9459-22 ng/kg 4.03 0.341 0.47 0.103 < 0.0743 0.068 < 0.0803 < 0.111 < 0.0924 KB 0.105 KB 0.105 KB 0.101 < 0.112 < 0.173 < 0.107 < 0.0769 KB 0.146 B 0.318 0.571 0.781 0.676 2.33 11.6	L9459-22L9459-23ng/kgng/kg 4.03 9.26 0.341 0.64 0.47 1.17 0.103 K 0.204 < 0.0743 K 0.068 K < 0.0803 < 0.0861 < 0.111 < 0.119 < 0.0924 < 0.0991 KB 0.105 < 0.0917 KB 0.101 B < 0.112 < 0.12 < 0.173 < 0.185 < 0.107 < 0.115 < 0.0769 < 0.0824 KB 0.146 B 0.169 0.318 < 0.312 0.571 1.54 0.781 0.781 1.74 0.676 1.64 2.33 3.76 11.6 10.8	L9459-22L9459-23L9459-24ng/kgng/kgng/kg4.039.269.780.3410.640.6850.471.171.220.103K0.204K0.103K0.093< 0.0832	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

DEP ID		ALV SMB 4		ALV SMB 5	ALV SMB		ALV WHS 2		ALV WHS 2 (Duplicate)	1	ALV WHS 2
EXT ID		L9459-38		L9459-39			L9459-41 (A)		WG20674-103 (DUP L9459-41)		
Company d		ng/kg		ng/kg	MEAN	1	ng/kg		ng/kg	т т	mean
Compound		0.455	1/	0.400	0.00		0.00		0.4		7 405
2,3,7,8-TCDF		0.155		0.186	0.22		6.89		8.1		7.495
1,2,3,7,8-PeCDF		0.097		0.0951	0.11		0.508		0.53		0.519
2,3,4,7,8-PeCDF		0.191		0.159	0.23		0.947		1.01		0.9785
1,2,3,4,7,8-HxCDF		0.0723		0.0743	0.07		0.146		0.148		0.147
1,2,3,6,7,8-HxCDF		0.0829		0.0852	0.08		0.0847		0.0847	<	0.0847
2,3,4,6,7,8-HxCDF		0.0743		0.0762	0.08		0.0759		0.076	K	0.07595
1,2,3,7,8,9-HxCDF		0.0897		0.0921	0.09		0.0916		0.0916	<	0.0916
1,2,3,4,6,7,8-HpCDF		0.123		0.127	0.13		0.126		0.126	<	0.126
1,2,3,4,7,8,9-HpCDF	<	0.103	<	0.106	0.11	<	0.105	<	0.105	<	0.105
OCDF	< (0.0955	<	0.098	0.10	<	0.0975	٨	0.0975	<	0.0975
2,3,7,8-TCDD	K	0.052	K	0.061	0.07		0.246	K	0.294	K	0.27
1,2,3,7,8-PeCDD	< (0.125	<	0.129	0.13	<	0.128	<	0.128	<	0.128
1,2,3,4,7,8-HxCDD	< (0.193	<	0.198	0.20	<	0.197	۷	0.197	<	0.197
1,2,3,6,7,8-HxCDD	< (0.12	<	0.123	0.12		0.123		0.137		0.13
1,2,3,7,8,9-HxCDD	< (0.0858	<	0.0881	0.09	<	0.0877	<	0.0877	<	0.0877
1,2,3,4,6,7,8-HpCDD	< (0.108	<	0.111	0.11	K	0.129		0.132		0.1305
OCDD	< (0.325	<	0.334	0.33	<	0.332	<	0.332	<	0.332
DTEo		0.0602		0	0.06		1.25		1.16		1.205
DTEd		0.313		0.294	0.33		1.44		1.39		1.415
DTEh		0.187		0.147	0.20		1.34		1.28		1.31
DTEh sd					0.05						
DTEh confidence					0.04						
DTEh 95 UCL					0.24						
% FTAL					16						
/***					10						
% Lipid		0.22		0.35	0.40		2.86		2.83		2.845
Sample weight (g)	-	10.4		10.1	10.16		10.2		10.2		10.2
% Moisture	_	80.3		80	79.04		77.5		78		77.75
FLAGS	l l										
	\vdash										
	\vdash										
1							1				

DEP ID		ALV WHS 1		ALV WHS 3		ALV WHS 4		ALV WHS 5	ALV WHS	AGI SMB 1		AGI SMB 2
EXT ID		L9459-40		L9459-42		L9459-43		L9459-44		L9502-39		L9502-40
-	_	ng/kg		ng/kg	1	ng/kg		ng/kg	MEAN	ng/kg		ng/kg
Compound									_			
2,3,7,8-TCDF		5.85		9.72		4.41		10.2	7.54	0.526		0.583
1,2,3,7,8-PeCDF		0.475		0.529		0.369		0.672	0.51	0.14	K	0.151
2,3,4,7,8-PeCDF		0.852		0.968		0.615		1.1	0.90	0.248		0.239
1,2,3,4,7,8-HxCDF		0.14		0.159		0.149		0.19	0.16	< 0.0749		0.0702
1,2,3,6,7,8-HxCDF	<	0.0843		0.0847		0.086		0.0857	0.09	< 0.0858		0.0805
2,3,4,6,7,8-HxCDF		0.083		0.086		0.077		0.0768	0.08	< 0.0769		0.072
1,2,3,7,8,9-HxCDF	_	0.0912		0.0915		0.093		0.0927	0.09	< 0.0928		0.087
1,2,3,4,6,7,8-HpCDF	<	0.125	<	0.126	<	0.128	<	0.128	0.13	< 0.128	<	0.12
1,2,3,4,7,8,9-HpCDF	<	0.105		0.105	<	0.107	<	0.107	0.11	< 0.107		0.1
OCDF	<	0.0971	<	0.0974		0.119	<	0.0987	0.10	< 0.0988	<	0.0926
2,3,7,8-TCDD		0.204	K	0.28		0.139	K	0.324	0.24	K 0.137	K	0.095
1,2,3,7,8-PeCDD	<	0.127	<	0.128	<	0.13		0.144	0.13	< 0.13	<	0.122
1,2,3,4,7,8-HxCDD	<	0.196	<	0.197	<	0.2	<	0.199	0.20	< 0.2	<	0.187
1,2,3,6,7,8-HxCDD	<	0.122	<	0.122	<	0.124		0.179	0.14	< 0.124	<	0.116
1,2,3,7,8,9-HxCDD	<	0.0873	<	0.0876	<	0.089	<	0.0887	0.09	< 0.0888	<	0.0833
1,2,3,4,6,7,8-HpCDD	K	0.144	K	0.117		0.182		0.191	0.15	< 0.112	<	0.105
OCDD	<	0.33	<	0.332	K	0.351	<	0.336	0.34	< 0.336	<	0.315
DTEo		1.07		1.29		0.777		1.55	1.18	0.131		0.13
DTEd		1.26		1.54		0.984		1.66	1.37	0.389		0.374
DTEh		1.17		1.42		0.881		1.61	1.28	0.26		0.252
DTEh sd									0.27			
DTEh confidence									0.24			
DTEh 95 UCL									1.52			
% FTAL									101			
% Lipid		2.21		1.89		1.82		4.7	2.69	0.5		0.53
Sample weight (g)		10.2		10.2		10		10	10.12	10		10.7
% Moisture		79.3		77.8	1	78.2		77.2	78.05	80		78.6
FLAGS		-		-		-						
							1	1				<u> </u>

DEP ID	AGI SMB 3	AGI SMB 4	AGI SMB 5	AGI SMB	ALW SMB 1,5,6,8,9	ALW SMB 2,3,4,7,10
EXT ID	L9502-41	L9502-42	L9502-43		L9459-3	L9459-4
	ng/kg	ng/kg	ng/kg	MEAN	ng/kg	ng/kg
Compound						
2,3,7,8-TCDF	0.158	1.26	0.561	0.62	0.308	0.177
1,2,3,7,8-PeCDF	K 0.083	0.345	0.166	0.18	0.096	0.097
2,3,4,7,8-PeCDF	0.159	0.611	0.291	0.31	0.236	0.29
1,2,3,4,7,8-HxCDF	< 0.0636	< 0.0676	< 0.0727	0.07	< 0.0717	< 0.0716
1,2,3,6,7,8-HxCDF	< 0.0729	< 0.0775	< 0.0833	0.08	< 0.0822	< 0.0821
2,3,4,6,7,8-HxCDF	< 0.0653	K 0.157	0.083	0.09	< 0.0736	< 0.0735
1,2,3,7,8,9-HxCDF	< 0.0788	< 0.0838	< 0.0901	0.09	< 0.0889	< 0.0887
1,2,3,4,6,7,8-HpCDF	< 0.108	< 0.115	< 0.124	0.12	< 0.122	< 0.122
1,2,3,4,7,8,9-HpCDF	< 0.0907	< 0.0964	< 0.104	0.10	< 0.102	< 0.102
OCDF	< 0.0839	< 0.0892	< 0.0959	0.09	< 0.0947	< 0.0945
2,3,7,8-TCDD	K 0.119	K 0.214	K 0.106	0.13	K 0.084	K 0.076
1,2,3,7,8-PeCDD	< 0.11	< 0.117	< 0.126	0.12	< 0.124	< 0.124
1,2,3,4,7,8-HxCDD	< 0.169	< 0.18	< 0.194	0.19	< 0.191	< 0.191
1,2,3,6,7,8-HxCDD	< 0.105	< 0.112	< 0.12	0.12	< 0.119	< 0.118
1,2,3,7,8,9-HxCDD	< 0.0754	< 0.0802	< 0.0862	0.08	< 0.0851	< 0.0849
1,2,3,4,6,7,8-HpCDD	< 0.0949	< 0.101	< 0.109	0.10	< 0.107	< 0.107
OCDD	< 0.286	< 0.304	< 0.327	0.31	< 0.322	< 0.322
DTEo	0.0635	0.32	0.157	0.16	0.104	0.108
DTEd	0.284	0.552	0.399	0.40	0.351	0.354
DTEh	0.174	0.436	0.278	0.28	0.228	0.231
DTEh sd				0.10		
DTEh confidence				0.08		
DTEh 95 UCL				0.36		
% FTAL				24		
% Lipid	0.3	1.16	0.57	0.61	0.93	0.63
Sample weight (g)	11.8	11.1	10.3	10.78	10.5	10.5
% Moisture	80.1	77.9	78.4	79.00	53	53.5
FLAGS						
-						
		Í				

DEP ID	ALW SMB		ALW WHP 1,3,5,7,9		ALW WHP 2,4,6,8,10	ALW WHP
EXT ID			L9459-1		L9459-2	
	MEAN	I.	ng/kg	1	ng/kg	MEAN
Compound			0.700			
2,3,7,8-TCDF	0.243		0.506		0.61	0.558
1,2,3,7,8-PeCDF	0.097		0.19		0.18	0.185
2,3,4,7,8-PeCDF	0.263		0.588		0.711	0.650
1,2,3,4,7,8-HxCDF	0.072		0.08		0.095	0.088
1,2,3,6,7,8-HxCDF	0.082		0.0857		0.0834	0.085
2,3,4,6,7,8-HxCDF	0.074		0.0768		0.0747	0.076
1,2,3,7,8,9-HxCDF	0.089		0.0927		0.0902	0.091
1,2,3,4,6,7,8-HpCDF	0.122	<	0.128	<	0.124	0.126
1,2,3,4,7,8,9-HpCDF	0.102		0.107	<	0.104	0.106
OCDF	0.095	<	0.0987	<	0.096	0.097
2,3,7,8-TCDD	0.080	K	0.08	K	0.12	0.100
1,2,3,7,8-PeCDD	0.124	<	0.13	<	0.126	0.128
1,2,3,4,7,8-HxCDD	0.191	<	0.199	<	0.194	0.197
1,2,3,6,7,8-HxCDD	0.119	<	0.124	<	0.12	0.122
1,2,3,7,8,9-HxCDD	0.085	<	0.0887	<	0.0863	0.088
1,2,3,4,6,7,8-HpCDD	0.107	<	0.112	K	0.114	0.113
OCDD	0.322	<	0.336	<	0.327	0.332
DTEo	0.106		0.233		0.289	0.261
DTEd	0.353		0.49		0.532	0.511
DTEh	0.230		0.362		0.411	0.387
DTEh sd	0.002					0.035
DTEh confidence	0.003					0.048
DTEh 95 UCL	0.23					0.43
% FTAL	15					29
% Lipid	0.771		1.08		0.83	0.926
Sample weight (g)	10.64		10		10.3	10.3
% Moisture	66		54.5		53.8	60.3
FLAGS					0010	

APPENDIX 2A.

SPECIES AND STATION CODES

SPECIES CODES

BNT	brown trout
EEL	eel
LMB	largemouth bass
RBT	rainbow trout
SMB	smallmouth bass

WHP white perch

WHS white sucker

.....

STATION CODES

- AGL Androscoggin R at Gilead above NewPage
- ARP Androscoggin R at Rumford Point above NewPage
- ARF Androscoggin R below Rumford below NewPage
- ARY Androscoggin R at Riley above Verso Paper
- ALV Androscoggin R at Livermore Falls below International Paper
- AGI Androscoggin R at Gulf Island Pond, Auburn below International Paper
- ALS Androscoggin R at Lisbon Falls below International Paper
- ALW Androscoggin Lake at Wayne below International Paper
- KRM Kennebec R at Madison above SAPPI Somerset, Skowhegan
- KNW Kennebec R at Norridgewock above SAPPI Somerset, Skowhegan
- KHY Kennebec R at Hinckley, above SAPPI Somerset Skowhegan
- KFF Kennebec R at Shawmut, Fairfield below SAPPI Somerset, Skowhegan
- KRS Kennebec R at Sidney below SAPPI-Somerset & KSTD in Waterville
- PBW Penobscot R at Woodville above Lincoln Paper & Tissue
- PBM Penobscot R at Winn above Lincoln Pulp and Paper in Lincoln
- PBL Penobscot R at S Lincoln below Lincoln Pulp and Paper in Lincoln
- PBC Penobscot R at Costigan, Milford above Georgia Pacific in Old Town
- PBV Penobscot R at Veazie below Georgia Pacific in Old Town
- PBO Penobscot R at Orrington below Georgia Pacific in Old Town
- PWD Presumpscot R at Windham above SAPPI Westbrook
- PWB Presumpscot R at Westbrook below SAPPI Westbrook
- SFS Salmon Falls R at S. Berwick below Berwick POTW and Prime Tanning
- SEN E Br Sebasticook at Newport below Corinna and former Eastland Woolen mill
- SED E Br Sebasticook at Detroit below Corinna and former Eastland Woolen mill
- SWP W Br Sebasticook at Palmyra below Hartland POTW and Irving Tanning

APPENDIX 3.

TCDD & TCDF IN SLUDGE FROM MAINE WASTEWATER TREATMENT PLANTS

LOCATION	DATE	%MOIST	TCDD	TCDF
AMERICAN TISSUE AUGUSTA	880930 881223 890403 890628 971125	62.6 61.4 61.6 65.5	36.9 37.6 34.6 17.7 0.5	414.0 326.0 242.0 414.0 4.3
AMERICAN PULP AND BERLIN NH	88		104.0	2930.0
AUBURN VPS	951005		1.3	17.9
AUBURN FIBER	970806		<0.9	9.9
AUGUSTA SANITARY DISTRICT	900608 900608 900914 900809 910108 910220 910301 920416 920427 930223 940215		<1.2 <3.9 E2.1 <20.0 <20 <5 <1.9 <1.9 1.9 1.9 <1.0 <1.3 <1.0 <0.02 <0.23 1.9	1.3 2.5 10.2 E20.0 5.0 0.8 4.8 1.9 1.9 <1.3 <1.0 0.0 1.8 <1
	960228 970408 980514		<1 0.9 <1	<1 <0.9 <1
ANSON-MADISON SAN DISTRICT	910408 911001		<1.3 1.7	2.2 4.6
BANGOR	950104		<19.9	<26.4
BERWICK SEWER DIS	861111 890301 890927 891208 050819 051221 060329 060629 061230 070404 070711 071018	76.4 75.3 87.5 67.5 72.6 69.4 73.8 73.7 74.4	<2.5 14.0 <12.1 1152.0 <0.40 <0.68 <0.43 <0.60 0.20 <0.03 0.25 0.22	<4.0 19.9 <12.1 872.0 1.7 1.0 1.4 <0.9 1.1 0.31 0.70 0.70
SOMERSWORTH, NH	050810 051220 060329 060629 061230 070404 070711 071018	82.0 79.6 77.7 79.4 80.0 81.3	<0.52 <0.15 <0.39 <0.34 0.30 0.05 0.65 0.68	2.1 0.9 1.1 1.4 1.4 0.2 2.0 1.8

LOCATION	DATE	%MOIST	TCDD	TCDF
BIDDEFORD	900208 910501 910703 920204 930121 940209 940913 950815 970218		7.2 39.0 <0.86 <0.57 <1.5 <2.4 <0.19 <1.0 <.22 <0.8	30.0 310.0 3.7 <0.95 2.9 <3.2 <0.48 <2.9 1.6 <1.7
BREWER	920520 920901 921116 930202 930511 930810 931118 940201 940517 940823 941108 950613		<2.1 <6.0 3.8 <3.7 1.2 4.1 3.8 3.2 <0.9 4.5 5.2 <1	36.0 110.0 19.0 11.0 9.8 24.0 26.0 24.0 14.0 26.0 36.0 18.0
BREWER	960611 970212 980622 990730 000718 010725 010807 020723 030717 040426	75.7	2.1 3.4 <1 <1 1.1 <1 <1 <1 <1.0 <1.0	10.0 17.0 22.0 <1 1.3 1.0 <1 1.8 2.0 2.3 2.0
BOOTHBAY HARBOR S	011228		<1	2.6
BOWATER				
BUCKSPORT WWTF	010919		<0.5	4.1
MILLINOCKET	850618 880602 940414 940506 950316 960711 960914 960917		<0.4 <1.9 <7.4 <.9 <.6 <1, <1 <0.4, <0.3 <1	7.3 <8.9 6.7 4.0 <1 4.4 <1
CORINNA SEWER DIS	3' 850506 871117 880301 890222 890510 900131 900606 900606 900919		<11.9 <3.0 <13.0 <5.0 2.3 <4.0 <4.9 <10.0	<28.8 8.5 127.0 85.4 82.2 50.0

LOCATION	DATE	%MOIST	TCDD	TCDF
	901009 901024 910313 910514		<1.5 <8.0 <5.0	<.8
	920304 930405 930811 940308 940810 950321 960206		<3.9 <4.8 <9.9 <13.1 <5.6 <2.1 <1.8	<8.4 19.9 68.6 46.0 7.8 13.3 12.7
DOMTAR BAILEYVILLE	890113 890424 890718 891217 910630 910630 910630 910630 910630 910630 910231 911231 911231 911231 911231 911231 911231 930108 940530 941222 950331 950630 950930 951231 011115 020315 030211	75.8 74.7 66.0	<6.2 <0.63 <1.76 0.9 <1 <1 <1 1.0 <1 <1 <1 2.0 <1 <1 <1 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <1.0 0.4 <0.2 J0.3	$\begin{array}{c} < 3.55 \\ < 4.74 \\ 12.9 \\ 3.2 \\ 2.0 \\ 1.0 \\ < 1 \\ 4.0 \\ < 1 \\ 2.0 \\ 2.0 \\ 5.0 \\ 3.0 \\ 2.0 \\ < 1 \\ < 5.0 \\ 11.9 \\ 14.3 \\ < 5.0 \\ 24.5 \\ 3.4 \\ 2.6 \\ J0.53 \\ 2.3 \end{array}$
FRASER PAPER LTD MADAWASKA	880903 890106 890406 890930 940426	68.3 79.1 71.3 80.1	13.9 E23.4 E3.83 5.0 <.1	233.0 204.0 12.9 E26.6 0.8
GARDINER WATER DI	910401 911002 920504 921116 930407 931115 931115		<0.87 1.4 <0.54 <3.5 <.93 <0.13 <1.6	4.6 4.4 5.1 9.4 <6.4 0.9 <18
	931115 940329 941018 950221 951003 960326 961015 970331		<0.9 <0.2 <1.2 <2.8 <1.7 4.1 0.8 <1.1	<1.1 <4.3 5.2 27.0 11.0 <5.8

LOCATION	DATE	%MOIST	TCDD	TCDF
FORT FAIRFIELD UT	010514		<.67	3.2
GEORGIA PACIFIC OLD TOWN	880801 881225 890423 890718 950103	78.6 78.7 68.8	12.0 301.0 380.0 50.6 8.8	34.0 963.0 1197.0 478.0 65.0
GRAND ISLE WWTP	010710		<1	<1
HARTLAND WASTEWAT TREATMENT PLANT		65.0 65.5 64.3 63.3	<2.86 <7.25 <0.28 <1.36 <0.4 <0.5 <2.1 <3.1 <0.8	<1.71 E6.09 5.6 6.5 E1.4 <0.4 <1.9 <2.2 <0.9
HAWK RIDGE COMPOS UNITY (compost)	1989-90 1991 900420 900507 900628 900712 900820 900820 901010 910115 910207 910806 920123 920318 920715 920818 921007 930111 930406 930629 931213 940101 940422 940725 941024 950724 951012 960131 960501 960709 961007 970110 970305 970725 971014	mean n=6 (1.6-13)	6.6 2.9 3.4 3.4 5.0 3.4 3.0 5.0 <5 0.6 4.0 1.6 2.6 <1 <2.0 <1.0 2.2 <2.2 1.7 1.7 3.4 2.6 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.1 <1.	15.9 mean n=4 15.0 6.0 31.0 40.0 31.0 30.0 40.0 30.0 6.4 59.5 15.0 18.0 23.0 12.0 16.0 22.0 28.0 27.0 12.0 9.1 13.0 13.0, 33.0 12.0 9.1 13.0 13.0, 33.0 12.0 8.8 6.6 7.6 10.0 1.5 3.6 3.8 3.8

LOCATION	DATE %MOIS'	T TCDD	TCDF
INTERNATIONAL PAR JAY	P1 850621 870115 880218 880219 880223 880225 880226 880227 881231 890124 890126 890323 890417 950712 960125 960125 960126 960227 960228 961015 961016 961126 961127	51.3W 190.0 24.0 23.0 14.0 57.0 15.0 13.0 16.6W 15W 28.0 7.7W 24.0 7.2 2.6 2.8 <1.0 2.3 <1 <1 4.6 2.7	760.0 130.0 121.0 75.0 250.0 79.0 79.0 143W 77W 112.0 42.6W 150.0 39.0 16.0 16.0 14.0 14.0 14.0 5.4 22.0 12.0
KENNEBEC SANITARY TREATMENT DISTRIC WATERVILLE		E7.9 3.3 3.6 3.5 3.5 <2.3 <2.9 2.3 3.1 2.6 <1.0 1.1 <1.0 <1 <1 <1 <1 0.4, <4.8, <075, <0.10 <0.007 <0.007 0.3 0.2 0.4	121.0 54.0 12.0 6.7 19.0 <3.3 <5.0 53.0 4.1 20.0 11.0 6.3 8.2 1.3 <1 12.0 <1 <1 <3.1, 2.9, <0.10 1.4 1.5 1.4 1.0 2.7

KENNEBUNK SD	011105		EMPC	1.8
KIMBERLY-CLARK	871008		36.0	
VINSLOW	871201		13.5	
	880331		25.0	219.0
	880630		19.0	177.0
	880930		22.0	189.0
	881231		17.0	181.0
	890331		18.0	177.0
	890628		14.0	89.0
	890927 891231		11.0 13.0	67.0 115.0
	900201		12.0	86.0
	900628		12.0	94.0
	900928		9.4	76.0
	901231		7.2	63.0
	910214		12.0	86.0
	910411		8.3	100.0
	910630		4.6	62.0
	910930		6.5	69.0
	911101		6.5	63.2
	911203		6.3	68.1
	920225		6.5	72.1
	920623		5.2	55.0
	921006 921228		5.1 7.2	60.0 59.0
	930317		4.7	47.0
	930629		4.2	37.0
	930917		3.9	42.0
	931231		5.2	44.0
	940101		3.5	31.0
	940401		3.7	27.0
	940909		4.9	33.0
	941231			30.0
	950331		4.4	42.0
	950608		<1	24.0
	950930		2.2	25.0
	951231 960122	RWT	3.0 3.0	34.0 34.0
	960410	LW I	3.1	29.0
	960702		4.4	36.0
	960702D		1.6	17.0
	961030		2.4	18.0
	961030D		<1	17.0
	970318	RWT	2.4	16.0
	970616	RWT	1.4	16.0
	971104	RWT	1.3	23.0
XITTERY WWTP	990319		<0.4	5.2
LEWISTON-AUBURN	871231		<1.0	n for year (n
FREATMENT PLANT	881031		0.0	<u> </u>
	900809		E10	9.0
	910306		<7.3	<7.3
	920610		<0.8	4.5
	930625 930922		<1 <2.7	4.4 <2.5

LOCATION	DATE %MOIST	TCDD	TCDF
	950405	<2.2	0.8
	960625	<1	<1
	961202	<1	21.0
	990730	1.0	6.9
	000201 limed	<0.6	8.5
	020801 limed	<1	<0.1
	020801 ished comp	<1	<0.1
	030709 limed	<5	<5
	030717 ished comp	<5	<5
	040830 limed	<0.5	<1.2
	040830;olids/comp	1.1	2.0

LINCOLN 890123 80.9 44.0 203.0 890123 44.0 173.0 890407 85.1 49.0 298.0 890407 41.0 219.0 890831 83.5 182.0 640.0 890831 156.0 625.0 890831 41.0 220.0 890831 59.0 294.0 921231 20.4 91.6 931014 9.1 187.5 940331 PRI SL 14.9 154.0 940331 SEC SL 97.1 734.0 960302 <0.4 <0.3 960419 4.2 21.7 960431 4.2 25.1 970831 3.7 20.0 971130 <1.5 3.7 980930 <0.7 1.2 990531 0.3 1.5 990930 0.4 1.0 000130 1.3 1.5	LINCOLN PULP	&	PA: 881119		48W	223W
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	LINCOLN		890123	80.9	44.0	203.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			890123		44.0	173.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			890407	85.1	49.0	298.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			890407		41.0	219.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			890831	83.5	182.0	640.0
89083159.0294.092123120.491.69310149.1187.5940331PRI SL14.914.9154.0940331SEC SL97.1734.0960302<0.4			890831		156.0	625.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			890831		41.0	220.0
9310149.1187.5940331PRI SL14.9154.0940331SEC SL97.1734.0960302<0.4			890831		59.0	294.0
940331PRI SL14.9154.0940331SEC SL97.1734.0960302<0.4			921231		20.4	91.6
940331PRI SL14.9154.0940331SEC SL97.1734.0960302<0.4			931014		9.1	187.5
$\begin{array}{cccccccc} 960302 & <0.4 & <0.3 \\ 960419 & 4.2 & 21.7 \\ 960431 & 4.2 & 25.1 \\ 970831 & 3.7 & 20.0 \\ 971130 & <1.5 & 3.7 \\ 980930 & <0.7 & 1.2 \\ 990531 & 0.3 & 1.5 \\ 990930 & 0.4 & 1.0 \\ \end{array}$			940331	PRI SL	14.9	154.0
9604194.221.79604314.225.19708313.720.0971130<1.5			940331	SEC SL	97.1	734.0
9604314.225.19708313.720.0971130<1.5			960302		<0.4	<0.3
9708313.720.0971130<1.5			960419		4.2	21.7
971130<1.53.7980930<0.7			960431		4.2	25.1
980930<0.71.29905310.31.59909300.41.0			970831		3.7	20.0
9905310.31.59909300.41.0			971130		<1.5	3.7
990930 0.4 1.0			980930		<0.7	1.2
			990531		0.3	1.5
000130 1.3 1.5			990930		0.4	1.0
			000130		1.3	1.5

MADAWASKA WWTP	011119	<1	2.0
NEWPAGE CORP	850621	32.0	

LOCATION	DATE	%MOIST	TCDD	TCDF
RUMFORD	880602 890108 890407 890628	77.1 73.1 76.8	105.0 114.0 46.5 E9.91	674.0 569.0 184.0 134.0
NORRIDGEWOCK WWTP	011116		<0.1	<0.8
NORTH JAY WWTP	011127		0.8	<1.6
OAKLAND TREATMENT	910304 910329 920415 920415 930408 930501 940426		<2.5 <5 <1.0 <1 <1.0 <1.0 <1.0 <1.0	10.0 10.0 <1.0 <1 <1.0 11.0 <1.0
OGUNQUIT SD	010912		<1.4	1.4
OLD TOWN	880525 900212 910918 910918		<3.0 <2.2 <2.9 <2.2	<3.0 16.7 6.6
ORONO TREATMENT P:	900316 900412 901001 901021 910324 910918 920323 920328 920915 921015 930427 930427 930427 940502		2.1 8.5 3.5 3.9 <2.1 <2.9 <0.6 9.4 <0.5 1.1 1.3 <0.5 <0.6	9.2 9.5 6.6 7.6 5.4 3.4 2.5
PERC	910417		<2.0	9.9
PORTLAND WATER DI: PORTLAND	861205 870402 871124 880913 891206 901002 901002 910826 910828 920715 920715 930719 930719 940718 950727		E1.2 1.6 <3 <64 <66 <1.1 0.9 <1 <1.1 <1.0 0.5	11.3 14.5 10.0 20.0 <32 <140 6.4 7.6 2.3 <3.2 0.8 1.0

LOCATION		%MOIST	TODD	mone
LUCATION	DATE 960807 980811 980514 990602 000913 010806 020830 030830 040913 040830	6MO151	TCDD <0.7 <0.4 <1 <1 <0.1 <1 <0.2 <0.3 0.4 <0.41	TCDF <0.1 3.4 <1 5.6 8.0 3.2 0.6 <0.2 1.0 <2
PORTLAND WATER D WESTBROOK WWTF	I: 861205 870402 871119 891205 901001 910826 920714 930719 980811 001011 001228 010329 010525 010803 020830 030830 040830 040913		E1.6 <3.0 <64 <1.1 <1.0 <0.2 <0.6 1.2 0.6 <0.7 1.4 <0.3 <0.3 <.1 <1	14.5 9.0 <32 7.6 3.2 4.1 3.5 3.6 3.4 4.6 <0.5 2.1 0.9 <0.7 2.4 1.0
PRESQUE ISLE SEW	E1010625		<1.1	<1.1
REGIONAL WASTE S PORTLAND	r: 890111 890112 890113 890114 890121 900211	ash ash ash ash ash ash	5.5 6.0 10.0 10.0 6.0 E20	28.0 24.0 50.0 20.0 90.0 210.0
ROBINSON MANUFAC' OXFORD	<pre>FI 870113 880419 881004 890119 900119D 910226 910305 910323 910323 910323 920610 960216 960315 970220 980218</pre>		10.1 <0.4 <7.3 <0.39 <2.1 <3.0 <3 <5 <3 <1.2 <1 <1 <1	17.5 <0.2 <9.6 <1.2 <1.1 <3.0 <0.3 <3 <5 <3 <1.0 0.1 4.2 <1 <1
SABATTUS SANITAR	Y 010412		<2	<2

APPENDIX 3. TCDD AND TC	CDF IN SLUDGE	FROM WASTE	WATER TREATMEN
LOCATION DATE	SMOIST	TCDD	TCDF
SAPPI -SOMERSET 86121 87051 87093	.9	<2 13.0	47.0 21.0
87121 88032		60.0 27.0	88.0
88063	BO EPA	67.0	33.0
88101 88122		40.0 54.0	98.0 177.0
89030	3	54.0	92.0
89062 89092		23.0 <.8	53.0 16.0
89120		18.0	52.0
90031		<18	23.0
90062 90091		35.0 45.0	73.0 86.0
90121		39.5	115.0
91032 91062		23.1 39.4	51.0 146.0
91091	. 0	69.9	260.0
92062 92092		33.0 20.0	856.0 39.0
92121		15.0	45.0
93010 93061		11.0 23.0	31.0 73.0
93091	. 6	56.0	170.0
93122 94010		42.0 31.0	110.0 95.0
94062		33.0	89.0
94092 94121		12.0 11.0	36.0 20.0
95031		3.6	15.0
95051		3.3 9.6	11.0 25.0
95091 95112		1.2	4.2
96032		2.0	9.6
96062 96091		5.1 5.2	18.0 11.0
96101	. 4	5.2	15.0
97031 97062		5.5 8.5,4.9	26.0 36.0
97091	.7	<.71	2.0
97121 98031		<.28 <.79	0.7 <6.2
98052	27	1.0	2.5
98092 98120		6.6 <.4	18.0 0.7
99033		<.26	<4.2
99060 99092		<.4 <.48	0.8 <5.4
99121		<.4	1.2
00013		<.65 <.729	1.8 2.9
00060 00092		1.86	6.8
00121	.3	<.207	1.4
01031 01052		0.3 0.7	0.2 0.3
01091	.0	<0.561	0.2
01121 02031		0.2 0.3	0.1 0.1

LOCATION	DATE %MOIST	TCDD	TCDF
	020509	<0.319	0.1
	020917 021217	3.1 0.5	1.5 0.2
	030310	<0.181	0.1
	030609	0.5	0.2
	030909 031217	<0.121 0.2	0.0 0.1
SAPPI - WESTBROOK		17.2	0.1
	870929	31.0	
	871231	21.0	135.0
	880331	5.6	21.0
	880401 880630	8.7 13.0	3.9 55.0
	881207	19.0	127.0
		19.0	69.0
	890106	<1.8	31.0
	890600 890600	<1.2 5.3	13.0 35.0
	890600	<.2	0.2
	890600	<.4	8.8
	890600	69.9	60.0
	891031	5.0	30.0
	891130 891231	3.0 7.0	30.0 50.0
	900131	6.0	20.0
	900228	2.7	24.6
	900331	5.1	33.6
	900430	5.9 5.3	34.6 25.8
	900531 900630	19.0	26.0
	900730	5.2	20.6
	900831	2.9	12.1
	900930	2.5	10.0
	901231 910917	7.7 70.0	35.7 275.0
	910331	3.4	21.5
	910630	2.9	19.6
	910930	3.8	14.2
	911231 920331	2.4 1.2	25.1 19.4
	920505	1.6	10.8
	920821		24.5
	940131	0.9	11.6
	940324 940728	2.1	12.3 17.3
	940728 941213	5.3	29.2
	950329	1.2	20.0
	950602	1.0	10.1
	950911	1 1	18.3
	951120 960327	1.1 2.0	23.3 9.6
	990113	4.0	61.0
	990407	2.9	36.0
	990728	1.0	14.0
	990830 990928	<0.9 <1.0	4.0 2.8
CITY OF SOUTH POR	TLAND		
S PORTLAND STP	880000	<8.65	<48

LOCATION	DATE %MO	IST TCDD	TCDF
	900314	<5.3	<3.5
	900314	<2.7	<5.4
	910508		<10
	910531	<5	
	920401	<1.0	<0.8
	920428	<0.8	1.4
	920714	0.9	6.4
	930324	<2.8	<2.8
	940315	<1.0	3.9
	941005	8.7	48.0
	950405	<1	3.3
	960610	<1	5.3
	970616	<1	15.0
	000912	<1	2.6
	010205	<3	<2
	010918	<1	1.8
	040913	<0.96	1.0
WELLS SANITARY D	I:011109	<0.4	0.9
YORK SD	010806	<1	<1
VAN BUREN WWTP D=duplicate anal		0.6	4.0

APPENDIX 4.

TCDD & TCDF IN WASTEWATER FROM MAINE PULP AND PAPER MILLS

APPENDIX 4	1	2378-TCDD	AND	2378-TCDF	ΤN	EFFLUENT	FROM	WASTEWATER	TREATMENT	PT.AN'
	••	20/0 1000	11110	2010 1001	± 1,		TICOII	WIND I DWIII DI(

SOURCE	DATE	TCDD (pg/l)	TCDF (pg/l)
ANSON MADISON	920408 921001	<3 <3	<3 20
BREWER	920624 930429 941129 950503 960416 000501	<5.9 <3.9 7.4 <3.6 <10 <10	
GEORGIA PACIFIC OLD TOWN	880630 890131 890222 890223 890224 890320 890324 890325 890405 890410 890411 890824 890831 890911 890915 890921 890927 891011 891019 891019 891102 891106 891114 89127 891206 891213 891221 900105 900111 900118 900125 900207 900214 900222	$\begin{array}{c} 39\\ 27\\ 210\\ 92\\ 77\\ \end{array}$ $\begin{array}{c} 36\\ 30\\ 17\\ 32\\ 32\\ 32\\ 13\\ <4.1\\ <3.3\\ <5.7\\ <5.3\\ <3\\ <5.7\\ <5.3\\ <3\\ <5.2\\ <6\\ 6.7\\ <9.5\\ <6.4\\ <8.4\\ <8.3\\ <4.7\\ <6.8\\ <9\\ <5.9\\ <5.9\\ <6.7\\ <4.6\\ <6.6\\ <7.3\\ \end{array}$	120 340 290 340 34 24 73 110 52 89 94 150 14 <8.1 13 9.7 11 14 18 22 <7.1 20 13 20 23 <8.3 <8.5 6.1 10 17 23 15
	900301 900308 900315 900329 900407 900502 900729	<6 <3 <4 <7.4 <7.2 <7 <9.9	11 12 16 14 24 19 49

APPENDIX	4.	2378-TCDD	AND	2378-	TCDF	ΙN	EFFLUENT	FROM	WASTEWATER	TREATMENT	PLAN'
----------	----	-----------	-----	-------	------	----	----------	------	------------	-----------	-------

SOURCE DATE		TCDD	TCDF
010220		(pg/l)	(pg/1)
910330		17	70
910430 910530		19	65
		9.5	41 43
910630		6.8	43
910830		11	
911030		<u> </u>	7.9
911130		<7.7	<16
920330 920730		<5.7 16	50 69
920730		<4.9	23
921030		<3.0	23
921030		4.8	
930130		<5.0	14
930330		<4.9	12
930530		<4.2	11
930630		<2.8	15
930830		<1.6	9.2
930930		<3.5	7.6
931130		<3.1	32
931230		<3.2	19
940230		<4.8	7.7
940330		<4.6	12
940530		<1.5	<4.5
940630		<3.5	9.2
940830		<2.0	<4.8
940930		<4.6	<6.8
941130		<9.5	<10
941230		<1.1	5.8
942730		<1.1	5.8
950130		<2.4	8.2
950119		<2.4	8.2
951230		<1.1	5.8
950430		<1.4	5.6
950430		8	36
950421		<1.4	5.6
950622		<2	6.8
950928		<3.8	8.1
951129		<5.4	13
951228		<1.4	6.2
980115	BPA	<2.8	<5.8
	BPB	<11	53
980130		<3	9.4
	BPA	<2.9	18
	BPB	<2.8	8.9
980219	BPA	<1.7	12
	BPB	<3.9	39
980230	,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<2.6	8.7
980328	BPA	<5.8	11
000000	BPB	<5.2 <2	13 9.1
980330 980730		<2 <3	9.1 <4
980730		 > 	< 4

APPENDIX 4. 2378-TCDD AND 2378-TCDF IN EFFLUENT FROM WASTEWATER TREATMENT PLAN

SOURCE DATE		TCDD (pg/l)		TCDF (pg/l)
980830	BP	<3.5	BP	<4.2
980930		<3.2		<4.8
	BP	5.9	BP	28
981030		<3.2		<4.8
	BP	<3.5	BP	<4.2
981130		<5.5		<5.4
	BP	<3.4	BP	<4.6
981230		<1.6		8.7
	BP	<3.1	BP	6.5
990130		<3.4		<2.6
	BP	<3	BP	<3.9
990230		<10		<10
	BP	<10	BP	<10
990330	BP	<2.3	BP	<1.8
990530		<1.9<4.7		<2.9<3.3
	BP	<3.2	BP	<4.8
990630		<1.3		<1.8
	BP	<2.3	BP	7.3
990730		<.93		<1.4
	BP	<2.6	BP	<1.8
990930		<.68		<2.1
	BP	<1.3	BP	<5
991030		<2.5		<2.1
	BP	<3	BP	<3.6
000130		<8.4		<4.9
	BP	<9.0	BP	<5.4
000330		<3.4		<3.1
	BP	<2.9	BP	<2.3
000430		<7.4		<7.6
	BP	<5.0	BP	<5.5
000630		<2.2		<1.5
	BP	<4.0	BP	<3.0
000830		<1.2		<1.1
	BP	<3.0	BP	<3.2
001030		<2.3		<2.6
	BP	<3.4	BP	<3.4
001130		<2.7		<1.4
	BP	<2.7	BP	<3.2
010130		<3.3		<2.1
010000	BP	<3.9	BP	<3.1
010330		<4.7		<3.2
04.05.00	BP	<2.4	BP	<4.5
010530		<2.9		<2.5
	BP	<6.7	BP	<5.4
010630		<1.7		<1.5
	BP	<3.2	BP	<3.2
010730		<2.0		<1.5
	BP	<2.7	BP	<2.2
010930		<3.2		<2.5
	BP	<2.3	BP	<1.7

APPENDIX 4. 2378-TCDD AND 2378-TCDF IN EFFLUENT FROM WASTEWATER TREATMENT PLAN

SOURCE	DATE		TCDD		TCDF
	011120		(pg/1) <4.7		(pg/1)
	011130	סס		תת	<3.9
	020115	BP	<3.4	BP	<2.6 <1.9
	020115	סס	<2.7 <2.5	סס	<1.9
	020115	BP	<4.2	BP	<3.0
	020223	סס	<3.9	סס	<4.2
	020227	BP	<1.4	BP	<1.5
	020410	BP	<2.4	BP	<2.3
	020410	Dr	<4.1	Dr	<4.4
	020025		ND		ND
	020723	BP	<4.1	BP	<2.5
	020725	DI	ND	DI	ND
	021010	BP	<3.2	BP	<3.1
	020930	DI	<4.7	DI	<3.1
	021030		<3.2		<3.1
	021030		<10		<10
	021106	BP	<10	BP	<10
	021230	21	<0.69	21	<1.6
	021203	BP	<0.69	BP	<1.6
	030130		<0.49		<0.93
	030230		<1.4		<1.6
	030330		<1.8		<1.5
	030430		<1.4		<2.4
	030530		<6.8		<8.9
	030630		<5.0		<3.6
	030730		<2.2		<1.4
	030830		<3.4		<3.2
	030930		<7.0		<5.1
	031030		NS		NS
	031130		<10		<10
	031230		<2.9		<1.7
	040130	BP	<10	BP	<10
	040230	BP	<10	BP	<10
	040330	BP	<10	BP	<10
	040430	BP	<10	BP	<10
	040530	BP	<10	BP	<10
	040630	BP	<1.6	BP	<1.2
	040730	BP	<3.1	BP	<2.1
	040830	BP	<10	BP	<10
	040930 041030	BP	<10 <10	BP	<10 <10
	041030	BP BP	<10	BP BP	<10
	050131	BP	<10	BP	<10
	050228	BP	<10	BP	<10
	050331	BP	<10	BP	<10
	050430	BP	<10	BP	<10
	050531	BP	<10	BP	<10
	050630	BP	<3.5	BP	<3.1
	050731	BP	<4.7	BP	<2.2
	050831	BP	<8.4	BP	<7.5
	050930	BP	<0.42	BP	<0.39
	000000		NV.74		-0.00

APPENDIX 4		2378-TCDD	AND	2378-т	CDF	ΙN	EFFLUENT	FROM	WASTEWATER	TREATMENT	PLAN'
------------	--	-----------	-----	--------	-----	----	----------	------	------------	-----------	-------

SOURCE	DATE		TCDD		TCDF
			(pg/l)		(pg/l)
	051031	BP	<0.42	BP	<0.39
	051130	BP	0.86	BP	0.96
	051231	BP	0.31	BP	<0.5
	060129	BP	<0.68	BP	<0.72
	060226	BP	<0.69	BP	<0.81
	060326	BP	<0.7	BP	<0.52
DOMTAR	880101		6.8		25
Baileyville	900316		<5		4
	900423		<3		<6
	900531		<8		<5
	900619		<3		<1
	900716		<1		<3
	900807		<2		<5
	910630		<10		<10
	910630 910630		<10 <11		<10 <11
	910630 910630		<11		<11
	910630		<11		<11
	910630		<11		<11
	910630		<10		<10
	910630		<11		<11
	910630		<11		<11
	911231		<10		<10
	911231		<10		<10
	911231		<11		<11
	911231		<11		<11
	911231		<10		<10
	911231		<11 <10		<11 <10
	911231 911231		<10		<11
	911231		<11		<11
	930408		<10		<10
	930506		<10		<10
	930713		<10		<10
	940530		<10		<10
	941222		<10		<10
	950331		<10		<10
	950630		<10		<10
	950930		<10		<10
	951231		<10		<10
	980330		~1 0		60
	980421		<10		60 40
	980825	BP	<10 <10	BP	40 10
	981230	DF	<10	DF	<10
	JUI2JU	BP	<10	BP	<10
	990430	21	<10	<u> </u>	<10
		BP	<10	BP	<10
	990930		< 4		<3

SOURCE	DATE		TCDD (pg/l) <2		TCDF (pg/1) <6
		BP	C<2 A<4	BP	C<2 A<7
		BP	C<5 A<3	BP	C<4 A<3
	991030		<5		<3
		BP	C<7 A<5	BP	C<8 A<3
	991130		<1		<6
		BP	C<1 A<2	BP	C<5 A<3A
	000130		<4.2		<3.4
		BP	C<2.0 A<2.0 <5.0	BP	C<4.0 A<3.0 <4.0
		BP	C<3.0 A<3.0	BP	C<3.0 A<2.0
	000930	BP	C<7.1 A<3.4	BP	C<5.6 A<2.4
	000000	BP	C<2.3 A<2.5	BP	C<1.6 A<1.7
	001200	BP	C<5.9 A<3.8	BP	C<5.3 A<2.1
		BP	C<5.1 A<4.0	BP	C<4.0 A<3.0
	020319	BP	C<4.7 A<5.1	BP	C<4.0 A<4.2
	020610		<2.4		<3.1
	020615	BP	C<2.6	BP	C<2.1
	020918	BP	C<1.9 A<1.3	BP	C<4.7 A<1.3
	030211		<4.7		J7.3
	030312	BP	C<4.0 A<2.6	BP	C<4.3 2.6
	031023	BP	C<5.8 A<3.5	BP	C<4.3 A<2.5
	040630	BP	<10	BP	
	060430	BP	<10	BP	<10
INTERNATIONAL PAPER VERSO Jay	880101 880715 890307 890310 890616 890621 890713 890720 890818 900413 910926 91129 911219 920125 920125 920126 920127 920128 920129 920312 920320	DEP	88 30 30, E6 16 <8 17 <16 30 20 <10 <10 <10 <10 50 <20 20 20 20 30 30 30 13.7 19.3 14.8		420 150 100, E20 74 980 140 50 150 110 90 60 60 210 <80 110 110 100 100 49.9 65.6 73.9 52.1
	920423 920610		<13.9 <5.7		59.1 29.5
	920610 920617		<6.3		30.8
			••••		

APPENDIX 4. 2378-TCDD AND 2378-TCDF IN EFFLUENT FROM WASTEWATER TREATMENT PLAN'

APPENDIX	4.	2378-TCDD	AND	2378-	TCDF	ΙN	EFFLUENT	FROM	WASTEWATER	TREATMENT	PLAN'
----------	----	-----------	-----	-------	------	----	----------	------	------------	-----------	-------

SOURCE DATE		TCDD		TCDF
		(pg/l)		(pg/l)
920723		<8.4		33.6
920819		6.6		29.7
920923		<2.6		<2.0
921111		<6.1		22.4
921202		<2.6		<14.4
930125		5.4		19.6
930222		<5.3		25.5
930420		<2.0		16.7
930527		4.3		10.3
930716		<5.2		28.9
930826		<5.3, <6.5		21.5, 19.2
930910		<8.6		9.4
931022				19.5
931119		<3.6		19.5
931224		10.9		31.1
940125		<4.1		21.6
940226		7.3		38
940422		7.7		41.1
940520		4.1		25.6
940722		<3.4		16.7
940829		<7.9		31.8
941027		<3.4		25.3
941125		<6.8		24.4
950126		<5.0		20.9
950222		<3.6		21.4
950420		<2.5		25.6
950527 950724		<1.8 <3.2		24.1 16.1
950724 950826		<4.9		7.5
950820		<6.0		15.4
951022		<8.5		12.9
951122		<3.8		10.5
960228		<10		6.5
960430		<10		12.8
960530		<10		15.7
961030		<10		7.7
961130		<10		<10
970130		<10		<10
970228		<10		11.5
970330		<10		<10
970330	BPA	<6.2	BPA	<6.3
	BPB	<5.1	BPB	<3.7
970430		<10		14.4
970522	BPA	4.9	BPA	5.6
	BPB	10.9	BPB	9.6
970406	BPA	<4.9	BPA	10.9
	BPB	<5.6	BPB	9.6
970630		<10		6.8
970730		<10		<10
970728	BPA	<5.2	BPA	11.5
	BPB	<5.4	BPB	6.3

APPENDIX 4. 2378-TCDD AND 2378-TCDF IN EFFLUENT FROM WASTEWATER TREATMENT PLAN

SOURCE	DATE		TCDD (pg/l)		TCDF (pg/l)
	970830		<10		<10
	971030		<10		
	971013	BPA	<4.3	BPA	<5
		BPB	<7.2	BPB	<8.3
	971130		<10		
	980117		<2.1		7.1
	980126	BPA	<3.5		<3.2
		BPB	<1.2		<1.7
	980221		<3.7		<3.7
	980406	BPA	<0.6		<2.3
		BPB	<1.4		<1.3
	980516		<3		8
	980613		<1.4		<2.2
	980706	BPA	<2.8		19
		BPB	<1.2		4.8
	980711		<2.3		4.9
	980814		<2.2		<1.1
	981012	BPA	<2.0		45
		BPB	<2.9		<1.6
	981016		<2		5.1
	981116	BPA	<6.8		9.9
	981119		<7		<8.6
	981130	BPB	<3.3		<5.2
	990117		<2.8		3.6
	990112	BPA	<.99		54
	000010	BPB	<.97		4
	990312		<3		7.4
	990304	BPA	<2.1 <2.7		9.7 <5.9
	990412	BPB	<5.9		18
	990412 990408	BPA	<2.6		7.4
	990400	BPB	<5.5		<5
	990618	DID	<5.1		<4.2
	990622	BPA	<8.6		<9
	550022	BPB	<3.3		<4.1
	990723	212	<2.2		<1.6
	990720	BPA	<2.9		130
		BPB	<2.5		<2.3
	990917		<6.2		<6.5
	990913	BPA	<3.8		<1.6
		BPB	<3.4		<1.4
	991008		<5.6		6.6
	991005	BPA	<2		<1.6
		BPB	<3		<1.3
	991112		<2.7		<6.5
	991110	BPA	<2.7		<4
		BPB	<2.1		<2.1
	000104	BPA	<2.5		<1.8
		BPB	<3.0		<2.8
	000306	BPA	<1.6		<5.0
		BPB	<1.1		<2.6

SOURCE	DATE		TCDD (pg/l)	TCDF (pg/l)
0	00419	BPA	<2.9	<1.6
		BPB	<2.7	<1.8
0	00612	BPA	<3.7	<2.6
		BPB	<1.51	<0.59
0	00705	BPA	<2.43	<4.57
		BPB	<2.07	<1.8
0	00829	BPA	<2.28	<3.57
		BPB	<1.69	<2.20
0	01019	BPA	<0.573	<1.91
		BPB	<0.698	<1.61
0	01207	BPA	<1.80	<1.89
		BPB	<0.825	<1.19
	20130		ND	ND
	20230		ND	ND
	20430		ND	ND
	20530		ND	ND
	20730		ND	ND
	20830		ND	ND
	21030		ND	ND
	21130		ND	ND
	30130		ND	ND
	30230		ND	ND
	30330		ND	ND
	30430		ND	ND
	30630		ND	ND
	31030		ND	ND
	31130		ND	ND
0	40130		<2.5	<1.5
~			<1.3	4.2
0	40224		<3.8	<3.9
<u>_</u>			<3.8	<2.9
0	40520		<1.7	<1.2
0	40000		<2.0	<1.2
0	40622		<1.9	7.9
0	40722		<3.7 >1.3	<2.5 <0.79
0	140122		<6.7	<5.6
0	40824		<3.3	<2.6
0	40024		<2.1	<2.0
0	41021		<0.68	<0.75
0	741021		<0.00	<0.80
0	41111		<0.70	2.8
0			<0.57	2
0	50112		<0.35	<0.54
0	, , , , , , , , , , , , , , , , , , , ,		<0.33	<1.0
0	50217		<2.8	<2.9
0	, J U Z I I		<4.0	<3.7
0	50608		<0.62	<7.3
0			<0.56	<8.2
0	50622		<6.2	<4.1
Ŭ			<0.33	<4.8

APPENDIX 4	•	2378-TCDD	AND	2378-	-TCDF	ΙN	EFFLUENT	FROM	WASTEWATER	TREATMENT	PLAN'

SOURCE	DATE		TCDD (pg/l)		TCDF (pg/l)
	050825		<1.7		<1.1
			<1.2		<1.4
	050912		<0.62		<0.72
			<0.61		<9.6
	051107		<0.34		<0.54
	051010		<0.61		<0.99
	051212		<0.52 <0.57		<2.6 <0.32
	060207		<0.26		<0.52
	000207		<0.20		<0.34
	060306		<1.1		<0.89
			<0.54		<0.67
HARTLAND	960530		<0.06		
			<10		<10
KIMBERLY-CLARK	930308 930623		<10 <4.6		<12 <3.9
	930023		\4.0		<3.9
LINCOLN PAPER & TISSUE	881130		32		130
	920817		11.2		69.8
	920908		<11		27.3
	921117		7.7		39.1
	921216		<1.9		9.5
	931230		<5.5		<17.3
	940417		1.9		7.5
	950824		1.3 1.3		8.5
	960409 970116	BP	25.4	BP	8.5 103
	970212	BP	11	BP	43.1
	970522	BP	11.4	BP	27.6
	970813	BP	6.4	BP	14.4
	971001	BP	1.6	BP	1.9
	971231	BP	<2.4	BP	<3.83
	980330	BP	<3.4	BP	<3.7
	980430	BP	<10	BP	13.2
	980630	BP	<8.9	BP	<4
	980830	BP	<7.1	BP	<7.6
	980930	BP	<2.3<4.1	BP	<2.3<3.2
	981130	BP	<2.6<4.9	BP	<2.7<3.6
	981230	BP	<1.5	BP	<1.3
	990230	BP	<1.1 <2.5	BP	<2.1 <3.8
	990330 990430	BP BP	<2.8	BP BP	<3.2
	990430 990630	BP	<4.4	BP	<4.5
	990830	BP	<4.3	BP	<2.8
	990930	BP	<1.3	BP	<.44
	991030	BP	<2.3	BP	<2.2
	991130	BP	<3	BP	<2.9
	000130	BP	<1.4	BP	<1.4

SOURCE	DATE		TCDD (pg/1)		TCDF (pg/l)
	000330	BP	<3.0	BP	<1.2
	000430	BP	<1.6	BP	<1.3
	000430		<7.14		<3.63
	000030	BP		BP	
		BP	<2.07	BP	<1.25
	000830	BP	<2.14	BP	<3.17
	001030	BP	<3.39	BP	<2.17
	001130	BP	<2.08	BP	<4.43
	010228	BP	<2.11	BP	<2.39
	010330	BP	<0.56	BP	<0.618
	010530	BP	<3.28	BP	<7.31
	010630	BP	<2.05	BP	<1.97
	010830	BP	<1.25	BP	<3.56
	010930	BP	<4.01	BP	<3.37
	011130	BP	<2.18	BP	<6.19
	011230	BP	<4.97	BP	<4.79
	020230	BP	<1.68	BP	<1.22
	020330	BP	<2.27	BP	<1.31
	' 020530	BP	<1.34	BP	<1.08
	020630	BP	<.841	BP	<1.03
	021030	BP	<.381	BP	<.548
	021130	BP	<.612	BP	<.340
	030230	BP	<1.16	BP	<.630
	030330	BP	<.995	BP	<.590
	030530	BP	<1.63	BP	<1.17
	030630	BP	<2.15	BP	<.447
	030730	BP	<2.82	BP	<2.76
	030830	BP	<3.76	BP	<3.02
	040830	BP	<0.785	BP	<2.12
	040930	BP	<0.824	BP	<0.769
	040530	BP	<1.92	BP	<1.57
	041130	BP	<1.81	BP	<1.37
	041230	BP	<1.44	BP	<1.39
	050330	BP	5.52	BP	<0.934
		BP	<0.975	BP	<0.904
	050530		<0.910		<1.25
	050630	BP BP	<1.25	BP BP	<1.66
	050830				
	050930	BP	<1.38	BP	<1.53
	051130	BP	<1.03	BP	<1.29
	051230	BP	<0.982	BP	<0.632
	060228	BP	<0.718	BP	<0.587
	060330	BP	<0.655	BP	<0.570
	060530	BP	<0.734	BP	<0.857
	060630	BP	<1.94	BP	<2.10
	060830	BP	<0.865	BP	<1.01
	060930	BP	<0.631	BP	<0.910
	061130	BP	<2.24	BP	<1.78
	061230	BP	<1.32	BP	<1.32
NEWPAGE CORP	880518		120		570
	890301		25		80

APPENDIX	4.	2378-TCDD	AND	2378-2	TCDF	ΙN	EFFLUENT	FROM	WASTEWATER	TREATMENT	PLAN'
----------	----	-----------	-----	--------	------	----	----------	------	------------	-----------	-------

SOURCE DAT	(pg/l		
8908		20	
8908		20	
8908	14 <5	13	
8908	17 <5	18	
8908	21 <8	21	
8908	24 <5	10	
8908	29 <5	18	
8908	31 <11	20	
8909	05 <11	20	
8909		18	
8910		7	
8910		6	
8912		20	
9002		6	
9002		7	
9005		<8	
9005		5	
9006		8	
9006		9	
9202		14	
9202		13	
9203			
9203		8.7	
	3.5	12 17	
0.0.0.2	4.6 26 4.5	8.5	
9203 9204		8.5 24	
9204 9206		6.8	
9200		<5.8	
9208		3.5	
9209		5.5	
9211			
9212			
9301			
9302		<10	
9304		<10	
9305		<10	
9307		12	
9308		<3.4	
9310		<10	
9311		<3.6	
9401		<5.2	
9402		<1.3	
9404		<2.4	
9405		<1.2	
9407		<1.7	
9408		<2.0	
9410		<1.1	
9412		<1.8	
9501	31 <10	<10	

APPENDIX	4.	2378-TCDD	AND	2378-1	ГCDF	ΙN	EFFLUENT	FROM	WASTEWATER	TREATMENT	PLAN'
----------	----	-----------	-----	--------	------	----	----------	------	------------	-----------	-------

SOURCE DATE		TCDD		TCDF
		(pg/1)		(pg/1)
950229		<10		<10
950430		<10		<10
950531		<10		<10
950731		<10		<10
950831		<10		<10
951031		<10		<10
951130		<10		<10
960130		<10		<10
960330		<10		<10
960430		<10		<10
960530		<10		<10
960730		<10		<10
960830		<10		<10
961030		<10		<10
961130		<10		<10
970317		<10		<10
980130		<10		<10
980230		<10		<10
980430		<10		<10
980530		<10		<10
	חח	<10		<10
980609	BP			
980730	D D	<10		<10
980830	BP	<10		<10
981030	BP	<10		<10
981130	BP	<10		<10
990130		<10		<10
	BP	<10	BP	<10
990230		<10		<10
	BP	<10	BP	<10
990430		<10		<10
	BP	<10	BP	<10
990530		<10		<10
	BP	<10	BP	<10
990730		<10		<10
	BP	<10	BP	<10
990830		<10		<10
	BP	<10	BP	<10
991030		<10		<10
	BP	<10	BP	<10
991130		<10		<10
	BP	<10	BP	<10
000113	BP	<10	BP	<10
000224	BP	<10	BP	<10
000410	BP	<10	BP	<10
000505	BP	<10	BP	<10
000718	BP	<10	BP	<10
001003	BP	<10	BP	<10
001106	BP	<10	BP	<10
010112	BP	<10	BP	<10
010201	BP	<10	BP	<10
010201		<10		<10
010408	BP	$\sim \pm 0$	BP	< I U

APPENDIX	4.	2378-TCDD	AND	2378-1	ГCDF	ΙN	EFFLUENT	FROM	WASTEWATER	TREATMENT	PLAN'
----------	----	-----------	-----	--------	------	----	----------	------	------------	-----------	-------

SOURCE	DATE		TCDD		TCDF
	010502	BP	(pg/l) <10	BP	(pg/l) <10
	010302	BP	<10	BP	<10
	010808	BP	<10	BP	<10
	010000	BP	<10	BP	<10
	011102	BP	<10	BP	<10
	020105	BP	<10	BP	<10
	020202	BP	<10	BP	<10
	020408	BP	<10	BP	<10
	020503	BP	<10	BP	<10
	020712	BP	<10	BP	<10
	020817	BP	<10	BP	<10
	021001	BP	<10	BP	<10
	021106	BP	<10	BP	<10
	030102	BP	<10	BP	<10
	030201	BP	<10	BP	<10
	030406	BP	<10	BP	<10
	030512	BP	<10	BP	<10
	030706	BP	<10	BP	<10
	030811	BP	<10	BP	<10
	031020	BP	<10	BP	<10
	031110	BP	<10	BP	<10
	040130		<10		<10
	040230				<10
	040330		<10		<10
	040430				<10
	040530				<10
	040630		<10		<10
	040730				<10
	040830				<10
	040930		<10		<10
	041030				<10
	041130				<10
	050110		<10		<10
	050207		<10		<10
	050404		<10		<10
	050530		<10		<10
	050704		<10		<10
	050815		<10		<10
	060101		<0.619		<0.523
SAPPI - SOMERSET	880630		16,19		63,100
	900710		<7.1		8.4
	900716		<6.1		5.9
	dup		<5.5		<7.3
	900724		<3.6		<3.9
	930105		<3.4		9.2
	930224		<4.7		15

APPENDIX 4	4.	2378-TCDD	AND	2378-1	TCDF	ΙN	EFFLUENT	FROM	WASTEWATER	TREATMENT	PLAN'
------------	----	-----------	-----	--------	------	----	----------	------	------------	-----------	-------

SOURCE DATE		TCDD (pg/l)	TCDF (pg/l)
930311		<4.0	10
930409		6.8	18
930616		6.3	14
930917		7	17
931203		7.6	19
940107		<3.8	9.2
940624		<10	13
940923		<11	8.7
941209		<4.6	6.6
950310		9	11.6
950505		<10.3	6.6
950616		<3.9	<9.4
950807		5.8	14.5
950911		2.8	15.3
951124		<4.2	38.7
951208		<7.4	29
960112		<1.6	<2.3
960209		<3.2	<4.8
960405		<2.7	<2.7
960610		<3.6	6.5
960712		<3.0	4.2
960809		5.8	15
961108		<4.9	11
961206		<4.1	9.7
970103		<4.3	6.2
970207		<2.0	7.5
970411		<2.2	5.7
970509		8.2	12
970708	BP	<3.0	12
970711	21	<3.2	<2.9
970805	BP	<2.9	~2 • 5
970807	BP	<3.5	
970815	DI	<3	<3.3
970810	BP	<3.7	<3.5
980825	BP	<2.3	
970916	BP	<2.5	
	DF		<6.3
971017 971114		<9.1 <3.8	<0.51
980109		<3.5	<1.9
980112	BP	<3.2	
980206		<4.3	<2
980410		<1.6	<1.6
980608		<5.7	<1.7
980810		<1.6	<2.5
980911		<1.9	<2
981009		<1.9	<1.9
981106		<2.2	<1
990210		<1.5	<1.2
990310		<2.6	<2
990410		<4.6	<3.3
990510		<3.4	<4.5

APPENDIX	4.	2378-TCDD	AND	2378-	-TCDF	ΙN	EFFLUENT	FROM	WASTEWATER	TREATMENT	PLAN'
----------	----	-----------	-----	-------	-------	----	----------	------	------------	-----------	-------

SOURCE	DATE		TCDD (pg/l)		TCDF (pg/1)
	990710		<3.5		<3.9
	990910 990910		<7.3		<6
	991010 991010		<4.1		<6.1
			<4.1		
	991110				<1.1
	000204		<3.4		<4.7
	000310		<3.1		<3.1
	000407		<3.3		<3.3
	000505		<5.7		<4.5
	000728		<2.24		<1.22
	000908		<4.34		<4.67
	001110		<0.556		<1.13
	001208		<3.61		<3.09
	020130	BP	<0.993	BP	<0.696
	020230	BP	<3.29	BP	<2.16
	020330	BP	<2.64	BP	<1.09
	020430	BP	<0.328	BP	<0.475
	020530	BP	<0.471	BP	<0.473
	020630	BP	<0.926	BP	<0.982
	020730	BP	<0.903	BP	<0.708
	020830	BP	<0.955	BP	<1.19
	020930	BP	<2.41	BP	<2.25
	021030	BP	<0.661	BP	1.73
	021130	BP	<1.77	BP	<1.66
	021230	BP	ND	BP	<1.68
	030130	BP	<0.933	BP	<0.435
	030230	BP	<1.91	BP	<2.36
	030330	BP	<1.18	BP	<1.20
	030430	BP	<1.82		<1.20
	030430			BP	
		BP	<0.878	BP	<0.874
	030630	BP	<0.841	BP	<0.847
	030730	BP	<1.18	BP	<0.985
	030830	BP	<2.04	BP	<1.42
	030930	BP	<0.672	BP	<0.573
	031030	BP	<1.28	BP	<1.20
	031130	BP	<1.41	BP	<1.49
	031230	BP	<3.04	BP	<3.38
	040130	BP	<1.96	BP	<2.13
	040230	BP	<1.95	BP	<1.94
	040330	BP	<0.440	BP	<0.642
	040430	BP	<0.691	BP	<0.628
	040530	BP	<0.532	BP	<0.498
	040630	BP	<1.08	BP	<1.58
	040730	BP	<1.34	BP	<1.06
	040830	BP	<0.904	BP	<0.576
	040930	BP	<1.47	BP	<1.31
	041130	BP	<2.01	BP	<2.09
	050131	BP		BP	<0.551
	050228	BP	<2.06	BP	<1.76
	050331	BP	<0.541	BP	<0.527
	050430	BP	<0.938	BP	<0.543

SOURCE	DATE		TCDD (pg/l)		TCDF (pg/l)
	050531	BP	<0.790	BP	<0.890
	050630	BP	<1.06	BP	<0.873
	060226	BP	<2.5	BP	
	060924	BP	<0.350	BP	<0.933
	000021	21		21	
SAPPI - WESTBROOK	880101		6.3		
	1989		1		
	901118		<3		8
	910425		<5		<5
	910716		<8		<5
	911203		<8		<5
	920218		<2.8		7
	920507		<1.2		4.6
	920715		<5.8		<4.9
	921114		<1.8		3.9
	930303		<7.8		16
	930617		<1.5 <2.4		<6.4
	930915 931208		<2.4		5.7 <7.3
	931208 940130		<6.5		<9.8
	940130 940324		<0.J		<5.9
	940727		3.6		7.8
	941212		<6.0		<15.8
	950730		<5.4		9.8
	950615		<2.8		<9.9
	950815		<4.3		<21.9
	970519	BP	<7.9	BP	<10
	970808	BP	5.05	BP	<8.2
	971002	BP	<	BP	13.46
	980324		<1.6		5.9
	980914	BP	13.4	BP	130
	980915		<1.0		11
	980921		<1.9		<1.9
		BP	<10	BP	110
	981118		<10		<10
	001000	BP	<10	BP	130
	981208	ΒP	<10	BP	140
	981209		<11		<11
	990113 990131		<10		<10 <11
	990131	BP	10	BP	140
	990209	DI	<10	DI	<10
	990318		<10		<10
	990331		(10		<10
		BP	<11	BP	150
	990407	-	<10	-	<10
	990526		<11		15
	990617		<10		<10
	990630				15
		BP	<11	BP	130
	990728		<9.5		<9.5

SOURCE	DATE		TCDD		TCDF	
			(pg/l)		(pg/l)	
	990731	BP	<10	BP	54	
	990830		<10		<10	
	990830		<10		<10	

APPENDIX 5.

FISH SAMPLES 2006	DATE	L	W
	SAMPLED	mm	gm.
field ID			
ANDROSCOGGIN RIVER			
GILEAD			
AGL-RBT-1	5/17/2006	410	690
AGL-RBT-2	5/17/2006	390	600
AGL-RBT-3	5/17/2006	380	570
AGL-RBT-4	5/17/2006	385	580
AGL-RBT-5	5/17/2006	362	450
RUMFORD POINT			
RUMFORD			
ARF-SMB-1	7/28/2006	378	730
ARF-SMB-2	7/28/2006	378	720
ARF-SMB-3	7/28/2006	355	620
ARF-SMB-4	7/28/2006	415	950
ARF-SMB-5	7/28/2006	365	640
RILEY			
ARY-SMB-01	8/29/2006	411	860
ARY-SMB-02	8/29/2006	375	650
ARY-SMB-03	8/29/2006	334	485
ARY-SMB-04	8/29/2006	330	480
ARY-SMB-05	8/29/2006	358	620
ARY-WHS-1	7/28/2006	454	1010
ARY-WHS-2	7/28/2006	465	1060
ARY-WHS-3	7/28/2006	469	1160
ARY-WHS-4	7/28/2006	485	1170
ARY-WHS-5	7/28/2006	450	870
LIVERMORE			
ALV-SMB-01	8/28/2006	340	495
ALV-SMB-02	8/28/2006	333	430
ALV-SMB-03	8/28/2006	331	490
ALV-SMB-04	8/28/2006	390	730
ALV-SMB-05	8/28/2006	321	400
	0, 20, 2000		
ALV-WHS-1	7/28/2006	500	1320
ALV-WHS-2	7/28/2006	490	1250
ALV-WHS-3	7/28/2006	444	980
ALV-WHS-4	7/28/2006	445	1010
ALV-WHS-5	7/28/2006	498	1350
	112012000		1000

FISH SAMPLES 2006	DATE SAMPLED	L	W gm.
	••••••••••••		9
field ID			
GULF ISLAND POND			
AGI-SMB-1	7/26/2006	355	570
AGI-SMB-2	7/26/2006	312	370
AGI-SMB-3	7/26/2006	322	380
AGI-SMB-4	7/26/2006	341	590
AGI-SMB-5	7/26/2006	391	830
ANDROSCOGGIN L.			
ALW-SMB-1	7/26/2006	412	860
ALW-SMB-2	7/26/2006	406	970
ALW-SMB-3	7/26/2006	415	960
ALW-SMB-4	7/26/2006	412	870
ALW-SMB-5	7/26/2006	351	540
ALW-SMB-6	7/26/2006	412	860
ALW-SMB-7	7/26/2006	369	630
ALW-SMB-8	7/26/2006	380	590
ALW-SMB-9	7/26/2006	392	730
ALW-SMB-10	7/26/2006	382	650
ALW-WHP-1	7/26/2006	320	460
ALW-WHP-2	7/26/2006	260	200
ALW-WHP-3	7/26/2006	200	240
ALW-WHP-4	7/26/2006	280	280
ALW-WHP-5	7/26/2006	280	250
ALW-WHP-6	7/26/2006	300	320
ALW-WHP-7	7/26/2006	335	460
ALW-WHP-8	7/26/2006	333	400 500
ALW-WHP-9	7/26/2006	324	440
ALW-WHP-10	7/26/2006	320	410

KENNEBEC RIVER

FAIRFIELD

KFF-BNT-1	5/30/2006	430	750
KFF-BNT-2	5/30/2006	435	850
KFF-BNT-3	6/1/2005	440	820
KFF-BNT-4			
KFF-BNT-5			
KFF-WHS-1	10/18/2006	450	1010
KFF-WHS-2	10/18/2006	492	1620
KFF-WHS-3	10/18/2006	465	1150
KFF-WHS-4	10/18/2006	440	1050
KFF-WHS-5	10/18/2006	472	1310

		•	
FISH SAMPLES 2006	DATE	L	W
	SAMPLED	mm	gm.
field ID			
field ID			
WINSLOW			
KWL-BNT-1	5/8/2006	410	670
KWL-BNT-6	5/10/2006	439	810
KWL-BNT-7	5/10/2006	402	660
KWL-BNT-8	5/10/2006	380	480
KWL-BNT-9	5/10/2006	370	500
RWE-DNT-9	3/10/2000	570	500
KWL-RBT-1	5/7/2006	445	810
KWL-RBT-2	5/8/2006	380	470
KWL-RBT-3	5/8/2006	350	340
KWL-RBT-4	5/8/2006	360	410
KWL-RBT-5	5/10/2006	375	390
RWE-RBT-5	3/10/2000	575	590
GARDINER			
KGD-SMB-01	8/12/2006	320	380
KGD-SMB-02	8/12/2006	335	410
KGD-SMB-03	8/12/2006	340	450
KGD-SMB-04	8/12/2006	315	340
KGD-SMB-05	8/12/2006	314	340
	0/12/2000	014	040
PENOBSCOT RIVER			
E BR GRINDSTONE			
PBGWHS01	8/9/2006	450	930
PBGWHS02	8/9/2006	466	1010
		100	1010
PBGWHS03	8/9/2006	430	1050
PBGWHS03 PBGWHS04	8/9/2006 8/9/2006		
		430	1050
PBGWHS04 PBGWHS05	8/9/2006 8/9/2006	430 470	1050 1230
PBGWHS04	8/9/2006 8/9/2006	430 470	1050 1230
PBGWHS04 PBGWHS05 MATTASEUNK IMPOUNDMENT	8/9/2006 8/9/2006 (WOODVILLE)	430 470 460	1050 1230 1010
PBGWHS04 PBGWHS05 MATTASEUNK IMPOUNDMENT PBW-WHS-01	8/9/2006 8/9/2006 (WOODVILLE) 8/31/2006	430 470 460 455	1050 1230 1010 956
PBGWHS04 PBGWHS05 MATTASEUNK IMPOUNDMENT PBW-WHS-01 PBW-WHS-02	8/9/2006 8/9/2006 (WOODVILLE) 8/31/2006 8/31/2006	430 470 460 455 466	1050 1230 1010 956 1143
PBGWHS04 PBGWHS05 MATTASEUNK IMPOUNDMENT PBW-WHS-01 PBW-WHS-02 PBW-WHS-03	8/9/2006 8/9/2006 (WOODVILLE) 8/31/2006 8/31/2006 8/31/2006	430 470 460 455 466 450	1050 1230 1010 956 1143 957
PBGWHS04 PBGWHS05 MATTASEUNK IMPOUNDMENT PBW-WHS-01 PBW-WHS-02 PBW-WHS-03 PBW-WHS-04	8/9/2006 8/9/2006 (WOODVILLE) 8/31/2006 8/31/2006 8/31/2006 8/31/2006	430 470 460 455 466 450 445	1050 1230 1010 956 1143 957 942
PBGWHS04 PBGWHS05 MATTASEUNK IMPOUNDMENT PBW-WHS-01 PBW-WHS-02 PBW-WHS-03	8/9/2006 8/9/2006 (WOODVILLE) 8/31/2006 8/31/2006 8/31/2006	430 470 460 455 466 450	1050 1230 1010 956 1143 957
PBGWHS04 PBGWHS05 MATTASEUNK IMPOUNDMENT PBW-WHS-01 PBW-WHS-02 PBW-WHS-03 PBW-WHS-04	8/9/2006 8/9/2006 (WOODVILLE) 8/31/2006 8/31/2006 8/31/2006 8/31/2006	430 470 460 455 466 450 445	1050 1230 1010 956 1143 957 942
PBGWHS04 PBGWHS05 MATTASEUNK IMPOUNDMENT PBW-WHS-01 PBW-WHS-02 PBW-WHS-03 PBW-WHS-04 PBW-WHS-05	8/9/2006 8/9/2006 (WOODVILLE) 8/31/2006 8/31/2006 8/31/2006 8/31/2006	430 470 460 455 466 450 445	1050 1230 1010 956 1143 957 942
PBGWHS04 PBGWHS05 MATTASEUNK IMPOUNDMENT PBW-WHS-01 PBW-WHS-02 PBW-WHS-03 PBW-WHS-04	8/9/2006 8/9/2006 (WOODVILLE) 8/31/2006 8/31/2006 8/31/2006 8/31/2006	430 470 460 455 466 450 445	1050 1230 1010 956 1143 957 942
PBGWHS04 PBGWHS05 MATTASEUNK IMPOUNDMENT PBW-WHS-01 PBW-WHS-02 PBW-WHS-03 PBW-WHS-04 PBW-WHS-05	8/9/2006 8/9/2006 (WOODVILLE) 8/31/2006 8/31/2006 8/31/2006 8/31/2006	430 470 460 455 466 450 445	1050 1230 1010 956 1143 957 942
PBGWHS04 PBGWHS05 MATTASEUNK IMPOUNDMENT PBW-WHS-01 PBW-WHS-02 PBW-WHS-03 PBW-WHS-04 PBW-WHS-05 LINCOLN	8/9/2006 8/9/2006 (WOODVILLE) 8/31/2006 8/31/2006 8/31/2006 8/31/2006 8/31/2006	430 470 460 455 466 450 445 480	1050 1230 1010 956 1143 957 942 1138
PBGWHS04 PBGWHS05 MATTASEUNK IMPOUNDMENT PBW-WHS-01 PBW-WHS-02 PBW-WHS-03 PBW-WHS-03 PBW-WHS-04 PBW-WHS-05 LINCOLN PBL-WHS-1	8/9/2006 8/9/2006 (WOODVILLE) 8/31/2006 8/31/2006 8/31/2006 8/31/2006 8/31/2006 8/31/2006	430 470 460 455 466 450 445 480 467	1050 1230 1010 956 1143 957 942 1138
PBGWHS04 PBGWHS05 MATTASEUNK IMPOUNDMENT PBW-WHS-01 PBW-WHS-02 PBW-WHS-03 PBW-WHS-03 PBW-WHS-04 PBW-WHS-05 LINCOLN PBL-WHS-1 PBL-WHS-1 PBL-WHS-2	8/9/2006 8/9/2006 (WOODVILLE) 8/31/2006 8/31/2006 8/31/2006 8/31/2006 8/31/2006 9/14/2006 9/14/2006	430 470 460 455 466 450 445 480 467 422	1050 1230 1010 956 1143 957 942 1138 1260 917
PBGWHS04 PBGWHS05 MATTASEUNK IMPOUNDMENT PBW-WHS-01 PBW-WHS-02 PBW-WHS-03 PBW-WHS-03 PBW-WHS-04 PBW-WHS-04 PBW-WHS-05 LINCOLN PBL-WHS-1 PBL-WHS-2 PBL-WHS-3	8/9/2006 8/9/2006 (WOODVILLE) 8/31/2006 8/31/2006 8/31/2006 8/31/2006 8/31/2006 9/14/2006 9/14/2006	430 470 460 455 466 450 445 480 467 422 482	1050 1230 1010 956 1143 957 942 1138 1260 917 1434

FISH SAMPLES 2006	DATE	L	W
	SAMPLED	mm	gm.
field ID			
VEAZIE			
PBV-WHS1	11/7/2006	530	1840
PBV-WHS2	11/7/2006	505	1580
PBV-WHS3	11/7/2006	491	1480
PBV-WHS4	11/7/2006	516	1720
PBV-WHS5	11/7/2006	449	1360
PRESUMPSCOT R			
WINDHAM			
PWD-SMB01	8/14/2006	430	1070
PWD-SMB02	8/14/2006	380	620
PWD-SMB03	8/14/2006	412	920
PWD-SMB04	8/14/2006	330	440
PWD-SMB05	8/14/2006	430	1275
PWB-SMB01	7/17/2006	360	580
PWB-SMB02	7/17/2006	415	870
PWB-SMB03	7/17/2006	340	470
PWB-SMB04	7/17/2006	322	390
PWB-SMB05	7/17/2006	320	280
SEBASTICOOK RIVER			
PALMYRA	_/		
SWP-LMB-1	7/14/2006	400	890
SWP-LMB-2	7/14/2006	485	2010
SWP-LMB-3	7/14/2006	412	1060
SWP-LMB-4	7/14/2006	430	1100
SWP-LMB-5	7/14/2006	370	800
BURNHAM			
SBN-SMB-1	7/5/2006	500	
SBN-SMB-2	7/5/2006	305	
SBN-SMB-3	7/5/2006	320	
SBN-SMB-4	7/5/2006	425	
SBN-SMB-5	7/5/2006	310	
NEWPORT	_// //		
SEN-LMB-1	7/14/2006	390	970
SEN-LMB-2	7/14/2006	395	900
SEN-LMB-3	7/14/2006	404	760
SEN-LMB-4	7/14/2006	405	1130
SEN-LMB-5	7/14/2006	305	350

FISH SAMPLES 2006	DATE SAMPLED	L mm	W gm.
field ID			
SALMON FALLS			
Spaulding P-SMB-01 Spaulding P-SMB-02 Spaulding P-SMB-03 Spaulding P-SMB-04 Spaulding P-SMB-05	10/2/2006 10/2/2006 10/2/2006 10/2/2006 10/2/2006	405 330 370 385 342	910 490 860 620 540
SFS-LMB-01 SFS-LMB-02 SFS-LMB-03 SFS-LMB-04 SFS-LMB-05	8/11/2006 8/11/2006 8/11/2006 8/11/2006 8/11/2006	338 330 352 310 380	520 500 640 410 740
BERWICK SLUDGE1 BERWICK SLUDGE2 BERWICK SLUDGE3 BERWICK SLUDGE4	12/30/2006 12/30/2006 12/30/2006 12/30/2006		
SOMERSWORTH SLUDGE1 SOMERSWORTH SLUDGE2 SOMERSWORTH SLUDGE3 SOMERSWORTH SLUDGE4	12/30/2006 12/30/2006 12/30/2006 12/30/2006		

APPENDIX 6.

SUMMARY OF DIOXINS AND FURANS IN FISH AND SHELLFISH SAMPLES, 1984-2006

		NDS/NBS	MAINE						
		1984-86	1988	- 1990	19	91	19	92	
WATER/STATION	SPECIES TISSUE	TCDD	TCDD	DTE	TCDD	DTE	TCDD	DTE	
ANDROSCOGGIN LA									
Wayne	bn trout f								
	bass f								
	w perch								
	sucker w/f								
POCASSET LAKE									
Wayne	bass								
wayne	SMB comp								
	-								
	WHP comp								
ANDROSCOGGIN R									
Gilead	rb trout								
	bn trout								
	juv bass								
	bass								
	sucker w	1.8f/6.5w							
Rumford	bass f	,			1.4	2.3-2.8	0.6	1.0-1.2	
	juv bass					2.0 2.0	0.0		
	sucker w						3.0	7.4-8.0	
Riley	bass						5.0		
narcy	sucker w	<2.1f/13w							
Jay	bass f	(2:11/10#	17.6	24.0-29.1			1.2	1.9-2.3	
ouy	sucker w		17.0	24.0 25.1			5.4	12.9-13.9	
Livermore Fal					2.4	3.1-3.3	1.1	1.4-1.5	
hiveimore rai	sucker w				2.3	5.1 5.5	3.8	7.4-8.0	
	sucker comp						5.0	7.4 0.0	
Livermore AI	_								
TIAL TIAL	sucker								
N Turner	sucker w	6.2f/30w							
Auburn-GIP	bass f	3.7f/24w					1.7	2.6-2.8	
AUDULII-GIF	lm bass f	J. / 1 / 24W					1.1	1.6-1.8	
		0.25/20							
	sucker w bullhead w	8.3f/29w					5.6	14.3-15.4	
	bullhead w	7.8£/29.6w							
Lisbon Falls	bn trout f		5.3	6.5-6.9					
	bass f		4.5	5.5-5.8			0.7	1.0	
	sucker w	5.1f/12w					3.4	8.1-8.7	
Brunswick	sucker w	19.0		1					

		_				-		(10.0)		
			NDS/NBS 1984-86	MAINE	- 1990	19	91	19 9	2	
WATER/STATION	SPECIES I	ידפפווד	TCDD	TCDD	DTE	TCDD	DTE	TCDD	DTE	
WAILIN JIATION	carp	f	11.0	1000		1000		1000	DIL	
BEARCE LAKE										
Baring	pickerel	f	<0.1							
BRAVE BOAT HARBO	OR									
Kittery	lobster	m								
	lobster	t								
BROOKLYN	lobster	m								
	lobster	t								
COREA	lobster	t								
JONES CREEK										
Scarborough	clam	m						<0.1	0.02-0.3	
KENNEBEC R										
Madison	bn trout	f								
	bass	f						<0.1	0.02-0.1	
	sucker	w						0.1	0.3	
Norridgewock	bass									
2	bn trout									
	sucker									
Fairfield	bass	f				1.4	1.6-1.7	0.6	0.6-0.7	
	trout	f		6.2	6.9-8.0			1.4	1.6-1.8	
	sucker	w	6.4	10.3	16.8-18.1			2.0	3.1-3.3	
Sidney	bass	f	20.3w			1.0	1.4-2.4	0.4	0.6-1.0	
-	bn trout									
	sucker	w	1.2f/11.4w					2.7	4.4-4.8	
Augusta	bn trout	f		2.2	2.9-4.9			1.9	2.5-4.3	
	bass	f						0.4	0.6-1.0	
	sucker	w		5.0	7.3-8.4			1.5	2.6-2.8	
Hallowell	smelt	с						0.2	0.5-0.8	
Gardiner	bass									
Richmond	eel	f								
Phippsburg	clam	m						0.3	0.6-0.9	
	lobster	m			2					

			NDS/NBS 1984-86	MAINE 1988-	1990	19	91	19 9	2	
WATER/STATION	SPECIES 2	TISSUE	TCDD	TCDD	DTE	TCDD	DTE	TCDD	DTE	
	lobster	t								
MESSALONSKEE LAKE	2									
Belgrade	bass					<0.09	0.04-0.3			
NARRAGUAGUS R										
Cherryfield	fallfish	w	<1.0							
NORTH POND										
Chesterfield	sucker	w	0.4							
	pickerel	f	<0.1							
PENOBSCOT R										
E Br Grindstone	bass	f		<0.1	0.09-0.2					
	sucker	w		<0.4	0.02-0.6					
E Millinocket	bass	f		<0.2	0.4-0.8					
	sucker	w		0.7	3.6-4.2					
Woodville	bass									
	sucker									
Winn	bass									
	sucker									
N Lincoln	bass	f		<0.4	0.2-0.8					
	sucker	w		<0.5-20.	{ 2.0-41.6					
S Lincoln	bass	f	5.0	1.7	2.3-2.7	0.9	1.2-1.3	0.7	1.0-1.2	
	sucker	w		37.0	66.4-67.2			3.3	6.8	
Passadumkeag	bass	f		1.8	2.9					
	sucker	w		2.8	7.6-7.7					
Milford	bass	f		0.9	1.4-1.7			0.3	0.4-0.5	
	sucker	w		9.7	19.9-20.1			2.2	4.6	
Veazie	bass	f	4.6w	1.9	2.4-2.6	1.2	1.5-1.7	0.4	0.6	
	sucker	w	2.6f/7.6w	5.9	9.8-9.9	2.5	4.9-5.0	2.2	4.8-4.9	
Bangor	eel	f								
Bucksport	clam	m						0.1	0.8-0.9	
Stockton Spring	lobster	m								
	lobster	t								
OWLS HEAD	mussel	m	<0.8							

			NDS/NBS	MAINE						
			1984-86	1988-	1990	19	91	19 9	2	
WATER/STATION	SPECIES I	ISSUE	TCDD	TCDD	DTE	TCDD	DTE	TCDD	DTE	
Sangerville	bass	f				<0.2	0.03-0.3			
	bn trout	f				<0.4	0.03-0.4			
	sucker	w				0.26	0.6-0.7			
Howland	bass	f		<0.2	0.02-0.6					
PRESUMPSCOT R										
Windham	bass	f								
	sucker	w								
Westbrook	bass	f		1.8	2.4-4.5	0.2	0.2-0.4	0.1	0.2-0.4	
	pickerel	f		<2.6	0.06-5.9					
	w perch	f		1.2	2.5-3.1	0.4	0.9-1.0			
	sucker	w	5.2	5.1	8.2-9.6	0.6	1.6-1.7	0.3	0.8-0.9	
Falmouth	clam	m						<0.1	0.2-0.4	
Portland	lobster	m								
	lobster	t								
		-								
ST CROIX R										
Woodland	bass	f								
	sucker									
Baring	bass			0.3	0.5-1.0	<0.1	0.04-0.3			
	sucker	w	<0.7	0.6	1.0-1.1					
Robbinston	lobster	t								
ST JOHN R										
Frenchville	sucker	w								
Madawaska	y perch	f		<0.5	0.08-0.8					
	bk trout	f								
	sucker	w								
SACO R										
Dayton	sucker	w	<0.3							
-										
SACO BAY										
Scarborough	lobster	m								
	lobster	t								
SALMON FALLS R										
Acton	lm bass				4					

WATER/STATION	SPECIES I	ISSUE	NDS/NBS 1984-86 TCDD	MAINE 1988- TCDD	1990 DTE	19 91 TCDD	DTE	19 92 TCDD	DTE	
Lebanon	sucker lm bass									
S Berwick	bass lm bass	f		0.4	0.5-0.6					
	pickerel sucker	f W		0.2 1.5	0.3 2.1-2.2			2.4	3.4-3.6	
SANDY P	bass	f	<1.0							
SEBAGO L Naples	bass	w	<0.6							

SEBASTICOOK R							
E Br Corinna	lm bass						
	bass						
	sucker						
Newport	bass	f				0.1	0.3-0.4
	lm bass	f	<0.2			<0.2	0.2-0.4
	w perch	f		1.0	1.6-2.1		
Sebastcook L	bass	f					
	w perch	f					
Detroit	bass	f					
Burnham	bass						
W Br Harmony	bass						
	sucker						
W Br Palmyra	bass	f		1.2	1.4-1.8	0.4	0.5-0.6
	pickerel	f	<0.1			0.2	0.2
	sucker	w	1.6	3.3	4.3-4.6	1.1	1.4-1.6

		NDS/NBS 1984-86	MAINE 1988- 1	1990	19	91	19 92		
WATER/STATION	SPECIES TISSUE	TCDD	TCDD	DTE	TCDD	DTE	TCDD	DTE	
Vassalboro	bass f				<0.08	0.04-0.4			

f=fillet

m=meat

t=tomalley

w=whole

DTE= dioxin toxic equivalents using WHO 98 toxic equivalency factors (TEF). Range shown at nd=0 and nd=mdl, ie DTEo-DTEd

		10	9 93	19 94	19 95	19 96	19 97
WATER/STATION	SPECIES I			TCDD DTE	TCDD DTE	TCDD DTE	TCDD DTE
ANDROSCOGGIN LA	KE						
Wayne	bn trout	f				0.7 1.1-2.3	
	bass	f				0.6 1.2-2.2	
	w perch						
	sucker	w/f				w 0.4 1.4-2.5	
POCASSET LAKE							
Wayne	bass						
	SMB comp						
	WHP comp						
ANDROSCOGGIN R							
Gilead	rb trout				1.2 2.4-2.9	0.9 2.0-2.6	0.5 1.6-2.1
	bn trout					0.4 1.0-1.5	
	juv bass						
	bass				0.9 3.8-4.1		
	sucker	w			1.7 6.1-6.7	0.7 4.4-5.3	0.5 3.4-3.8
Rumford	bass	f 2.9	4.5-5.4	3.8 5.7-6.2	2.2 3.5-4.1		0.5 1.2-1.8
	juv bass						
	sucker	w 5.8	13.6-14.6	4.0 11.4-11.9		0.8 4.1-5.2	0.5 3.6-4.9
Riley	bass						0.3 1.1-2.2
	sucker	w					0.5 3.8-4.8
Jay	bass	f 1.4		1.6 2.2-2.8		0.5 1.3-1.4	
	sucker	w 4.5		4.7 11.5-12.3	2.3 6.9-7.6		
Livermore Fal		f 1.4		1.4 1.6-2.3	0.5 0.8-1.3		0.3 1.2-1.4
	sucker	w 3.6	6.8-7.3	2.2 4.8-5.3		0.6 3.4-3.9	0.5 2.8-2.9
	sucker comp)					
Livermore AL							
	sucker						
N Turner	sucker	W 6 1 0	1 0 1 0	1 2 2 2 2 5			0 4 2 0 2 2
Auburn-GIP	bass lm bass	f 1.2	1.8-1.9	1.3 2.0-2.7		0.6 2.1-2.5	0.4 2.0-2.2
		f 27	0.0-0.9	16 4454	14 2050		
	sucker bullhead	w 3.7	9.0-9.8 3.0-3.3	1.6 4.4-5.4 1.3 2.3-2.8	1.4 3.8-5.0		
	Durinead	w 2.1	3.0-3.3	1.3 2.3-2.0			
Lisbon Falls	bn trout	f					
	bass			0.6 0.8-1.7	0.9 1.4-2.4		0.6 1.3-1.8
	sucker	w 2.7	6.1-6.6	2.4 5.8-6.2		0.7 1.6-2.8	
Brunswick	sucker	w		7			

			19		19		19		19 96	19 97
WATER/STATION	SPECIES 1		TCDD	DTE	TCDD	DTE	TCDD	DTE	TCDD DTE	TCDD DTE
	carp	f								
BEARCE LAKE										
Baring	pickerel	f								
BRAVE BOAT HARB	-									
Kittery	lobster	m				<0.1-1.2			1.7 13.8-15.5	
	lobster	t			1.3	9.7-11.5	1.6	6.7-9.9		
BROOKLYN	lobster	m					0.8	4.9-8.2		
	lobster	t								
COREA	lobster	t							0.6 6.6-7.3	
COREA	IODSter	L							0.0 0.0 7.5	
JONES CREEK										
Scarborough	clam	m								
KENNEBEC R										
Madison	bn trout	f					<0.1	0.1-0.7		
14420011	bass	f						0.12 0.17	<0.1 0.1-0.8	<0.2 0.03-1.6
	sucker	w					0.1	0.3-1.0	<0.1 0.3-1.0	<0.1 0.2-0.8
Norridgewock	bass									
-	bn trout									
	sucker									
Fairfield	bass	f	1.5	1.7-2.0	0.9	1.1-1.8				0.6 0.6-1.2
	trout	f	1.4	1.6-1.9	2.2	2.5-3.8	1.6	1.7-2.5		1.2 1.3-1.9
	sucker	w	1.6	2.2-2.6	2.2	2.9-3.8			1.6 2.1-2.7	1.2 1.7-2.1
Sidney	bass	f	0.6	0.8-1.4	0.3	0.4-1.3			0.2 0.4-1.0	0.2 0.3-0.9
	bn trout									
	sucker	W	1.5	2.5-2.7	2.3	3.0-4.0	1.2	1.7-2.5		
Augusta	bn trout	f					1.0	1.3-3.5		0.6 1.0-1.3
-14940 04	bass		0.6	0.9-1.5	1.0	1.3-3.7	2.0	2.0 0.0		0.5 0.8-1.6
	sucker	w		3.3-3.6		4.0-5.8			2.2 2.6-3.3	
Hallowell	smelt	c	-							
Gardiner	bass	-								
Richmond	eel	f	0.6	0.8-1.4						
Phippsburg	clam	m		-						
	lobster	m	0.2	0.3-1.2	<0.1	<0.1 <u>-</u> 81.6				

			19	93	19	94	19	95	19 96	19 97
WATER/STATION	SPECIES	TISSU	E TCDD	DTE	TCDD	DTE	TCDD	DTE	TCDD DTE	TCDD DTE
	lobster	t	7.9	27.5-27.6	6.5	23.4-26.6	4.6	13.5-17.1	3.6 16.7-18.6	
MESSALONSKEE LAKE	C									
Belgrade	bass									
NARRAGUAGUS R										
Cherryfield	fallfish	w								
NORTH POND										
Chesterfield	sucker	w								
	pickerel	f								
PENOBSCOT R										
E Br Grindstone	bass	f					<0.1	0.1-0.7	<0.1 0.1-0.8	<0.1 0.04-0.
	sucker	w					<0.1	0.1-0.6	<0.1 0.1-0.8	<0.1 0.07-0.
E Millinocket	bass	f								<0.1 0.04-0.
	sucker	w								<0.1 0.09-0.
Woodville	bass									<0.1 0.07-0.
	sucker									<0.1 0.09-0.
Winn	bass									
	sucker									
N Lincoln	bass	f								
	sucker	w								
S Lincoln	bass	f	1.2	1.6-1.8	0.4	0.4-1.7	0.5	0.7-1.3	0.3 0.5-1.2	0.2 0.4-1.0
	sucker	w	1.7	3.5-3.6	2.2	5.8-6.1			1.6 2.2-3.2	1.2 1.6-2.2
Passadumkeag	bass	f								
	sucker	w								
Milford	bass	f								0.2 0.4-0.9
	sucker	w								1.0 1.6-2.0
Veazie	bass	f	0.6	0.8-1.0	0.2	0.2-1.3	0.3	0.4-1.9	0.3 0.3-1.5	0.3 0.4-0.9
	sucker	w	1.1	2.7-3.0	0.6	1.6-2.8	0.5	1.4-2.5	0.4 0.9-2.0	1.1 1.3-1.9
Bangor	eel	f	1.0	1.1-1.2					0.3 0.4-1.5	
Bucksport	clam	m								
Stockton Spring	lobster	m	0.1	0.3-1.1	<0.1	0.1-1.0				
	lobster	t	4.0	28.0	2.3	18.1-27.9	1.3	7.2-14.6	0.9 12.5-13.2	
OWLS HEAD	mussel	m								

PISCATAQUIS R

			10	00			1.0	05	19 96		1.0	0.7
WATER/STATION	SPECIES 1	TOOLE	19 TCDD	93 DTE	19 TCDD	94 DTE	19 TCDD	95 DTE	TCDD	DTE	19 TCDD	97 DTE
Sangerville	bass	f	TCDD	DIE	ICDD	DIE	ICDD	DIE	ICDD	DIE	ICDD	DIE
Sangerviile	bn trout	f										
	sucker	w										
Howland	bass	f										
PRESUMPSCOT R												
Windham	bass	f	<0.1	<0.1-0.3	<0.1	<0.1-1.1			<0.1 0	.5-1.5		0.5-0.7
	sucker	w	0.3	0.7-0.8	0.2	1.4-2.4	0.3	2.4-7.7			0.2	1.2-1.4
Westbrook	bass	f	<0.2	0.1-0.5	0.2	0.3-1.2			0.2 0	.4-0.9	0.1	0.4-0.9
	pickerel	f										
	w perch	f										
	sucker	w	1.1	1.8-2.3	0.9	2.1-3.7	0.8	1.6-2.6			0.2	1.6-2.0
Falmouth	clam	m										
Portland	lobster			0.1-0.8		0.2-1.0			2.7 18	.9-21.6		
	lobster	t	3.4	18.5-18.7	2.5	17.2-21.3	2.2	9.5-12.8				
ST CROIX R												
Woodland	bass	f										0.02-0.7
	sucker											0.09-0.7
Baring	bass											0.03-0.7
	sucker	w							1 0 1 0	0 11 0	<0.1	0.07-0.8
Robbinston	lobster	t							1.0 10	.2-11.2		
ST JOHN R												
Frenchville	sucker	w			0.1	0.2-1.0						
Madawaska	y perch	f										
	bk trout	f			<0.3	<0.1-2.3						
	sucker	w			<0.1	0.2-0.8						
SACO R												
Dayton	sucker	W										
SACO BAY												
Scarborough	lobster	m	<0.1	0.1-0.8	<0.1	<0.1-0.8						
	lobster	t	2.0	11.3-14.6	1.3	9.7-12.0						
SALMON FALLS R						40						
Acton	lm bass					10	<0.1	<0.1-0.7	<0.1 0	.1-1.0		

APPENDIX 7. DIOXIN AND FURAN CONCENTRATIONS IN MAINE FISH AND SHELLFISH 1984-1995 (pg/g)
--

		19 93		03	19 94		19 95		19 96		19 97	
WATER/STATION	SPECIES	TISSU		DTE	TCDD	DTE	TCDD	DTE	TCDD	DTE	TCDD	DTE
Lebanon	sucker lm bass											
S Berwick	bass lm bass	f	0.2	0.2-0.9	0.5	0.7-3.3	0.4	0.4-4.0			0.2	0.3-0.6
	pickerel sucker	f w	1 0	3.6-3.8	0.1	4.7-6.1			2.0 3	0 4 E	0.6	0.8-1.0
	Sucker	w	1.9	3.0-3.0	2.1	4./-0.1			2.0 5	.2-4.5		
SANDY P												
	bass	f										
SEBAGO L												

Naples bass

w

SEBASTICOOK R										
E Br Corinna	lm bass						0.1	0.2-1.1		<0.1 0.1-0.7
	bass									
	sucker									
Newport	bass	f								0.2 1.2-1.4
	lm bass	f					0.3	1.1-2.0		
	w perch	f							0.3 1.6-2.3	
Sebastcook L	bass	f								
	w perch	f								
Detroit	bass	f								
Burnham	bass									
W Br Harmony	bass						<0.1	0.1-0.8		<0.1 0.06-0.7
	sucker								0.1 0.1-1.2	
W Br Palmyra	bass	f	0.9	1.2-1.6	0.4	0.4-1.3	0.8	1.7-2.2		0.3 0.6-0.9
	pickerel	f								
	sucker	w	1.0	2.6-2.7	1.2	4.0-4.3			1.2 2.2-3.6	

									_		
		19 93		19 94		19 95		19 96		19 9	7
WATER/STATION	SPECIES	TISSUE TCDD	DTE	TCDD	DTE	TCDD	DTE	TCDD	DTE	TCDD	DTE
Vassalboro	bass	f									
f=fillet m=meat											
t=tomalley w=whole											
DTT diarin tor		onto 1									

DTE= dioxin toxic equivalents ι Range shown at nd=0 and nd=mdl,

			19	98	19	99	20	00		20 01
VATER/STATION	SPECIES II	SSUE	TCDD	DTE	TCDD	DTE	TCDE	DTE	TCI	DD DTE
NDROSCOGGIN LAK	P									
Wayne		f								
wayne	bass	f	0.2	0.4-1.0	0 1	0.2-0.8	~ 0 1	0.02-1.3	<0	.1 0.1-0.8
	w perch	-	0.5	0.6-1.2	0.2	0.3-0.9	0.2	0.2-0.8		1 0.2-0.7
	-	v/f w		0.9-1.1	0.12	0.0 0.0	w <0.1			.1 0.1-0.7
OCASSET LAKE	_									
Wayne	bass									
	SMB comp									
	WHP comp									
NDROSCOGGIN R										
Gilead	rb trout		0.4	1.5-2.0	0.7	1.7-2.3	0.4	0.9-1.4	0.	8 2.1-2.5
	bn trout				0.4	1.0-1.5	0.1	0.4-1.0	0.	8 2.5-2.7
	juv bass									
	bass				0.4	1.4-1.5	0.2	0.8-1.2	0.	3 1.0-1.4
	sucker	w	0.9	3.1-3.5	0.8	2.9-3.3	0.3	1.8-2.2	0.	1 0.7-1.1
Rumford	bass	f	0.4	1.1-1.5	0.6	1.5-1.9	0.2	0.6-1.1	0.	2 0.5-1.0
	juv bass									
	sucker	w	0.4	3.0-3.4	0.4	2.8-3.2	0.3	1.9-2.3	0.	3 2.0-2.4
Riley	bass		0.2	0.8-1.0	<0.1	0.6-0.9	<0.1			2 0.8-1.0
-1	sucker	w	0.3	2.5-2.8	0.3	2.6-2.8				3 1.9-2.1
Jay	bass	f								
	sucker	w								
Livermore Fall		f	0.2	1.1-1.2	0.2	0.9-1.2	0.2	0.6-1.0	0.	3 0.9-1.4
	sucker	w	0.5	2.8-2.9	0.4	2.4	••-			3 1.6-1.7
	sucker comp								•••	
Livermore ALF	-									
	sucker									
N Turner	sucker	w								
Auburn-GIP	bass	f	0.4	1.6-1.8	0.4	1.6-1.8	0.1	0.4-0.9	0	2 0.4-0.9
	lm bass	f					5.1	0.2 0.2	0.	- 0.4 0.9
	sucker	w							Ο	2 0.6-0.9
		w							0.	2 0.0 0.9
Tichon Tolle	he tract	£								
Lisbon Falls	bn trout	f	0 5	1 1_1 5	07	1.7-2.1	0.0	0 5 1 0	•	4 0 0 1 0
	bass	f	0.5	1.1-1.5	0.7	1./-2.1	0.2	0.5-1.0	0.	4 0.9-1.3
	sucker	W			13	2				
Brunswick	sucker	W			1.	,				

			19	98	19	99	20	00	20 01
WATER/STATION	SPECIES T	ISSUE	TCDD	DTE	TCDD	DTE	TCDD	DTE	TCDD DTE
	carp	f							
BEARCE LAKE		~							
Baring	pickerel	Í							
BRAVE BOAT HARBO	DR								
Kittery	lobster	m							
_	lobster	t							
BROOKLYN	lobster	m							
	lobster	t							
COREA	lobster	t							
JONES CREEK	-1								
Scarborough	clam	m							
KENNEBEC R									
Madison	bn trout	f							<0.1 <0.1-0.
	bass	f							
	sucker	w							
Norridgewock	bass		<0.1	0.03-0.6	<0.1	0.03-0.7	<0.1	0.05-0.7	<0.1 0.1-0.8
	bn trout						<0.1	0.04-0.7	
	sucker		<0.1	0.2-0.7	<0.1	0.03-0.7	<0.1	0.05-0.7	<0.1 <0.1-0.
Fairfield	bass	f	0.3	0.4-1.0	0.4	0.4-1.0	0.4	0.5-1.1	0.2 0.4-0.9
	trout	f							1.0 1.2-1.8
	sucker	w	0.9	1.4-1.8	0.3	0.4-1.0	0.4	0.5-1.0	0.3 0.5-1.1
Sidney	bass	f					0.2	0.2-0.8	0.2 0.4-0.9
	bn trout						0.3	0.3-0.8	0.4 0.5-1.1
	sucker	w							
Augusta	bn trout	f							
	bass	- f	0.3	0.6-0.9	0.3	0.6-0.9			
	sucker	w							
Hallowell	smelt	r c							
Gardiner	bass	-							
Richmond	eel	f							
Phippsburg	clam	m							
	lobster	m			14	L			

			19	98	19 9	99	20 0	00	20	01
ATER/STATION	SPECIES I	ISSUE	TCDD	DTE	TCDD	DTE	TCDD	DTE	TCDD	DTE
	lobster	t								
ESSALONSKEE LAKI	Ξ									
Belgrade	bass									
ARRAGUAGUS R										
Cherryfield	fallfish	W								
ORTH POND										
Chesterfield	sucker	w								
unes territera	pickerel	f								
	pronoror	-								
ENOBSCOT R										
E Br Grindstone	bass	f	<0.1	0.04-0.7						
	sucker	w	<0.1	0.07-0.7						
E Millinocket	bass	f	<0.1	0.04-0.7						
	sucker	w		0.09-0.7						
Woodville	bass		<0.1	0.06-0.7		0.08-0.7	<0.1	0.1-0.7		0.1-0.7
	sucker		<0.1	0.08-0.7		0.1-0.7	<0.1	0.1-0.7		0.1-0.7
Winn	bass					0.2-0.8		0.1-0.7	<0.1	<0.1-0.7
	sucker				<0.1	0.2-0.9	<0.1	0.1-0.8	<0.1	<0.1-0.7
N Lincoln	bass	f								
	sucker	w								
S Lincoln	bass	f		0.4-0.9		0.6-1.0	0.2	0.3-0.9		0.5-1.1
	sucker	w	1.0	1.4-2.0	1.0	1.4-1.6	0.7	1.0-1.5	0.3	0.5-1.1
Passadumkeag	bass	f								
N: 1.6	sucker	w	0.0	0.2-0.8	0 1	0 4-0 7	0.0	0 2 0 0		0 5 1 1
Milford	bass	f	0.2 1.0	0.2-0.8 1.5-2.0	0.1 1.0	0.4-0.7 1.5-1.6	0.2	0.3-0.9		0.5-1.1
Veazie	sucker bass	w f	0.2	0.3-0.9	0.3	0.4-0.9	0.8 0.4	1.1-1.6 0.5-1.1		0.5-1.0
veazie	bass sucker	I W	1.0	1.2-1.8		1.3-1.7	0.4	1.2-1.7	0.2	1.7-2.2
Bangor	eel	w f	1.0	1.2-1.0	±.1	1.3-1.1	0.9 1.6	2.0-2.5		1.7-2.2
Dangor	GET	T					1.0	2.0-2.3	1.1	1.5-2.0
Bucksport	clam	m								
Stockton Spring		m								
	lobster	t								
WLS HEAD	mussel	m								

		19 9	8	19 9	9	20 0	0	20	01
WATER/STATION	SPECIES TISS	JE TCDD	DTE	TCDD	DTE	TCDD	DTE	TCDD	DTE
Sangerville	bass f								
	bn trout f								
	sucker w								
Howland	bass f								
PRESUMPSCOT R									
Windham	bass f	<0.1	0.4-0.8			<0.1	0.1-0.7	<0.1	0.1-0.7
	sucker w	0.2	1.2-1.4					0.2	1.4-1.5
Westbrook	bass f	<0.1	0.3-0.8			<0.1	0.2-0.8	<0.1	<0.1-0.7
	pickerel f								
	w perch f								
	sucker w	0.2	1.6-2.0					0.2	1.3-1.7
Falmouth	clam m								
Portland	lobster m								
	lobster t								
ST CROIX R									
Woodland	bass f	<0.1 0	0.06-0.7	<0.1 0	0.06-0.7				
	sucker	<0.1 0	0.08-0.7	<0.1 0	0.07-0.7				
Baring	bass	<0.1 0	0.05-0.7	<0.1 0	0.05-0.7				
	sucker w	<0.1 0	0.08-0.8	<0.1 0	0.08-0.7				
Robbinston	lobster t								

\mathbf{ST}	JOHN	R
---------------	------	---

Frenchville	sucker	w
Madawaska	y perch	f
	bk trout	f
	sucker	w

SACO R

Dayton	sucker	W
--------	--------	---

SACO BAY

Scarborough	lobster	m
	lobster	t

SALMON FALLS R

Acton lm bass

		19 98	19 99	20 00	20 01
WATER/STATION	SPECIES TISSUE	TCDD DTE	TCDD DTE	TCDD DTE	TCDD DTE
	sucker				
Lebanon	lm bass				
S Berwick	bass f		0.1 0.3-0.6	0.1 0.2-0.8	0.2 0.4-0.8
	lm bass		0.2 0.5-0.8		
	pickerel f				
	sucker w				
SANDY P					
	bass f				
SEBAGO L					
Naples	bass w				

SEBASTICOOK R											
E Br Corinna	lm bass										
	bass										
	sucker										
Newport	bass	f							0.	1 0.6-0.	9
	lm bass	f									
	w perch	f									
Sebastcook L	bass	f					0.1	0.5-0.8			
	w perch	f					0.2	0.8-0.9			
Detroit	bass	f							0.	1 0.2-0.3	8
Burnham	bass										
W Br Harmony	bass										
	sucker										
W Br Palmyra	bass	f	0.2	0.5-0.8	0.2	0.6-0.8	0.1	0.4-2.7	0.	2 0.5-0.3	8
	pickerel	f									
	sucker	w									

		19 98	19 99	20 00	20 01
WATER/STATION	SPECIES TISSUE	TCDD DTE	TCDD DTE	TCDD DTE	TCDD DTE
Vassalboro	bass f				
f=fillet					
m=meat					
t=tomalley					
w=whole					

DTE= dioxin toxic equivalents 1 Range shown at nd=0 and nd=mdl,

			20	02	20	03	20	04	20	05	20	06
WATER/STATION	SPECIES I	ISSU	E TCDD	DTE	TCDD	DTE	TCDD	DTE	TCDD	DTE	TCDD	DTE
ANDROSCOGGIN LAK	E											
Wayne	bn trout	f										
	bass	f	<0.1	0.3-1.3	0.2	0.8-1.0	<0.1	0.2-0.4	<0.1	0.1-0.3	<0.1	0.1-0.4
	w perch sucker	w/f	<0.1	0.4-1.4	0.1	0.7-0.9	<0.1	0.4-0.8	0.1	0.8-0.9	<0.1	0.3-0.5
POCASSET LAKE												
Wayne	bass		<0 1	<0.1-1.2	<0.1	<0.1-0.5						
hayne	SMB comp			VII 112	<0.1	0.2-0.5						
	WHP comp				<0.1	0.3-0.6						
	will comp					0.5 0.0						
ANDROSCOGGIN R												
Gilead	rb trout						<0.1	0.8-1.1	<0.1	1.0-1.2	0.1	0.5-0.8
	bn trout											
	juv bass		<0.1	1.9-2.8								
	bass		<0.1	1.4-2.3	0.1	1.1-1.4	0.1	1.6-1.8				
	sucker	W	0.1	1.4-2.2	<0.1	1.2-1.5	<0.1	1.2-1.5				
Rumford	bass	f	0.1	0.6-1.5	<0.1	0.6-0.9	<0.1	0.3-0.5	0.1	0.4-0.5	<0.1	0.3-0.5
	juv bass		<0.1	0.8-1.4								
	sucker	w	<0.1	0.4-1.5	0.2	1.8-2.1	<0.1	1.0-1.2				
Riley	bass		<0.1	0.2-1.3	<0.1	0.3-0.7	<0.1	0.2-0.3			<0.1	0.1-0.4
	sucker	w	0.1	0.6-1.6	0.2	1.9-2.1	0.3	2.8-2.9	0.3	2.8-2.9	0.1	1.0-1.3
Jay	bass	f										
	sucker	w										
Livermore Fall	s bass	f	0.1	0.3-1.4	<0.1	0.2-0.6	<0.1	0.2-0.3			<0.1	<0.1-0.3
	sucker	w	0.2	0.9-1.9	0.3	1.6-1.9	0.3	1.8-1.9	0.2	1.1-1.3	0.1	1.2-1.4
:	sucker comp	b			0.2	1.5-1.7						
Livermore ALF	bass				<0.1	0.2-0.6						
	sucker				0.1	0.6-0.9						
N Turner	sucker	w										
Auburn-GIP	bass	f	0.1	0.2-1.3			0.1	0.4-0.6	<0.1	0.2-0.5	<0.1	0.2-0.4
	lm bass	f										
	sucker	w	0.3	0.8-1.2								
	bullhead	w										
Lisbon Falls	bn trout	f										
	bass	f					0.1	0.2-0.3				
	sucker	w										
Brunswick	sucker	w				19						

			20		20			04		05	20	
WATER/STATION	SPECIES	TISSUE	TCDD	DTE	TCDD	DTE	TCDD	DTE	TCDD	DTE	TCDD	DTE
	carp	f										
BEARCE LAKE												
Baring	pickerel	f										
Daring	PICKELEI	-										
BRAVE BOAT HARBO	OR											
Kittery	lobster	m										
	lobster	t										
BROOKLYN	lobster	m										
	lobster	t										
COREA	lobster	t										
CONLA	IODSCEI	Ľ										
JONES CREEK												
Scarborough	clam	m										
KENNEBEC R												
Madison	bn trout											
	bass	f										
	sucker	w	<i>.</i>		<i>(</i> 0, 1)	<i>(</i> 0, 1, 0, F	<i>(</i> 0, 1)	<i>(</i> 0, 1, 0, 0)				
Norridgewock	bass bn trout			<0.1-1.3 <0.1-1.0	<0.1	<0.1-0.5	<0.1	<0.1-0.2				
	sucker		NO.1	NO.1-1.0	<0 1	<0.1-0.5	<0.1	0.2-0.4				
Fairfield	bass	f	<0.1	<0.1-1.2		<0.1-0.5	<0.1	<0.1-0.2				
	trout	f	0.1	0.1-1.0					<0.1	<0.1-0.2	0.1	0.1-0.3
	sucker	w			0.2	0.3-0.6	0.1	0.2-0.4	<0.1	<0.1-0.3		0.2-0.5
Sidney	bass	f	0.1	<0.1-1.3								
	bn trout										<0.1	0.1-0.4
	sucker	w										
Augusta	bn trout	f										
nagabba	bass	f										
	sucker	w										
Hallowell	smelt	с										
Gardiner	bass										<0.1	<0.1-0.3
Richmond	eel	f										
Phippsburg	clam	m										
	lobster	m				20						

			20	02	20	03	20	04	20	05	20	06
WATER/STATION	SPECIES	TISSUE	TCDD	DTE	TCDD	DTE	TCDD	DTE	TCDD	DTE	TCDD	DTE
	lobster	t										
MESSALONSKEE LAKE	2											
Belgrade	bass											
NARRAGUAGUS R												
Cherryfield	fallfish	w										
chertyrrera	Tatttisii	w										
NORTH POND												
Chesterfield	sucker	w										
	pickerel	f										
PENOBSCOT R												
E Br Grindstone		f										
	sucker	w									<0.1	<0.1-0.3
E Millinocket	bass	f										
	sucker	W										
Woodville	bass		<0.1			<0.1-0.6	<0.1	<0.1-0.2	<0.1	<0.1-0.3		
	sucker		<0.1	1.6-1.9	<0.1	0.5-0.8	<0.1	<0.1-0.3	<0.1	0.3-0.5	<0.1	<0.1-0.3
Winn	bass sucker		<0.1 0.2	<0.1-1.2 1.1-1.8	<0.1 <0.1	<0.1-0.5 0.3-0.6						
N Lincoln	bass	f	0.2	1.1-1.0	<0.1	0.3-0.6						
N LINCOIN	sucker	v v										
S Lincoln	bass	f	<0 1	<0.1-1.2	<0 1	<0.1-0.5	<0.1	<0.1-0.2	<0.1	<0.1-0.3		
5 Hindoin	sucker	w	0.3	1.6-2.0	0.1	0.6-0.8	<0.1	<0.1-0.3	<0.1	0.2-0.4	0.1	0.3-0.5
Passadumkeag	bass	f	0.0	1.0 1.0	0.1	0.0 0.0				0.2 0.1	0.1	0.0 0.0
	sucker	w										
Milford	bass	f	<0.1	<0.1-1.2	<0.1	<0.1-0.5	<0.1	<0.1-0.2				
	sucker	w	0.3	1.0-1.7	<0.1	0.3-0.7	<0.1	0.3-0.4				
Veazie	bass	f	<0.1	<0.1-1.2	<0.1	<0.1-0.5	<0.1	<0.1-0.2	<0.1	0.1-0.2		
	sucker	w	0.4	1.4-2.0	0.1	0.2-0.6	<0.1	0.2-0.3	<0.1	0.3-0.5	<0.1	0.4-0.5
Bangor	eel	f	0.1	0.2-1.3								
			<0.1	0.1-1.3								
Bucksport	clam	m										
Stockton Spring	-	m										
	lobster	t										
OWLS HEAD	mussel	m										

			20	02	20 03		20 04	4	20 05		20 ()6
WATER/STATION	SPECIES	TISSUE	TCDD	DTE	TCDD	DTE	TCDD	DTE	TCDD	DTE	TCDD	DTE
Sangerville	bass	f										
	bn trout	f										
	sucker	w										
Howland	bass	f										
PRESUMPSCOT R												
Windham	bass	f	<0.1	<0.1-1.5							<0.1	<0.1-0.3
	sucker	w	<0.1	0.1-1.3								
Westbrook	bass	f	<0.1	<0.1-1.2								
	pickerel	f										
	w perch	f										
	sucker	w	<0.1	0.1-1.3							<0.1	<0.1-0.3
Falmouth	clam	m										
Portland	lobster	m										
	lobster	t										
ST CROIX R												
Woodland	bass	f										
	sucker											
Baring	bass											
	sucker	w										
Robbinston	lobster	t										
ST JOHN R												
Frenchville	sucker	w										
Madawaska	y perch	f										
	bk trout	f										
	sucker	w										
SACO R												
Dayton	sucker	w										

SACO BAY

Scarborough	lobster	m
	lobster	t

SALMON FALLS R

Acton li	m]	bass
----------	-----	------

			20	02	20 03	;		20 04		20 0	5	20 (06
WATER/STATION	SPECIES	TISSUE	TCDD	DTE	TCDD	DTE	TC	CDD	DTE	TCDD	DTE	TCDD	DTE
Lebanon	sucker lm bass	_										<0.1	<0.1-0.3
S Berwick	bass lm bass	f	0.1	0.1-1.2								<0.1	<0.1-0.3
	pickerel sucker	f W											
SANDY P	h	e											
	bass	f											
SEBAGO L Naples	bass	w											

APPENDIX 7. DIOXIN AND FURAN CONCENTRATIONS IN MAINE FISH AND SHELLFISH	H 1984-1995 (pg/g)
---	--------------------

SEBASTICOOK R													
E Br Corinna	lm bass												
	bass												
	sucker												
Newport	bass	f						0.1	0.7-0.8				
	lm bass	f										<0.1	0.3-0.5
	w perch	f											
Sebastcook L	bass	f						<0.1	0.4-0.6				
	w perch	f											
Detroit	bass	f											
Burnham	bass							0.2	0.4-0.5	0.1	0.2-0.4	0.1	0.2-0.4
W Br Harmony	bass												
	sucker												
W Br Palmyra	bass	f	0.3	0.4-1.2	0.	. 4	0.9-1.1	0.5	1.2-1.3	0.1	0.2-0.4	0.1	0.2-0.4
	pickerel	f											
	sucker	w											

		20 02		20 03	5	20 04		20 0	5	20 06	
WATER/STATION	SPECIES FISSU	TCDD	DTE	TCDD	DTE	TCDD	DTE	TCDD	DTE	TCDD	DTE
Vassalboro	bass f										
f=fillet											
m=meat											
t=tomalley											
w=whole											
DTE= dioxin toxi	.c equivalents	ι									
Range shown at n	d=0 and nd=mdl,										

WATER/STATION	ODECTES	
WATER/STATION	SPECIES	TISSUETCOD DTE
ANDROSCOGGIN LAK	E	
Wayne	bn trout	f
-	bass	f
	w perch	
	sucker	w/f
POCASSET LAKE	h	
Wayne	bass	
	SMB comp	
	WHP comp	
ANDROSCOGGIN R		
Gilead	rb trout	
	bn trout	
	juv bass	
	bass	
	sucker	w
Rumford	bass	f
	juv bass	
	sucker	w
Riley	bass	
-	sucker	w
Jay	bass	f
-	sucker	w
Livermore Fall	s bass	f
	sucker	w
1	sucker com	p
Livermore ALF		-
	sucker	
N Turner	sucker	w
Auburn-GIP	bass	f
	lm bass	f
	sucker	w
	bullhead	w
Lisbon Falls	hn trot	f
LISDON FALLS	bn trout bass	f
	bass sucker	_
Dana anai ala	25 _{ucker}	W
Brunswick	-sucker	w

		20 07
WATER/STATION	SPECIES	TISSUETCDD DTE
	carp	f
BEARCE LAKE		
Baring	pickerel	f
BRAVE BOAT HARBO	R	
Kittery	lobster	m
	lobster	t
BROOKLYN	lobster	m
	lobster	t
COREA	lobster	t
		-
JONES CREEK		
Scarborough	clam	m
KENNEBEC R		
Madison	bn trout	_
	bass	f
	sucker	W
Norridgewock	bass	
	bn trout	
T	sucker	c
Fairfield	bass	f
	trout	f
	sucker bass	w f
Sidney	bass bn trout	
	sucker	w
	SUCKEI	w
Augusta	bn trout	f
	bass	f
	sucker	w
Hallowell	smelt	с
Gardiner	bass	
Richmond	eel	f
Phippsburg	clam	m
	28 bster	m

		20 07
WATER/STATION	SPECTES	
MILLIN DIMIION	lobster	t
	TODSCEL	L
MESSALONSKEE LAKE	1	
Belgrade	bass	
NARRAGUAGUS R		
Cherryfield	fallfish	w
-		
NORTH POND		
Chesterfield	sucker	w
	pickerel	f
	-	
PENOBSCOT R		
E Br Grindstone	bass	f
	sucker	w
E Millinocket	bass	f
	sucker	w
Woodville	bass	
	sucker	
Winn	bass	
	sucker	
N Lincoln	bass	f
	sucker	w
S Lincoln	bass	f
	sucker	W
Passadumkeag	bass	f
	sucker	w
Milford	bass	f
	sucker	w
Veazie	bass	f
	sucker	w
Bangor	eel	f
Bucksport	clam	m
Stockton Spring		m
	lobster	t
OWLS HEAD	mussel	m
PISCATACUITS R	27	

PISCATAQUIS R 27

		00.07
	0000700	20 07
WATER/STATION		ISSUETCDD DTE
Sangerville	bass	f
	bn trout	f
	sucker	w
Howland	bass	f
PRESUMPSCOT R		
Windham	bass	f
	sucker	w
Westbrook	bass	f
	pickerel	f
	w perch	f
	sucker	w
Falmouth	clam	m
Portland	lobster	m
	lobster	t
ST CROIX R		
Woodland	bass	f
WOOUTAIIG	sucker	T
Baring	bass	
Daring	sucker	w
Robbinston	lobster	" t
Robbillis com	IODSCEI	L L
ST JOHN R	-	
Frenchville	sucker	W
Madawaska	y perch	f
	bk trout	f
	sucker	W
SACO R		
Dayton	sucker	w
SACO BAY		
Scarborough	lobster	m

lobster t

SALMON FALLS R

```
Acton 28 bass
```

		20	07
WATER/STATION	SPECIES	TISSUE TCDD	DTE
	sucker		
Lebanon	lm bass		
S Berwick	bass	f	
	lm bass		
	pickerel	f	
	sucker	w	
SANDY P			
	bass	f	
SEBAGO L			
Naples	bass	w	
-			

SEBASTICOOK R		
E Br Corinna	lm bass	
	bass	
	sucker	
Newport	bass	f
	lm bass	f
	w perch	f
Sebastcook L	bass	f
	w perch	f
Detroit	bass	f
Burnham	bass	
W Br Harmony	bass	
	sucker	
W Br Palmyra	bass	f
	pickerel	f
	sucker	w

WEBBER POND

		20	07
WATER/STATION	SPECIES	TISSUE TCDD	DTE
Vassalboro	bass	f	
f=fillet			
m=meat			
t=tomalley			
w=whole			
DOD diania tanàn			

DTE= dioxin toxic equivalents u Range shown at nd=0 and nd=mdl,