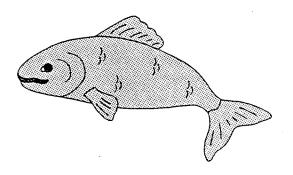
## MAINE STATE LEGISLATURE

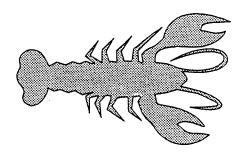
The following document is provided by the

LAW AND LEGISLATIVE DIGITAL LIBRARY

at the Maine State Law and Legislative Reference Library

http://legislature.maine.gov/lawlib





Reproduced from scanned originals with text recognition applied (searchable text may contain some errors and/or omissions)

## **DIOXIN MONITORING PROGRAM**

## STATE OF MAINE

## 1993





BY

#### BARRY MOWER

DEPARTMENT OF ENVIRONMENTAL PROTECTION

AUGUSTA, MAINE

MARCH 1994

QH 545 .D55 M68 1993

#### TABLE OF CONTENTS

|                                                                                                                 | page         |
|-----------------------------------------------------------------------------------------------------------------|--------------|
| List of Tables                                                                                                  | 2            |
| Acknowledgements                                                                                                | 3            |
| EXECUTIVE SUMMARY                                                                                               | 5            |
| INTRODUCTION                                                                                                    | 7            |
| OBJECTIVES                                                                                                      | 8            |
| PROGRAM DESIGN                                                                                                  | 8            |
| SAMPLING PROCEDURES                                                                                             | 10           |
| RESULTS AND DISCUSSION                                                                                          | 12           |
| REFERENCES                                                                                                      | 22           |
| APPENDIX 1. Maine Bureau of Health Fish Consumption Advisory 10 February Lobster Tomalley Advisory 2 February 1 | 1992.<br>994 |
| APPENDIX 2. Dioxins and furans in Maine fish and shellfish 1993.                                                |              |
| APPENDIX 3. 2378-TCDD and 2378-TCDF in sludge from Maine wastewater treatment plants.                           | 1            |
| APPENDIX 4. 2378-TCDD and 2378-TCDF in wastewater from Maine pulp and paper mills                               |              |
| APPENDIX 5. 2378-TCDD and 2378-TCDF in sediments from various stations on the Androscoggin River.               |              |
| APPENDIX 6. Sample location maps.                                                                               |              |
| APPENDIX 7. Lengths, weights, and % lipid for 1993 samples.                                                     | fish         |

|  | er e |   |  |
|--|------|---|--|
|  |      |   |  |
|  |      |   |  |
|  |      |   |  |
|  |      |   |  |
|  |      |   |  |
|  |      |   |  |
|  |      | , |  |
|  |      |   |  |
|  |      |   |  |
|  |      |   |  |
|  |      |   |  |
|  |      |   |  |

#### List of Tables

| <u>Tal</u> | ble                                                                         | Page |
|------------|-----------------------------------------------------------------------------|------|
| 1.         | Fish species and sampling locations for the 1993 Dioxin Monitoring Program. | 9    |
| 2.         | Dioxin and furan concentrations in Maine fish.                              | 13   |

#### Acknowledgements

The assistance of Acheron Inc. on behalf of the Paper Industry in collection of fish made the program much more efficient and workable in 1993. Also, the assistance of the Department of Marine Resources and Department of Inland Fisheries and Wildlife in collection of samples and providing nets was greatly appreciated. Thanks to Deke Crowley and Bob Engellhardt for supplying brown trout from the Kennebec River.

#### EXECUTIVE SUMMARY

The goal of Maine's Dioxin Monitoring Program, established in 1988 by the Maine legislature, is "to determine the nature of dioxin contamination in the waters and fisheries of the State". Charged with administration of the program, the Department of Environmental Protection (DEP) is required to sample fish once a year below no more than 12 bleached pulp mills and municipal wastewater treatment plants once each quarter. DEP is also required to sample sludge from the same facilities to determine the sources.

The Dioxin Monitoring Program is coordinated with other ongoing programs conducted by the Department, the US Environmental Protection Agency and dischargers of wastewater. DEP incorporates the results of all studies into a report to the Energy and Natural Resources Committee due December 1 of each year. Since all of the analytical results are not usually received from the laboratory until sometime in December, the report is usually sent to the Committee in late January or early February. Some of the 1993 samples had to be reanalyzed, making this year's report later than usual. Costs of sample collection and analysis are assessed to the selected facilities. Payment of the fees is a condition of the waste discharge license granted by the state for continued operation of the selected facilities.

#### Conclusions:

- 1. Concentrations of dioxin and furan toxic equivalents (TEQs) in fish at most sites remained similar to those of 1992 discontinuing a general decline in concentrations first observed in 1991.
- 2. Concentrations of dioxin and furan toxic equivalents (TEQs) in fish from the Androscoggin, Kennebec, Penobscot, Presumpscot, Salmon Falls, and West Branch of the Sebasticook Rivers were significant, meaning that they exceeded the Department of Human Services Bureau of Health's recommended maximum concentrations for the protection of consumers from an increased cancer risk of one in one million (10<sup>-6</sup>) (0.15 ppt) and for protection of consumers from adverse reproductive effects (0.37 ppt).
- 3. TEQ concentrations were highest in fish from the Androscoggin River compared to fish from other rivers.
- 4. TEQ concentrations increased in bass and suckers from Rumford and bass at Lisbon Falls on the Androscoggin River, in bass at Fairfield on the Kennebec River, and in bass at Palmyra on the West Branch of the Sebasticook River since 1992 and in bass at Veazie on the Penobscot River since

- 1991. However, there was no evidence of significant increases in discharges from the known sources in any of these rivers over the same time period. These increases may represent natural variation.
- 5. TEQ concentrations in eels from the Kennebec River in Richmond and the Penobscot River in Bangor were similar to bass in each river and were significant.
- 6. TCDD concentrations in the meat of lobsters from the Kennebec River estuary, Penobscot River estuary, Presumpscot River Estuary, and Saco Bay were not significant but TEQs were marginally so. Concentrations of both TCDD and TEQs in tomalley (hepatopancreas) were highly significant, about 15-40 fold higher than in the meat. Consequently on February 2, 1994 the Maine Bureau of Health, in consultation with the Department of Environmental Protection and Department of Marine Resources, issued a consumption advisory (Appendix 1).

#### Recommendations:

1. The Dioxin Monitoring Program is scheduled to terminate in 1995. The program serves a useful purpose in monitoring the occurrence of dioxin in fish and shellfish to aid in the evaluation of risk to human and ecological health. The program should be continued until there is no longer any risk from dioxin in fish and shellfish.

#### INTRODUCTION

The goal of Maine's Dioxin Monitoring Program, established in 1988 by the Maine legislature, is "to determine the nature of dioxin contamination in the waters and fisheries of the State". Charged with administration of the program, DEP is required to sample fish once a year below no more than 12 bleached pulp mills and municipal wastewater treatment plants suspected as sources of dioxin. Department is also required to sample sludge once a quarter from the same facilities. The monitoring program is to be coordinated with other ongoing programs conducted by the Department, US Environmental Protection Agency, or dischargers of wastewater, and the Department must seek to incorporate the results of all studies into a report due the Energy and Natural Resources Committee by 1 December of each Costs of sample collection and analysis are to be assessed as a fee to the selected facilities. Payment of the fees is a condition of the waste discharge license granted by the state for continued operation and discharge of wastewater to waters of the State.

Due to continuing controversy over the effects of dioxin on human and ecological health, the US Environmental Protection Agency (EPA), announced that in 1991 it would begin a thorough scientific reassessment of dioxin. EPA proposed that the process would be open to the public and consequently held several meetings in 1991 and 1992 to share information and receive comments. Draft reports on a wide range of issues were available in 1992 and 1993. Initial results indicate that dioxin may exhibit reproductive and developmental effects, immuno-toxic effects, and neuro-toxic effects at concentrations nearly as low or lower than commonly thought to promote cancer (Frakes, 1992; Graham, 1992; Hughes, 1992; Silbergeld, 1992). Currently the reports are undergoing peer review, with final reports due in 1994.

For the purpose of water quality management, the Department of Human Services' Bureau of Health (BOH) has recommended the following maximum allowable concentrations of 2378-TCDD in fish fillets in order to protect human consumers of contaminated fish against certain involuntary health risks (Frakes, 1990). "For a one in one million (10-6) upper limit cancer risk the concentration of 2378-TCDD in the edible portion (fillets) of fish should not exceed 0.15 ppt (parts per trillion) and for a one in one hundred thousand  $(10^{-5})$ upper limit cancer risk the concentration of 2378-TCDD in the edible portion (fillets) of fish should not exceed 1.5 For protection against adverse reproductive effects, the concentration of 2378-TCDD in the edible portion (fillets) of fish should not exceed 0.37 ppt (parts per trillion)." Although no risk concentration has been selected, the Board of Environmental Protection has used a

risk of 10<sup>-6</sup> in setting a limit for dioxin in the sludge spreading rules in 1986. For this report concentrations of dioxin in fish exceeding any of these recommendations will be reported as significant.

For managing the risk to consumers of fish already contaminated with dioxin, the BOH publishes fish consumption advisories for dioxin for particular waterbodies using risk assessment methods with a threshold of 1.5 ppt. Based on recent research, BOH is also concerned with potential reproductive effects in women from consuming a single fish meal with a dioxin concentration greater than 7 ppt.

#### OBJECTIVES

Given the decline in levels of dioxin found in the fish in the 1991 and 1992 programs, the primary objective of the 1993 program was to collect fish samples from the appropriate sites and species from each river so that accurate, complete, and current data were available to meet the overall goal of the program. The program design included sampling at least one site below each major source to document trends and sampling of historic sites that showed dioxin at levels of concern (above recommended safe levels in DHS's proposed dioxin rule, whether or not any fish consumption advisories were issued). Sampling was also continued at sites which showed a significant decline from 1991. Another objective was to sample fish from any new sites or important species suspected of being significantly contaminated with dioxin.

#### PROGRAM DESIGN

The 1993 program was drafted initially by a team representing DEP, DHS, the Department of Marine Resources (DMR) and the Department of Inland Fisheries and Wildlife (DIFW) according to the objectives listed above. Following a meeting with representatives of the participating facilities and the Natural Resources Council of Maine, the program was finalized as described below.

Since most of the facilities in the program already sample sludge or effluent as part of their Sludge Spreading Permit or NPDES permit facilities no additional sludge samples were collected as part of the 1993 program.

The number of sites was reduced by one in 1993 based on the results from 1992. Station locations along with target species are shown in Table 1. Station location maps show exact locations of fish collections (Appendix 6).

Table 1. Sample stations and target species for the 1993
Dioxin Monitoring Program

| STATION                                                                          | FACILITY                                                       | SPECIES                                                                           |  |  |
|----------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|
| Androscoggin R Rumford Jay (Bean Is) Liv Fls(Otis imp) Turner (GIP) Lisbon Falls |                                                                | bass, sucker bass, sucker bass, sucker bass, sucker, hornpout trout/bass, sucker  |  |  |
| Kennebec R Shawmut Dam Sidney Augusta Richmond Phippsburg                        | SD Warren<br>Scott Paper<br>KSTD<br>Statler<br>Statler         | trout, bass, sucker<br>trout/bass, sucker<br>trout/bass, sucker<br>eel<br>lobster |  |  |
| Penobscot R<br>S Lincoln<br>Veazie<br>Bangor<br>Bucksport                        | Lincoln P&P<br>James River Co<br>Lincoln P&P<br>James River Co | bass, sucker<br>bass, sucker<br>eel<br>lobster                                    |  |  |
| Presumpscot<br>Westbrook<br>Falmouth                                             | SD Warren<br>SD Warren                                         | bass, sucker<br>lobster                                                           |  |  |
| Salmon Falls R<br>S Berwick                                                      | Town of Berwick                                                | bass, sucker                                                                      |  |  |
| Sebasticook R<br>E Br Newport<br>W Br Palmyra                                    | Town of Corinna<br>Town of Hartland                            | bass, sucker<br>bass, sucker                                                      |  |  |
| Reference site(s)                                                                | all                                                            | bass, sucker<br>lobster                                                           |  |  |

In 1992 some sites were sampled twice to investigate any seasonal differences in contaminant residues. Two of the three sucker samples from locations sampled twice showed higher residues in later samples as did the one location sampled for brown trout. Therefore, in 1993 samples were collected only once, beginning in July at most sites. However, in previous years there was a problem collecting enough fish later in the summer at some locations. At these sites, sampling was begun in early June to try to insure that a suitable sample was collected. These sites were also visited after the beginning of July. Any fish captured during the later period were submitted for

analyses, otherwise the fish collected during the early period were used.

As before, ten game fish and ten bottom feeders were collected at each station. For new sites, two composites of five individuals (or more as necessary to give an adequate amount of tissue) were analyzed. For historic sites, game fish were combined into 5 two-fish composites while the bottom feeders were combined into 2 five-fish composites. Game fish were analyzed as skinless fillets and bottom feeders as whole fish.

Each fish was ground and stored separately. Half of the ground sample of each fish was combined into the composites. If any composite of game fish had a contaminant level that exceeded a threshold, determined by dividing 7 ppt by the number of fish in that composite (7/n), then the stored ground fish from each of the fish making up that composite was to be reanalyzed individually. This would be done to determine whether or not there could be a single fish that has a residue exceeding 7 ppt, the level considered by DHS to pose an unacceptable risk to humans from a single meal.

In 1991 all samples were analyzed for all 2378-substituted and all tetra through octa class congeners. Results showed that only 2378-TCDD and 2378-TCDF are present in significant quantities in most samples, although in a few others some congeners were significant. In 1993 only the 2378-TCDD and 2378-TCDF was measured initially in most of the samples, but one sample from each river was analyzed for the other congeners measured in 1991. Where values of the 1993 congeners were significantly different than the 1991 values then all samples were to be analyzed for all of the congeners referenced above. Also, where addition of the 1991 congeners would cause a sample to exceed DHS's level of concern 0.15 ppt, that sample was to be reanalyzed for all referenced congeners. In all other cases the 1991 values were to be added to the 2378-TCDD and 2378-TCDF in calculation of TEQ's and the other congeners were not be determined from the 1993 fish samples.

#### SAMPLING PROCEDURES

Fish were collected by DEP with assistance of representatives of the participating facilities and selected volunteer anglers. Upon capture, fish were immediately killed, weighed and measured, rinsed in river water, wrapped in aluminum foil with the shiny side out, labelled, and placed in a cooler on ice for transport to the lab. Lobsters and eels were purchased directly from commercial fishermen at each site and placed in plastic garbage bags in a cooler on ice for transport to the lab.

In the lab all samples were frozen to await shipment to Midwest Research Institute in Kansas City, Missouri for analysis. Chain of custody forms were used. All other procedures generally followed EPA's Sampling Guidance Manual for the National Dioxin Study (July 1984). A laboratory log was kept for an inventory of samples in the lab at any time and final disposition.

#### RESULTS AND DISCUSSION

It was not possible to collect all species and numbers of fish targeted. A description of fish collected and analytical results follows for each sample location. Results show that concentrations of dioxin and furan in fish were slightly higher at some stations and slightly lower at others than in 1992. As a whole concentrations did not continue to decline as seen from 1990 to 1992 (Table 2, Appendix 2). Concentrations at some individual sites, however, were statistically different than in previous years. Concentrations in whole suckers were higher than in bass or trout fillets. Some sites and/or species cannot be compared since there are no previous data.

Only at the Rumford site on the Androscoggin River did any two-fish composite of game fish exceeded 3.5 pg/g, the threshold for protection of women against an unacceptable risk from comsumption of a single fish at 7 pg/g. The composite with the highest TCDD was reanalyzed as individual fish. The results show that neither fish was above 7 pg/g (Appendix 2). Therefore, it was assumed no fish composing any of the other composites at this site would exceed 7pg/g either, and no further reanalysis was done.

Although some of the 1993 full congener analyses were different than the 1991 values, in no instance did the use of either value make a difference that would cause DHS's recommended safe level or fish consumption advisory threshold to be exceeded. Consequently, no sample was reanalyzed for all congeners. Instead 1993 estimates of total dioxin toxic equivalents (TEQs) were made by using the 1991 full congener analyses. Where actual full congener analyses exist for 1993 single fish or single composites, they were used in computing the average estimated TEQs for the site.

Some errors were discovered with TEQ calculations from 1991 and estimates from 1992. They have now been corrected. Also using the 1991 full congener analyses, TEQs were estimated for the period 1988-1990 as well. In order to facilitate comparisons among years, results were reformatted to show 2378-TCDD and estimated or measured (1991) TEQs for all years beginning in 1988. TEQs are presented as a range with non-detects calculated at zero and at the detection level. Therefore, the actual value falls somewhere within the range.

#### Androscoggin River

<u>Rumford</u> Ten smallmouth bass and ten white suckers were collected from the river from Dixfield-Peru bridge downstream about 3 miles or about 4-7 miles below the

TABLE 2. DIOXIN AND FURAN LEVELS IN MAINE FISH AND SHELLFISH (pg/g)

| WATER/STATION   | SPECIES  | TYPE |                    |       | DEP               |                |                 |       |           |      |                |
|-----------------|----------|------|--------------------|-------|-------------------|----------------|-----------------|-------|-----------|------|----------------|
|                 |          |      | NDS/NBS<br>1984-86 | 1988- | 010XIN M0<br>1990 | NITORINI<br>19 | 3 PROGRAM<br>91 | 19    | 92        | 19   | 93             |
|                 |          |      | TCDO               | TCDD  | TEO               | TCDD           | TEQ             | TCOO  | TEQ       | TCOD | TEQ            |
| ANDROSCOGGIN R  |          |      |                    |       |                   |                |                 |       |           |      | •              |
| Gilead          | sucker   | W    | 1.8f/6.5w          |       |                   |                |                 |       |           |      |                |
| Rumford         | bass     | f    |                    |       |                   | 1.4            | 2.3-2.8         | 0.6   | 1.0-1.2   | 2.9  | 4.5-5.4        |
| 5"              | sucker   | W    | - 4444             |       |                   |                |                 | 3.0   | 7.4-8.0   | 5.8  | 13.6-14.6      |
| Riley           | sucker   | W    | 2.1f/13w           |       |                   |                |                 |       |           |      |                |
| Jay             | bass     | f    |                    | 17.6  | 24.0-29.1         |                |                 | 1.2   | 1.9-2.3   | 1.4  | 1.8-2.2        |
|                 | sucker   | W    |                    |       |                   |                |                 | 5.4   | 12.9-13.9 | 4.5  | 10.9-11.8      |
| Livermore Falls | bass     | f    |                    |       |                   | 2.4            | 3.1-3.3         | 1.1   | 1.4-1.5   | 1.4  | 1.6-1.8        |
|                 | sucker   | W    |                    |       |                   |                |                 | 3.8   | 7.4-8.0   | 3.6  | 6.8-7.3        |
| N Turner        | sucker   | W    | 6.2f/30w           |       |                   |                |                 |       |           |      |                |
| Turner-GIP      | bass     | f    | 3.7f/24w           |       |                   |                |                 |       |           |      |                |
|                 | sucker   | W    | 8.3f/29w           |       |                   |                |                 |       |           |      |                |
|                 | bullhead | W    | 7.8f/29.6w         |       |                   |                |                 |       |           |      |                |
| Auburn-GIP      | bass sm  | f    |                    |       |                   |                |                 | 1.7   | 2.6-2.8   | 1.2  | 1.8-1.9        |
|                 | bass Im  | f    |                    |       |                   |                |                 | 1.1   | 1.6-1.8   |      |                |
|                 | sucker   | w    |                    |       |                   |                |                 | 5.6   | 14.3-15.4 | 3.7  | 9.0-9.8        |
|                 | bullhead | w    |                    |       |                   |                |                 |       |           | 2.1  | 3.0-3.3        |
| Lisbon Falls    | trout    | f    |                    | 5.3   | 6.5-6.9           |                |                 |       |           |      |                |
|                 | bass     | f    |                    | 4.5   | 5.5-5.8           |                |                 | 0.7   | 1.0       | 1.2  | 1.7-1.8        |
|                 | sucker   | w    | 5.1f/12w           |       |                   |                |                 | 3.4   | 8.1-8.7   | 2.7  | 6.1-6.6        |
| Brunswick       | sucker   | w    | 19.0               |       |                   |                |                 |       |           |      |                |
|                 | carp     | f    | . 11.0             |       |                   |                |                 |       |           |      |                |
| BEARCE LAKE     |          |      | ····               |       |                   |                |                 |       |           |      |                |
| Baring          | pickerel | f    | < 0.1              |       |                   |                |                 |       |           |      |                |
| JONES CREEK     |          |      |                    |       |                   |                |                 |       |           |      |                |
| Scarborough     | clam     | m    |                    |       |                   | ,              |                 | < 0.1 | 0.02-0.3  |      |                |
| KENNEBEC R      |          |      |                    |       |                   |                |                 |       |           |      |                |
| Madison         | bass     | f    |                    |       |                   |                |                 | < 0.1 | 0.02-0.1  |      |                |
|                 | sucker   | w    |                    |       |                   |                |                 | 0.1   | 0.3       |      |                |
| Fairfield       | trout    | f    |                    | 6.2   | 6.9-8.0           |                |                 | 1.4   | 1.6-1.8   | 1.4  | 1.6-1.9        |
|                 | bass     | f    |                    |       |                   | 1.4            | 1.6-1.7         | 0.6   | 0.6-0.7   | 1.5  | 1.7-2.0        |
|                 | sucker   | w    | 6.4                | 10.3  | 16.8-18.1         |                |                 | 2.0   | 3.1-3.3   | 1.6  | 2.2-2.6        |
| Sidney          | bass     | f    | 20.3w              |       |                   | 1.0            | 1.4-2.4         | 0.4   | 0.6-1.0   | 0.6  | 0.8-1.4        |
|                 | sucker   | w    | 1.2f/11.4w         |       |                   |                |                 | 2.7   | 4.4-4.8   | 1.5  | 2.5-2.7        |
| Augusta         | trout    | f    | ,                  | 2.2   | 2.9-4.9           |                |                 | 1.9   | 2.5-4.3   |      |                |
| , tagasta       | bass     | f    |                    |       |                   |                |                 | 0.4   | 0.6-1.0   | 0.6  | 0.9-1.5        |
|                 | sucker   | w    |                    | 5.0   | 7.3-8.4           |                |                 | 1.5   | 2.6-2.8   | 1.9  | 3.3-3.6        |
| Hallowell       | smelt    | C    | •                  | 0.0   |                   |                |                 | 0.2   | 0.5-0.8   |      | 3.2 <b>3.3</b> |
|                 |          | f    |                    |       |                   |                |                 | U.L   | 0.0 0.0   | 0.6  | 0.8-1.4        |
| Richmond        | eel      |      |                    |       |                   |                |                 | 0.3   | 0.6-0.9   | 0.0  | 0,0 1,7        |
| Phippsburg      | clam     | m    |                    |       |                   |                |                 | 0.0   | 0.0-0.3   | 0.2  | 0.3-1.2        |
|                 | lobster  | m    |                    |       |                   |                |                 |       |           | 7.9  | 27.5-27.0      |
|                 | lobster  | t    |                    |       |                   |                |                 |       |           | 7.9  | 27.0-27.0      |

| TA | D.  | г | 0    | 1     |
|----|-----|---|------|-------|
| IΑ | BI. | L | ۷. ۱ | cont. |

| TABLE 2. (cont.) |          | ******** |           |          |             |             |                                       | *****       |         |       | ************ |
|------------------|----------|----------|-----------|----------|-------------|-------------|---------------------------------------|-------------|---------|-------|--------------|
| WATER/STATION    | SPECIES  | TYPE     | EPA       |          | DEP         |             |                                       |             |         |       |              |
|                  |          |          | NDS/NBS   |          | DIOXIN MO   | INITORINO   | ) PROGRAM                             |             |         |       |              |
|                  |          |          | 1984-86   | 1988-    |             | 19          |                                       |             | 92      | 19    | 93           |
|                  |          |          | TCDO      | TCDD     | TEO         | TCOO        | TEQ                                   | TCOO        | TEQ     | TCOD  | TEQ          |
| VIESSALONSKEE LA | AVE      |          |           |          | <del></del> | -           |                                       |             |         |       |              |
| Belgrade         | bass     |          |           |          |             | < 0.0       | 0.04-0.3                              |             |         |       |              |
| Detgraue         | กดวง     |          |           |          |             | < 0.0       | 0.04-0.3                              |             |         |       |              |
| NARRAGUAGUS R    |          |          |           |          | <del></del> |             | ···                                   | ·           |         |       |              |
| Cherryfield      | fallfish | W        | < 1.0     |          |             |             | · · · · · · · · · · · · · · · · · · · |             |         |       |              |
| NORTH POND       |          |          |           | ·        |             |             |                                       | <del></del> |         |       |              |
| Chesterfield     | sucker   | w        | 0.37      | <u>-</u> |             |             |                                       | <del></del> |         |       |              |
|                  | pickerel | f        | < 0.1     |          |             |             |                                       |             |         |       |              |
|                  | p.o.c.   | ·        |           |          |             |             |                                       |             |         |       |              |
| PENOBSCOT R      |          |          |           |          |             |             |                                       |             |         |       |              |
| E Branch         | bass     | f        |           | < 0.1    | 0.09-0.2    |             |                                       |             |         |       |              |
|                  | sucker   | w        |           | < 0.4    | 0.02-0.6    |             |                                       |             |         |       |              |
| E Millinocket    | bass     | f        |           |          | 0.4-0.8     |             |                                       |             |         |       |              |
|                  | sucker   | W        |           | 0.7      | 3.6-4.2     |             |                                       |             |         |       |              |
| N Lincoln        | bass     | f        |           | < 0.4    |             |             |                                       |             |         |       |              |
|                  | sucker   | w        |           | < 0.5-2  | 2.0-41.6    |             |                                       |             |         |       |              |
| S Lincoln        | bass     | f        | 5.0       | 1.7      | 2.3-2.7     | 0.9         | 1.2-1.3                               | 0.7         | 1.0-1.2 | 1.1   | 1.5-1.8      |
|                  | sucker   | W        |           | 37.0     | 66.4-67.2   |             |                                       | 3.3         | 6.8     | 1.7   | 3.5-3.6      |
| Passadumkeag     | bass     | f        |           | 1.8      | 2.9         |             |                                       |             |         |       |              |
|                  | sucker   | W        |           | 2.8      | 7.6-7.7     |             |                                       |             |         |       |              |
| Milford          | bass     | f        |           | 0.9      | 1.4-1.7     |             |                                       | 0.3         | 0.4-0.5 |       |              |
|                  | sucker   | W        |           | 9.7      | 19.9-20.1   |             |                                       | 2.2         | 4.6     |       |              |
| Veazie           | bass     | f        | 4.6w      | 1.9      | 2.4-2.6     | 1.2         | 1.5-1.7                               | 0.4         | 0.6     | 0.6   | 0.8-1.0      |
|                  | sucker   | w        | 2.6f/7.6w | 5.9      | 9.8-9.9     | 2.5         | 4.9-5.0                               | 2.2         | 4.8-4.9 | 1.1   | 2.7-3.0      |
| Bangor           | eel      | W        |           |          |             |             |                                       |             |         | 1.0   | 1.1-1.2      |
| Bucksport        | clam     | m        |           |          |             |             |                                       | 0.1         | 0.8-0.9 |       |              |
| Stockton Springs | lobster  | m        |           |          |             |             |                                       |             |         | 0.1   | 0.3-1.1      |
|                  | lobster  | t        |           |          |             |             |                                       |             |         | 4.0   | 28.0         |
| OWLS HEAD        | mussel   | m        | < 0.8     |          |             |             |                                       |             |         |       |              |
| PISCATAQUIS R    |          | _        |           |          |             | <del></del> |                                       |             | -       |       |              |
| Sangerville      | bass     | f        |           |          |             | < 0.2       | 0.03-0.3                              |             |         |       |              |
| cangoremo        | trout    | f        |           |          |             |             | 0.03-0.4                              |             |         |       |              |
|                  | sucker   | w        |           |          |             |             | 0.6-0.7                               |             |         |       |              |
| Howland          | bass     | f        |           | < 0.2    | 0.02-0.6    |             |                                       |             |         |       |              |
| PRESUMPSCOT R    |          |          |           |          |             | -           |                                       |             |         |       |              |
| Windham          | bass     | f        |           | <u>-</u> |             |             |                                       |             |         | < 0.0 | 0.04-0.3     |
|                  | sucker   | w        |           |          |             |             |                                       |             |         | 0.3   | 0.7-0.8      |
| Westbrook        | bass     | f        |           | 1.8      | 2.4-4.5     | 0.2         | 0.2-0.4                               | 0.1         | 0.2-0.4 | < 0.2 | 0.1-0.5      |
|                  | pickerel | f        |           | < 2.6    | 0.06-5.9    |             |                                       |             |         |       |              |
|                  | w perch  | f        |           | 1.2      | 2.5-3.1     | 0.4         | 0.9-1.0                               |             |         |       |              |
|                  | sucker   | w        | 5.2       | 5.1      | 8.2-9.6     | 0.6         | 1.6-1.7                               | 0.3         | 0.8-0.9 | 1.1   | 1.8-2.3      |
| Falmouth         | clam     | m        |           |          |             |             |                                       |             |         |       |              |
| Portland         | lobster  | m        |           |          |             |             |                                       |             |         | < 0.1 | 0.1-0.8      |
|                  | lobster  | t        |           |          | 4.4         |             |                                       |             |         | 3.4   | 18.5-18.     |
|                  | •        |          |           |          | 14          |             |                                       |             |         |       |              |

TABLE 2. (cont.)

| WATER/STATION  | SPECIES  | TYPE | EPA     |       | DEP       |          |           |       |         |       |          |
|----------------|----------|------|---------|-------|-----------|----------|-----------|-------|---------|-------|----------|
|                |          |      | NDS/NBS |       | DIOXIN MI | INITORIN | G PROGRAM |       |         |       |          |
|                |          |      | 1984-86 | 1988- | 1990      | 19       | 91        | 19    | 92      | 19    | 93       |
|                |          |      | TCDD    | TCDO  | TEO       | TCOO     | TEO       | TCOO  | TEQ     | TCOD  | TEQ      |
| ST CROIX R     |          |      |         |       |           |          | ····      |       |         |       |          |
| Woodland       | bass     | f    |         | 0.3   | 0.5-1.0   | < 0.1    | 0.04-0.3  |       |         |       |          |
| Calais         | sucker   | W    | < 0.7   | 0.6   | 1.0-1.1   |          |           |       |         |       |          |
| ST JOHN R      |          |      |         |       |           |          |           |       |         |       |          |
| Madawaska      | y perch  | f    |         | < 0.5 | 0.08-0.8  |          |           |       |         |       |          |
| SACO R         |          |      |         |       |           |          |           |       |         |       |          |
| Dayton         | sucker   | W    | < 0.3   |       | "         |          |           |       |         |       |          |
| SACO BAY       |          |      |         |       |           |          |           |       |         |       |          |
| Scarborough    | lobster  | m    |         |       |           |          |           |       |         | < 0.1 | 0.1-0.8  |
|                | lobster  | t    |         |       |           |          |           |       |         | 2.0   | 11.3-14. |
| SALMON FALLS R |          |      |         |       |           |          |           |       |         |       |          |
| S Berwick      | bass     | f    |         | 0.4   | 0.5.0.6   |          |           |       |         | 0.2   | 0.2-0.9  |
|                | pickerel | f    |         | 0.2   | 0.3       |          |           |       |         |       |          |
|                | sucker   | W    |         | 1.5   | 2.1-2.2   |          |           | 2.4   | 3.4-3.6 | 1.9   | 3.6-3.8  |
| SANDY P        |          |      |         |       |           |          |           |       |         |       |          |
| N Anson        | bass     | f    | < 1.0   |       |           |          |           |       |         |       |          |
| SEBAGO L       |          |      |         |       |           |          |           |       |         |       |          |
| Naples         | bass     | W    | < 0.6   |       |           |          |           |       |         |       |          |
| SEBASTICOOK R  |          |      |         |       |           |          |           |       |         |       |          |
| E Br Newport   | bass sm  | f    |         |       |           |          |           | 0.1   | 0.3-0.4 |       |          |
|                | bass Im  | f    | < 0.2   |       |           |          |           | < 0.2 | 0.2-0.4 |       |          |
|                | w perch  | f    |         | 1.0   | 1.6-2.1   |          |           |       |         |       |          |
| W Br Palmyra   | bass     | f    |         | 1.2   | 1.4-1.8   |          |           | 0.4   | 0.5-0.6 | 0.9   | 1.2-1.6  |
|                | pickerel | f    | < 0.1   |       |           |          |           | 0.2   | 0.2     |       |          |
|                | sucker   | w    | 1.57    | 3.3   | 4.3-4.6   |          |           | 1.1   | 1.4-1.6 | 1.0   | 2.6-2.7  |
| WEBBER POND    |          |      |         |       |           |          |           |       |         |       |          |
| Vassalboro     | bass     | f    |         |       |           | < 0.0    | 0.04-0.4  |       |         | _     |          |

f = fillet

m=meat

t = tomalley

w = whole

TEQ = Estimated toxic equivalents (range at nd = 0 and nd = mdl) using EPA 1989 toxicity equivalency factors (TEF), 1991 full congener analyses at , in order of priority, 1. same site, 2. nearest upstream site, 3. nearest downstream site, or 4. state average for predators or bottom feeders Existing data used in site averages

discharge from Boise Cascade bleached kraft pulp and paper mill in Rumford. This was just below where fish were captured in previous years; the water level was too low to sample upstream. Total dioxin Toxic Equivalents (TEOs) were significant even when normalized to skinless fillets (dividing by 3.5 based on historical comparisons between fillets and whole fish). TEQs for bass were also significant. TEQs were statistically higher in bass than in 1992 or 1991 and in suckers than in 1992 (p=.05). It is difficult to account for this increase as effluent data do not show any increase in the amount of TCDD and TCDF in the discharge from the mill since 1992 (Appendix 4). Although the fish were captured a little farther downstream than in previous years, the 1993 site was not significantly different than in previous years, being only slightly deeper and slower moving.

Jay Ten smallmouth bass and ten white suckers were collected near Bean Island in the Jay Impoundment, which is about 20 miles below Boise Cascade and in the impoundment into which International Paper Company's bleached kraft mill discharges about 1 mile downstream. TEQs in bass fillets were significant although much lower than in bass fillets from the Rumford site. While TCDD was slightly higher than in 1992, TEQs were similar and still an order of magnitude lower than in 1990. The reason for such a great reduction of TEOs in bass from 1990 to 1992 and 1993 is difficult to determine since concentrations in sludge (Appendix 3) and effluent (Appendix 4) from the mill have remained similar since 1990. Although this site is above the discharge it is in the same impoundment and fish may migrate anywhere throughout. The 1990 bass may have migrated downstream and been exposed to the discharge from the mill while the 1992 bass may have stayed upstream and been exposed only to the discharge from Boise Cascade in Rumford. Alternatively, the lower concentrations in bass in 1992 and 1993 may reflect a latent effect of the earlier reductions in dioxin discharged. TCDD and TEQ concentrations in whole suckers were significant when normalized to skinless fillets. TCDD and TEO concentrations were slightly lower than in 1992 and TCDD was only about half as high as reported in suckers at the Riley impoundment, immediately upstream, in 1984-86, which probably shows the effect of reductions in discharge of TCDD from the mills and perhaps a difference in sites.

Livermore Falls Ten smallmouth bass and ten white suckers were captured in the Otis Impoundment, approximately 1.5-3 miles below the discharge from International Paper Company's Jay mill. TEQs in bass fillets were significant and slightly higher than in 1992. Concentrations were similar to those from the Jay site. Concentrations in whole suckers were significant when normalized to skinless fillets. Concentrations were slightly lower than in 1992 and lower than in the Jay Impoundment. These results are consistent

with the relatively constant discharge of dioxin from Boise and International Paper Company mills in the last couple of years as shown by monitoring of sludge (Appendix3) and effluent (Appendix 4).

Auburn-GIP Five smallmouth bass, eight brown bullheads, and ten white suckers were collected in Gulf Island Pond (GIP) near Seagull Island near the deep hole, about 25-30 miles below International Paper Company. TEQs in bass were significant. TEQs were slightly lower than in 1992 and slightly lower than upstream sites. TCDD was significantly lower than in the 1984-86 EPA study from a site about 4 miles upstream in GIP. TEQs in whole suckers were significant when normalized as fillets. TEQs were slightly lower than in 1992 and TCDD was significantly lower than in the EPA study. TEQs in brown bullhead were significant when normalized as fillets and were intermedate of bass and suckers. TCDD was statistically lower in bullheads than in the EPA study. Decreased concentrations since EPA's 1984-6 study may reflect decreased discharges by Boise Cascade and International Paper Co. in recent years.

Lisbon Falls Ten smallmouth bass and ten white suckers were captured in the Pejepscot Impoundment, about 45-50 miles below International Paper Company. TEQs in bass were significant and statistically higher than in 1992. TEQs were still statistically lower than in samples of bass collected in 1988-90 and lower than in bass fillets from all other Androscoggin River sites except GIP. TEQs in suckers were significant when normalized as fillets. TEQs were slightly lower than in 1992 but TCDD was statistically lower than in the EPA study, reflecting the trend toward declining concentrations in fish from all sites along the river in recent years. The increase in TEQs in bass is not consistent with the decline in discharge of dioxin from the mills in recent years.

#### Kennebec River

Fairfield Four brown trout, ten smallmouth bass, and ten white suckers were collected from July through August from the Shawmut Dam to the I-95 bridge, about 7-8 miles below SD Warren's bleached kraft pulp and paper mill in Skowhegan. TEQs in brown trout were significant. TEQs were similar to those of 1992 but about 4 times lower than in brown trout from this site in 1988-90, although a complete sample has not been obtained since 1990. TEQs in bass were significant and statistically higher than in 1992, similar to those of 1991. TEQs were similar to those in brown trout, unlike previous years when the bass were lower. TEQs were the highest of all sites on the river. TEQs in suckers were significant when normalized as fillets. TEQs were slightly lower than in suckers collected above the dam in 1988-90 and

similar to concentrations at other sites on the Kennebec. These declines in TEQs from 1990 are difficult to explain since concentrations of TEQs in sludge (Appendix 3) and effluent (Appendix 4) from the SD Warren mill are variable but show no significant decline in recent years to indicate a lowering in amounts in the discharge. The reason for increases in TEQs in bass but not in the other species since 1992 is also unknown.

Sidney Ten smallmouth bass and ten white suckers were collected from the river within one mile of the Sidney boat landing, about 25 miles below the SD Warren mill in Skowhegan and about 9-10 miles below the discharges from the Scott Paper mill in Winslow and the Kennebec Sanitary Treatment District's discharge in Waterville. TEQs in bass were significant and slightly higher than in 1992 but statistically lower than in bass from 1991. TEQs were lower than at the Fairfield station. TEQs in suckers were significant when normalized as fillets, and slightly lower than in 1992. TCDD was statistically lower than in suckers from the site analyzed in EPA's 1984-86 study. TEQs were similar to those at Fairfield. TEQs in sludge from each of the three sources have remained essentially unchanged in the last couple of years (Appendix 3). Declines in tissue concentrations of dioxin and furan may reflect a latent effect of any reduced discharges from previous years.

Augusta Five smallmouth bass and ten white suckers were collected about 2-2.5 miles below the Edwards Dam in Augusta. In addition to the upstream sources at the Sidney site, Statler Tissue Company dicharges effluent just above the dam. TEQs in bass were significant. TEQs were slightly higher than in 1992 but slightly lower than in 1991. TEQs were similar to the concentration found in bass fillets from Sidney. TEQs in suckers were significant when normalized as fillets. TEQs were slightly higher than in 1992 but were statistically lower than in whole suckers at this site from 1988-90. TEQs were slightly higher than other sites on the Kennebec. Since Statler recycles waste paper, dioxin in its sludge reflects the average content in its paper supply and is low but detectable and relatively constant (Appendix 3).

Richmond Ten eels were collected from a commercial fisherman fishing the Kennebec from Richmond to Bath. All were river eels (males residing year-round in the river). Nine were of uniform size and were combined into one composite, while one was much larger and analyzed by itself. TEQs in both samples were significant. TEQs in the single large eel were slightly higher than in the composite of smaller eels. TEQs were similar to concentrations in bass at Augusta and in eels from the Penobscot River in the Bangor area.

Phippsburg Ten lobsters were collected from a lobster fisherman fishing the estuary near Cox Head, approximately 45 miles below Augusta. This site is downstream of all the sources on the Androscoggin and Kennebec Rivers. TCDD in the meat was marginally significant but TEQs were significant. Both were highly elevated in the hepatopancreas or "tomalley", 20-40 times that found in the meat. This site had the highest TCDD concentration of all sites monitored. Consequently the Bureau of Health has issued a consumption advisory on 2 February 1994 regarding tomalley for the entire coast (Appendix 1).

#### Penobscot River

South Lincoln Ten smallmouth bass and ten white suckers were collected near the boat ramp in South Lincoln, about 3-4 miles below Lincoln Pulp and Paper Company's bleached kraft mill in Lincoln. TEQs in bass were significant and slightly higher than those in 1991 and 1992 but slightly lower than in 1988-90. TEQs in suckers were significant when normalized as fillets. TEQs were slightly lower than in 1992 and statistically lower than in suckers sampled in 1988-90. TEQs in both species were the highest of all sites on the Penobscot River. Recent effluent data (Appendix 4) show a reduction in amounts of dioxin discharged since 1988 which is consistent with declines in concentrations in fish from that time.

<u>Veazie</u> Ten smallmouth bass and ten white suckers were collected from the Veazie Impoundment about 7-8 miles below James River's bleached kraft mill in Old Town. TEQs in bass fillets were significant and slightly higher than in bass from 1991 at this site. They were, however, statistically lower than in 1991. TEQs in suckers were significant when normalized as fillets and were statistically lower than in 1991 and 1992. This is surprising since effluent data from James River show concentrations of 2378-TCDD and 2378-TCDF similar to those of 1991, both variable and sometimes higher than concentrations in late 1989 and 1990 (Appendix 4).

Stockton Springs Ten lobsters were collected from a lobsterman fishing near Verona Island, about 40 miles below James River's mill. TCDD in the meat was not significant but TEQs were significant. Both were highly elevated in hepatopancreas or "tomalley", about 30 times higher than in the meat. This site had the highest TEQ concentration of all the sites monitored. Consequently the Bureau of Health has issued a consumption advisory on 2 February 1994 regarding tomalley for the entire coast (Appendix 1).

#### Presumpscot River

Windham Ten smallmouth bass and ten white suckers were collected below North Gorham Pond. TCDD and TEQs in bass were not significant. TCDD in suckers was marginally significant while TEQs were slightly higher and the lowest of all suckers sampled in 1993. There are no known sources of dioxin upstream of this site. That TEQs were found to be as high as they were in suckers was surprising since in previous years, TEQs from all other "reference sites" were insignificant.

Westbrook One smallmouth bass and ten white suckers were collected near the US Route 302 bridge about 1.5 miles downstream of the discharge from SD Warren's bleached kraft pulp and paper mill. TCDD in the bass was not significant and TEQs were marginally significant, similar to 1991 and 1992. TCDD in whole suckers was marginally significant and TEQs were significant when normalized as fillets. Both were slightly higher than in 1991 and 1992. TEQs in sludge and effluent from the mill continue to be relatively low since 1990-91 (Appendices 3 and 4). It has been impossible to collect a suitable number of bass from this site since the beginning of the program in 1984.

Portland Ten lobsters were collected from a lobster fisherman fishing at the mouth of the estuary off East End Beach about 10-11 miles below the SD Warren discharge. TCDD in meat was not significant and TEQs were marginally so. Both were highly elevated in the hepatopancreas or "tomalley", at 20-30 times than in the meat. This site had the lowest TEQs of all the suspected contaminated sites, and was slightly higher than the "reference" site at Saco Bay, which is similar to the results for fish. Consequently the Bureau of Health has issued a consumption advisory on 2 February 1994 regarding tomalley for the entire coast (Appendix 1).

#### Saco Bay

Scarborough Ten lobsters were collected from a lobster fisherman fishing off the mouth of the Scarborough River near Prouts Neck. This site was intended to be a reference site near last years reference site for the soft-shelled clams. The TCDD concentration in the meat was not significant while the TEQ concentration was marginally so. However, concentrations of both in the hepatopancreas or "tomalley" were significant, about 15-20 times that in the meat. The source of dioxin to these lobsters is unknown. About 4 or 5 years ago there was discharge of dioxin from the Maine Energy Recovery Company to the Biddeford sewage treatment plant and thence into the Saco River estuary. In addition there is currently a small amount of dioxin in air

emissions from the plant as well. Whether the residual originates from that or some other source nearby or from known sources farther away is unknown at this time.

#### Salmon Falls River

South Berwick One bass and ten white suckers were collected from the Rollinsford Impoundment about 2 miles below the discharge from the Berwick Sewer District in Berwick, whose discharge is 85% effluent from Prime Tanning. TCDD and TEQs in the bass were marginally significant and slightly lower than in 1990, although not enough fish were caught in either year to give a complete or good sample. TEQs in whole suckers were significant when normalized as fillets. TCDD is slightly lower and TEQs slightly higher than in 1992. Both are slightly higher than 1988-90. Concentrations are nearly twice as high as in the West Branch of the Sebasticook River below the Hartland Tannery discharge. There are no new effluent or sludge data to aid interpretation of trends.

#### Sebasticook River

West Branch at Palmyra Five smallmouth bass and ten white suckers were collected near the US Route 2 bridge about 3-4 miles below the discharge from the Town of Hartland, whose effluent is about 85% effluent from Irving Tanning Company. TEQs in bass fillets were significant. TEQs were statistically higher than in 1992 and slightly lower than in 1988-90. Higher TCDD and TEQs in the one larger fish increased the mean for the site significantly from that of the other 4 smaller fish which had relatively uniform TCDD (Appendix 2). Throwing out the one large fish, however, did not affect the statistical significance. TEQs in suckers were significant when normalized as fillets. TCDD was similar to 1992 and TEQs were slightly higher but statistically lower than in 1990. There are no new sludge data to aid interpretation of any trend.

#### REFERENCES

Frakes, R.A., 1990. Health-based water quality criteria for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Maine Department of Human Services, Bureau of Health, Augusta, Maine. 32pp & appendices.

Frakes, R.A., 1992. Testimony before the Board of Environmental Protection at a public hearing 5 November 1992, Augusta, Maine.

Graham, L. 1992. Testimony before the Board of Environmental Protection at a public hearing 5 November 1992, Augusta, Maine.

Hughes, C. 1992. Testimony before the Board of Environmental Protection at a public hearing 6 November 1992, Augusta, Maine.

Silbergeld, E. 1992. Testimony before the Board of Environmental Protection at a public hearing 6 November 1992, Augusta, Maine.

Mower, B., 1993. Dioxin Monitoring Program, State of Maine 1992. Department of Environmental Protection, Augusta, Maine. 53pp.

#### APPENDIX 1

#### MAINE BUREAU OF HEALTH

FISH CONSUMPTION ADVISORY, 10 FEBRUARY 1992
LOBSTER TOMALLEY CONSUMPTION ADVISORY, 2 FEBRUARY 1994

# HUMAN SERVICES



Office of Public Affairs & Communications daine Department of Human Services tate House Station 11 Augusta, Maine 04333 Pel. 289-3707

JOINT STATEMENT, FEBRUARY 10, 1992:
Department of Environmental Protection
Department of Human Services
Department of Inland Fish and Wildlife

SUBJECT: REDUCED DIOXIN LEVELS PROMPT REVISED FISH ADVISORY

CONTACT: Robert Frakes

Department of Human Services

Bureau of Health

Telephone: 289-5378

Dean Marriott, Commissioner

Department of Environmental

Protection

Telephone: 289-2812

AUGUSTA - Recent tests by the Department of Environmental Protection (DEP) showed reductions in levels of dioxin in fish taken from Maine's major rivers. The results are similar to those reported by the paper industry in August 1991.

Officials say the changes reflect reduced discharges of the chemical from pulp and paper mills across the state. The improvements have prompted a revision of a fish consumption advisory issued in March 1990.

The new language raises recommended consumption limits for most segments of the population. Previous advisories that pregnant women and nursing mothers not eat fish caught in the Presumpscot River below Westbrook and the West Branch of the Sebasticook below Hartland have also been lifted.

According to State Toxicologist Dr. Robert Frakes, data from Maine's dioxin Monitoring Program supports revising the warnings to be published in the State Open Water Fishing Regulations. However, some cautions remain in place.

"Women of childbearing age still should not eat any fish from the Androscoggin River, the Kennebec River below Skowhegan and the Penobscot River below Lincoln. Furthermore, the general public should not eat more than one fish meal per month from the Androscoggin or more than two fish meals per month from those sections of the Kennebec and Penobscot".

A "fish meal" is considered to be one 8-ounce portion.

Dioxion levels in fish have been monitored under the DEP administered program since 1988. Because even very low levels of TCDD dioxin have been linked to increased cancer rates and reproductive problems in laboratory animals, health advisories were issued in 1985, 1987 and 1990.

Commenting on the latest revision to the advisories, DEP Commissioner Dean Marriott emphasized the progress that has been made in a relatively short period of time.

"Industry has been working to reduce the formation of dioxin by actually changing the manufactoring process. The recent data would seem to indicate that these efforts are showing positive results."

A full report of the 1991 Dioxin Monitoring Program is now being prepared and will be presented to the legislature's Joint Standing Committee on Energy and Natural Resources.

## **HUMAN SERVICES**



Maine Department of Human Services
State House Station 11
Augusta, Maine 04333
Tel. 289-3707

FEB 0 2 1994

#### JOINT HEALTH ADVISORY

CONTACT: Maine Department of Environmental Protection
Dean Marriott. Commissioner, 287-2812
Maine Department of Human Services
Lani Graham, MD. MPH, Director, Bureau of Health, 287-3201
Maine Department of Marine Resources
William Brennan, Commissioner, 624-6550

AUGUSTA - Preliminary analysis of data from tests conducted on lobsters taken off the coast of Maine indicate unacceptably high concentrations of dioxin in lobster tomalley, but not in lobster meat. These results have prompted state officials to issue a health advisory against the consumption (eating) of tomalley by pregnant women, nursing mothers and women of child bearing age. This recommendation is based on the principle that developing children are considered to be at highest risk for possible injury resulting from exposure to dioxin.

Others should limit their consumption of tomalley, as dioxin found in tomalley will contribute to the overall intake of this chemical, and to cancer risk generally.

The tomalley is the soft, green substance found in the body cavity of the lobster. It functions as the liver and pancreas of the lobster serving to filter, metabolize and detoxify all substances that are consumed by the lobster. As a result of this protective function, the tomalley concentrates certain chemicals which cannot be eliminated or detoxified.

Dioxin is a substance which has been linked to cancer and adverse birth outcomes in animals. Since 1988, Maine has been sampling fish for dioxin, but lobsters had not been included until the 1993 round of tests. This round of tests has revealed unexpectedly high concentrations of dioxin in the tomalley (13.4 - 30.7 ppt), but not in the meat.

Maine's advisory is similar to one issued by the Massachusetts

Department of Public Health, and to cautionary statements issued by the

seafood marketing industry.

# APPENDIX 2 DIOXIN AND FURAN IN MAINE FISH AND SHELLFISH 1993

#### CODES

#### **STATIONS**

| ARR  | ANDROSCOGGIN RIVER AT RUMFORD                  |
|------|------------------------------------------------|
| ARJ  | ANDROSCOGGIN RIVER AT JAY                      |
| ARLV | ANDROSCOGGIN RIVER AT LIVERMORE FALLS          |
| ARG  | ANDROSCOGGIN RIVER AT GULF ISLAND POND, AUBURN |
| ARLS | ANDROSCOGGIN RIVER AT LISBON FALLS             |
| KRF  | KENNEBEC RIVER AT SHAWMUT, FAIRFIELD           |
| KRS  | KENNEBEC RIVER AT SIDNEY                       |
| KRA  | KENNEBEC RIVER AT AUGUSTA                      |
| KRR  | KENNEBEC RIVER AT RICHMOND                     |
| KRP  | KENNEBEC RIVER AT PHIPPSBURG                   |
| PBL  | PENOBSCOT RIVER AT SOUTH LINCOLN               |
| PBV  | PENOBSCOT RIVER AT VEAZIE                      |
| PBB  | PENOBSCOT RIVER AT BANGOR                      |
| PBS  | PENOBSCOT RIVER AT STOCKTON SPRINGS            |
| PRU  | PRESUMPSCOT RIVER AT WINDHAM                   |
| PRW  | PRESUMPSCOT RIVER AT WESTBROOK                 |
| PRP  | PRESUMPSCOT RIVER AT PORTLAND                  |
| SCB  | SACO BAY AT SCARBOROUGH                        |
| SLF  | SALMON FALLS RIVER AT SOUTH BERWICK            |
| SBW  | W BR SEBASTICOOK RIVER AT PALMYRA              |

#### **SPECIES**

| BNT   | BROWN | TROUT |
|-------|-------|-------|
| T 0 D | TODOM | 777   |

LOB LOBSTER

SMB SMALLMOUTH BASS WSU WHITE SUCKER

DIOXIN AND FURAN IN MAINE FISH AND SHELLFISH 1993 (pg/g wet weight)

| Field ID           | 2378TCDD | 2378TCDF | TEQ<br>(a) | TEQ (b) |
|--------------------|----------|----------|------------|---------|
| ANDROSCOGGIN RIVER |          |          |            |         |
| Rumford            |          |          |            |         |
| ARR-SMB-COMP-1     | 2.31     | 7.51     | 3.56       | 4.31    |
| ARR-SMB-COMP-2     | 3.80     | 12.10    | 5.83       | 7.06    |
| (ARR-SMB-3)        | (2.68)   | (10.8)   | (4.24)     | (4.90)  |
| (ARR-SMB-4)        | (3.46)   | (7.72)   | (4.84)     | (5.50)  |
| ARR-SMB-COMP-3     | 3.30     | 15.70    | 5.66       | 6.86    |
| ARR-SMB-COMP-4     | 2.78     | 7.05     | 4.05       | 4.91    |
| ARR-SMB-COMP-5     | 2.22     | 5.76     | 3.25       | 3.94    |
| mean               | 2.88     | 9.62     | 4.47       | 5.41    |
| ARR-WHS-COMP-1     | 6.46     | 47.80    | 13.88      | 14.99   |
| ARR-WHS-COMP-2     | 5.23     | 54.70    | 13.21      | 14.27   |
| mean               | 5.85     | 51.25    | 13.54      | 14.63   |
| Jay                |          |          |            |         |
| ARJ-SMB-COMP 01    | 1.89     | 1.74     | 2.40       | 2.91    |
| ARJ-SMB-COMP 02    | 1.60     | 1.60     | 2.05       | 2.48    |
| ARJ-SMB-COMP 03    | 1.33     | 1.08     | 1.67       | 2.03    |
| ARJ-SMB-COMP 04    | 0.93     | 0.58     | 1.15       | 1.39    |
| ARJ-SMB-COMP 05    | 1.09     | 3.49     | 1.67       | 2.03    |
| mean               | 1.37     | 1.70     | 1.79       | 2.17    |
| ARJ-WHS-COMP 01    | 4.56     | 45.20    | 11.21      | 12.11   |
| ARJ-WHS-COMP 02    | 4.39     | 41.90    | 10.59      | 11.44   |
| mean               | 4.48     | 43.55    | 10.90      | 11.77   |
| Livermore Falls    |          |          |            |         |
| ARLV-SMB-COMP 01   | 1.19     | 0.60     | 1.25       | 2.00    |
| ARLV-SMB-COMP 02   | 1.36     | 0.64     | 1.56       | 1.66    |
| ARLV-SMB-COMP 03   | 1.29     | 0.29     | 1.45       | 1.53    |
| ARLV-SMB-COMP 04   | 1.87     | 2.80     | 2.36       | 2.50    |
| ARLV-SMB-COMP 05   | 1.20     | 0.51     | 1.37       | 1.45    |
| mean               | 1.38     | 0.97     | 1.60       | 1.83    |
| ARLV-WHS-COMP 01   | 4.43     | 23.00    | 8.31       | 8.97    |
| ARLV-WHS-COMP 02   | 2.85     | 18.80    | 5.24       | 5.71    |
| mean               | 3.64     | 20.90    | 6.78       | 7.34    |

| ANDROSCOGGIN RIVER cont.  Auburn  ARG-SMB-01                                                                                                                                                                                                                                                                 | 1.63<br>2.79<br>1.10<br>1.90<br>1.61<br>1.81<br>8.40<br>9.65<br>9.02<br>3.24<br>2.79<br>3.02 | 1.72<br>2.95<br>1.17<br>2.01<br>1.71<br>1.91<br>9.07<br>10.43<br>9.75<br>3.50<br>3.01<br>3.26 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| ARG-SMB-01 1.14 3.41 ARG-SMB-03 1.92 6.20 ARG-SMB-04 0.79 2.18 ARG-SMB-05 1.27 4.57 ARG-SMB-07 1.13 3.39 mean 1.25 3.95  ARG-WHS-COMP-1 3.52 32.80 ARG-WHS-COMP-2 3.82 40.00 mean 3.67 36.40  ARG-BUL-COMP-1 2.15 4.75 ARG-BUL-COMP-2 2.02 2.41 mean 2.09 3.58                                               | 2.79<br>1.10<br>1.90<br>1.61<br>1.81<br>8.40<br>9.65<br>9.02<br>3.24<br>2.79                 | 2.95<br>1.17<br>2.01<br>1.71<br>1.91<br>9.07<br>10.43<br>9.75<br>3.50<br>3.01                 |
| ARG-SMB-03 ARG-SMB-04 ARG-SMB-05 ARG-SMB-05 ARG-SMB-07 ARG-SMB-07 1.13 3.39 mean 1.25 3.95  ARG-WHS-COMP-1 3.52 32.80 ARG-WHS-COMP-2 3.82 40.00 mean 3.67 36.40  ARG-BUL-COMP-1 2.15 4.75 ARG-BUL-COMP-2 2.02 2.41 mean 2.09 3.58                                                                            | 2.79<br>1.10<br>1.90<br>1.61<br>1.81<br>8.40<br>9.65<br>9.02<br>3.24<br>2.79                 | 2.95<br>1.17<br>2.01<br>1.71<br>1.91<br>9.07<br>10.43<br>9.75<br>3.50<br>3.01                 |
| ARG-SMB-04 0.79 2.18 ARG-SMB-05 1.27 4.57 ARG-SMB-07 1.13 3.39 mean 1.25 3.95  ARG-WHS-COMP-1 3.52 32.80 ARG-WHS-COMP-2 3.82 40.00 mean 3.67 36.40  ARG-BUL-COMP-1 2.15 4.75 ARG-BUL-COMP-2 2.02 2.41 mean 2.09 3.58  Lisbon Falls                                                                           | 1.10<br>1.90<br>1.61<br>1.81<br>8.40<br>9.65<br>9.02<br>3.24<br>2.79                         | 1.17<br>2.01<br>1.71<br>1.91<br>9.07<br>10.43<br>9.75<br>3.50<br>3.01                         |
| ARG-SMB-05 1.27 4.57 ARG-SMB-07 1.13 3.39 mean 1.25 3.95  ARG-WHS-COMP-1 3.52 32.80 ARG-WHS-COMP-2 3.82 40.00 mean 3.67 36.40  ARG-BUL-COMP-1 2.15 4.75 ARG-BUL-COMP-2 2.02 2.41 mean 2.09 3.58  Lisbon Falls                                                                                                | 1.90<br>1.61<br>1.81<br>8.40<br>9.65<br>9.02<br>3.24<br>2.79                                 | 2.01<br>1.71<br>1.91<br>9.07<br>10.43<br>9.75<br>3.50<br>3.01                                 |
| ARG-SMB-07 1.13 3.39 mean 1.25 3.95  ARG-WHS-COMP-1 3.52 32.80 ARG-WHS-COMP-2 3.82 40.00 mean 3.67 36.40  ARG-BUL-COMP-1 2.15 4.75 ARG-BUL-COMP-2 2.02 2.41 mean 2.09 3.58  Lisbon Falls                                                                                                                     | 1.61<br>1.81<br>8.40<br>9.65<br>9.02<br>3.24<br>2.79                                         | 1.71<br>1.91<br>9.07<br>10.43<br>9.75<br>3.50<br>3.01                                         |
| mean       1.25       3.95         ARG-WHS-COMP-1       3.52       32.80         ARG-WHS-COMP-2       3.82       40.00         mean       3.67       36.40         ARG-BUL-COMP-1       2.15       4.75         ARG-BUL-COMP-2       2.02       2.41         mean       2.09       3.58         Lisbon Falls | 1.81<br>8.40<br>9.65<br>9.02<br>3.24<br>2.79                                                 | 1.91<br>9.07<br>10.43<br>9.75<br>3.50<br>3.01                                                 |
| ARG-WHS-COMP-1 3.52 32.80 ARG-WHS-COMP-2 3.82 40.00 mean 3.67 36.40  ARG-BUL-COMP-1 2.15 4.75 ARG-BUL-COMP-2 2.02 2.41 mean 2.09 3.58  Lisbon Falls                                                                                                                                                          | 8.40<br>9.65<br>9.02<br>3.24<br>2.79                                                         | 9.07<br>10.43<br>9.75<br>3.50<br>3.01                                                         |
| ARG-WHS-COMP-2 3.82 40.00 mean 3.67 36.40  ARG-BUL-COMP-1 2.15 4.75 ARG-BUL-COMP-2 2.02 2.41 mean 2.09 3.58  Lisbon Falls                                                                                                                                                                                    | 9.65<br>9.02<br>3.24<br>2.79                                                                 | 10.43<br>9.75<br>3.50<br>3.01                                                                 |
| mean       3.67       36.40         ARG-BUL-COMP-1       2.15       4.75         ARG-BUL-COMP-2       2.02       2.41         mean       2.09       3.58         Lisbon Falls                                                                                                                                | 9.02<br>3.24<br>2.79                                                                         | 9.75<br>3.50<br>3.01                                                                          |
| ARG-BUL-COMP-1 2.15 4.75 ARG-BUL-COMP-2 2.02 2.41 mean 2.09 3.58 Lisbon Falls                                                                                                                                                                                                                                | 3.24<br>2.79                                                                                 | 3.50<br>3.01                                                                                  |
| ARG-BUL-COMP-2 2.02 2.41 mean 2.09 3.58  Lisbon Falls                                                                                                                                                                                                                                                        | 2.79                                                                                         | 3.01                                                                                          |
| mean 2.09 3.58  Lisbon Falls                                                                                                                                                                                                                                                                                 |                                                                                              |                                                                                               |
| Lisbon Falls                                                                                                                                                                                                                                                                                                 | 3.02                                                                                         | 3.26                                                                                          |
|                                                                                                                                                                                                                                                                                                              |                                                                                              |                                                                                               |
| ARLS-SMB-COMP 01 1 21 2 20                                                                                                                                                                                                                                                                                   |                                                                                              |                                                                                               |
|                                                                                                                                                                                                                                                                                                              | 1.86                                                                                         | 1.97                                                                                          |
| ARLS-SMB-COMP 02 0.64 1.29                                                                                                                                                                                                                                                                                   | 0.85                                                                                         | 0.90                                                                                          |
| ARLS-SMB-COMP 03 1.02 2.88                                                                                                                                                                                                                                                                                   | 1.44                                                                                         | 1.52                                                                                          |
| ARLS-SMB-COMP 04 1.32 5.91                                                                                                                                                                                                                                                                                   | 2.10                                                                                         | 2.22                                                                                          |
| ARLS-SMB-COMP 05 1.62 6.06                                                                                                                                                                                                                                                                                   | 2.45                                                                                         | 2.59                                                                                          |
| mean 1.18 3.99                                                                                                                                                                                                                                                                                               | 1.74                                                                                         | 1.84                                                                                          |
| ARLS-WHS-COMP 01 2.30 20.00                                                                                                                                                                                                                                                                                  | 5.31                                                                                         | 5.73                                                                                          |
| ARLS-WHS-COMP 02 3.08 25.20                                                                                                                                                                                                                                                                                  | 6.91                                                                                         | 7.47                                                                                          |
| mean 2.69 22.60                                                                                                                                                                                                                                                                                              | 6.11                                                                                         | 6.60                                                                                          |
| KENNEBEC RIVER                                                                                                                                                                                                                                                                                               |                                                                                              |                                                                                               |
| Fairfield                                                                                                                                                                                                                                                                                                    |                                                                                              |                                                                                               |
| KRF-BNT-01 1.12 1.32                                                                                                                                                                                                                                                                                         | 1.25                                                                                         | 1.90                                                                                          |
| KRF-BNT-02 1.55 1.73                                                                                                                                                                                                                                                                                         | 1.76                                                                                         | 2.03                                                                                          |
| KRF-BNT-03 1.22 1.62                                                                                                                                                                                                                                                                                         | 1.41                                                                                         | 1.63                                                                                          |
| KRF-BNT-04 1.65 1.80                                                                                                                                                                                                                                                                                         | 1.87                                                                                         | 2.15                                                                                          |
| mean 1.39 1.56                                                                                                                                                                                                                                                                                               | 1.57                                                                                         | 1.93                                                                                          |
| KRF-SMB-COMP-1 3.04 4.08                                                                                                                                                                                                                                                                                     | 3.52                                                                                         | 4.06                                                                                          |
| KRF-SMB-COMP-2 1.28 1.93                                                                                                                                                                                                                                                                                     | 1.50                                                                                         | 1.73                                                                                          |
| KRF-SMB-COMP-3 ND(.92) ND(.07)                                                                                                                                                                                                                                                                               | 0.95                                                                                         | 1.09                                                                                          |
| KRF-SMB-COMP-4 1.14 1.36                                                                                                                                                                                                                                                                                     | 1.30                                                                                         | 1.50                                                                                          |
| KRF-SMB-COMP-5 1.03 1.33                                                                                                                                                                                                                                                                                     | 1.19                                                                                         | 1.37                                                                                          |
| mean 1.48 1.88                                                                                                                                                                                                                                                                                               | 1.70                                                                                         | 1.96                                                                                          |
| KRF-WHS-COMP-1 1.59 4.05                                                                                                                                                                                                                                                                                     | 2.00                                                                                         | 2.61                                                                                          |
| KRF-WHS-COMP-2 1.53 4.05                                                                                                                                                                                                                                                                                     | 2.39                                                                                         | 2.58                                                                                          |
| mean 1.56 4.05                                                                                                                                                                                                                                                                                               | 2.20                                                                                         | 2.60                                                                                          |

| Field ID            | 2378TCDD | 2378TCDF | TEQ<br>(a) | TEQ<br>(b) |
|---------------------|----------|----------|------------|------------|
| KENNEBEC RIVER con  | t.       |          |            |            |
| Sidney              |          |          |            |            |
| KRS-SMB-COMP-1      | 0.80     | 1.21     | 1.11       | 1.88       |
| KRS-SMB-COMP-2      | 0.69     | 1.15     | 0.97       | 1.64       |
| KRS-SMB-COMP-3      | 0.93     | 0.78     | 1.21       | 2.05       |
| KRS-SMB-COMP-4      | 0.26     | 0.34     | 0.35       | 0.59       |
| KRS-SMB-COMP-5      | ND(.27)  | 0.30     | 0.04       | 0.06       |
| mean                | 0.59     | 0.76     | 0.80       | 1.36       |
| KRS-WHS-COMP-1      | 1.58     | 5.08     | 2.58       | 2.78       |
| KRS-WHS-COMP-2      | 1.50     | 4.48     | 2.40       | 2.60       |
| mean                | 1.54     | 4.78     | 2.49       | 2.69       |
| Augusta             |          |          |            |            |
| KRA-SMB-01          | 0.79     | 1.02     | 1.07       | 1.82       |
| KRA-SMB-02          | 0.44     | 0.45     | 0.58       | 0.99       |
| CRA-SMB-03          | 0.89     | 1.11     | 1.21       | 2.05       |
| CRA-SMB-04          | 0.54     | 0.66     | 0.73       | 1.24       |
| RA-SMB-05           | 0.58     | 0.76     | 0.79       | 1.34       |
| ean                 | 0.65     | 0.80     | 0.88       | 1.49       |
| RA-WHS-COMP-01      | 2.06     | 7.53     | 3.47       | 3.75       |
| CRA-WHS-COMP-02     | 1.76     | 7.56     | 3.11       | 3.35       |
| ean                 | 1.91     | 7.55     | 3.29       | 3.55       |
| Richmond            |          |          |            |            |
| CRR-EEL-COMP-01     | 0.62     | 0.20     | 0.77       | 1.31       |
| (RR-EEL-01          | 0.86     | 0.19     | 1.06       | 1.79       |
| nean                | 0.64     | 0.20     | 0.80       | 1.35       |
| hippsburg           |          |          |            |            |
| KRP-LOB-MEAT 01     | 0.21     | 1.35     | 0.35       | 1.30       |
| RP-LOB-MEAT 02      | 0.19     | 1.10     | 0.30       | 1.10       |
| mean                | 0.20     | 1.23     | 0.33       | 1.20       |
| KRP-LOB-TOMALLEY 0: |          | 83.20    | 26.70      | 26.90      |
| KRP-LOB-TOMALLEY 0: |          | 88.20    | 28.30      | 28.40      |
| mean                | 7.94     | 85.70    | 27.50      | 27.65      |

| Field ID            | 2378TCDD | 2378TCDF | TEQ<br>(a) | TEQ<br>(b) |
|---------------------|----------|----------|------------|------------|
| PENOBSCOT RIVER     |          |          |            |            |
| South Lincoln       |          |          |            |            |
| PBL-SMB-COMP-1      | 1.35     | 3.97     | 1.99       | 2.33       |
| PBL-SMB-COMP-2      | 1.03     | 2.29     | 1.43       | 1.68       |
| PBL-SMB-COMP-3      | 1.02     | 2.11     | 1.40       | 1.64       |
| PBL-SMB-COMP-4      | 0.55     | 1.03     | 0.74       | 0.87       |
| PBL-SMB-09          | 1.96     | 2.09     | 2.46       | 2.89       |
| mean                | 1.10     | 2.32     | 1.51       | 1.78       |
| PBL-WHS-COMP-01     | 1.69     | 12.70    | 3.44       | 3.48       |
| PBL-WHS-COMP-02     | 1.77     | 13.50    | 3.63       | 3.67       |
| mean                | 1.73     | 13.10    | 3.53       | 3.58       |
| Veazie              |          |          |            |            |
| PBV-SMB-COMP 1      | 0.53     | 2.01     | 0.73       | 1.40       |
| PBV-SMB-COMP-2      | 0.74     | 2.40     | 1.07       | 1.20       |
| PBV-SMB-COMP-3      | 1.05     | 1.80     | 1.35       | 1.52       |
| PBV-SMB-COMP-4      | 0.20     | 0.44     | 0.27       | 0.30       |
| PBV-SMB-COMP-5      | 0.35     | 0.80     | 0.47       | 0.53       |
| mean                | 0.57     | 1.49     | 0.78       | 0.99       |
| PBV-WHS-COMP-O3     | 1.18     | 12.30    | 2.73       | 3.20       |
| PBV-WHS-COMP-04     | 1.10     | 12.50    | 2.73       | 2.76       |
| mean                | 1.14     | 12.40    | 2.73       | 2.98       |
| Bangor              |          |          |            |            |
| PBB-EEL-COMP-01     | 1.03     | 0.16     | 1.15       | 1.29       |
| PBB-EEL-COMP-02     | 0.92     | 0.20     | 1.03       | 1.16       |
| mean                | 0.98     | 0.18     | 1.09       | 1.23       |
| Stockton Springs    |          |          |            |            |
| PBS-LOB-MEAT 01     | 0.13     | 1.21     | 0.35       | 1.20       |
| PBS-LOB-MEAT 02     | 0.10     | 0.61     | 0.17       | 1.00       |
| mean                | 0.12     | 0.91     | 0.26       | 1.10       |
| PBS-LOB-TOMALLEY 01 | 4.28     | 56.60    | 30.60      | 30.70      |
| PBS-LOB-TOMALLEY 02 | 3.63     | 48.50    | 25.30      | 25.40      |
| mean                | 3.96     | 52.55    | 27.95      | 28.05      |

| PRESUMPSCOT RIVER   Windham   PRU-SMB-COMP-4   ND (.08)   0.25   0.03   0.22   PRU-SMB-COMP-5   ND (.11)   0.53   0.05   0.36   mean   ND (.09)   0.39   0.04   0.29   PRU-WSU-COMP 1   0.25   1.88   0.58   0.67   PRU-WSU-COMP 2   0.39   2.48   0.84   0.98   mean   0.32   2.18   0.71   0.83   Mestbrook                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pield ID            | 2378TCDD   | 2378TCDF | TEQ<br>(a) | TEQ   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|----------|------------|-------|
| PRU-SMB-COMP-4 ND(.08) 0.25 0.03 0.22 PRU-SMB-COMP-5 ND(.11) 0.53 0.05 0.36 mean ND(.09) 0.39 0.04 0.29 PRU-WSU-COMP 1 0.25 1.88 0.58 0.67 PRU-WSU-COMP 2 0.39 2.48 0.84 0.98 mean 0.32 2.18 0.71 0.83 Westbrook  PRW-SMB-01 ND(.16) 0.93 0.12 0.50 PRW-WHS-COMP-1 1.68 4.83 2.16 2.77 PRW-WHS-COMP-2 0.51 6.39 1.51 1.77 mean 1.10 5.61 1.84 2.27 Portland  PRP-LOB-MEAT-01 ND(.09) 0.40 0.04 0.90 PRP-LOB-MEAT-02 0.10 0.60 0.16 0.80 mean 0.10 0.50 0.10 0.80 PRP-LOB-TOMALLEY 3.66 43.60 20.50 20.60 PRP-LOB-TOMALLEY 3.20 38.80 16.60 16.80 mean 3.43 41.20 18.55 18.70 SCB-LOB-MEAT 02 0.09 0.45 0.14 0.80 mean 0.08 0.37 0.08 0.80 SCB-LOB-MEAT 02 0.09 0.45 0.14 0.80 mean 0.08 0.37 0.08 0.80 SCB-LOB-TOMALLEY 01 2.05 28.00 12.20 15.80 SCB-LOB-TOMALLEY 01 18.95 25.90 10.40 13.40 | PRESUMPSCOT RIVER   |            |          |            |       |
| PRU-SMB-COMP-5         ND(.11)         0.53         0.05         0.36           mean         ND(.09)         0.39         0.04         0.29           PRU-WSU-COMP 1         0.25         1.88         0.58         0.67           PRU-WSU-COMP 2         0.39         2.48         0.84         0.98           mean         0.32         2.18         0.71         0.83           Westbrook           PRW-SMB-01         ND(.16)         0.93         0.12         0.50           PRW-WHS-COMP-1         1.68         4.83         2.16         2.77           PRW-WHS-COMP-1         1.68         4.83         2.16         2.77           mean         1.10         5.61         1.84         2.27           Portland           PRP-LOB-MEAT-01         ND(.09)         0.40         0.04         0.90           PRP-LOB-MEAT-01         ND(.09)         0.40         0.04         0.90           PRP-LOB-TOMALLEY         3.66         43.60         20.50         20.60           PRP-LOB-TOMALLEY         3.20         38.80         16.60         16.80           Mean         3.43                                                                                                                                                                                             | Windham             |            |          |            |       |
| mean         ND(.09)         0.39         0.04         0.29           PRU-WSU-COMP 1         0.25         1.88         0.58         0.67           PRU-WSU-COMP 2         0.39         2.48         0.84         0.98           mean         0.32         2.18         0.71         0.83           Westbrook           PRW-SMB-01         ND(.16)         0.93         0.12         0.50           PRW-SMB-COMP-1         1.68         4.83         2.16         2.77           PRW-WHS-COMP-2         0.51         6.39         1.51         1.77           mean         1.10         5.61         1.84         2.27           Portland           PRP-LOB-MEAT-01         ND(.09)         0.40         0.04         0.90           PRP-LOB-MEAT-02         0.10         0.60         0.16         0.80           mean         0.10         0.50         0.10         0.80           PRP-LOB-TOMALLEY         3.66         43.60         20.50         20.60           PRP-LOB-TOMALLEY         3.20         38.80         16.60         16.80           mean         3.43         41.20         18.55         18.70                                                                                                                                                                   | PRU-SMB-COMP-4      | ND(.08)    | 0.25     | 0.03       | 0.22  |
| PRU-WSU-COMP 1 0.25 1.88 0.58 0.67 PRU-WSU-COMP 2 0.39 2.48 0.84 0.98 mean 0.32 2.18 0.71 0.83  Westbrook  PRW-SMB-01 ND(.16) 0.93 0.12 0.50  PRW-WHS-COMP-1 1.68 4.83 2.16 2.77 PRW-WHS-COMP-2 0.51 6.39 1.51 1.77 mean 1.10 5.61 1.84 2.27  Portland  PRP-LOB-MEAT-01 ND(.09) 0.40 0.04 0.90 PRP-LOB-MEAT-02 0.10 0.60 0.16 0.80 mean 0.10 0.50 0.10 0.80  PRP-LOB-TOMALLEY 3.66 43.60 20.50 20.60 PRP-LOB-TOMALLEY 3.20 38.80 16.60 16.80 mean 3.43 41.20 18.55 18.70  Saco Bay  Scarborough  SCB-LOB-MEAT 01 ND(.08) 0.29 0.03 0.80 SCB-LOB-MEAT 02 0.09 0.45 0.14 0.80 mean 0.08 0.37 0.08 0.80  SCB-LOB-TOMALLEY 01 2.05 28.00 12.20 15.80                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PRU-SMB-COMP-5      | ND(.11)    | 0.53     | 0.05       | 0.36  |
| PRU-WSU-COMP 2         0.39         2.48         0.84         0.98           mean         0.32         2.18         0.71         0.83           Westbrook           PRW-SMB-01         ND(.16)         0.93         0.12         0.50           PRW-SMB-01         ND(.16)         0.93         0.12         0.50           PRW-WHS-COMP-1         1.68         4.83         2.16         2.77           PRW-WHS-COMP-2         0.51         6.39         1.51         1.77           mean         1.10         5.61         1.84         2.27           Portland           PRP-LOB-MEAT-01         ND(.09)         0.40         0.04         0.90           PRP-LOB-MEAT-02         0.10         0.60         0.16         0.80           mean         0.10         0.50         0.10         0.80           PRP-LOB-TOMALLEY         3.66         43.60         20.50         20.60           PRP-LOB-TOMALLEY         3.20         38.80         16.60         16.80           mean         3.43         41.20         18.55         18.70           SCB-LOB-MEAT 01         ND(.08)         0.29         0.03 <td< td=""><td>mean</td><td>ND(.09)</td><td>0.39</td><td>0.04</td><td>0.29</td></td<>                                                                                | mean                | ND(.09)    | 0.39     | 0.04       | 0.29  |
| mean         0.32         2.18         0.71         0.83           Westbrook           PRW-SMB-01         ND(.16)         0.93         0.12         0.50           PRW-WHS-COMP-1         1.68         4.83         2.16         2.77           PRW-WHS-COMP-2         0.51         6.39         1.51         1.77           mean         1.10         5.61         1.84         2.27           Portland           PRP-LOB-MEAT-01         ND(.09)         0.40         0.04         0.90           PRP-LOB-MEAT-02         0.10         0.60         0.16         0.80           mean         0.10         0.50         0.10         0.80           PRP-LOB-TOMALLEY         3.66         43.60         20.50         20.60           PRP-LOB-TOMALLEY         3.20         38.80         16.60         16.80           mean         3.43         41.20         18.55         18.70           SCB-LOB-MEAT 01         ND(.08)         0.29         0.03         0.80           SCB-LOB-MEAT 02         0.09         0.45         0.14         0.80           mean         0.08         0.37         0.08         0.80 <td>PRU-WSU-COMP 1</td> <td>0.25</td> <td>1.88</td> <td>0.58</td> <td>0.67</td>                                                                                 | PRU-WSU-COMP 1      | 0.25       | 1.88     | 0.58       | 0.67  |
| Westbrook         PRW-SMB-01       ND(.16)       0.93       0.12       0.50         PRW-WHS-COMP-1       1.68       4.83       2.16       2.77         PRW-WHS-COMP-2       0.51       6.39       1.51       1.77         mean       1.10       5.61       1.84       2.27         Portland         PRP-LOB-MEAT-01       ND(.09)       0.40       0.04       0.90         PRP-LOB-MEAT-02       0.10       0.60       0.16       0.80         mean       0.10       0.50       0.10       0.80         PRP-LOB-TOMALLEY       3.66       43.60       20.50       20.60         PRP-LOB-TOMALLEY       3.20       38.80       16.60       16.80         mean       3.43       41.20       18.55       18.70         SACO BAY         SCB-LOB-MEAT 01       ND(.08)       0.29       0.03       0.80         SCB-LOB-MEAT 02       0.09       0.45       0.14       0.80         mean       0.08       0.37       0.08       0.80         SCB-LOB-TOMALLEY 01       2.05       28.00       12.20       15.80         SCB-LOB-TOMALLEY 02                                                                                                                                                                                                                                                | PRU-WSU-COMP 2      | 0.39       | 2.48     |            |       |
| PRW-SMB-01 ND(.16) 0.93 0.12 0.50  PRW-WHS-COMP-1 1.68 4.83 2.16 2.77  PRW-WHS-COMP-2 0.51 6.39 1.51 1.77  mean 1.10 5.61 1.84 2.27  Portland  PRP-LOB-MEAT-01 ND(.09) 0.40 0.04 0.90  PRP-LOB-MEAT-02 0.10 0.60 0.16 0.80  mean 0.10 0.50 0.10 0.80  PRP-LOB-TOMALLEY 3.66 43.60 20.50 20.60  PRP-LOB-TOMALLEY 3.20 38.80 16.60 16.80  mean 3.43 41.20 18.55 18.70  SACO BAY  SCB-LOB-MEAT 01 ND(.08) 0.29 0.03 0.80  SCB-LOB-MEAT 02 0.09 0.45 0.14 0.80  mean 0.08 0.37 0.08 0.80  SCB-LOB-TOMALLEY 01 2.05 28.00 12.20 15.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mean                | 0.32       | 2.18     | 0.71       | 0.83  |
| PRW-WHS-COMP-1 1.68 4.83 2.16 2.77 PRW-WHS-COMP-2 0.51 6.39 1.51 1.77 mean 1.10 5.61 1.84 2.27  Portland  PRP-LOB-MEAT-01 ND(.09) 0.40 0.04 0.90 PRP-LOB-MEAT-02 0.10 0.60 0.16 0.80 mean 0.10 0.50 0.10 0.80  PRP-LOB-TOMALLEY 3.66 43.60 20.50 20.60 PRP-LOB-TOMALLEY 3.20 38.80 16.60 16.80 mean 3.43 41.20 18.55 18.70  SACO BAY  Scarborough  SCB-LOB-MEAT 01 ND(.08) 0.29 0.03 0.80 SCB-LOB-MEAT 02 0.09 0.45 0.14 0.80 mean 0.08 0.37 0.08 0.80  SCB-LOB-TOMALLEY 01 2.05 28.00 12.20 15.80 SCB-LOB-TOMALLEY 01 2.05 28.00 12.20 15.80 SCB-LOB-TOMALLEY 01 2.05 28.00 12.20 15.80 SCB-LOB-TOMALLEY 01 1.89 25.90 10.40 13.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Westbrook           |            |          |            |       |
| PRW-WHS-COMP-2         0.51         6.39         1.51         1.77           mean         1.10         5.61         1.84         2.27           Portland           PRP-LOB-MEAT-01         ND(.09)         0.40         0.04         0.90           PRP-LOB-MEAT-02         0.10         0.60         0.16         0.80           mean         0.10         0.50         0.10         0.80           PRP-LOB-TOMALLEY         3.66         43.60         20.50         20.60           PRP-LOB-TOMALLEY         3.20         38.80         16.60         16.80           mean         3.43         41.20         18.55         18.70           SACO BAY           SCB-LOB-MEAT 01         ND(.08)         0.29         0.03         0.80           SCB-LOB-MEAT 02         0.09         0.45         0.14         0.80           mean         0.08         0.37         0.08         0.80           SCB-LOB-TOMALLEY 01         2.05         28.00         12.20         15.80           SCB-LOB-TOMALLEY 02         1.89         25.90         10.40         13.40                                                                                                                                                                                                                    | PRW-SMB-01          | ND(.16)    | 0.93     | 0.12       | 0.50  |
| mean         1.10         5.61         1.84         2.27           Portland           PRP-LOB-MEAT-01         ND(.09)         0.40         0.04         0.90           PRP-LOB-MEAT-02         0.10         0.60         0.16         0.80           mean         0.10         0.50         0.10         0.80           PRP-LOB-TOMALLEY         3.66         43.60         20.50         20.60           PRP-LOB-TOMALLEY         3.20         38.80         16.60         16.80           mean         3.43         41.20         18.55         18.70           SACO BAY           SCB-LOB-MEAT 01         ND(.08)         0.29         0.03         0.80           SCB-LOB-MEAT 02         0.09         0.45         0.14         0.80           mean         0.08         0.37         0.08         0.80           SCB-LOB-TOMALLEY 01         2.05         28.00         12.20         15.80           SCB-LOB-TOMALLEY 02         1.89         25.90         10.40         13.40                                                                                                                                                                                                                                                                                                 | PRW-WHS-COMP-1      | 1.68       | 4.83     | 2.16       | 2.77  |
| PRP-LOB-MEAT-01 ND(.09) 0.40 0.04 0.90 PRP-LOB-MEAT-02 0.10 0.60 0.16 0.80 mean 0.10 0.50 0.10 0.80 PRP-LOB-TOMALLEY 3.66 43.60 20.50 20.60 PRP-LOB-TOMALLEY 3.20 38.80 16.60 16.80 mean 3.43 41.20 18.55 18.70 SCB-LOB-MEAT 01 ND(.08) 0.29 0.03 0.80 SCB-LOB-MEAT 02 0.09 0.45 0.14 0.80 mean 0.08 0.37 0.08 0.80 SCB-LOB-TOMALLEY 01 2.05 28.00 12.20 15.80 SCB-LOB-TOMALLEY 01 2.05 28.00 12.20 15.80 SCB-LOB-TOMALLEY 01 18.9 25.90 10.40 13.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PRW-WHS-COMP-2      | 0.51       | 6.39     | 1.51       | 1.77  |
| PRP-LOB-MEAT-01         ND(.09)         0.40         0.04         0.90           PRP-LOB-MEAT-02         0.10         0.60         0.16         0.80           mean         0.10         0.50         0.10         0.80           PRP-LOB-TOMALLEY         3.66         43.60         20.50         20.60           PRP-LOB-TOMALLEY         3.20         38.80         16.60         16.80           mean         3.43         41.20         18.55         18.70           SACO BAY           SCB-LOB-MEAT 01         ND(.08)         0.29         0.03         0.80           SCB-LOB-MEAT 02         0.09         0.45         0.14         0.80           mean         0.08         0.37         0.08         0.80           SCB-LOB-TOMALLEY 01         2.05         28.00         12.20         15.80           SCB-LOB-TOMALLEY 02         1.89         25.90         10.40         13.40                                                                                                                                                                                                                                                                                                                                                                                       | mean                | 1.10       | 5.61     | 1.84       | 2.27  |
| PRF-LOB-MEAT-02         0.10         0.60         0.16         0.80           mean         0.10         0.50         0.10         0.80           PRP-LOB-TOMALLEY         3.66         43.60         20.50         20.60           PRP-LOB-TOMALLEY         3.20         38.80         16.60         16.80           mean         3.43         41.20         18.55         18.70           SACO BAY           SCB-LOB-MEAT 01         ND(.08)         0.29         0.03         0.80           SCB-LOB-MEAT 02         0.09         0.45         0.14         0.80           mean         0.08         0.37         0.08         0.80           SCB-LOB-TOMALLEY 01         2.05         28.00         12.20         15.80           SCB-LOB-TOMALLEY 02         1.89         25.90         10.40         13.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Portland            |            |          |            |       |
| mean         0.10         0.50         0.10         0.80           PRP-LOB-TOMALLEY         3.66         43.60         20.50         20.60           PRP-LOB-TOMALLEY         3.20         38.80         16.60         16.80           mean         3.43         41.20         18.55         18.70           SACO BAY           SCB-LOB-MEAT 01         ND(.08)         0.29         0.03         0.80           SCB-LOB-MEAT 02         0.09         0.45         0.14         0.80           mean         0.08         0.37         0.08         0.80           SCB-LOB-TOMALLEY 01         2.05         28.00         12.20         15.80           SCB-LOB-TOMALLEY 02         1.89         25.90         10.40         13.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PRP-LOB-MEAT-01     | ND(.09)    | 0.40     | 0.04       | 0.90  |
| PRP-LOB-TOMALLEY         3.66         43.60         20.50         20.60           PRP-LOB-TOMALLEY         3.20         38.80         16.60         16.80           mean         3.43         41.20         18.55         18.70           SACO BAY           SCB-LOB-MEAT 01         ND(.08)         0.29         0.03         0.80           SCB-LOB-MEAT 02         0.09         0.45         0.14         0.80           mean         0.08         0.37         0.08         0.80           SCB-LOB-TOMALLEY 01         2.05         28.00         12.20         15.80           SCB-LOB-TOMALLEY 02         1.89         25.90         10.40         13.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PRP-LOB-MEAT-02     | 0.10       | 0.60     | 0.16       | 0.80  |
| PRP-LOB-TOMALLEY         3.20         38.80         16.60         16.80           mean         3.43         41.20         18.55         18.70           SACO BAY           SCB-LOB-MEAT 01         ND(.08)         0.29         0.03         0.80           SCB-LOB-MEAT 02         0.09         0.45         0.14         0.80           mean         0.08         0.37         0.08         0.80           SCB-LOB-TOMALLEY 01         2.05         28.00         12.20         15.80           SCB-LOB-TOMALLEY 02         1.89         25.90         10.40         13.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mean                | 0.10       | 0.50     | 0.10       | 0.80  |
| mean       3.43       41.20       18.55       18.70         SACO BAY         SCB-LOB-MEAT 01       ND(.08)       0.29       0.03       0.80         SCB-LOB-MEAT 02       0.09       0.45       0.14       0.80         mean       0.08       0.37       0.08       0.80         SCB-LOB-TOMALLEY 01       2.05       28.00       12.20       15.80         SCB-LOB-TOMALLEY 02       1.89       25.90       10.40       13.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PRP-LOB-TOMALLEY    | 3.66       | 43.60    | 20.50      | 20.60 |
| SACO BAY         SCB-LOB-MEAT 01 ND(.08) 0.29 0.03 0.80         SCB-LOB-MEAT 02 0.09 0.45 0.14 0.80         mean 0.08 0.37 0.08 0.80         SCB-LOB-TOMALLEY 01 2.05 28.00 12.20 15.80         SCB-LOB-TOMALLEY 02 1.89 25.90 10.40 13.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PRP-LOB-TOMALLEY    | 3.20       | 38.80    | 16.60      | 16.80 |
| Scarborough         SCB-LOB-MEAT 01       ND(.08)       0.29       0.03       0.80         SCB-LOB-MEAT 02       0.09       0.45       0.14       0.80         mean       0.08       0.37       0.08       0.80         SCB-LOB-TOMALLEY 01       2.05       28.00       12.20       15.80         SCB-LOB-TOMALLEY 02       1.89       25.90       10.40       13.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mean                | 3.43       | 41.20    | 18.55      | 18.70 |
| SCB-LOB-MEAT 01         ND(.08)         0.29         0.03         0.80           SCB-LOB-MEAT 02         0.09         0.45         0.14         0.80           mean         0.08         0.37         0.08         0.80           SCB-LOB-TOMALLEY 01         2.05         28.00         12.20         15.80           SCB-LOB-TOMALLEY 02         1.89         25.90         10.40         13.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SACO BAY            |            |          |            |       |
| SCB-LOB-MEAT 02         0.09         0.45         0.14         0.80           mean         0.08         0.37         0.08         0.80           SCB-LOB-TOMALLEY 01         2.05         28.00         12.20         15.80           SCB-LOB-TOMALLEY 02         1.89         25.90         10.40         13.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Scarborough         |            |          |            |       |
| SCB-LOB-MEAT 02         0.09         0.45         0.14         0.80           mean         0.08         0.37         0.08         0.80           SCB-LOB-TOMALLEY 01         2.05         28.00         12.20         15.80           SCB-LOB-TOMALLEY 02         1.89         25.90         10.40         13.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SCR-LOB-MEAT 01     | ND ( . 08) | 0.29     | 0.03       | 0.80  |
| mean       0.08       0.37       0.08       0.80         SCB-LOB-TOMALLEY 01       2.05       28.00       12.20       15.80         SCB-LOB-TOMALLEY 02       1.89       25.90       10.40       13.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |            |          |            |       |
| SCB-LOB-TOMALLEY 02 1.89 25.90 10.40 13.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |            |          |            |       |
| SCB-LOB-TOMALLEY 02 1.89 25.90 10.40 13.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SCR-LOR-TOMALLEY 01 | 2 05       | 28 00    | 12.20      | 15.80 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |            |          |            |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |            |          |            |       |

| Field ID                                                                                                                                                                                                     | 2378TCDD                                                                                | 2378TCDF                   | TEQ<br>(a)                     | TEQ<br>(b)        |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------|--------------------------------|-------------------|--|--|
| SALMON FALLS RIV                                                                                                                                                                                             | /ER                                                                                     |                            |                                |                   |  |  |
| S Berwick                                                                                                                                                                                                    |                                                                                         |                            |                                |                   |  |  |
| SLF-SMB-01                                                                                                                                                                                                   | 0.22                                                                                    | 0.23                       | 0.24                           | 0.90              |  |  |
| SLF-WHS-COMP-01                                                                                                                                                                                              | 2.20                                                                                    | 4.61                       | 4.85                           | 5.00              |  |  |
| SLF-WHS-COMP-02                                                                                                                                                                                              | 1.60                                                                                    | 3.39                       | 2.39                           | 2.59              |  |  |
| mean                                                                                                                                                                                                         | 1.90                                                                                    | 4.00                       | 3.62                           | 3.80              |  |  |
|                                                                                                                                                                                                              |                                                                                         | •                          |                                |                   |  |  |
| SEBASTICOOK RIVE                                                                                                                                                                                             | ER                                                                                      |                            |                                |                   |  |  |
| Palmyra W Branch                                                                                                                                                                                             | ı                                                                                       |                            |                                |                   |  |  |
| SBW-SMB-01                                                                                                                                                                                                   | 1.60                                                                                    | 0.72                       | 2.76                           | 3.58              |  |  |
| SBW-SMB-02                                                                                                                                                                                                   | 0.60                                                                                    | 0.26                       | 0.70                           | 0.89              |  |  |
| SBW-SMB-03                                                                                                                                                                                                   | 0.71                                                                                    | 0.28                       | 0.83                           | 1.05              |  |  |
| SBW-SMB-04                                                                                                                                                                                                   | 0.85                                                                                    | 0.35                       | 0.99                           | 1.26              |  |  |
| SBW-SMB-05                                                                                                                                                                                                   | 0.72                                                                                    | 0.27                       | 0.83                           | 1.06              |  |  |
| mean                                                                                                                                                                                                         | 0.89                                                                                    | 0.38                       | 1.22                           | 1.57              |  |  |
| SBW-WHS-COMP-01                                                                                                                                                                                              | 1.01                                                                                    | 0.96                       | 3.90                           | 3.96              |  |  |
| SBW-WHS-COMP-02                                                                                                                                                                                              | 0.99                                                                                    | 0.94                       | 1.33                           | 1.44              |  |  |
| mean                                                                                                                                                                                                         | 1.00                                                                                    | 0.95                       | 2.62                           | 2.70              |  |  |
|                                                                                                                                                                                                              |                                                                                         |                            |                                |                   |  |  |
| Method Blank b1                                                                                                                                                                                              | ND(.10)                                                                                 | ND(.08)                    |                                |                   |  |  |
| Method Blank b2                                                                                                                                                                                              | ND(.08)                                                                                 | ND(.07)                    |                                |                   |  |  |
| Method Blank b3                                                                                                                                                                                              | R ND(.04)                                                                               | ND(.05)                    |                                |                   |  |  |
| Method Blank b4                                                                                                                                                                                              | ND(.08)                                                                                 | ND(.08)                    |                                |                   |  |  |
| Method Blank b6                                                                                                                                                                                              | ND(.11)                                                                                 | ND(.10)                    |                                |                   |  |  |
| Method Blank b7                                                                                                                                                                                              | ND(.08)                                                                                 | ND(.08)                    |                                |                   |  |  |
| (a) TEQ Estimated Toxic Equivalents using EPA (1989) Toxic Equivalency Factors (TEF) at ND = 0, and 1991 full congener analysis at 1. same site, 2. n upstream site, 3. nearest down stream site or 4. state |                                                                                         |                            |                                |                   |  |  |
| E c                                                                                                                                                                                                          | stimated Toxic Equi<br>quivalency Factors<br>nd 1991 full congen<br>ostream site, 3. ne | (TEF) at ND<br>er analysis | = detection l<br>at 1. same si | imit,<br>te, 2. n |  |  |

## APPENDIX 3 2378-TCDD AND 2378-TCDF IN SLUDGE FROM MAINE WASTEWATER TREATMENT PLANTS

APPENDIX 3. DIOXIN AND FURAN IN SLUDGE FROM MAINE WASTEWATER TREATMENT PLANTS (pg/g dry weight)

| LOCATION               | DATE   | %MOIST           | TCDD  | TCDF  | TEQ   |
|------------------------|--------|------------------|-------|-------|-------|
| AUGUSTA SANITARY       | 900409 |                  | <1.2  | <1.3  | 1.3   |
| DISTRICT               | 900607 |                  | <3.9  | 2.5   | <4.2  |
|                        | 900914 |                  | <20.0 | E20.0 | <22.0 |
|                        | 910220 |                  | <1.9  | 0.79  | <11.1 |
| ANSON-MADISON SANITARY | 910408 |                  | <1.3  | 2.2   | <1.5  |
| DISTRICT               | 911001 |                  | 1.7   | 4.6   | 2.2   |
| BERWICK SEWER DISTRICT | 861111 |                  | <2.5  | <4.0  | <2.9  |
|                        | 890301 | 76. <del>4</del> | 14    | 19.9  | 16.1  |
|                        | 890927 | 75.3             | <12.1 | <12.1 | <13.4 |
|                        | 891208 | 87.5             | 1152  | 872   | 40    |
| BIDDEFORD              | 910513 |                  | <0.86 | 3.7   | 8.0   |
|                        | 910703 |                  | <0.57 | <0.95 | <2.9  |
|                        | 920204 |                  | <1.5  | 2.9   | <9.4  |
|                        | 930121 |                  | <2.4  | <3.2  | <11.4 |
| BOISE CASCADE CORP     | 850621 |                  | 32.0  |       |       |
| RUMFORD                | 880602 |                  | 105.0 | 674.0 | 171.4 |
|                        | 890108 | 77.1             | 114   | 569   | 171   |
|                        | 890407 | 73.1             | 46.5  | 184   | 65.1  |
|                        | 890628 | 76.8             | E9.91 | 134   | E23.3 |
| BREWER                 | 920316 |                  | <1.0  | 6.1   | <5.0  |
|                        | 920901 |                  | <6.0  | 110   | <43.1 |
|                        | 921116 |                  | 3.8   | 19    | <10.7 |
|                        | 930202 |                  | <3.7  | 11    | <18.0 |
|                        | 930511 |                  | 1.2   | 9.8   | <8.7  |
|                        | 930826 |                  | 4.1   | 25    | <11.3 |
| CORINNA SEWER DISTRICT | 850506 |                  | 10.3  |       |       |
|                        | 871117 |                  | 31.7  |       |       |
|                        | 880302 |                  | 3.18  |       |       |
|                        | 890222 |                  | 64.1  |       |       |
|                        | 890510 |                  | 2.24  |       |       |
|                        | 900606 |                  | 26.5  |       |       |
|                        | 900919 |                  | 11.2  |       |       |
|                        | 910313 |                  | 29.2  |       |       |
|                        | 910514 |                  | 13.9  |       |       |
|                        | 930405 |                  | 6.7   |       |       |
| FRASER PAPER LTD       | 880903 | 68.3             | 13.9  | 233   | 37.2  |
| MADAWASKA              | 890106 | 79.1             | E23.4 | 204   | E44   |
|                        | 890406 | 71.3             | E3.83 | 12.9  | 5.23  |
|                        | 890930 | 80.1             | 5.02  | E26.6 | 7.54  |

| APPENDIX<br>LOCATION |       |     |
|----------------------|-------|-----|
| GARDINER             | WATER | DIS |

| APPENDIX 3. (CONT.)                     |                                         |          |              |          |       |
|-----------------------------------------|-----------------------------------------|----------|--------------|----------|-------|
| LOCATION                                | DATE                                    | *MOIST   | TCDD         | TCDF     | TEQ   |
|                                         |                                         |          |              |          |       |
| GARDINER WATER DISTRIC                  | 900818                                  |          | <0.87        | 4.6      | <1.33 |
|                                         | 910401                                  |          | 1.4          | 4.4      | <1.84 |
|                                         | 920504                                  |          | <3.5         | 9.4      | <6.6  |
|                                         | 921116                                  |          | 0.9          | 6.4      | 4.8   |
|                                         | 930407                                  |          | <0.13        | 0.92     | <0.8  |
|                                         | 931115                                  |          | <0.3         | <3.3     | <2.2  |
| GEORGIA PACIFIC CO                      |                                         |          |              |          |       |
| MILLINOCKET                             | 850618                                  |          | <0.4         |          |       |
|                                         | 891217                                  |          | 0.94         | 3.2      | 2.4   |
| WOODLAND                                | 880602                                  |          | <1.9         | 7.3      | <2.6  |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 890113                                  | 75.8     | <6.2         | <3.55    | <6.61 |
|                                         | 890424                                  | 74.7     | <0.63        | <4.74    | <5.53 |
|                                         | 890718                                  | 66.0     | <1.76        | 12.94    | <38.1 |
|                                         | 030710                                  | 55.0     | <b>11.70</b> | 12.51    | 130.1 |
| HARTLAND WASTEWATER                     | 881007                                  | 65.0     | <2.86        | <1.71    | <2.86 |
| TREATMENT PLANT                         | 881221                                  | 65.5     | <7.25        | E6.09    | <7.83 |
|                                         | 890312                                  | 64.3     | <0.28        | 5.6      | <0.84 |
|                                         | 890627                                  | 63.3     | <1.36        | 6.54     | <1.91 |
| HAWK RIDGE COMPOST                      | 1989-90                                 | mean n=6 | 6.6          | 15.9     | 8.2   |
| UNITY                                   | 1991                                    | (1.6-13) |              | mean n=4 | 6.6   |
| (compost)                               | 920101                                  | (2.0 20) | 2.6          | 18       | 17.5  |
| (00                                     | 920301                                  |          | _,,          |          | 14.9  |
|                                         | 920715                                  |          | <2.0         | 34       | 19.4  |
|                                         | 921007                                  |          | 2.2          | 23       | 10.8  |
|                                         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |          |              |          |       |
| INTERNATIONAL PAPER CO                  | 850621                                  |          | 51.3W        |          |       |
| JAY                                     | 870115                                  |          | 190          | 760      | 266   |
|                                         | 880218                                  |          | 24           | 130      | 39    |
|                                         | 880219                                  |          | 23           | 121      | 34.1  |
|                                         | 880223                                  |          | 14           | 75       | 21.5  |
|                                         | 880225                                  |          | 57           | 250      | 82    |
|                                         | 880226                                  |          | 15           | 79       | 22.9  |
|                                         | 880227                                  |          | 13           | 79       | 20.9  |
|                                         | 881231                                  |          | 16.6W        | 143W     | 30.9W |
|                                         | 890124                                  |          | 15W          | 77W      | 22.7W |
|                                         | 890126                                  |          | 28           | 112      | 39.2  |
|                                         | 890214                                  | ash      |              | 0.63     | 0.2   |
|                                         | 890323                                  |          | 7.7W         | 42.6W    | 12.0W |
|                                         | 890417                                  |          | 24           | 150      | 39.0  |
|                                         | 890714                                  | ash      | 0.07         | 0.02     | 0.1   |
|                                         | 891012                                  | ash      | 0.14         | <.02     | <0.14 |
|                                         | 891231                                  | ash      | 0.06         | <0.62    | <0.12 |
|                                         | 900205                                  |          | <18.7        | 150      | <33.7 |
|                                         | 900402                                  | ash      | 0.05         | <0.02    | 0.05  |
|                                         | 900501                                  | ash      | <0.71        | 0.03     | <0.71 |
|                                         | 900614                                  | ash      | <0.60        | 0.36     | <0.60 |
|                                         | 901201                                  | ash      | <2.4         | 0.12     | <2.41 |
|                                         | 910117                                  | ash      | <3.9         | 0.15     | <3.91 |
|                                         | 910701                                  | ash      | <0.44        | <0.1     | <1.07 |
|                                         | 910801                                  | ash      | <0.44        | <1.0     | <0.03 |
|                                         | 911121                                  | ash      | <1.9         | <1.9     | <0.07 |
|                                         |                                         |          |              |          |       |

APPENDIX 3. (CONT.)

| LOCATION               | DATE   | %MOIST | TCDD  | TCDF     | TEQ    |
|------------------------|--------|--------|-------|----------|--------|
| INTERNATIONAL PAPER CO | 920129 | ash    | <1.0  | 0.14     | <0.52  |
| JAY YAG                | 920520 | ash    | <1.0  | 0.15     | <0.75  |
|                        | 920708 | ash    | <1.6  | 0.35     | <0.61  |
|                        | 921030 | ash    | <2.2  | <4.8     | <0.56  |
|                        | 930113 | ash    | <1.7  | <1.7     | <0.11  |
|                        | 930602 | ash    | <0.9  | 0.22     | < 0.39 |
|                        | 930812 | ash    | <1.1  | <1.1     | <0.04  |
|                        | 931104 | ash    | <1.5  | <1.5     | <0.15  |
| JAMES RIVER CORP       | 880801 |        | 12.0  | 34.0     | 15.4   |
| OLD TOWN               | 881225 | 78.6   | 301   | 963      | 398    |
|                        | 890423 | 78.7   | 380   | 1197     | 499    |
|                        | 890718 | 68.8   | 50.6  | 478      | 98.4   |
| BERLIN, NH             | 88     |        | 104   | 2930     | 397    |
| KENNEBEC SANITARY      | 870713 |        |       |          | 38.5   |
| TREATMENT DISTRICT     | 871105 |        |       |          | 10.2   |
| WATERVILLE             | 880118 |        |       |          | 7.2    |
|                        | 880322 |        |       |          | 5.4    |
|                        | 880518 |        |       |          | 18.1   |
|                        | 880921 |        |       |          | 3.6    |
|                        | 890711 |        |       |          | 42.2   |
|                        | 891011 |        |       |          | 106.9  |
|                        | 900410 |        | E7.9  | 121      | 20.0   |
|                        | 900824 |        | 3.3   | 54.0     | 12.7   |
|                        | 900909 |        | 3.3   | 24       | <26.0  |
|                        | 901101 |        | 3.6   | 12       | <20.1  |
|                        | 901221 |        | 3.5   | 6.7      | <21.3  |
|                        | 910408 |        | <2.3  | <3.3     | <15.0  |
|                        | 910606 |        | <2.9  | <5.0     | <19.4  |
|                        | 910808 |        | 3.1   | 4.1      | <19.2  |
|                        | 910911 |        | 3.1   | 4.1      | <12.2  |
|                        | 930914 |        | 0.3   | 1.6      | <2.9   |
| LEWISTON-AUBURN        | 871231 |        | <1.0  | for year | (n=4)  |
| TREATMENT PLANT        | 881031 |        | 0.04  |          |        |
|                        | 910306 |        | <3.65 | <3.65    | <4.01  |
|                        | 930622 |        | <2.7  | <2.5     | <3.5   |

APPENDIX 3. (CONT.)

|                                   |                  | *************************************** |            |      | *************************************** |
|-----------------------------------|------------------|-----------------------------------------|------------|------|-----------------------------------------|
| LOCATION                          | DATE             | %MOIST                                  | TCDD       | TCDF | TEQ                                     |
| TINCOLN DULD C DADED C            | 001110           |                                         | 48W        | 223W | 70.3W                                   |
| LINCOLN PULP & PAPER C<br>LINCOLN | 881119<br>890123 | 80.9                                    | 1194       | 4759 | 1670                                    |
| LINCOLN                           | 890407           | 85.1                                    | 332        | 1470 | 479                                     |
|                                   | 890831           | 83.5                                    | 250        | 1782 | 428                                     |
|                                   | 690631           | 63.5                                    | 230        | 1782 | 420                                     |
| dry wt                            | 921019           | fly ash                                 | 0.8        | 16.8 | 7.2                                     |
| dry wt                            |                  | bottom ash                              | <1.1       | <1.1 | <2.3                                    |
| dry wt                            | 921207           | fly ash                                 | 2.1        | 51.3 | 15.6                                    |
| dry wt                            | 930324           | bottom ash                              | <0.4       | 0.3  | <0.9                                    |
| dry wt                            | 930524           | fly ash                                 | 23.1       | 396  | 170                                     |
| dry wt                            |                  | bottom ash                              | 0.9        | 1    | 2.1                                     |
| dry wt                            | 930713           | fly ash                                 | 17         | 322  | 155                                     |
| dry wt                            | 930812           | fly ash                                 | 4.7        | 124  | 47.4                                    |
| dry wt                            | 931011           | fly ash                                 | 10         | 174  | 80                                      |
| dry wt                            |                  | bottom ash                              | <0.5       | <0.4 | <1.0                                    |
| dry wt                            | 931123           | fly ash                                 | 8.3        | 214  | 96.5                                    |
|                                   |                  |                                         |            |      |                                         |
| OAKLAND TREATMENT PLAN            | 910304           |                                         | <2.5       | 10   | <3.5                                    |
|                                   | 930408           |                                         | <1.0       | <1.0 | <6.6                                    |
|                                   | 000316           |                                         | 2 1        |      |                                         |
| ORONO TREATMENT PLANT             | 900316           |                                         | 2.1        |      |                                         |
|                                   | 901021           |                                         | 3.9<br>8.5 |      |                                         |
|                                   | 900412           |                                         | 16.1       |      |                                         |
|                                   | 911019<br>920328 |                                         | 9.42       |      |                                         |
|                                   | 921015           |                                         | 1.13       |      |                                         |
|                                   | 930427           |                                         | 1.33       |      |                                         |
|                                   | JJ0427           |                                         | 1.55       |      |                                         |
| PORTLAND WATER DISTRIC            | 861205           |                                         |            |      | 3.8                                     |
| PORTLAND                          | 870402           |                                         |            |      | 4.1                                     |
|                                   | 871124           |                                         |            |      | 1.0                                     |
|                                   | 880913           |                                         |            |      | 0.1                                     |
|                                   | 891205           |                                         | E1.2       | 11.3 | 3.6                                     |
|                                   | 901001           |                                         | <3.0       | E10  | 0.6                                     |
|                                   | 920714           |                                         | 0.88       | 6.4  | 5.3                                     |
|                                   | 930719           |                                         | 1.3        | 2.3  | <13.1                                   |
|                                   |                  |                                         |            |      |                                         |
| WESTBROOK                         | 861205           |                                         |            |      | 0.5                                     |
|                                   | 870402           |                                         |            |      | 4.9                                     |
|                                   | 871119           |                                         |            |      | 0.2                                     |
|                                   | 891205           |                                         | E1.6       | 14.5 | 4.9                                     |
|                                   | 901001           |                                         | <3.0       | 9    | 5.5                                     |
|                                   | 920714           |                                         | <1.1       | 7.6  | 3.7                                     |
|                                   | 930719           |                                         | <1.0       | 3.2  | <24                                     |
| DECIONAL WACHE CVCHEMO            | 890111           | ash                                     | 5.5        | 28   | 8.3                                     |
| REGIONAL WASTE SYSTEMS            | 890111           | ash                                     | 6          | 24   | 8.4                                     |
| PORTLAND                          | 890112           | ash                                     | 10         | 50   | 15                                      |
|                                   | 890113           | ash                                     | 10         | 20   | 12                                      |
|                                   | 890121           | ash                                     | 6          | 90   | 15                                      |
|                                   | 900211           | ash                                     | E20        | 210  | E41                                     |
|                                   | ,,,,,,,          | ~~··                                    |            |      |                                         |

APPENDIX 3. (CONT)

| LOCATION               | DATE    | %MOIST | TCDD | TCDF | TEQ   |
|------------------------|---------|--------|------|------|-------|
| ROBINSON MANUFACTURING | 870113  |        | 10.1 | 17.5 | 18.5  |
| OXFORD                 | 880419  |        | <0.4 | <0.2 | <0.4  |
|                        | 881004  |        | <7.3 | <9.6 | <8.2  |
|                        | 890119  |        | <2.1 | <1.1 | <2.2  |
|                        | 910305  |        | <3   | <0.3 | <8.0  |
| SCOTT PAPER CO         | 871008  |        | 36   |      | 49.8  |
| WINSLOW                |         |        | 31   |      | 48.8  |
|                        | 871201  |        | 13.5 |      | 23.7  |
|                        | 880331  |        | 25   | 219  | 52.8  |
| e                      | 880630  |        | 19   | 177  | 38.6  |
|                        | 880930  |        | 22   | 189  | 43.8  |
|                        | 881231  |        | 17   | 181  | 37.1  |
|                        | 890301  | slash  | 9.7  | 89   | 20.3  |
|                        | 890331  |        | 18   | 177  | 38.5  |
|                        | 890630  |        | 14   | 89   | 25.1  |
|                        |         | slash  | 7.4  | 58   | 14.1  |
|                        |         | slash  | 9.5  | 63   | 17.5  |
|                        | 890930  |        | 11   | 67   | 17.7  |
|                        | 910330  |        | 8.3  | 10   | 20.5  |
|                        |         | slash  | 6.9  | 12.3 | 47.1  |
|                        | 910630  |        | 4.6  | 6.2  | 13.4  |
|                        | 22000   | slash  | 8.1  | 16.1 | 28.9  |
|                        | 910930  |        | 6.5  | 6.9  | 15    |
|                        | 2-02-03 | slash  | <1.3 | 42.4 | <10.3 |
|                        | 911230  |        | 6.3  | 6.8  | 14.3  |
| SCOTT PAPER CO         | 920224  |        | 5.9  | 54.2 | 20.4  |
| WINSLOW                |         | slash  | 12.3 | 72.6 | 36.9  |
|                        | 920225  |        | 6.5  | 72.1 | 14.7  |
|                        |         | slash  | 9.4  | 153  | 36.4  |
|                        | 920630  |        | 5.2  | 55   | 12.5  |
|                        |         | slash  | 3.4  | 33   | 11.2  |
|                        | 920930  |        | 5.1  | 60   | 13.2  |
|                        |         | slash  | 2.9  | 29   | 7.6   |
|                        | 921230  |        | 7.2  | 59   | 18.8  |
|                        |         | IWT    | 5.7  | 53   | 13.1  |
|                        |         | slash  | 4.7  | 55   | 17.7  |
|                        | 930322  |        | 4.7  | 50   | 14.2  |
|                        |         | slash  | 7.1  | 91   | 34.8  |
|                        | 930707  |        | 4.2  | 39   | <15.2 |
|                        |         | slash  | 3    | 35   | <12.1 |
|                        | 930928  |        | 3.9  | 42   | 11.3  |
|                        |         | slash  | 6.7  | 80   | 29.1  |

APPENDIX 3. (CONT)

| LOCATION      | DATE   | %MOIST | TCDD  | TCDF       | TEQ    |
|---------------|--------|--------|-------|------------|--------|
| SD WARREN CO  | 850711 |        | <1.95 | pulp mill  | sludge |
| SKOWHEGAN     |        |        | 2.9   | paper mill | _      |
|               | 861217 |        | <     | 47         | 5      |
|               | 870519 |        | 13    | 21         | 15.2   |
|               | 871201 |        | 60    |            | 60.1   |
|               | 880325 |        | 27    | 88         | 39     |
|               | 880628 |        | 33.0  | 106        | 43.6   |
|               |        |        | 6.9   | 29         | 9.8    |
|               |        |        | 39.0  | 149        | 53.9   |
|               |        | EPA    | 67.0  | 330        | 100.0  |
|               | 881014 |        | 40    | 98         | 52.1   |
|               | 881220 |        | 54    | 177        | 76.5   |
|               | 890303 |        | 54    | 91         | 65.6   |
|               | 890629 |        | 23    | 53         | 26     |
|               | 890926 |        | <     | 16         | <1.6   |
|               | 891207 |        | 18    | 52         | 26.4   |
|               | 900316 |        | <     | 23         | 4.9    |
|               | 900622 |        | 35    | 73         | 52.1   |
|               | 900921 |        | 45    | 86         | 68.8   |
|               | 901231 |        | 39.5  | 115        | 57.8   |
|               | 910331 |        | 23.1  | 50.5       | 31.8   |
|               | 910630 |        | 39.4  | 146        | 66.5   |
|               | 910917 |        | 69.9  | 260        | 105.9  |
|               | 920331 |        | 41.2  | 90.4       | <299   |
|               | 920630 |        | 33    | 56         | 48.6   |
|               | 920930 |        | 20    | 39         | 27.1   |
|               | 921230 |        | 15    | 45         | 22.9   |
|               | 930112 |        | 11    | 31         | 16.1   |
|               | 930623 |        | 23    | 73         | 38     |
|               | 930924 |        | 56    | 170        | 78.9   |
| SD WARREN CO. | 850620 |        | 17.2  |            |        |
| WESTBROOK     | 870929 |        | 31    |            | 31.1   |
|               | 871231 |        | 21    | 135        | 34.7   |
|               | 880331 |        | 5.6   | 21         | 7.7    |
|               | 880401 |        | 8.7   | 3.9        | 14.9   |
|               | 880630 |        | 13    | 55         | 18.5   |
|               | 881207 |        | 19    | 127        | 34.2   |
|               |        |        | 19    | 69         | 27.5   |
|               | 890106 |        | <1.8  | 31         | <4.9   |
|               | 890320 |        | 6.2   | 18         | 8.6    |
|               | 890620 |        | 5.3   | 35         | 10.5   |
|               | 890731 |        | 5     | 30         | 16     |
|               | 890831 |        | 8     | 40         | 14.9   |
|               | 890931 |        | 9     | 60         | 17.8   |
|               | 891031 |        | 5     | 30         | 12.9   |
|               | 891130 |        | 3     | 30         | 15.5   |
|               | 891231 |        | 7     | 50         | 15.2   |

APPENDIX 3. (CONT)

| LOCATION          | DATE   | %MOIST | TCDD | TCDF   | TEQ   |
|-------------------|--------|--------|------|--------|-------|
| SD WARREN CO.     | 900131 |        | 6    | 20     | 14.0  |
| WESTBROOK         | 900228 |        | 2.7  | 24.6   | 7.7   |
|                   | 900331 |        | 5.1  | 33.6   | 17.1  |
|                   | 900430 |        | 5.9  | 34.6   | 14.9  |
|                   | 900531 |        | 5.3  | 25.8   | 10.5  |
|                   | 900630 |        | 19.0 | 26.0   | 29.5  |
|                   | 900730 |        | 5.2  | 20.6   | 11.6  |
|                   | 900831 |        | 2.9  | 12.1   | 9.8   |
|                   | 900930 |        | 2.5  | 10     | 7     |
|                   | 901231 |        | 7.7  | 35.7   | 24.8  |
|                   | 910331 |        | 3.4  | 21.5   | 9.1   |
|                   | 910630 |        | 2.9  | 19.6   | 8.4   |
|                   | 910930 |        | 3.8  | 14.2   | 5.22  |
|                   | 911231 |        | 2.4  | 25.1   | 8.2   |
|                   | 920331 |        | 1.2  | 19.4   | 3.8   |
|                   | 920505 |        | 1.6  | 10.8   | 5.4   |
|                   | 920821 |        | <    | 24.5   | 2.8   |
| S PORTLAND STP    | 900314 |        | <5.3 | 3.5    | <5.6  |
|                   | 910531 |        | <5   | <0.001 | <11.2 |
|                   | 920401 |        | <1.0 | <0.8   | <5.9  |
|                   | 930331 |        | <2.8 | <2.8   | <19.3 |
|                   | 930324 |        | <2.8 | <2.8   | <20.3 |
| STATLER TISSUE CO | 880930 | 62.6   | 36.9 | 414    | 78.3  |
| AUGUSTA           | 881223 | 61.4   | 37.6 | 326    | 70.2  |
|                   | 890403 | 61.6   | 34.6 | 242    | 58.8  |
|                   | 890628 | 65.5   | 17.7 | 414    | 59.1  |

TEQs calculated from TEFs in Water Bureau rule chapter 567 and nd= detection level

## APPENDIX 4 2378-TCDD AND 2378-TCDF IN WASTEWATER FROM MAINE PULP AND PAPER MILLS

APPENDIX 4. 2378-TCDD AND 2378-TCDF IN WASTEWATER FROM MAINE PULP AND PAPER MILLS

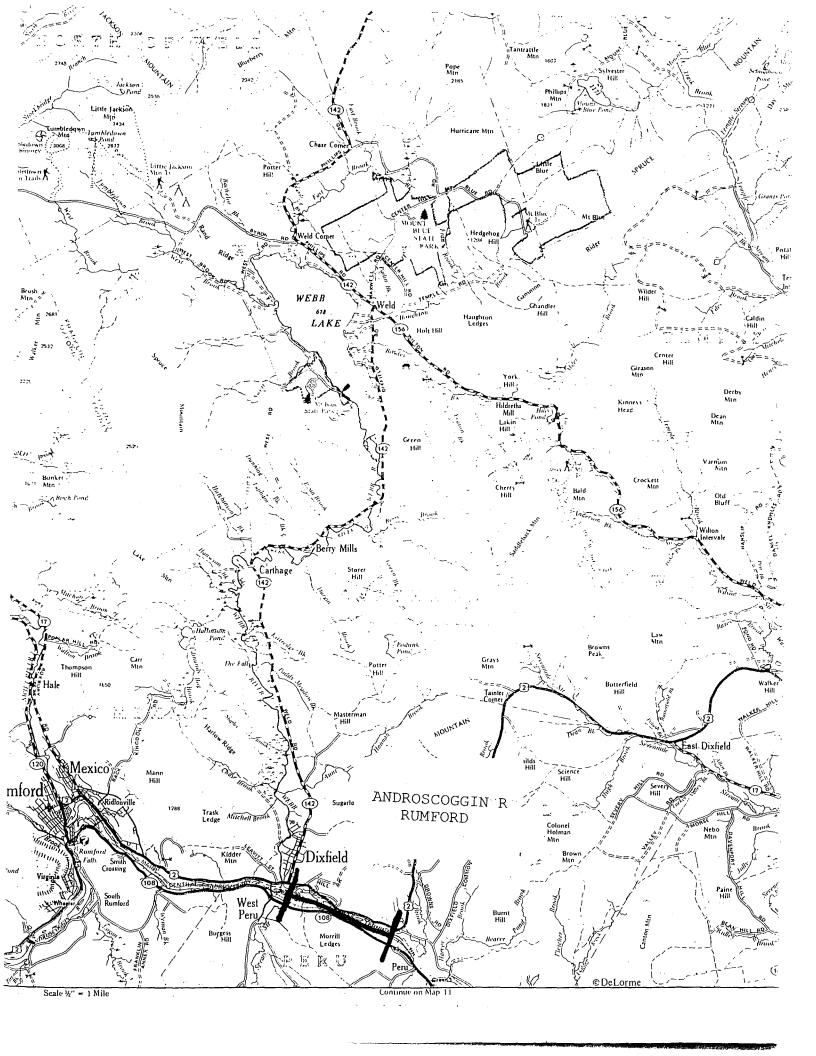
| SOURCE        | DATE             | TCDD       | TCDF   |
|---------------|------------------|------------|--------|
|               |                  | (pg/l)     | (pg/l) |
| ANCON MADICON | 000400           |            |        |
| ANSON MADISON | 920408           | <3         | <3     |
|               | 921001           | <3         | 20     |
| BOISE CASCADE | 880518           | 120        | 570    |
|               | 890301           | 25         | 80     |
|               | 890807           | < 6        | 20     |
|               | 890810           | < 13       | 20     |
|               | 890814           | <5         | 13     |
|               | 890817           | <5         | 18     |
|               | 890821           | <8         | 21     |
|               | 890824           | <5         | 10     |
|               | 890829           | <5         | 18     |
|               | 890831           | <11        | 20     |
|               | 890905           | <11        | 20     |
|               | 890907           | <9         | 18     |
|               | 891023           | <3         | 7      |
|               | 891026           | <5         | 6      |
|               | 891222           | <5         | 20     |
|               | 000010           | -0         | 0      |
|               | 900216           | <2         | 6      |
|               | 900216           | <1         | 7      |
|               | 900515<br>900515 | < 10       | <8     |
|               | 900627           | <1<br><3   | 5<br>8 |
|               | 900627           | <3         | 9      |
|               | 300027           | <b>\</b> 3 | . 8    |
|               | 920217           | < 4.6      | 14     |
|               | 920221           | < 4.6      | 13     |
|               | 920311           | < 4.6      | 9.9    |
|               | 920316           | 3.2        | 8.7    |
|               |                  | 3.5        | 12     |
|               |                  | 4.6        | 17     |
|               | 920326           | 4.5        | 8.5    |
|               | 920412           | 6.3        | 24     |
|               | 920613           | < 4.6      | 6.8    |
|               | 920708           | < 4.6      | < 5.8  |
|               | 920831           | < 4.6      | 3.5    |
|               | 920904           | < 3.8      |        |
|               | 921104           | < 3.7      |        |
|               | 921201           | < 2.4      |        |

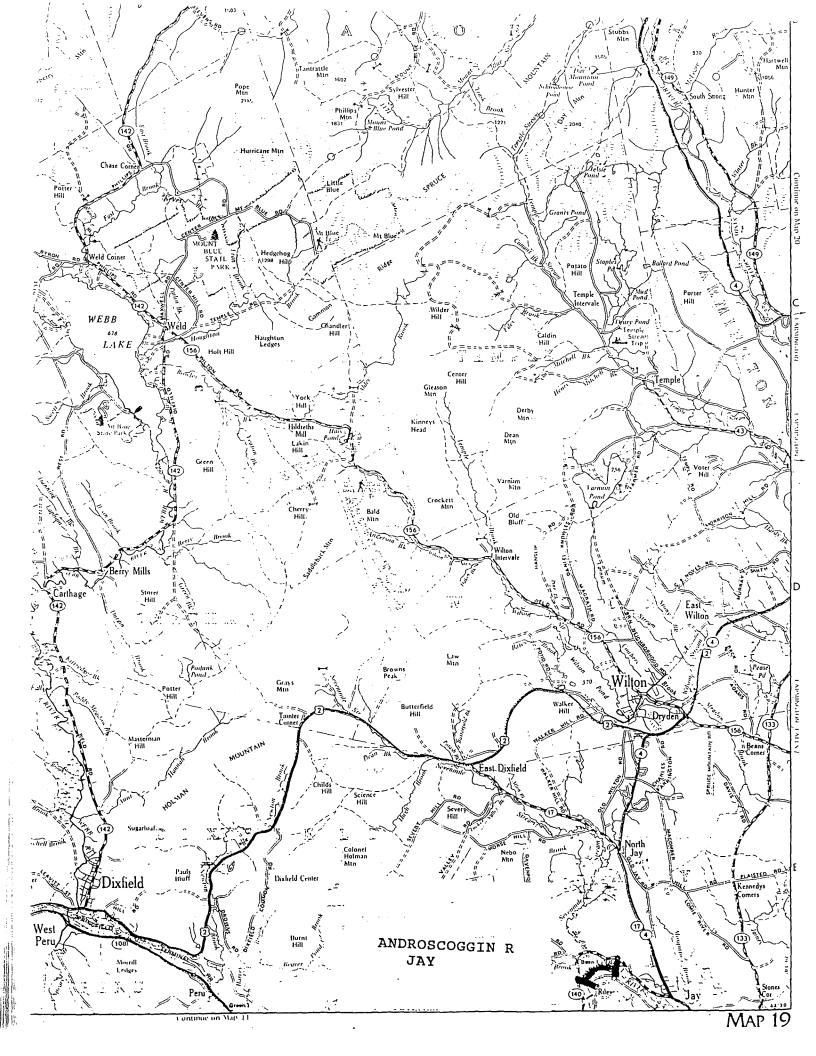
| SOURCE                     | DATE   |     | TCDD       | TCDF   |
|----------------------------|--------|-----|------------|--------|
|                            |        |     | (pg/l)     | (pg/I) |
| BOISE CASCADE              | 020105 |     | -0.4       |        |
| BUISE CASCADE              | 930105 |     | < 2.4      | - 40   |
|                            | 930201 |     | < 2.4      | < 10   |
|                            | 930401 |     | < 2.8      | < 10   |
|                            | 930501 |     | < 2.4      | < 10   |
|                            | 930701 |     | < 3.9      | 12     |
|                            | 930801 |     | < 2.8      | < 3.4  |
|                            | 931001 |     | < 3.2      | < 10   |
|                            | 931101 |     | < 3.9      | < 3.6  |
| GEORGIA PACIFIC (Woodland) | 880101 |     | 6.8        | 25     |
|                            | 900316 |     | <5         | 4      |
|                            | 900423 |     | <3         | < 6    |
|                            | 900531 |     | < 8        | <5     |
|                            | 900619 |     | <3         | . <1   |
| GEORGIA PACIFIC            | 900716 |     | <1         | <3     |
|                            | 900807 |     | <2         | < 5    |
| INTERNATIONAL DARED        | 202424 |     |            |        |
| INTERNATIONAL PAPER        | 880101 |     | 88         | 420    |
|                            | 880715 |     | 30         | 150    |
|                            | 890307 |     | 30         | 100    |
|                            |        |     | E6         | E20    |
|                            |        |     | E20        | E20    |
|                            | 890310 |     | 16         | 74     |
|                            | 890616 |     | < 8        | 980    |
|                            | 890621 |     | 17         | 140    |
|                            | 890713 |     | < 16       | 50     |
|                            | 890720 | DEP | 30         | 150    |
|                            | 890818 |     | 20         | 110    |
|                            | 900413 |     | <10        | 90     |
|                            | 910924 |     | < 10       | 60     |
|                            | 910926 |     | < 10       | 60     |
|                            | 911129 |     | 50         | 210    |
|                            | 911219 |     | <20        | < 80   |
|                            | 311213 |     | <b>\20</b> | ~00    |
|                            | 920125 |     | 20         | 110    |
|                            | 920126 |     | 20         | 110    |
|                            | 920127 |     | 30         | 100    |
|                            | 920128 |     | 30         | 100    |
|                            | 920129 |     | 13.7       | 49.9   |
|                            | 920312 |     | 19.3       | 6506   |
|                            | 920320 |     | 14.8       | 73.9   |
|                            | 920423 |     | < 13.9     | 59.1   |
|                            |        |     |            |        |

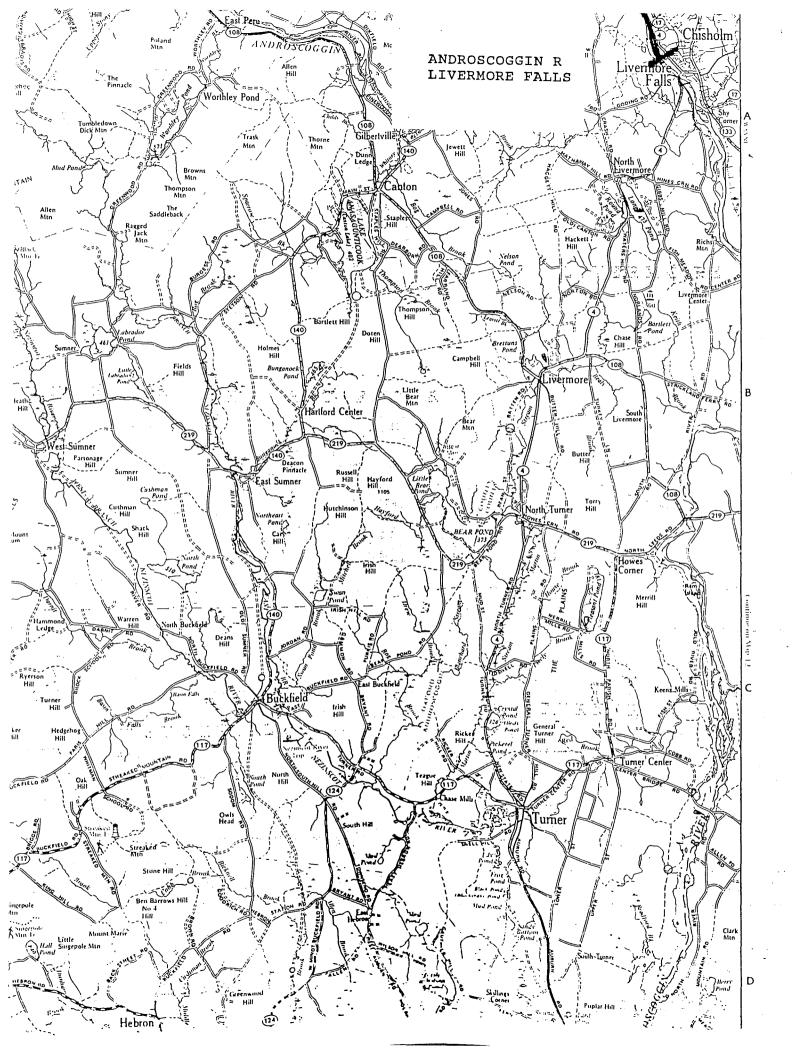
| SOURCE              | DATE   | TCOD            | TCDF       |
|---------------------|--------|-----------------|------------|
|                     |        | (pg/l)          | (pg/l)     |
| INTERNATIONAL PAPER | 920610 | < 5.7           | 29.5       |
|                     | 920617 | < 6.3           | 30.8       |
|                     | 920723 | < 8.4           | 33.6       |
|                     | 920819 | 6.6             | 29.7       |
|                     | 920923 | < 2.6           | < 2.0      |
|                     | 921111 | < 6.1           | 22.4       |
|                     | 921202 | < 2.6           | < 14.4     |
|                     | 021202 | 210             | V 14.4     |
|                     | 930125 | 5.4             | 19.6       |
|                     | 930222 | < 5.3           | 25.5       |
|                     | 930420 | < 2.0           | 16.7       |
|                     | 930527 | 4.3             | 10.3       |
|                     | 930716 | < 5.2           | 28.9       |
|                     | 930826 | <5.3, <6.5      | 21.5, 19.2 |
|                     | 930910 | < 8.6           | 9.4        |
|                     | 931022 |                 | 19.5       |
|                     | 931119 | < 3.6           | 19.5       |
|                     | 931224 | 10.9            | 31.1       |
|                     |        |                 |            |
| JAMES RIVER         | 880630 | 39              | 130        |
| •                   | 890131 | 27              | 120        |
|                     | 890222 | 210             | 340        |
|                     | 890223 | 92              | 290        |
|                     | 890224 | 77              | 340        |
|                     | 890320 | <               | 34         |
|                     | 890324 | <               | 24         |
|                     | 890325 | 36              | 73         |
|                     | 890405 | 30              | 110        |
|                     | 890410 | 17              | 52         |
|                     | 890411 | 32              | 89         |
|                     | 890824 | 32              | 94         |
|                     | 890831 | 13              | 150        |
|                     | 890911 | < 4.1           | 14         |
|                     | 890915 | < 3.3           | < 8.1      |
|                     | 890921 | <b>&lt;5.</b> 7 | 13         |
|                     | 890927 | < 5.3           | 9.7        |
|                     | 891011 | < 3             | 11         |
|                     | 891019 | < 5.2           | 14         |
|                     | 891102 | < 6             | 18         |
|                     | 891106 | 6.7             | 22         |
|                     | 891114 | < 9.5           | < 7.1      |
|                     | 891127 | < 6.4           | 20         |
|                     | 891206 | < 8.4           | 13         |
|                     | 891213 | < 8.3           | 20         |
|                     | 891221 | < 4.7           | 23         |

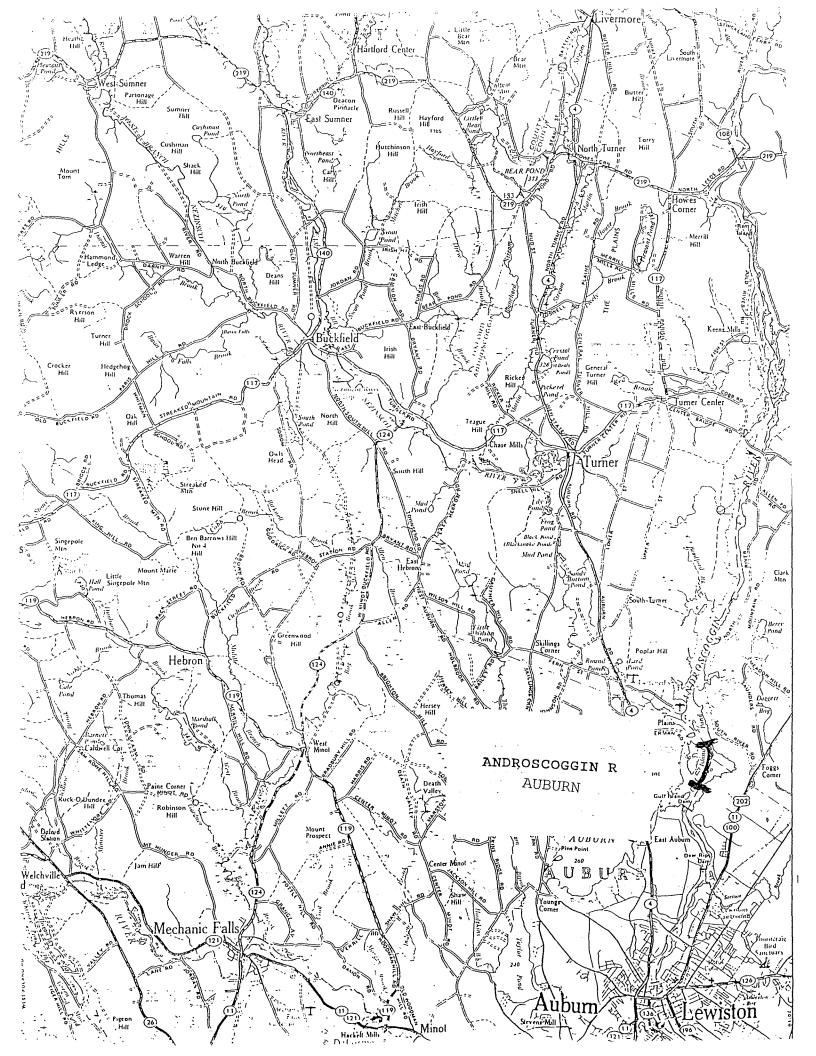
| SOURCE      | DATE   | TCDD   | TCDF    |
|-------------|--------|--------|---------|
|             |        | (pg/l) | (l/gql) |
| JAMES RIVER | 900105 | < 6.8  | < 8.3   |
|             | 900111 | <9     | < 8.5   |
|             | 900118 | < 5.9  | 6.1     |
|             | 900125 | < 6.7  | 10      |
|             | 900207 | <4.6   | 17      |
|             | 900214 | < 6.6  | 23      |
|             | 900222 | < 7.3  | 15      |
|             | 900301 | < 6    | 11      |
|             | 900308 | <3     | 12      |
|             | 900315 | <4     | 16      |
|             | 900329 | < 7.4  | 14      |
|             | 900407 | <7.2   | 24      |
|             | 900502 | <7     | 19      |
|             | 900729 | < 9.9  | 49      |
|             | 910330 | 17     | 70      |
|             | 910430 | 19     | 65      |
|             | 910530 | 9.5    | 41      |
|             | 910630 | 6.8    | 43      |
|             | 910830 | 11     | 66      |
|             | 911030 | <      | 7.9     |
|             | 911130 | <7.7   | < 16    |
|             | 920330 | < 5.7  |         |
|             | 920730 | 16     |         |
|             | 920830 | < 4.9  |         |
|             | 921030 | < 3.0  |         |
|             | 921230 | 4.8    |         |
|             | 930530 | <4.2   |         |
|             | 930630 | < 2.8  |         |
|             | 930830 | < 1.6  |         |
|             | 930930 | < 3.5  |         |
|             | 931130 | < 3.1  |         |
|             | 920330 | < 5.7  | 50      |
|             | 920730 | 16     | 69      |
|             | 920830 | <4.9   | 23      |

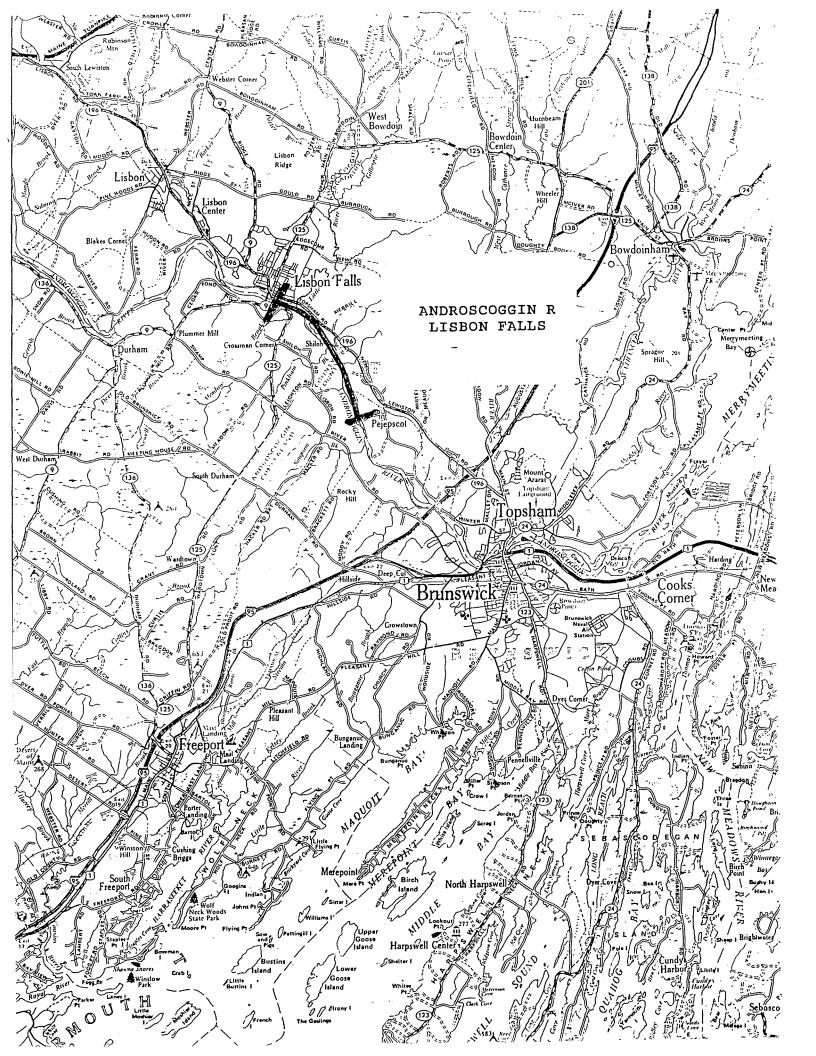
| SOURCE                 | DATE   | TCDD<br>(pg/l) | TCDF<br>(pg/l) |
|------------------------|--------|----------------|----------------|
| LINCOLN PULP AND PAPER | 881130 | 32             | 130            |
|                        | 920817 | 11.2           | 69.8           |
|                        | 920908 | < 10           | 27.3           |
|                        | 921117 | < 10           | 39.1           |
|                        | 921216 | < 10           | 9.5            |
|                        |        |                | 5.0            |
|                        | 931230 | <10            | < 17.3         |
| SD WARREN (Skowhegan)  | 880630 | 16,19          | 63,100         |
|                        |        |                |                |
|                        | 900710 | < 7.1          | 8.4            |
|                        | 900716 | < 6.1          | 5.9            |
|                        | dup    | <b>&lt;5.5</b> | < 7.3          |
|                        | 900724 | < 3.6          | < 3.9          |
|                        | 930105 | < 3.4          | 9.2            |
|                        | 930224 | < 4.7          | 15             |
|                        | 930311 | < 4.0          | 10             |
|                        | 930409 | 6.8            | 18             |
|                        | 930616 | 6.3            | 14             |
|                        | 930917 | 3.3<br>7       | 17             |
|                        | 931203 | 7.6            | 19             |
| CD MADDEN (Masshare)   |        |                |                |
| SD WARREN (Westbrook)  | 880101 | 6.3            |                |
|                        | 1989   | 1              |                |
|                        | 901118 | <3             | 8              |
|                        | 910425 | <5             | <5             |
|                        | 910716 | <8             | < 5            |
|                        | 911203 | < 8            | <5             |
|                        | 920218 | < 2.8          | 7              |
|                        | 920507 | < 1.2          | 4.6            |
|                        | 920715 | < 5.8          | <4.9           |
|                        | 921114 | < 1.8          | 3.9            |
|                        | 00000  |                | 40             |
|                        | 930303 | < 7.8          | 16             |
|                        | 930617 | < 1.5          | < 6.4          |
|                        | 930915 | < 2.4          | 5.7            |
|                        | 931208 | < 3.4          | < 7.3          |

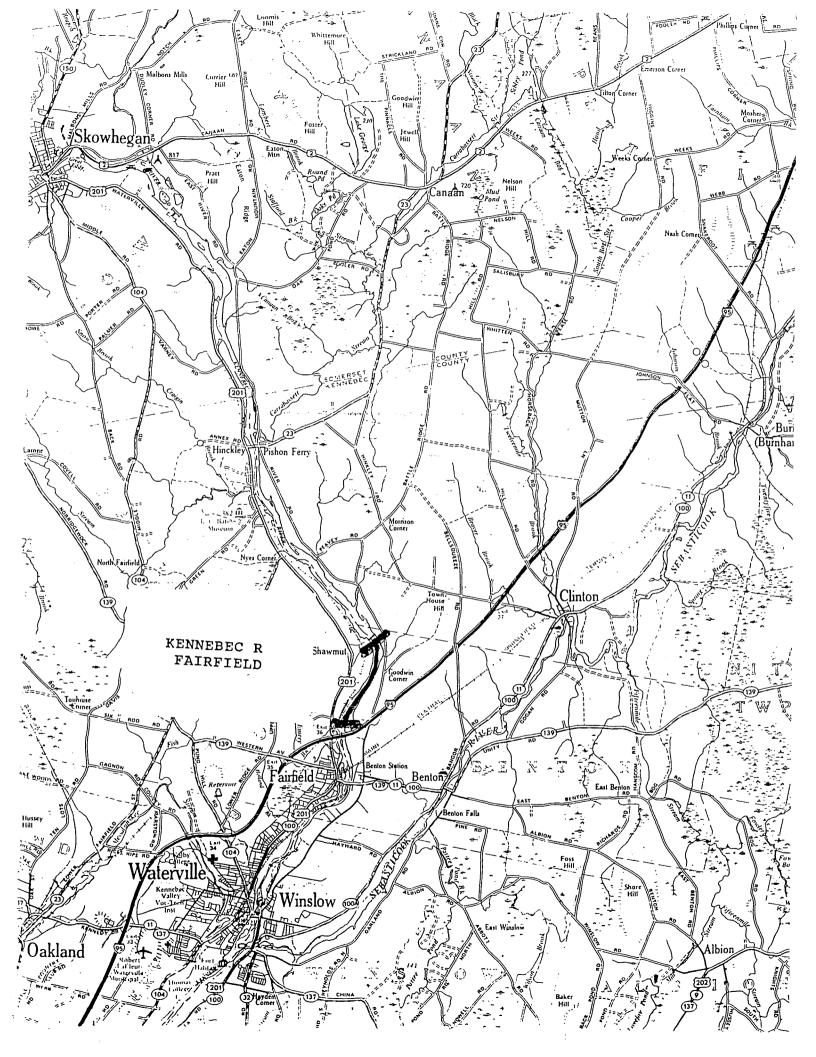

## APPENDIX 5

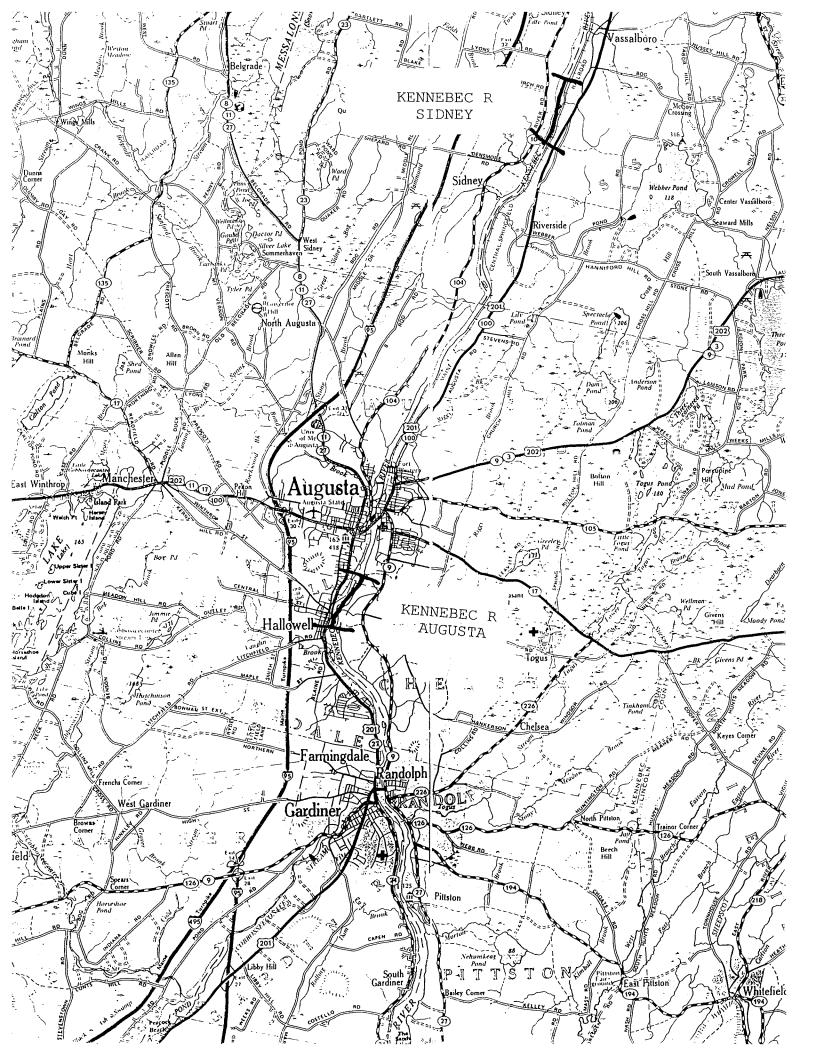

2378-TCDD AND 2378-TCDF IN SEDIMENTS
FROM VARIOUS STATIONS ON THE ANDROSCOGGIN RIVER

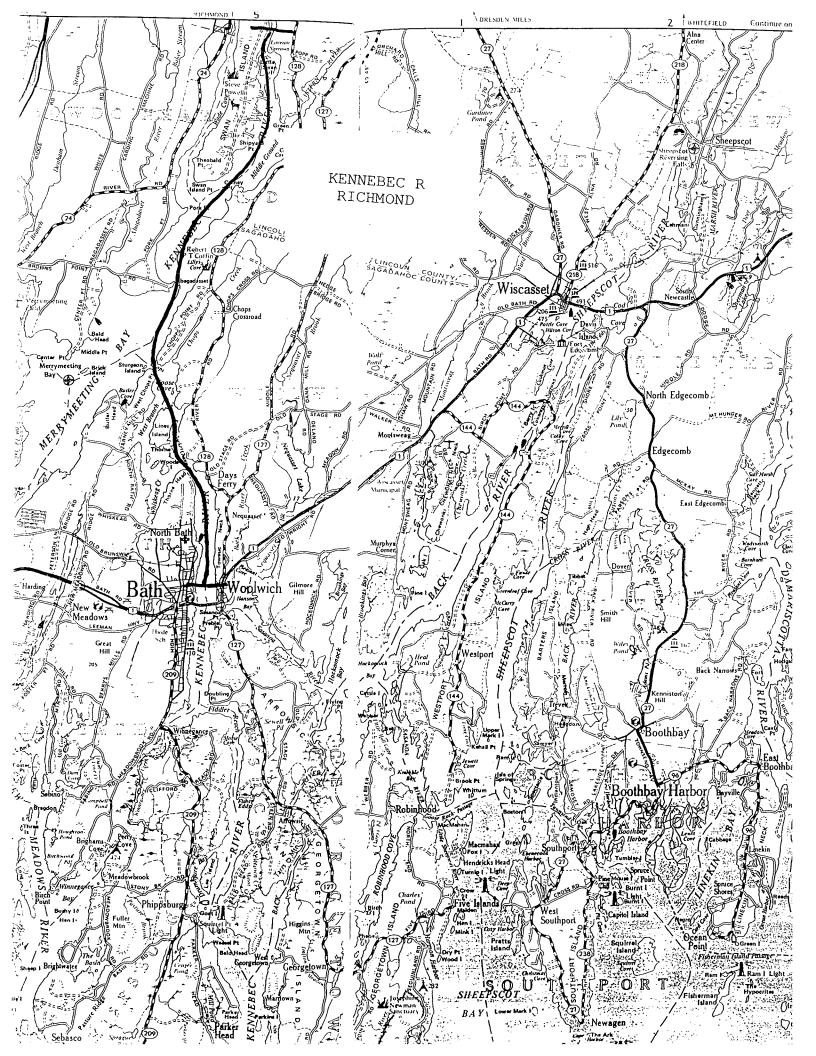

APPENDIX 5. 2378-TCDD AND 2378-TCDF IN SEDIMENTS FROM STATIONS ON THE ANDROSCOGGIN RIVER (pg/g)

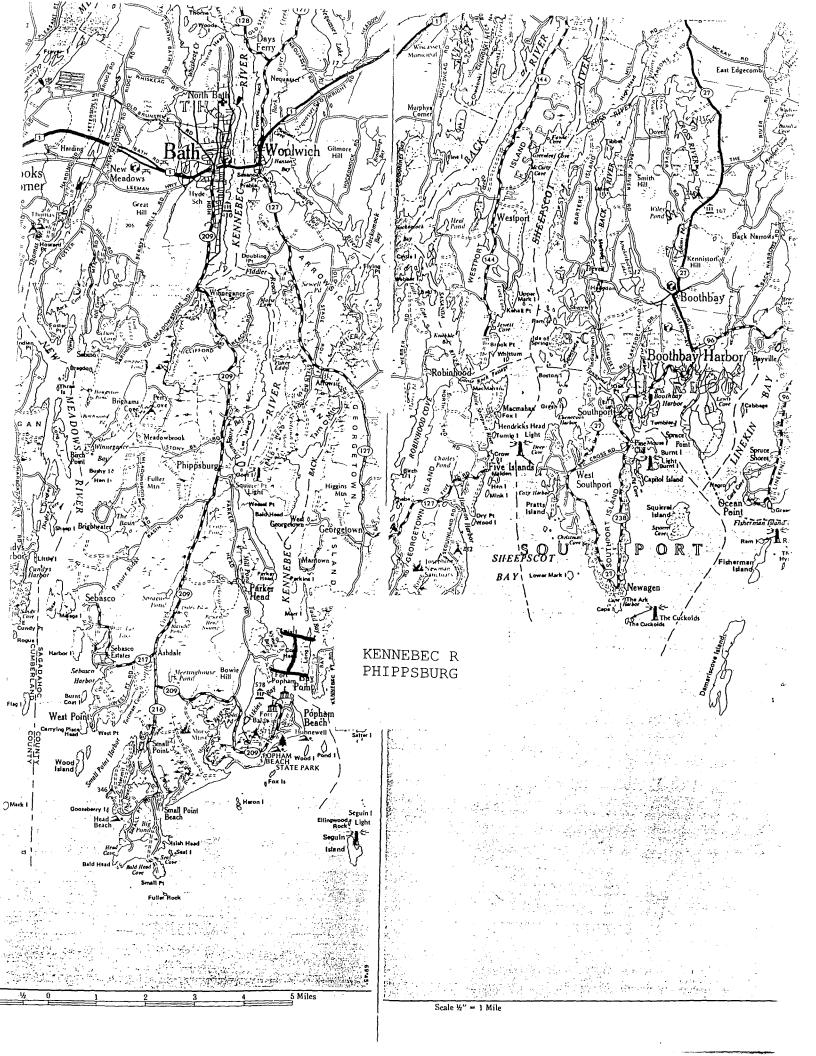

| LOCATION                                               | DATE   | 2378-TCDD       | 2378 TCOF % | MOISTURE % DOC |
|--------------------------------------------------------|--------|-----------------|-------------|----------------|
| Virginia Impoundment<br>Rumford<br>N443147 W703217     | 910308 | 4.4             | 185         | 2.35           |
| Riley Impoundment<br>Jay<br>N443002 W701458            | 910306 | 5.3             | 168         | 3.31           |
| Otis Impoundment<br>Livermore Falls<br>N442846 W701213 | 910327 | E6.8            | 162         | 2.85           |
| Gulf Island Pond<br>Turner<br>N441520 W701050          | 850711 | 23.1            |             |                |
| Gulf Island Pond<br>Turner<br>N441420 W701125          | 850711 | 30.3            |             |                |
| Gulf Island Pond<br>Turner<br>N441225 W701210          | 850711 | 20.4            |             |                |
| Gulf Island Pond<br>Greene<br>N441040 W701240          | 850711 | 39.5<br>42.6dup |             |                |
| Gulf Island Pond<br>Greene<br>N440932 W701222          | 910313 | 27.4            | 371         | 6.79           |
| Worumbo Impound.<br>Lisbon Falls<br>N435950 W700405    | 910327 | 4.7             | 64.2        | 2.31           |
| Brunswick<br>below dam<br>N435445 W695550              | 850711 | 2.5             |             |                |
| Brunswick<br>Cow Island<br>N435520 W695745             | 850711 | 1.7             |             |                |

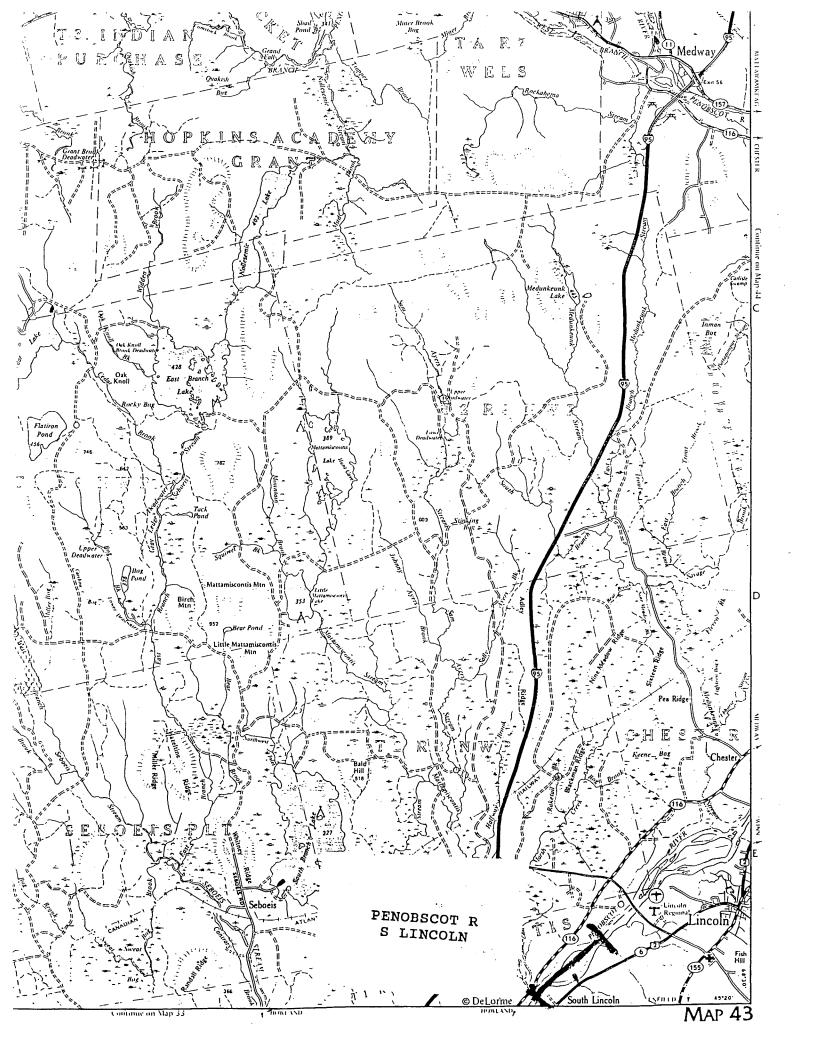

## APPENDIX 6 SAMPLE LOCATION MAPS

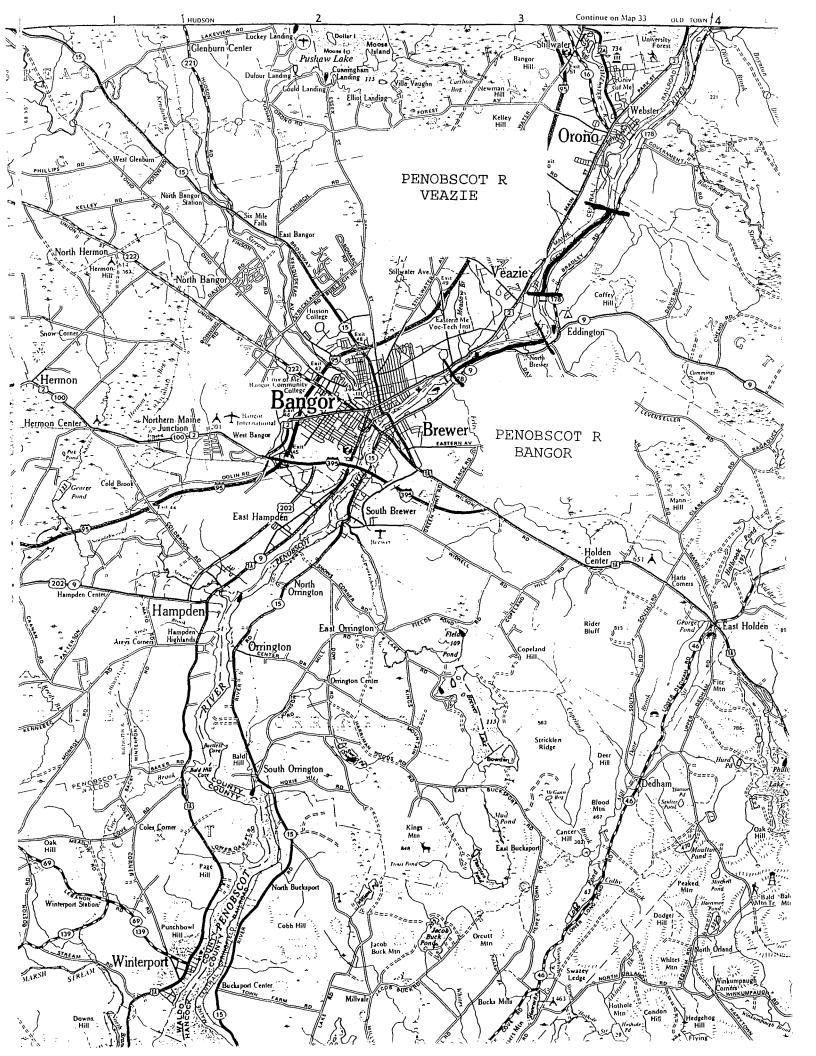


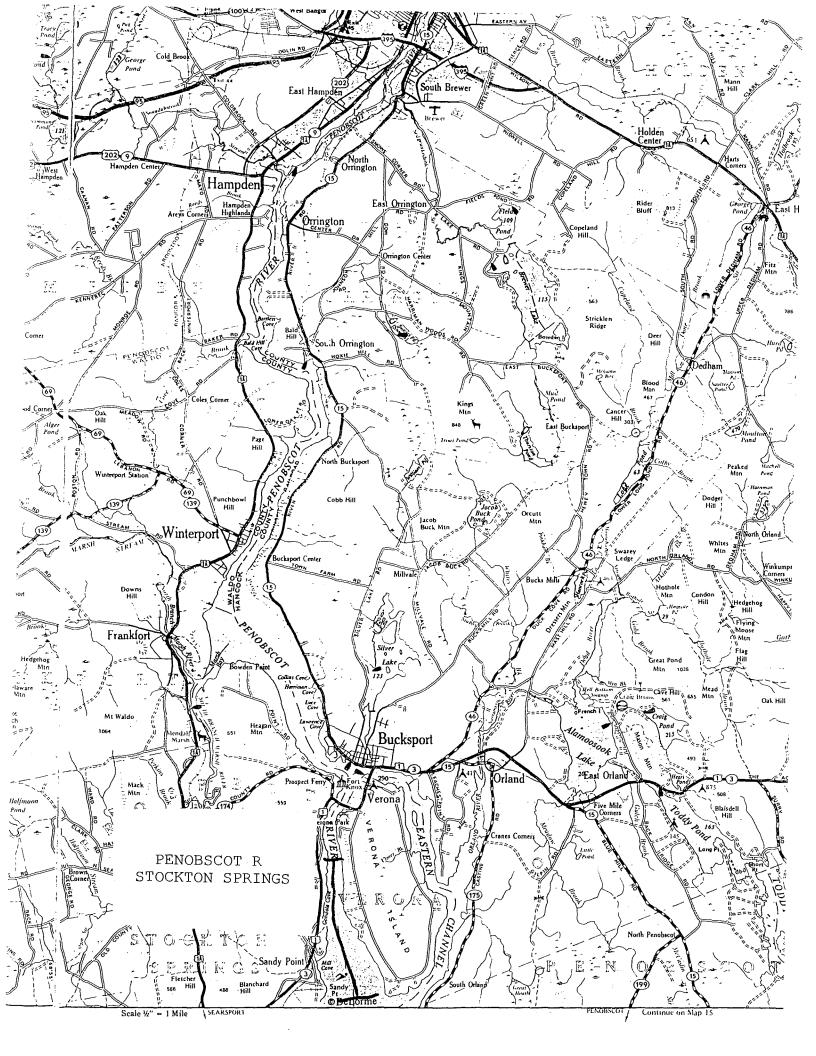



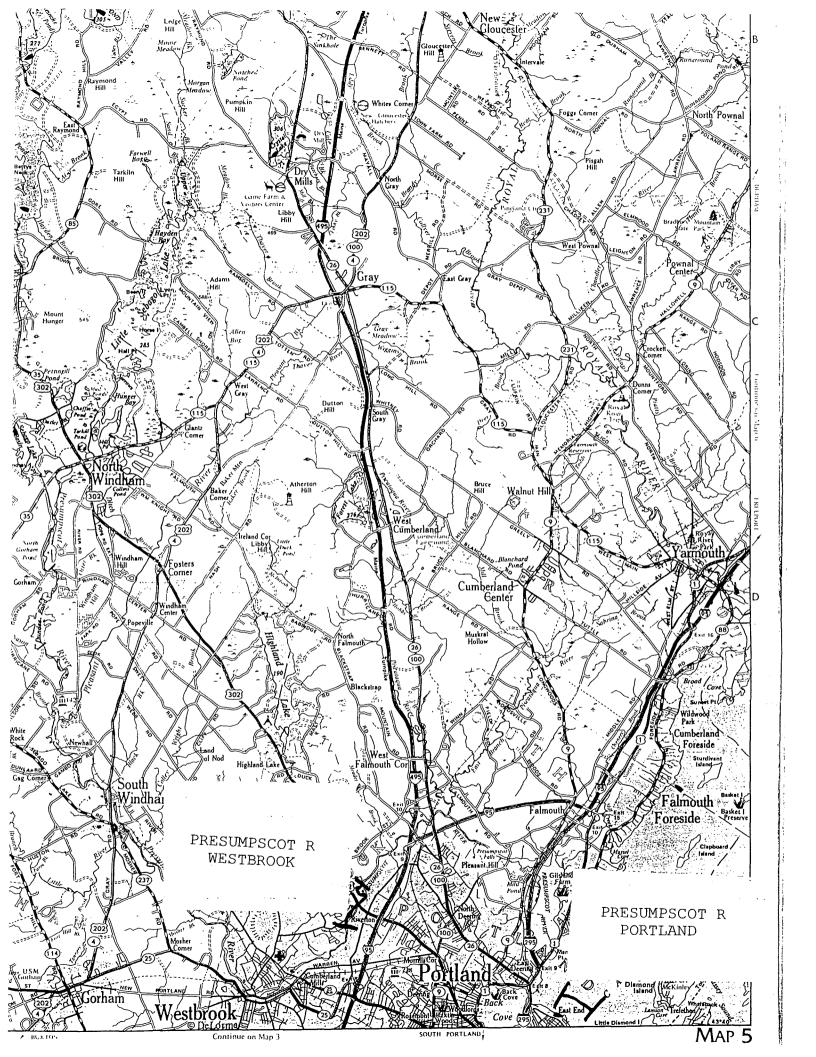



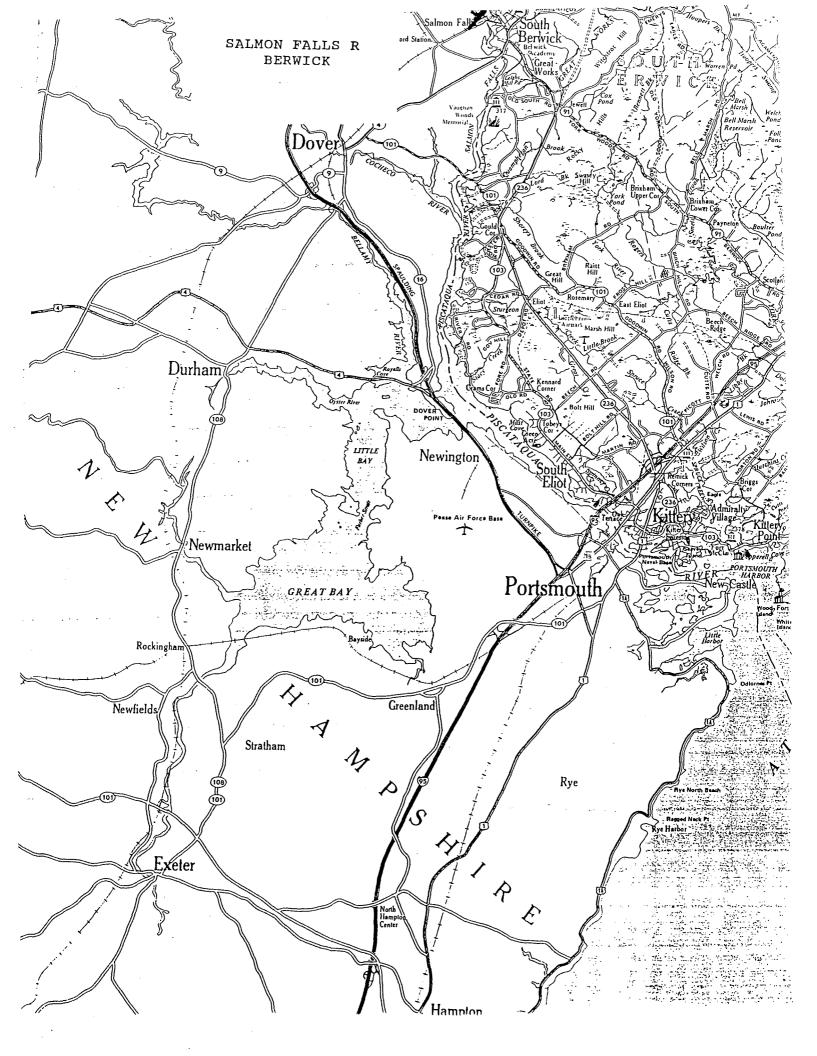



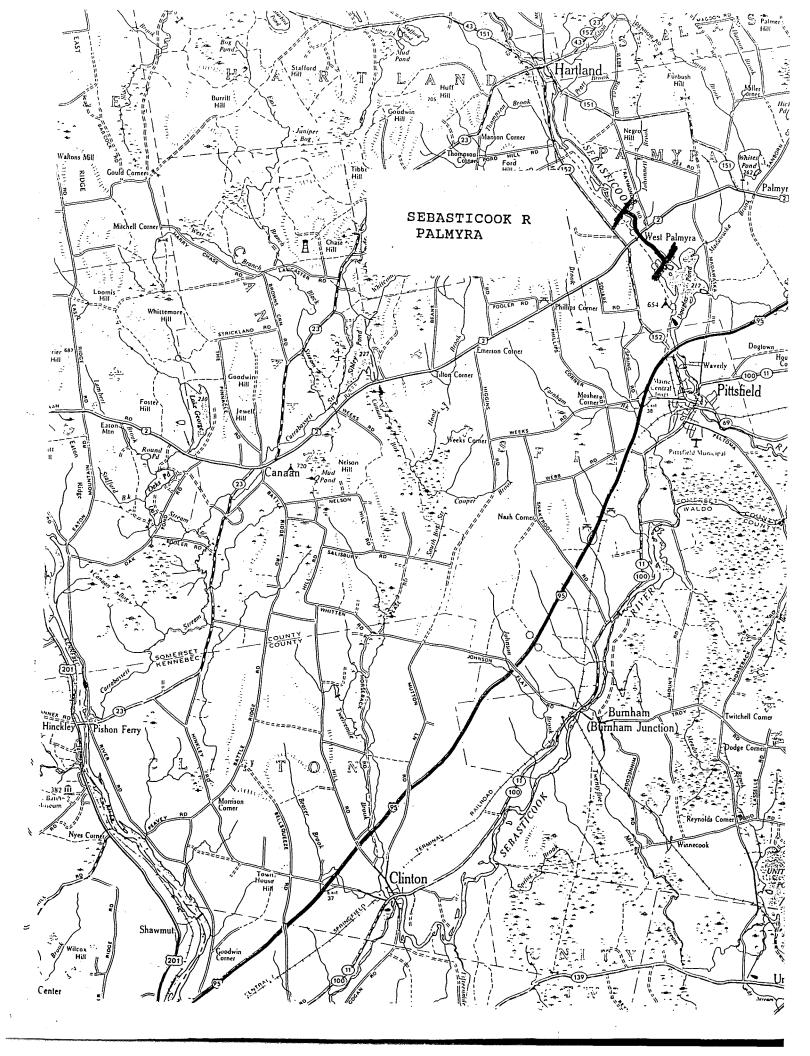
















## APPENDIX 7 LENGTHS, WEIGHTS, AND PERCENT LIPID IN 1993 FISH SAMPLES

LENGTHS, WEIGHTS, AND PERCENT LIPID IN 1993 FISH SAMPLES

| FIELD ID          | LENGTH | WEIGHT | % LIPID | COMPOSITE ID     |
|-------------------|--------|--------|---------|------------------|
|                   | (mm)   | (g)    |         |                  |
| ANDROSCOGGIN RIVE | R      |        |         |                  |
| Rumford           |        |        |         |                  |
| ARR-SMB-01        | 435    | 1200   | 4.32    | ARR-SMB-COMP-01  |
| ARR-SMB-02        | 387    | 910    | 4.32    | ARR-SMB-COMP-01  |
| ARR-SMB-03        | 333    | 580    | 5.26    | ARR-SMB-COMP-02  |
| ARR-SMB-04        | 352    | 700    | 5.26    | ARR-SMB-COMP-02  |
| ARR-SMB-05        | 314    | 450    | 5.30    | ARR-SMB-COMP-03  |
| ARR-SMB-06        | 314    | 450    | 5.30    | ARR-SMB-COMP-03  |
| ARR-SMB-07        | 362    | 660    | 3.22    | ARR-SMB-COMP-04  |
| ARR-SMB-08        | 387    | 750    | 3.22    | ARR-SMB-COMP-04  |
| ARR-SMB-09        | 359    | 700    | 4.49    | ARR-SMB-COMP-05  |
| ARR-SMB-10        | 470    | 1480   | 4.49    | ARR-SMB-COMP-05  |
| mean              | 371    | 788    |         |                  |
|                   |        |        |         |                  |
| ARR-WHS-01        | 400    | 720    | 7.80    | ARR-WHS-COMP-01  |
| ARR-WHS-02        | 400    | 750    | 7.80    | ARR-WHS-COMP-01  |
| ARR-WHS-03        | 371    | 590    | 7.80    | ARR-WHS-COMP-01  |
| ARR-WHS-04        | 397    | 640    | 7.80    | ARR-WHS-COMP-01  |
| ARR-WHS-05        | 387    | 640    | 7.80    | ARR-WHS-COMP-01  |
| ARR-WHS-06        | 400    | 695    | 6.22    | ARR-WHS-COMP-02  |
| ARR-WHS-07        | 419    | 800    | 6.22    | ARR-WHS-COMP-02  |
| ARR-WHS-08        | 394    | 665    | 6.22    | ARR-WHS-COMP-02  |
| ARR-WHS-09        | 401    | 770    | 6.22    | ARR-WHS-COMP-02  |
| ARR-WHS-10        | 399    | 720    | 6.22    | ARR-WHS-COMP-02  |
| mean              | 397    | 699    |         |                  |
| Livermore Falls   |        |        |         |                  |
| ARLV-SMB-01       | 352    | 560    | 2.04    | ARLV-SMB-COMP-01 |
| ARLV-SMB-02       | 378    | 660    | 2.04    | ARLV-SMB-COMP-01 |
| ARLV-SMV-03       | 324    | 350    | 0.91    | ARLV-SMB-COMP-02 |
| ARLV-SMB-04       | 311    | 310    | 0.91    | ARLV-SMB-COMP-02 |
| ARLV-SMB-05       | 343    | 500    | 0.85    | ARLV-SMB-COMP-03 |
| ARLV-SMB-06       | 394    | 620    | 0.85    | ARLV-SMB-COMP-03 |
| ARLV-SMB-07       | 343    | 410    | 1.50    | ARLV-SMB-COMP-04 |
| ARLV-SMB-08       | 422    | 790    | 1.50    | ARLV-SMB-COMP-04 |
| ARLV-SMB-09       | 422    | 870    | 3.17    | ARLV-SMB-COMP-05 |
| ARLV-SMB-10       | 343    | 430    | 3.17    | ARLV-SMB-COMP-05 |
| mean              | 363    | 550    |         |                  |
|                   |        |        |         |                  |

| FIELD ID          | LENGTH | WEIGHT | % LIPID | COMPOSITE ID     |
|-------------------|--------|--------|---------|------------------|
|                   | (mm)   | (g)    |         |                  |
| ANDROSCOGGIN RIVE | R      |        |         |                  |
| Livermore Falls   |        |        |         |                  |
| ARLV-WHS-01       | 356    | 570    | 5.97    | ARLV-WHS-COMP-01 |
| ARLV-WHS-02       | 368    | 600    | 5.97    | ARLV-WHS-COMP-01 |
| ARLV-WHS-03       | 333    | 450    | 5.97    | ARLV-WHS-COMP-01 |
| ARLV-WHS-04       | 349    | 450    | 5.97    | ARLV-WHS-COMP-01 |
| ARLV-WHS-05       | 333    | 350    | 5.97    | ARLV-WHS-COMP-01 |
| ARLV-WHS-06       | 318    | 350    | 6.13    | ARLV-WHS-COMP-02 |
| ARLV-WHS-07       | 305    | 340    | 6.13    | ARLV-WHS-COMP-02 |
| ARLV-WHS-08       | 308    | 330    | 6.13    | ARLV-WHS-COMP-02 |
| ARLV-WHS-09       | 292    | 320    | 6.13    | ARLV-WHS-COMP-02 |
| ARLV-WHS-10       | 254    | 190    | 6.13    | ARLV-WHS-COMP-02 |
| mean              | 322    | 395    |         |                  |
| Jay               |        |        |         |                  |
| ARJ-SMB-01        | 419    | 1040   | 1.26    | ARJ-SMB-COMP-01  |
| ARJ-SMB-02        | 340    | 500    | 1.26    | ARJ-SMB-COMP-01  |
| ARJ-SMB-03        | 394    | 750    | 1.23    | ARJ-SMB-COMP-02  |
| ARJ-SMB-04        | 362    | 570    | 1.23    | ARJ-SMB-COMP-02  |
| ARJ-SMB-05        | 368    | 600    | 1.22    | ARJ-SMB-COMP-03  |
| ARJ-SMB-06        | 381    | 620    | 1.22    | ARJ-SMB-COMP-03  |
| ARJ-SMB-07        | 340    | 440    | 0.73    | ARJ-SMB-COMP-04  |
| ARJ-SMB-08        | 410    | 780    | 0.73    | ARJ-SMB-COMP-04  |
| ARJ-SMB-09        | 387    | 740    | 1.65    | ARJ-SMB-COMP-05  |
| ARJ-SMB-10        | 445    | 1090   | 1.65    | ARJ-SMB-COMP-05  |
| mean              | 384    | 713    |         |                  |
| ARJ-WHS-01        | 381    | 610    | 7.06    | ARJ-WHS-COMP-01  |
| ARJ-WHS-02        | 352    | 500    | 7.06    | ARJ-WHS-COMP-01  |
| ARJ-WHS-03        | 432    | 860    | 7.06    | ARJ-WHS-COMP-01  |
| ARJ-WHS-04        | 394    | 830    | 7.06    | ARJ-WHS-COMP-01  |
| ARJ-WHS-05        | 406    | 740    | 7.06    | ARJ-WHS-COMP-01  |
| ARJ-WHS-06        | 429    | 740    | 7.22    | ARJ-WHS-COMP-02  |
| ARJ-WHS-07        | 314    | 350    | 7.22    | ARJ-WHS-COMP-02  |
| ARJ-WHS-08        | 343    | 470    | 7.22    | ARJ-WHS-COMP-02  |
| ARJ-WHS-09        | 406    | 750    | 7.22    | ARJ-WHS-COMP-02  |
| ARJ-WHS-10        | 384    | 600    | 7.22    | ARJ-WHS-COMP-02  |
| mean              | 384    | 645    |         |                  |

| FIELD ID        | LENGTH<br>(mm) | WEIGHT<br>(g) | % LIPID | COMPOSITE ID     |
|-----------------|----------------|---------------|---------|------------------|
| ANDROSCOGGIN RI | VER            |               |         |                  |
| Auburn          |                |               |         |                  |
| ARG-WHS-01      | 381            | 470           | 4.09    | ARG-WHS-COMP-01  |
| ARG-WHS-02      | 445            | 840           | 4.09    | ARG-WHS-COMP-01  |
| ARG-WHS-03      | 375            | 550           | 4.09    | ARG-WHS-COMP-01  |
| ARG-WHS-04      | 337            | 400           | 4.09    | ARG-WHS-COMP-01  |
| ARG-WHS-05      | 343            | 365           | 4.09    | ARG-WHS-COMP-01  |
| ARG-WHS-06      | 346            | 400           | 4.84    | ARG-WHS-COMP-02  |
| ARG-WHS-07      | 375            | 505           | 4.84    | ARG-WHS-COMP-02  |
| ARG-WHS-08      | 375            | 570           | 4.84    | ARG-WHS-COMP-02  |
| ARG-WHS-09      | 359            | 470           | 4.84    | ARG-WHS-COMP-02  |
| ARG-WHS-10      | 397            | 670           | 4.84    | ARG-WHS-COMP-02  |
| mean            | 373            | 524           |         |                  |
| ARG-BUL-01      | 292            | 290           | 3.71    | ARG-BUL-COMP-01  |
| ARG-BUL-02      | 232            | 150           | 3.71    | ARG-BUL-COMP-01  |
| ARG-BUL-03      | 251            | 190           | 3.71    | ARG-BUL-COMP-01  |
| ARG-BUL-04      | 267            | 260           | 3.71    | ARG-BUL-COMP-01  |
| ARG-BUL-05      | 279            | 260           | 4.17    | ARG-BUL-COMP-02  |
| ARG-BUL-06      | 283            | 270           | 4.17    | ARG-BUL-COMP-02  |
| ARG-BUL-07      | 232            | 160           | 4.17    | ARG-BUL-COMP-02  |
| ARG-BUL-08      | 257            | 215           | 4.17    | ARG-BUL-COMP-02  |
| mean            | 262            | 224           |         |                  |
| ARG-SMB-01      | 290            | 290           | 2.34    |                  |
| ARG-SMB-02      | 287            | 285           |         |                  |
| ARG-SMB-03      | 305            | 380           | 1.91    |                  |
| ARG-SMB-04      | 284            | 280           | 0.82    |                  |
| ARG-SMB-05      | 310            | 350           | 1.69    |                  |
| ARG-SMB-06      | 254            | 230           |         |                  |
| ARG-SMB-07      | 305            | 340           | 1.22    |                  |
| mean            | 291            | 308           |         |                  |
| Lisbon Falls    |                |               |         |                  |
| ARLS-SMB-01     | 279            | 250           | 2.94    | ARLS-SMB-COMP-01 |
| ARLS-SMB-02     | 260            | 215           | 2.94    | ARLS-SMB-COMP-01 |
| ARLS-SMB-03     | 356            | 540           | 2.12    | ARLS-SMB-COMP-02 |
| ARLS-SMB-04     | 289            | 270           | 2.12    | ARLS-SMB-COMP-02 |
| ARLS-SMB-05     | 349            | 520           | 2.49    | ARLS-SMB-COMP-03 |
| ARLS-SMB-06     | 279            | 260           | 2.49    | ARLS-SMB-COMP-03 |
| ARLS-SMB-07     | 305            | 305           | 3.58    | ARLS-SMB-COMP-04 |
| ARLS-SMB-08     | 432            | 1000          | 3.58    | ARLS-SMB-COMP-04 |
| ARLS-SMB-09     | 292            | 320           | 4.80    | ARLS-SMB-COMP-05 |
| ARLS-SMB-10     | 429            | 920           | 4.80    | ARLS-SMB-COMP-05 |
| mean            | 327            | 460           |         |                  |

| FIELD ID          | LENGTH<br>(mm) | WEIGHT<br>(g) | % LIPID | COMPOSITE ID     |
|-------------------|----------------|---------------|---------|------------------|
| ANDROSCOGGIN RIVE | R              |               |         |                  |
| Lisbon Falls      |                |               |         |                  |
| ARLS-WHS-01       | 324            | 420           | 5.98    | ARLS-WHS-COMP-01 |
| ARLS-WHS-02       | 330            | 390           | 5.98    | ARLS-WHS-COMP-01 |
| ARLS-WHS-03       | 403            | 690           | 5.98    | ARLS-WHS-COMP-01 |
| ARLS-WHS-04       | 387            | 610           | 5.98    | ARLS-WHS-COMP-01 |
| ARLS-WHS-05       | 330            | 420           | 5.98    | ARLS-WHS-COMP-01 |
| ARLS-WHS-06       | 337            | 410           | 6.66    | ARLS-WHS-COMP-02 |
| ARLS-WHS-07       | 349            | 470           | 6.66    | ARLS-WHS-COMP-02 |
| ARLS-WHS-08       | 343            | 485           | 6.66    | ARLS-WHS-COMP-02 |
| ARLS-WHS-09       | 359            | 470           | 6.66    | ARLS-WHS-COMP-02 |
| ARLS-WHS-10       | 292            | 260           | 6.66    | ARLS-WHS-COMP-02 |
| mean              | 345            | 463           |         |                  |
| KENNEBEC RIVER    |                |               |         |                  |
| Fairfield         |                |               |         |                  |
| KRF-SMB-01        | 410            | 810           | 6.38    | KRF-SMB-COMP-01  |
| KRF-SMB-02        | 318            | 400           | 6.38    | KRF-SMB-COMP-01  |
| KRF-SMB-03        | 318            | 400           | 3.45    | KRF-SMB-COMP-02  |
| KRF-SMB-04        | 343            | 545           | 3.45    | KRF-SMB-COMP-02  |
| KRF-SMB-05        | 324            | 490           | 2.63    | KRF-SMB-COMP-03  |
| KRF-SMB-06        | 397            | 900           | 2.63    | KRF-SMB-COMP-03  |
| KRF-SMB-07        | 381            | 760           | 3.12    | KRF-SMB-COMP-04  |
| KRF-SMB-08        | 279            | 295           | 3.12    | KRF-SMB-COMP-04  |
| KRF-SMB-09        | 273            | 285           | 4.01    | KRF-SMB-COMP-05  |
| KRF-SMB-10        | 295            | 390           | 4.01    | KRF-SMB-COMP-05  |
| mean              | 334            | 528           |         |                  |
| KRF-BNT-01        | 438            | 975           | 1.50    |                  |
| KRF-BNT-02        | 419            | 900           | 3.82    |                  |
| KRF-BNT-03        | 457            | 1120          | 4.61    |                  |
| KRF-BNT-04        | 432            | 850           | 4.32    |                  |
| mean              | 437            | 961           |         |                  |
| KRF-WHS-01        | 356            | 320           | 9.53    | KRF-WHS-COMP-01  |
| KRF-WHS-02        | 337            | 480           | 9.53    | KRF-WHS-COMP-01  |
| KRF-WHS-03        | 318            | 340           | 9.53    | KRF-WHS-COMP-01  |
| KRF-WHS-04        | 286            | 280           | 9.53    | KRF-WHS-COMP-01  |
| KRF-WHS-05        | 330            | 470           | 9.53    | KRF-WHS-COMP-01  |
| KRF-WHS-06        | 286            | 290           | 8.63    | KRF-WHS-COMP-02  |
| KRF-WHS-07        | 314            | 410           | 8.63    | KRF-WHS-COMP-02  |
| KRF-WHS-08        | 305            | 350           | 8.63    | KRF-WHS-COMP-02  |
| KRF-WHS-09        | 340            | 420           | 8.63    | KRF-WHS-COMP-02  |
| KRF-WHS-10        | 260            | 200           | 8.63    | KRF-WHS-COMP-02  |
| mean              | 313            | 356           |         |                  |

| FIELD ID       | LENGTH<br>(mm) | WEIGHT<br>(g) | % LIPID | COMPOSITE ID    |
|----------------|----------------|---------------|---------|-----------------|
| KENNEBEC RIVER |                |               |         |                 |
| Sidney         |                |               |         |                 |
| KRS-SMB-01     | 314            | 390           | 3.28    | KRS-SMB-COMP-01 |
| KRS-SMB-02     | 438            | 1150          | 3.28    | KRS-SMB-COMP-01 |
| KRS-SMB-03     | 330            | 440           | 3.07    | KRS-SMB-COMP-02 |
| KRS-SMB-04     | 320            | 400           | 3.07    | KRS-SMB-COMP-02 |
| KRS-SMB-05     | 328            | 460           | 2.58    | KRS-SMB-COMP-03 |
| KRS-SMB-06     | 267            | 210           | 2.58    | KRS-SMB-COMP-03 |
| KRS-SMB-07     | 300            | 300           | 2.32    | KRS-SMB-COMP-04 |
| KRS-SMB-08     | 333            | 420           | 2.32    | KRS-SMB-COMP-04 |
| KRS-SMB-09     | 297            | 270           | 2.35    | KRS-SMB-COMP-05 |
| KRS-SMB-10     | 279            | 200           | 2.35    | KRS-SMB-COMP-05 |
| mean           | 321            | 424           |         |                 |
| Sidney         |                |               |         |                 |
| KRS-WHS-01     | 397            | 880           | 9.69    | KRS-WHS-COMP-01 |
| KRS-WHS-02     | 343            | 435           | 9.69    | KRS-WHS-COMP-01 |
| KRS-WHS-03     | 343            | 485           | 9.69    | KRS-WHS-COMP-01 |
| KRS-WHS-04     | 289            | 330           | 9.69    | KRS-WHS-COMP-01 |
| KRS-WHS-05     | 381            | 690           | 9.69    | KRS-WHS-COMP-01 |
| KRS-WHS-06     | 307            | 400           | 8.19    | KRS-WHS-COMP-02 |
| KRS-WHS-07     | 343            | 500           | 8.19    | KRS-WHS-COMP-02 |
| KRS-WHS-08     | 351            | 540           | 8.19    | KRS-WHS-COMP-02 |
| KRS-WHS-09     | 300            | 350           | 8.19    | KRS-WHS-COMP-02 |
| KRS-WHS-10     | 381            | 780           | 8.19    | KRS-WHS-COMP-02 |
| mean           | 343            | 539           |         | •               |
| Augusta        |                |               |         |                 |
| KRA-WHS-01     | 381            | 700           | 5.67    | KRA-WHS-COMP-01 |
| KRA-WHS-02     | 376            | 550           | 5.67    | KRA-WHS-COMP-01 |
| KRA-WHS-03     | 399            | 735           | 5.67    | KRA-WHS-COMP-01 |
| KRA-WHS-04     | 381            | 770           | 5.67    | KRA-WHS-COMP-01 |
| KRA-WHS-05     | 345            | 550           | 5.67    | KRA-WHS-COMP-01 |
| KRA-WHS-06     | 378            | 700           | 5.78    | KRA-WHS-COMP-02 |
| KRA-WHS-07     | 386            | 690           | 5.78    | KRA-WHS-COMP-02 |
| KRA-WHS-08     | 427            | 830           | 5.78    | KRA-WHS-COMP-02 |
| KRA-WHS-09     | 414            | 850           | 5.78    | KRA-WHS-COMP-02 |
| KRA-WHS-10     | 389            | 700           | 5.78    | KRA-WHS-COMP-02 |
| mean           | 388            | 708           |         |                 |

| FIELD ID        | LENGTH<br>(mm) | WEIGHT<br>(g) | % LIPID | COMPOSITE ID    |
|-----------------|----------------|---------------|---------|-----------------|
| WELLEDES BUIED  | www.           | i <b>y</b> i  |         |                 |
| KENNEBEC RIVER  |                |               |         |                 |
| Augusta         |                |               |         |                 |
| KRA-SMB-01      | 361            | 650           | 2.79    |                 |
| KRA-SMB-02      | 396            | 840           | 1.91    |                 |
| KRA-SMB-03      | 363            | 690           | 3.01    |                 |
| KRA-SMB-04      | 406            | 870           | 1.53    |                 |
| KRA-SMB-05      | 353            | 650           | 1.50    |                 |
| mean            | 376            | 740           |         |                 |
| Richmond        |                |               |         |                 |
| KRR-EEL-01      | 686            | 720           | 12.20   |                 |
| KRR-EEL-02      | 516            | 250           | 10.60   | KRR-EEL-COMP-01 |
| KRR-EEL-03      | 457            | 200           | 10.60   | KRR-EEL-COMP-01 |
| KRR-EEL-04      | 445            | <b>750</b>    | 10.60   | KRR-EEL-COMP-01 |
| KRR-EEL-05      | 511            | 250           | 10.60   | KRR-EEL-COMP-01 |
| KRR-EEL-06      | 536            | 270           | 10.60   | KRR-EEL-COMP-01 |
| KRR-EEL-07      | 465            | 170           | 10.60   | KRR-EEL-COMP-01 |
| KRR-EEL-08      | 472            | 200           | 10.60   | KRR-EEL-COMP-01 |
| KRR-EEL-09      | 460            | 250           | 10.60   | KRR-EEL-COMP-01 |
| KRR-EEL-10      | 551            | 260           | 10.60   | KRR-EEL-COMP-01 |
| mean            | 510            | 332           |         |                 |
| PENOBSCOT RIVER |                |               |         |                 |
| South Lincoln   |                |               |         |                 |
| PBL-SMB-01      | 324            | 500           | 2,28    | PBL-SMB-COMP-01 |
| PBL-SMB-02      | 430            | 1100          | 2,28    | PBL-SMB-COMP-01 |
| PBL-SMB-03      | 355            | 650           | 1.80    | PBL-SMB-COMP-02 |
| PBL-SMB-05      | 360            | 655           | 1.80    | PBL-SMB-COMP-02 |
| PBL-SMB-06      | 322            | 510           | 1.61    | PBL-SMB-COMP-03 |
| PBL-SMB-07      | 380            | 640           | 1.61    | PBL-SMB-COMP-03 |
| PBL-SMB-08      | 309            | 370           | 1,49    | PBL-SMB-COMP-04 |
| PBL-SMB-09      | 380            | 620           | 1.65    | •               |
| PBL-SMB-15      | 363            | 600           | 1.49    | PBL-SMB-COMP-04 |
| mean            | 358            | 627           |         |                 |

| FIELD ID        | LENGTH<br>(mm) | WEIGHT<br>(g)                           | % LIPID | COMPOSITE ID    |
|-----------------|----------------|-----------------------------------------|---------|-----------------|
| PENOBSCOT RIVER |                | *************************************** |         |                 |
| South Lincoln   |                |                                         |         |                 |
| PBL-WHS-04      | 374            | 735                                     | 7.90    | PBL-WHS-COMP-01 |
| PBL-WHS-07      | 412            | 880                                     | 7.90    | PBL-WHS-COMP-01 |
| PBL-WHS-08      | 307            | 320                                     | 7.90    | PBL-WHS-COMP-01 |
| PBL-WHS-09      | 380            | 750                                     | 7.90    | PBL-WHS-COMP-01 |
| PBL-WHS-10      | 355            | 520                                     | 7.90    | PBL-WHS-COMP-01 |
| PBL-WHS-11      | 332            | 420                                     | 9.35    | PBL-WHS-COMP-02 |
| PBL-WHS-12      | 362            | 500                                     | 9.35    | PBL-WHS-COMP-02 |
| PBL-WHS-13      | 323            | 410                                     | 9.35    | PBL-WHS-COMP-02 |
| PBL-WHS-14      | 373            | 600                                     | 9.35    | PBL-WHS-COMP-02 |
| PBL-WHS-15      | 377            | 640                                     | 9.35    | PBL-WHS-COMP-02 |
| mean            | 360            | 578                                     |         |                 |
|                 |                |                                         |         |                 |
| Veazie          |                |                                         |         |                 |
| PBV-SMB-01      | 279            | 254                                     | 2.37    | PBV-SMB-COMP-01 |
| PBV-SMB-02      | 413            | 800                                     | 2.37    | PBV-SMB-COMP-01 |
| PBV-SMB-03      | 292            | 300                                     | 2.49    | PBV-SMB-COMP-02 |
| PBV-SMB-04      | 305            | 258                                     | 2.49    | PBV-SMB-COMP-02 |
| PBV-SMB-07      | 445            | 1100                                    | 1.90    | PBV-SMB-COMP-03 |
| PBV-SMB-08      | 394            | 670                                     | 1.90    | PBV-SMB-COMP-03 |
| PBV-SMB-09      | 324            | 370                                     | 1.17    | PBV-SMB-COMP-04 |
| PBV-SMB-10      | 337            | 390                                     | 1.17    | PBV-SMB-COMP-04 |
| PBV-SMB-11      | 305            | 300                                     | 1.53    | PBV-SMB-COMP-05 |
| PBV-SMB-12      | 324            | 360                                     | 1.53    | PBV-SMB-COMP-05 |
| mean            | 342            | 480                                     |         |                 |
| PBV-WHS-01      | 381            | 630                                     | 8.67    | PBV-WHS-COMP-03 |
| PBV-WHS-02      | 381            | 650                                     | 8.67    | PBV-WHS-COMP-03 |
| PBV-WHS-03      | 349            | 450                                     | 8.67    | PBV-WHS-COMP-03 |
| PBV-WHS-04      | 318            | 370                                     | 8.67    | PBV-WHS-COMP-03 |
| PBV-WHS-05      | 349            | 480                                     | 8.67    | PBV-WHS-COMP-03 |
| PBV-WHS-06      | 413            | 710                                     | 9.45    | PBV-WHS-COMP-04 |
| PBV-WHS-07      | 375            | 570                                     | 9.45    | PBV-WHS-COMP-04 |
| PBV-WHS-08      | 362            | 510                                     | 9.45    | PBV-WHS-COMP-04 |
| PBV-WHS-09      | 337            | 420                                     | 9.45    | PBV-WHS-COMP-04 |
| PBV-WHS-10      | 337            | 370                                     | 9.45    | PBV-WHS-COMP-04 |
| mean            | 360            | 516                                     |         |                 |

| FIELD ID          | LENGTH<br>(mm) | WEIGHT | % LIPID | COMPOSITE ID    |
|-------------------|----------------|--------|---------|-----------------|
| PENOBSCOT RIVER   | Anni           | (g)    |         |                 |
| I LHODOUUI MIYLM  |                |        |         |                 |
| Bangor            |                |        |         |                 |
| PBB-EEL-01        | 590            | 450    | 17.60   | PBB-EEL-COMP-01 |
| PBB-EEL-02        | 700            | 560    | 17.60   | PBB-EEL-COMP-01 |
| PBB-EEL-03        | 660            | 570    | 17.60   | PBB-EEL-COMP-01 |
| PBB-EEL-04        | 640            | 500    | 17.60   | PBB-EEL-COMP-01 |
| PBB-EEL-05        | 710            | 710    | 17.60   | PBB-EEL-COMP-01 |
| PBB-EEL-06        | 780            | 1100   | 16.50   | PBB-EEL-COMP-02 |
| PBB-EEL-07        | 630            | 480    | 16.50   | PBB-EEL-COMP-02 |
| PBB-EEL-08        | 745            | 1100   | 16.50   | PBB-EEL-COMP-02 |
| PBB-EEL-09        | 585            | 420    | 16.50   | PBB-EEL-COMP-02 |
| PBB-EEL-10        | 735            | 940    | 16.50   | PBB-EEL-COMP-02 |
| mean              | 678            | 683    |         |                 |
| PRESUMPSCOT RIVER |                |        |         |                 |
|                   |                |        |         |                 |
| Windham           |                |        |         |                 |
| PRU-SMB-01        | 318            | 410    | 4.04    | PRU-SMB-COMP-01 |
| PRU-SMB-02        | 318            | 400    | 4.04    | PRU-SMB-COMP-01 |
| PRU-SMB-03        | 343            | 520    | 2.99    | PRU-SMB-COMP-02 |
| PRU-SMB-04        | 283            | 390    | 2.99    | PRU-SMB-COMP-02 |
| PRU-SMB-05        | 302            | 430    | 4.87    | PRU-SMB-COMP-03 |
| PRU-SMB-06        | 302            | 330    | 4.87    | PRU-SMB-COMP-03 |
| PRU-SMB-07        | 343            | 540    | 1.62    | PRU-SMB-COMP-04 |
| PRU-SMB-08        | 330            | 460    | 1.62    | PRU-SMB-COMP-04 |
| PRU-SMB-09        | 394            | 785    | 2.57    | PRU-SMB-COMP-05 |
| PRU-SMB-10        | 352            | 500    | 2.57    | PRU-SMB-COMP-05 |
| mean              | 328            | 477    |         |                 |
| PRU-WHS-01        | 422            | 945    | 5.81    | PRU-WHS-COMP-01 |
| PRU-WHS-02        | 448            | 1150   | 5.81    | PRU-WHS-COMP-01 |
| PRU-WHS-03        | 413            | 835    | 5.81    | PRU-WHS-COMP-01 |
| PRU-WHS-04        | 419            | 825    | 5.81    | PRU-WHS-COMP-01 |
| PRU-WHS-05        | 425            | 860    | 5.81    | PRU-WHS-COMP-01 |
| PRU-WHS-06        | 476            | 1200   | 7.80    | PRU-WHS-COMP-02 |
| PRU-WHS-07        | 432            | 900    | 7.80    | PRU-WHS-COMP-02 |
| PRU-WHS-08        | 413            | 825    | 7.80    | PRU-WHS-COMP-02 |
| PRU-WHS-09        | 457            | 1100   | 7.80    | PRU-WHS-COMP-02 |
| PRU-WHS-10        | 445            | 1060   | 7.80    | PRU-WHS-COMP-02 |
| mean              | 435            | 970    |         |                 |

| FIELD ID           | LENGTH | WEIGHT | % LIPID | COMPOSITE ID    |
|--------------------|--------|--------|---------|-----------------|
|                    | (mm)   | (g)    |         |                 |
| PRESUMPSCOT RIVER  |        |        |         |                 |
| Westbrook          |        |        |         |                 |
| PRW-WHS-01         | 394    | 710    | 9.79    | PRW-WHS-COMP-01 |
| PRW-WHS-02         | 419    | 900    | 9.79    | PRW-WHS-COMP-01 |
| PRW-WHS-03         | 356    | 530    | 9.79    | PRW-WHS-COMP-01 |
| PRW-WHS-04         | 432    | 1000   | 9.79    | PRW-WHS-COMP-01 |
| PRW-WHS-05         | 391    | 800    | 9.79    | PRW-WHS-COMP-01 |
| PRW-WHS-06         | 337    | 420    | 5.17    | PRW-WHS-COMP-02 |
| PRW-WHS-07         | 429    | 915    | 5.17    | PRW-WHS-COMP-02 |
| PRW-WHS-08         | 384    | 650    | 5.17    | PRW-WHS-COMP-02 |
| PRW-WHS-09         | 356    | 550    | 5.17    | PRW-WHS-COMP-02 |
| PRW-WHS-10         | 375    | 600    | 5.17    | PRW-WHS-COMP-02 |
| mean               | 387    | 708    |         |                 |
| PRW-SMB-01         | 308    | 490    | 3.80    |                 |
| SALMON FALLS RIVER |        |        |         |                 |
| South Berwick      |        |        |         |                 |
| SLF-WHS-01         | 455    | 1020   | 6.97    | SLF-WHS-COMP-01 |
| SLF-WHS-02         | 378    | 700    | 6.97    | SLF-WHS-COMP-01 |
| SLF-WHS-03         | 462    | 1310   | 6.97    | SLF-WHS-COMP-01 |
| SLF-WHS-04         | 437    | 960    | 6.97    | SLF-WHS-COMP-01 |
| SLF-WHS-05         | 406    | 900    | 6.97    | SLF-WHS-COMP-01 |
| SLF-WHS-06         | 493    | 1370   | 6.18    | SLF-WHS-COMP-02 |
| SLF-WHS-07         | 333    | 450    | 6.18    | SLF-WHS-COMP-02 |
| SLF-WHS-08         | 399    | 760    | 6.18    | SLF-WHS-COMP-02 |
| SLF-WHS-09         | 483    | 1190   | 6.18    | SLF-WHS-COMP-02 |
| SLF-WHS-10         | 406    | 800    | 6.18    | SLF-WHS-COMP-02 |
| mean               | 425    | 946    |         |                 |
| SLF-SMB-01         |        |        | 9.75    |                 |

| FIELD ID          | LENGTH | WEIGHT | % LIPID | COMPOSITE ID    |
|-------------------|--------|--------|---------|-----------------|
|                   | (mm)   | (g)    |         |                 |
| SEBASTICOOK RIVER |        |        |         |                 |
| Palmyra W Branch  |        |        |         |                 |
| SBW-WHS-01        | 361    | 460    | 2.84    | SBW-WHS-COMP-01 |
| SBW-WHS-02        | 330    | 380    | 2.84    | SBW-WHS-COMP-01 |
| SBW-WHS-03        | 432    | 730    | 2.84    | SBW-WHS-COMP-01 |
| SBW-WHS-04        | 363    | 470    | 2.84    | SBW-WHS-COMP-01 |
| SBW-WHS-05        | 356    | 400    | 2.84    | SBW-WHS-COMP-01 |
| SBW-WHS-06        | 396    | 600    | 2.14    | SBW-WHS-COMP-02 |
| SBW-WHS-07        | 356    | 450    | 2.14    | SBW-WHS-COMP-02 |
| SBW-WHS-08        | 376    | 520    | 2.14    | SBW-WHS-COMP-02 |
| SBW-WHS-09        | 406    | 610    | 2.14    | SBW-WHS-COMP-02 |
| SBW-WHS-10        | 348    | 360    | 2.14    | SBW-WHS-COMP-02 |
| mean              | 372    | 498    |         |                 |
| SBW-SMB-01        | 439    | 1180   | 2.76    |                 |
| SBW-SMB-02        | 345    | 550    | 1.90    |                 |
| SBW-SMB-03        | 259    | 200    | 1.75    |                 |
| SBW-SMB-04        | 356    | 500    | 2.44    |                 |
| SBW-SMB-05        | 290    | 310    | 1.35    |                 |
| mean              | 338    | 548    |         |                 |

## APPENDIX 8

SAMPLING SCHEDULE FOR THE 1993 DIOXIN MONITORING PROGRAM

Appendix 8. Sampling schedule for 1993 Dioxin Monitoring Program

JUNE (early stations)

Androscoggin R at Gulf Island Pond for bass
Androscoggin R at Lisbon Falls for brown trout
Kennebec R at Augusta for brown trout
Presumpscot R at Westbrook for bass
Salmon Falls R at South Berwick for bass
East Branch Sebasticook R at County Road, Newport for bass

JULY-AUGUST (all rivers by order beginning at upstream stations)

Androscoggin R - July
Kennebec R - July
Penobscot R - August
Presumpscot R - August
Salmon Falls R - August
Sebasticook R (East and West Branches) - August