

REPORT

ON THE

BUREAU OF

GENERAL SERVICES

ENERGY SAVINGS PILOT PROGRAM

JANUARY 31, 2001

Prepared for: Joint Standing Committee on Utilities and Energy

Prepared by: Department of Administrative & Financial Services Bureau of General Services

Printed on Recycled Paper

Table of Contents

LAW & LEGISLATIVE REFERENCE LIBRARY 43 STATE HOUSE STATION AUGUSTA, ME 04333

- 1. Introduction
- 2. State Owned Facilities List
- 3. Procedure to Compile Data
- 4. Executive Summary Life Cycle Analysis
- 5. Current Energy Management Processes
- 6. Plan to Achieve 25% Savings

APR 19 2001

INTRODUCTION

The Bureau of General Services is responsible for the construction, maintenance and repair of many state owned facilities. Other governmental agencies have responsibility over buildings and real property within their programs. For many years, BGS has used its resources to make prudent decisions related to energy efficiency within state buildings as resources allowed.

In the spring of 2000, the 119th Legislature passed a law which required the BGS to quantify its efforts, identify buildings, capture energy use and explore the process and possibilities of 10 pilot projects which would demonstrate the feasibility of using performance based contracting to achieve sufficient energy savings to accomplish needed facility upgrades.

This task is not simple and the work is incomplete. This report identifies the current status of the tasks assigned to the Bureau. The work continues.

State Owned Facilities List

The Bureau of General Services (BGS) has developed a list (included in this report as Appendix 1) of facilities to comply with the requirements of the new statute on the Energy Savings Pilot Program¹. This list includes all Executive Branch agencies, the applicable institutions of higher learning, and the Legislative and Judicial branches. The list spans facilities whose use and size range from residences to the Burton Cross State Office Building.

This list will be used to create the baseline data necessary to accomplish the goals of this statute on the facilities managed by the BGS. Significant progress has been made to date. In addition to this activity, the Director will request similar information from the organizations who manage state facilities outside of the control of the BGS. These include the University of Maine System, the Maine Maritime Academy, the Technical College System and the Maine State Retirement System.

The University of Maine System is not required to follow the BGS statute by specific exemption². The calculations and projections for the pilot program will not include facilities under their control. The Maine Maritime Academy and Technical College System are only required to use the BGS for technical review and process. It is their decision as to priority, scope and budget for a project within their campuses³.

¹ 5 M.R.S.A. § 1770

² 5 M.R.S.A. § 1742 C (1)

•

State Owned Buildings

•

1	BCR	2475	\$61,600.00	AMITY	55001 2 STALL STOR BLDG LOT 97
1	BDD	4000	\$528,000.00	ASHLAND	55604 5 STALL STO BLDG LOT146
1	$\mathbf{F}\mathbf{G}\mathbf{F}$	4072	\$378,000.00	CARIBOU	55367 6 STALL STOR BLD2 LOT
1	FGD	4072	\$378,000.00	CARIBOU	55366 6 STALL STOR BLD1 LOT
1	$\mathbf{F}\mathbf{H}\mathbf{H}$		\$50,400.00	CARIBOU	55424 SALT SHD MAINT LOT 123B
1	FXT	6400	\$215,040.00	CRYSTAL	55462 8 STALL STOR BLDG LOT
1	FXV		\$50,400.00	CRYSTAL	55463 SALT SHD MAINT LOT 200
1	GXZ		\$93,030.00	FORT KENT	55425 SALT SHD & COLD ST LOT12
1	GZL		\$68,145.00	FRENCHVILLE	55300 SALT & STOR SHD LOT 167
1	GZN		\$108,220.00	FRENCHVILLE	55681 SAND BUILDING (DOME) 162
1	HBB	4000	\$128,000.00	FT FAIRFIELD	55381 5 STALL EQ ST BLD2
1	HKL	4000	\$128,000.00	FT FAIRFIELD	55380 5 STALL EQ ST BLD1
1	HZL		\$72,000.00	HOULTON	55455 CR AR&MAT BLD LT1082A
1	JBB		\$182,910.00	HOULTON	55600 REST AREA BUILDING S A 4
1	JBD		\$50,400.00	HOULTON	55426 SALT SHED BLDG
1	KBB	1260	\$50,400.00	MACWAHOC	55027 SALT SHED
1	JZX	4072	\$153,600.00	MACWAHOC	55523 6 STALL STOR BLDG
1	KBP		\$163,420.00	MADAWASKA	55682 SAND BUILDING (DOME)
1	KBN		\$117,000.00	MADAWASKA	55603 SALT STOR BLD LOT
1	KBD	3200	\$258,000.00	MADAWASKA	55602 4 STALL ST BLD LOT
1	KCH	12480	\$304,642.00	MARS HILL	55287 SALT & TOOL DOME
1	KCD	4072	\$171,600.00	MARS HILL	55485 6 STALL STOR BLDG
1	KXL		\$211,360.00	OAKFIELD	55680 SAND BUILDING (DOME)
1	KXJ		\$63,000.00	OAKFIELD	55384 SALT SHED
1	NCZ		\$615,360.00	PRESOUE ISLE	55991 DIV OFF BLDG LOT 58
1	MYJ	4072	\$430,100.00	PRESOUE ISLE	55592 6 STALL STR BLD
1	NYV	6400	\$231,840.00	SHERMAN	55486 8 STALL STOR BLDG
1	PNF	3200	\$102,400.00	STOCKHOLM	55524 4 STALL STOR BLDG LOT 24
1	OWF	4072	\$174,400.00	VAN BUREN	55423 6 STALL STOR BLDG
1	OWM	9600	\$148,763.00	VAN BUREN	55612 SAND/SALT
2	CWH	3200	\$128,000.00	AURORA	55343 4 STALLS LIVING ORTRS L9
2	CXC		\$550,000.00	BAILEYVILLE	55749 7 BAY GARAGE/OFFICE RT 1
2	DNR	4000	\$112,000.00	BAR HARBOR	55429 5 STALL STORAGE BLDG 102
2	PQH	2560	\$128,000.00	BEDDINGTON	55347 4 STALLS LIVING QRTRS 9
2	FBF	2800	\$140,000.00	CALAIS	INFO BUILDIN RT1 (UNION ST)
2	FVD	4000	\$112,000.00	CHERRYFIELD	55525 5 STALL STORAGE BLDG
2	GJF	7020	\$216,780.00	ELLSWORTH	55051 15 STALL SHED BLDG
2	GJX		\$351,360.00	ELLSWORTH	55992 OFFICE BLDG 1 & 3
2	HKN		\$63,000.00	GOULDSBORO	55587 SALT SHED
2	HXR	1890	\$66,000.00	HANCOCK	EROSION CONTROL BLDG
2	JFH	6400	\$179,200.00	JONESBORO	55464 8 STALL STORAGE BLDG 1
2	KZD	6400	\$179,200.00	ORLAND	55487 8 STALL STOR BLDG
2	MFH		\$184,800.00	PEMBROKE	55683 SAND/STORAGE BLDG
2	KZG	9600	\$146,723.00	SEDGWICK	55540 SAND STORAGE BUILDING
2	ORJ		\$110,000.00	TOPSFIELD	55468 SAND/STORAGE BLDG 1&6
2	oox	4000	\$112,000.00	TOPSFIELD	55427 5 STALL STORAGE BLDG 1&6
2	RKL	-	\$85,000.00	WESLEY	55685 SAND/STORAGE BLDG
2	RKD	3200	\$89,600.00	WESLEY	55344 4 STALL, SHED 9
- 229B	DPH	528	\$175,000.00	BASS HARBOR	TERMINAL BLDG & PROP
229B	DPF		2,500,000.00	BASS HARBOR	PIER
229B	DPN		\$150.000.00	BATH	DRAW CONTROL HSE
229B	FHX		\$185,100.00	CARMEL	55459 MAINTENANCE STOREHSE FULLER
ROAD			,,	-	

2	229B	FJQ	1880	\$56,400.00	CARMEL	55074 STORAGE FULLER ROAD
2	229B	FTZ		\$300,000.00	CHEBEAGUE IS	WHARF
2	229B	GNZ		\$100,000.00	FAIRFIELD	MAINTENANCE STOREHSE
2	229B	HSH		\$400,000.00	GT DIAMND IS	WHARF
-	229B	HXN		\$60,000.00	HANCOCK	55138 BRIDGE MAINT STORAGE
2	229B	HXZ		\$100,000.00	HANCOCK	55353 STORAGE SHED
-	229B	HXT		\$100,000,00	HANCOCK	55351 MAINTENANCE STOREHSE
2	229B	TBZ		\$160,000,00	TSLESBORO	CREW OTRS
-	229B	JCF		2 300 000 00	ISLESBORO	DIFD
-	2220	TCU		\$200,000.00	ISLEGDODÓ	TERMINAL BLDC
-	2295			\$200,000.00	I TNCOL MULLIE	TERMINAL BUDG
4	2230			\$100,000.00	LINCOLNVILLE	DIDD I INGOLWIILD
4	229B	JPP		2,400,000.00	LINCOLNVILLE	PIER - LINCOLNVILLE
ź	229B	JQT		\$320,000.00	LITTLE DIAMD	WHARF'
2	229B	JRH		\$300,000.00	LONG ISLAND	WHARF
2	229B	KFH		\$350,000.00	MATINICUS	WHARF
2	229B	KNX		\$127,000.00	NAPLES	MAINT STORE HSE
2	229B	KTB	8400	\$270,000.00	NEW LIMERICK	55034 BRIDGE MAINT STORAGE BLDG
2	229B	KVV		\$160,000.00	NORTH HAVEN	CREW QRTRS
2	229B	KVZ		\$150,000.00	NORTH HAVEN	TERMINAL BLDG & PROP
2	229B	KVX		2,350,000.00	NORTH HAVEN	PIER
2	229B	MDP		4,000,000.00	PEAKS ISLAND	WHARF & VEH FACILITY
2	229B	PHC		\$208,000.00	PORTLAND	BRIDGE MAINT BLDNG
2	229B	NBZ		\$88,424,00	PRESOUE ISLE	MAINTENANCE STORE HSE
2	229B	NGV		\$125 000 00	RICHMOND	DRAW CONTROL HSE ME-KENN BR
-	2220	NKR		\$200 000 00	RICHMOND BOCKLAND	TERMINAL BLDG & DDOD
-	2230		17000		ROCKLAND	TERMINAL BUDG & PROP
	2235	NUL	17000	3,000,000.00	ROCKLAND	FIER
4	229B	NJJ	2400	\$150,000.00	ROCKLAND	COLD STORAGE BLDG
2	229B	PHB		\$125,000.00	S PORTLAND	DRAW CONTROL HSE SO PORT BR
2	229B	NXD		\$100,000.00	SCARBORO	MAINTENANCE STOREHSE
2	229B	PCX	3250	\$146,250.00	SKOWHEGAN	55730 4 STALL STORAGE RT 201
2	229B	PFV		\$125,000.00	SO BRISTOL	DRAW CONTROL HSE GUT BR
2	229B	PPR		\$150,000.00	SWANS ISLAND	CREW QUARTERS
2	229B	PPV		\$100,000.00	SWANS ISLAND	TERMINAL BLDG & PROP
2	229B	PPT		2,400,000.00	SWANS ISLAND	PIER-SWANS ISLAND
2	229B	QXR		\$160,000.00	VINALHAVEN	CREW QUARTERS
2	229B	QXV		\$100,000.00	VINALHAVEN	TERMINAL BLDG & PROP
2	229B	QXT		1,900,000.00	VINALHAVEN	PIER
2	229B	QYR		\$100,000.00	W FARMINGTON	55327 MAINT STOREHOUSE 2-4
2	229B	RCT		\$160,000.00	WASHINGTON	8 BAY MAINT STOREHSE
2	229B	RRH		\$100,000.00	WOODSTOCK	MAINT STOREHOUSE
2	229B	RSJ		\$80,000.00	YORK	MAINTENANCE STOREHSE
3	3	BCP		\$56,700.00	ALTON	55320 SALT SHED AND GARAGE
2	2		5620	\$351 250 00	BANGOR	55323 NO 7 STALL STORAGE SHED
2	2	DIA	2020	\$88 200 00	BANCOR	55469 SALT SHED
-	2	חשת חשת		\$322 524 00	BANCOR	55368 MTS CAPACE
))		FCOO	\$322,524.00	DANGOR	EE224 CO 7 CTALL CHODACE CHED
5	> \	DKL	5620	\$351,250.00	BANGOR	55324 SU / STALL STORAGE SHED
5	5	DKP		\$949,782.00	BANGOR	55993 OFFICE BLDG
3	\$	DF.F		\$137,800.00	BANGOR	55113 CONFERENCE BLDG
3	3	FJD		\$52,000.00	CARMEL	55066 SALT STORAGE SHED S A 6
3	3	FHT	4000	\$250,000.00	CARMEL	55529 5 STALL STOR BLDG SA 6
3	3	FJB		\$60,480.00	CARMEL	55313 SALT SHED 69
З	3	FJJ		\$112,000.00	CARMEL	55065 VEHICLE STOR S A 6
3	3	FQF	2400	\$150,000.00	CHARLESTON	55432 3 STALL STORAGE BLDG 15
3	3	\mathbf{FTT}		\$124,760.00	CHARLESTON	55687 SAND STORAGE SHED 15
3	3	FZZ	3200	\$200,000.00	DEXTER	55528 4 STALL STORAGE BLDG 7
З	3	GBD		\$60,480.00	DEXTER	55312 SALT SHED 7
3	3	GFL		\$60,480.00	EDDINGTON	55082 SALT SHED 9

	2	0.0.7	5 6 9 9				
	3	GFJ	5620	\$351,250.00	EDDINGTON	55345 7 STALL STORAGE SHED 9	
	3	KFL HOT	10500	\$165,000.00	ENFLELD	556/3 SAND STORAGE SHED	
	3	HSL	24/5	\$154,687.50	GUILFORD	55235 2 BAI SIORAGE	
	3	n SN UVU	4074	\$254,500.00	GUILFORD	55491 6 STALL STORAGE BLDG 15	
	2	UVF	5394	\$255,620.00		55250-IOURISI INFO CIR	
	2		2400	\$363,425.00	LACDANCE	EEA21 2 CTAIL CTOPACE BLOC 1EE	
	2	.דסד	2400	\$130,000.00	LONG A TWD	55431 5 STADE STORAGE BEDG 155	
	2	VEV		\$70,000.00	DONG A IWP MEDWAV	EEC19 DEGT ADEA TOE CD	
	2	KGD		\$302,000.00		55010 RESI AREA 195 SE	
	3	KET		\$302 000 00		55617 DEGT AREA 195 NR	
	3	KF I VUT	6400	\$302,000.00	MTLO	55017 REST AREA 195 NB 55430 8 STALL STOPACE BLDG 16	
	2	KHM	0400	\$100,000.00	MILO	55238 STOPAGE	
	3	KUV		\$240,000.00	MILO	SJZJO STORAGE	
	3	K.TF		\$60,480,00	MONSON	55308 SALT & TRACTOR STOR SHD	
	2	ML.F		\$305,400,00	DI.VMOUTH	55329 VEHICLE STORAGE SHED	
	3	MLD		\$130,000,00	PLIMOUTH DLVMOUTH	55672 SAND STORAGE SHED 7	
	3	ML.F		\$168,000.00		55614 SAND STORAGE SHED /	
	2	NKY	2400	\$150,000.00	ROCKWOOD	55014 SAND STORAGE 55327 3 STALL STORAGE BLDG 15	
•	2	NZD	2400	\$130,000.00	RUCRWOOD GUIDI EV	55557 5 STALL STORAGE BLDG 15	
	3		4000	\$200,000.00	SULKDET D	SS432 4 STADE STOR BED IS	
	2	OUG	2800	\$250,000.00	TOO DOG	55455 5 STALL STORAGE BLDG 0	
	2	ULS VLA	2000	\$98,000.00	IUZ KUO WECT ENETEID	55374 SAND SHED	
	່ ວ	DEX	4072	\$254,500.00	WEGT ENFLEDD	EFEES & CAN'T CAUD BIDG 2	
	2	RRA DV7	6400	\$400,000.00	MEDI ENLIEID	SSSSS 0 STALL STOR BLDG Z	
	2	RKZ		\$05,100.00	WEDI ENFLEDD	SSSS4 SALI SHED Z	
	·	RAS DDT		\$70,000.00	WESI ENFIELD	SIORAGE 2000 SUFI	
	2	RPI	5620	\$124,760.00	W T NIN W T NIN	EFACE 7 CTALL CTODACE BLDC 16	
	2	RPN RD7	2200	\$351,250.00	N TININ V TININ	55400 / STALL STORAGE BLDG 10	
	4	BDZ BN.T	3200	\$50,000.00	AIRENS	55411 4 STALL STORAGE BLUG ISV	
	4			\$05,125.00	AUGUSIA	55565 BLDG RESI AREA 195	
		CMD		\$710,900.00	AUGUSIA	55700 NEW SIGN SHOP BLDG	
	4			\$157 000 00	AUGUSIA	SAND /SALT STOPACE	
	4	KVC		\$137,000.00	AUGUSIA	55242 CAPAGE	
	± . 4	CDN	1500	\$530,000.00	RELCONDE	55231 WAY BADN	
	-± 4	UP R T P R	6400	\$256 000.00	BELCDADE	55471 8 GTALL STOPAGE BLDG 135	
	4	FDB	6400	\$400,000,00	CANAAN	55310 8 STALL STORAGE BLDG 2	
	4	GDB	0400	\$51 000 00	FATEFILD	55609 STORAGE BARN 201	
	4 4	GND	6400	\$256 000 00	FAIRFIELD	55493 8 STALL STOR BLDG 201	
	4	GNL	3200	\$112,000.00	FAIRFIELD	55338 4 STALL VEH STOR BLDG	
	4	GPH	5200	\$467.075 00	FAIRFIELD	55994 OFFICE BLDG 201	
		GPP		\$54,880.00	FATRFIELD	55610 STORAGE 201	
	4	GNN	2719	\$250.000 00	FAIRFIELD	55245 5 STALL STOR BLDG 201	
	4	GNJ	3200	\$91.000.00	FAIRFIELD	55303 4 STALL STORAGE BLDG 201	
	4	JCP	6400	\$400,000.00	JACKMAN	55304 8 STALL STORAGE BLDG 15	
	4	KGF	5620	\$198,000,00	MERCER	55389 7 STALL STORAGE BLDG 137	
	4	KK'1	3200	\$200.000.00	MOSCOW	55418 4 STALL STORAGE BLDG 201	
	4	MJX	5200	\$216.000.00	PITTSFIELD	55302 VEHICLE STORAGE SHED	
	4	MJP		\$500,000.00	PITTSFIELD	55228 MAINE FACILITY 2	
	4	NFP	4000	\$112.000.00	RANDOLPH	55415 5 STALL STORAGE BLDG 226	
	4	NFT		\$59,500.00	RANDOLPH	55233 SALT SHED S A 5 BIRM	
	4	NZJ	4000	\$101,000.00	SIDNEY	55244 5 STALL STORAGE BLDG T95	
	4	NZN		\$142,352.00	SIDNEY	55058 REST AREA 195	
	4	PGF		\$150,000.00	SO CHINA	SALT/SAND STORAGE DOME 3	
	4	PFZ	6400	\$180,000.00	SO CHINA	55414 8 STALL STORAGE BLDG 3	
	4	PHV	4072	\$135,000.00	SOLON	55390 6 STALL STORAGE BLDG	
	4	RLF	4000	\$112,000.00	THE FORKS	55391 5 STALL STORAGE BLDG 201	
		_			· · · · · · · · · · · · · · · · · · ·		

						· · · · · · · · · · · · · · · · · · ·
4	QZF		\$150,000.00	W GARDINER	55671	SALT/SAND STOR DOME 126
4	QYZ	4000	\$112,000.00	W GARDINER	55416	5 STALL STORAGE BLDG 126
4	RQH	6480	\$227,000.00	WINTHROP	55336	8 STALL STOR BLDG
4	DRL	12640	\$500,000.00	WINTHROP	55718	SAND / SALT BLDG
5		3005	\$77,000.00	BROOKS	55112	SALT SHED& 1 BAY GARAGE
5	GFR	5160	\$201,250.00	EDGECOMB	55473	8 STALL STORAGE BLDG I
5	JHX	5160	\$182,000.00	KNOX	55386	8 BAY STORAGE BLDG 137
5	JJB	21642	\$184,730.00		55679	SAND/SALI DOME 13/
5	KU T	5410	\$184,800.00	MONIVILLE	55008	SAND/SALT STORAGE DOME
5 E	KUH	5880	\$134,400.00	MONIVILLE	55495	6 BAI STORAGE BLDG 3
5		2100	\$242,900.00	DICUMOND	55550	O BAI SIORAGE BUDG I
5		9054 5160	\$100,000.00	RICHMOND	55683	SAND/SALI SIOK BLDG 138
5.	NGN	4032	\$179,200.00	RICHMOND	55550	OFFICE BLDG
5	NUX	7200	\$313,000.00	POCKLAND	55995	STORAGE BLDG
5	NKT	5160	\$252,000.00	ROCKDAND	55521	8 BAV STOPAGE BLDG 90
5	NXU	4072	\$176 400 00	SEADSDODT	55264	E BAY STORAGE BLDG 1
5	ORV	6280	\$392 500 00	TODGHAM	55645	8 BAY STORAGE BLDG 196
5		2951	\$80,000,00	INTTV	55691	S BAI STORAGE BLDG 190
5		6514	\$179 200 00	WALDOBODO	55434	8 STALL STORAGE BLDG 1
5	22A PCV	5160	\$179,200.00	WASHINGTON	55458	8 STALL STORAGE BLDG 17
5	RCV	5120	\$179,200.00	WASHINGTON	55535	VEHICLE STORAGE
6	BBI.	5620	\$351 250 00	ALFRED	55395	STALL STOPAGE SHED 4
6	BBD	5020	\$50,400,00	ALFDED	55396	SALT STORAGE SHED 4
6	םעם סעם		\$50,400.00	BRIDGTON	55413	SALT SHED
6		4000		BRIDGTON	55438	5 STALL STORAGE BLDG
6	DVF	7000	\$111 352 00	BRIDGTON	55677	SAND / SALT STORAGE DOME
6		4000	\$160 000 00	BRIDGTON	55437	5 STALL STORAGE BUDG
6	GVP	4072	\$262,200,00	FREEDORT	55622	6-BAY GARAGE BOILER ROOM
6	GZF	4072	\$142 700 00	FREEDORT	55621	SAND SHED
6	GYT	407Ż	\$193 000 00	FREEPORT	55623	6-BAY STORAGE BLDG
6	нкн	1072	\$264 000 00	GORHAM	55339	STORAGE BLDG 202
6	нкг		\$189,960.00	GORHAM	55674	SAND/SALT STOR DOME 202
6	HMB		\$81,900.00	GRAY	55155	OPEN SHED 100
6	HPN		\$50,400.00	GRAY	55474	SALT SHED 100
6	HMJ	6400	\$400,000.00	GRAY	55534	8 STALL BLDG 100
6	JGJ		\$50,400.00	KENNEBUNK	55448	SALT SHED 1
6	JHR		\$98,175.00	KITTERY	55630	STATE POLICE WEIGH STA
6	JHJ		\$840,432.00	KITTERY	55541	INFO & REST AREA
6	JMP		\$67,200.00	LIMERICK	55536	SALT SHED TYPE B OFF 11
6	JRX		\$67,200.00	LYMAN	55537	SALT SHED 202
6	KVN		\$172,800.00	NO BERWICK	55321	STORAGE SHED SA 6
6	KVL		\$50,400.00	NO BERWICK	55317	SALT SHED SA 6
6	MMD		\$127,160.00	POLAND	55676	SAND/SALT STOR DOME 26
6	MLH	4072	\$192,000.00	POLAND	55436	6 STALL STORAGE BLDG 26
6	NXL		\$800,000.00	SCARBORO	55996	OFFICE BUILDING SA 11
6	NWL	6400	\$400,000.00	SCARBORO	55496	8 STALL BLDG SA 11
6	NXP		\$98,400.00	SCARBORO	55497	SALT SHED SA 11
6	NWM	6400	\$400,000.00	SCARBORO	55556	8 STALL BLDG SA 11
6	PFN	4072	\$192,000.00	SO BERWICK	55535	STALL BLDG 236
6	PFT		\$105,560.00	SO BERWICK	55675	SAND/SALT STOR DOME 236
6	PFR		\$50,400.00	SO BERWICK	55475	SALT SHED 236
.6	PLH		\$163,340.00	STANDISH	55692	SAND/SALT STOR DOME SA12
6	\mathbf{PLJ}		\$204,000.00	STANDISH	55340	STORAGE BLDG 25
6	QZN		\$52,217.00	W SCARBORO	55181	OPEN SHED 1
6	QZL		\$80,000.00	W SCARBORO	55180	GARAGE 1
6	RRT		\$50,400.00	YARMOUTH	55449	SALT SHED 1

6	RRR		\$770,750.00	YARMOUTH	55668 INFO CENTER
б	RSP		\$98,715.00	YORK	55629 ST POLICE WEIGH STA 195N
6	RSL		\$50,400.00	YORK	55476 SALT SHED 1
6	RSH		\$256,000.00	YORK	55456 GARAGE 1
6	RSB	6400	\$400,000.00	YORK	55555 8 STALL BUILDING 1
7	BHD	2400	\$126,665.00	AUBURN	55273 VEH STORAGE 3 STALL 122
7	CWZ	4000	\$203,830.00	AVON	55392 VEHICLE SHED 4 STALL
7	DRV		\$50,400.00	BETHEL	55442 SALT SHED
7	DSH	4072	\$258,720.00	BETHEL	55309 VEH STOR SHD 6 STALL
7	FDV	2400	\$127,215.00	CANTON	55298 STORAGE SHED 3 STALL 108
7	FPT	2400	\$110,495.00	CHAIN OF PDS	55461 3 STALL STORAGE BLDG 27
7	FYT		\$50,400.00	DALLAS	55501 SALT SHED 16
7	FZF	5620	\$246,400.00	DALLAS	55379 VEH STOR SHED 7 STALL 16
7	GBT		\$50,400.00	DIXFIELD	55443 SALT SHED 2
7	GBL	5620	\$285,340.00	DIXFIELD	55457 7 STALL STORAGE BLDG 2
7	GBP		\$374,500.00	DIXFIELD	55997 OFFICE BLDG 2
7	GMT		\$50,400.00	FAIRBANKS	55568 SALT SHED 4
7	GMP	5620	\$351,250.00	FAIRBANKS	55500 7 STALL STOR BLDG 4
7	GZT		\$50,400.00	FRYEBURG	55480 SALT SHED 302
7	GZR	4072	\$251,515.00	FRYEBURG	55322 6 STALL STORAGE SHED 302
7	HOJ		\$50,400.00	GREENE	55477 SALT SHED
7	HOL		\$57,600.00	GREENE	55284 SHED STORAGE
7	HOF	2400	\$154,000.00	GREENE	55439 3 STALL STORAGE BLDG
7	JCZ	3200	\$169,950.00	JAY	55307 4 STALL VEHICLE SHED
7	JDB		\$50,960.00	JAY	55387 SALT SHED
7	JGP		\$70,320.00	KINGFIELD	55502 SALT SHED STORAGE
7	JGX	3200	\$177,650.00	KINGFIELD	55299 STORAGE SHED 4 STALL 27
7	JRL	2400	\$96,470.00	LOVELL	55267 3 STALL VEHICLE STOR 5
7	JRN		\$55,920.00	LOVELL	55479 SALT SHED 5
7	PJJ		\$50,400.00	S PARIS	55441 SALT SHED 26
7	PJF	6400	\$400,000.00	S PARIS	55440 8 STALL STORAGE BLDG 26
7	NTV		\$69,300.00	SABATTUS	55510 SALT SHED 9
7	PGJ		\$50,400.00	SO HIRAM	55445 SALT SHED
7	PJD	2475	\$52,800.00	SO HIRAM	55295 2 STALL VEH SHED
7	PPB		\$112,860.00	STRATTON	55505 BUILDING 16
7	QVH		\$89,726.00	TURNER	55678 SAND/SALT STORAGE DOME
7	QVF		\$50,400.00	TURNER	55503 SALT SHED
7	QVT	3200	\$126,700.00	TURNER	55275 VEHICLE SHED 4 STALL
7	QXN		\$50,400.00	VIENNA	55444 SALT SHED 41
7	QYS	2392	\$83,720.00	W FARMINGTON	55194 STORAGE SHED OPEN
7	RMH		\$105,000.00	WILSON MILLS	55447 SALT SHED 16
AERO	CHV		\$612,000.00	AUGUSTA	NEW ADMIN BLDG
AERO	BMF	12320	\$850,000.00	AUGUSTA	HANGAR 1999
AERO	CHX		\$84,000.00	AUGUSTA	NEW AIRPORT STORGE BLDG
AERO	BMH		\$183,750.00	AUGUSTA	AIRPORT MAINT BLDG & HGR
AERO	CDP	10500	\$420,000.00	AUGUSTA	SNOW REMOVAL EQUIP BLDG
AGR	BLZ		\$52,350.00	AUGUSTA	AGRI CALIBRATION STATION
AGR	BMB	18500	1,375,675.00	AUGUSTA	AGRI SHOP & STORAGE BLDG
AGR	NCP		\$83,000.00	PRESQUE ISLE	PVYN LAB
AGR	PKD		1,653,750.00	SPRINGFLD MA	EASTERN STATES EXPO
AMHI	BTZ	2948	\$120,100.00	AUGUSTA	FARMHOUSE - HALFWAY HSE
AMHI	BWV		1,255,475.00	AUGUSTA	GYM
AMHI	CGX	8800	\$879,875.00	AUGUSTA	MECHANICAL BLDG
AMHI	BWL	4808	\$106,400.00	AUGUSTA	GREENHOUSE - GROW WORKSHOP
AMHI	CSH	57557	13853928.00	AUGUSTA	STONE NORTH
AMHI	CSJ	21964	12495625.00	AUGUSTA	STONE SOUTH
AMHI	. CSV	3938	\$243,026.00	AUGUSTA	SUPERINTENDENT'S RESIDENCE #3

AMHI	BLT	18647	2,528,900.00	AUGUSTA
AMHI	CVP	18860	\$855,675.00	AUGUSTA
AMHI	CWB	17640	4,159,309.00	AUGUSTA
AMHI	CDJ	11600	\$625,670.00	AUGUSTA
AMHI	СЈН	1574	\$120,000.00	AUGUSTA
AMHT	CLN		\$66,750.00	AUGUSTA
АМНТ	BTF	47695	3 425 675 00	AUGUSTA
амнт амнт	BRZ	2912	\$162 006 00	AUGUSTA
AMUT	DCD	2707	\$99 666 00	AUCUSTA
AMUT	VDD	2,0,	\$22,000.00	AUGUDIA
	OPA	5000	9440,100.00	AUGUSIA
		05050	6,195,675.00	AUGUSIA
AMHI	BSD	2292	\$99,066.00	AUGUSTA
AMHI	CFP	2000	\$133,852.00	AUGUSTA
AMHI	BRA	2912	\$162,856.00	AUGUSIA
ARC	MZN	8274	\$742,291.00	PRESQUE ISLE
BAXSCH	GQF	14000	\$966,183.75	FALMOUTH
BAXSCH	GQV	28000	2,089,243.80	FALMOUTH
BAXSCH	GQJ	2820	\$157,502.10	FALMOUTH
BAXSCH	GQH	14000	1,222,475.10	FALMOUTH
BAXSCH	GQN	4880	\$199,053.75	FALMOUTH
BAXSCH	GQZ	6012	\$257,959.80	FALMOUTH
BAXSCH	GQR	9000	\$622,401.15	FALMOUTH
BAXSCH	GQT	13080	1,006,701.15	FALMOUTH
BAXSCH	GQD	7724	\$750,423.45	FALMOUTH
BAXSCH	GQP	10300	\$630,184.80	FALMOUTH
BAXSCH	GQB	12136	\$622,905.15	FALMOUTH
BAXSCH	GQL	15766	1,211,004.90	FALMOUTH
BFD	PMB		\$53,000.00	ASHLAND
BFD	JFV		\$115,815.00	JONESPORT
BFD	NGT		\$80,115.00	RICHMOND
BFD	NHL		\$58,905.00	RICHMOND
BMHI	DCZ	7427	\$613,545.00	BANGOR
BMHI	DFV	57144	5,826,483.00	BANGOR
BMHI	DDL	22508	2,685,524.00	BANGOR
BMHI	DCX	73900	8,101,695.00	BANGOR
BMHI	DJF	48770	5,592,405.00	BANGOR
BMHI	DJV	12852	\$740,255.00	BANGOR
BMHI	DKV	74748	19815718.00	BANGOR
BMHI	DHP	8000	\$278,342.00	BANGOR
BMHT	DMX	3090	\$175,000.00	BANGOR
BMHT	DGB	45281	5,911,949,00	BANGOR
BMHT	DGR	47400	6,449,190.00	BANGOR
BMHT	DMV	2743	\$175,000,00	BANGOR
BMHT	DHX	14776	1 446 913 00	BANGOR
BMHT	DKT	1300	\$179 432 00	BANGOR
BMHT	DFH	2200	\$160 422 00	BANGOR
BMHT	DIT	21200	2 500 000 00	BANGOR
BMUT	ਹਜ਼ਰ ਹਵਾਵਾ	11200	5 911 949 00	BANCOR
BMUT	קחת מחת	1//00	\$922 622 00	BANCOR
דמס		2603	\$722,022.00	AUCIETA
DPI		76090	7 471 769 00	AUGUSIA
דים דיםם		75000	7,4/1,/07.00 7 //9 E70 00	
DPT		22132	4 500 000 00	AUGUDIA
דממ דממ		0	4,500,000.00	AUGUDIA
DD7 DF1		48191	1,152,423.00	AUGUSIA
RLT	BPH	25100	1,155,787.00	AUGUSTA
BPI	CTN	32100	4,519,850.00	AUGUSTA
RHT	CGZ	2639	\$251,153.00	AUGUSTA

ADMIN BLDG-HOSPITAL ST WAREHOUSE WILLIAMS PAVIL CHAPEL & CLINIC LAUNDRY NORTON - HALFWAY HSE PUMP HOUSE-HOSPITAL ST ELKINS BLDG DOCTORS HOUSE #2 DOCTORS HOUSE #4 (CAPE COD) CARPENTER SHOP CENTER BUILDING & PASSAGEWAYS DOCTORS HOUSE #5 (GARRISON) LOCKE HOUSE-RIVERSIDE DOCTORS HOUSE #1 AROOS RES CTR-LOMBARD ST C BLDG-TAYLOR HALL K BLDG-SANDERS HALL FARMHOUSE (UNOCCUPIED) D BLDG-GREENLAW HALL GARAGE PASSAGEWAYS-W BLDG I BLDG-PATRICK HALL J BLDG-GYM A BKDG-BAXTER HALL H BLDG-BARTON HALL B BLDG-YOUNG HALL G BLDG-CARTER HALL MAINTENANCE BUILDING WOOD PIER C39 MAINTEANCE BLDG STORAGE BLDG #1 A-1 LAUNDRY D BLDG B BLDG A BUILDING K BUILDING MAINT BLDG AT BMHI PAVILION HAYBARN STAFF (HALFWAY) HOUSE II E BLDG F BUILDING-STATE ST STAFF (HALFWAY) HOUSE I HEDIN HALL PASSAGEWAYS CHIEF ENGINEERS RESIDENCE PRE-RELEASE C BLDG B-1 OFFICE BLDG MCLEAN BUILDING HUMAN SERVICES BUILDING 242 STATE STREET PARKING GARAGE RAY BLDG BURLEIGH PAVILION TYSON PAVILLION MERRILL HOUSE

1

BPI	CHR	4944	1,009,790.00	AUGUSTA
BPI	BQR	132579	20299087.00	AUGUSTA
BPI	BQZ	1640	\$523,455.00	AUGUSTA
BPI	HVP		\$85,000.00	AUGUSTA
BPI	CRX	9645	\$469,225.00	AUGUSTA
BPI	CMX	3325	\$308,680.00	AUGUSTA
BPI	BRH	36009	6,235,434.00	AUGUSTA
BPI	BWZ	29485	3,480,526.00	AUGUSTA
BPT	CHZ		6,760,990,00	AUGUSTA
BPT	CJJ	15536	1,677,487.00	AUGUSTA
BPT	CRL	7540	\$664,054,00	AUGUSTA
BPT	CVR	12194	\$714 537 00	AUGUSTA
BPT	СКН	16339	2,305,115,00	AUGUSTA
BDT	CGE	10948	1 196 870 00	AUCUSTA
DFI TGG	CND	82024	83780000 00	AUGUSIA
DFI	CNF	11100	2 000 000 00	AUGUSIA
DPI	CPD	11100	3,000,000.00	AUGUSIA
BPI	CPL	208590	34500000.00	AUGUSTA
BPI	CRP		\$63,405.00	AUGUSTA
BPI	BRR	116000	\$326,570.00	AUGUSTA
BPI	CTB	116393	9,806,110.00	AUGUSTA
BPI	CRR	20160	1,996,005.00	AUGUSTA
BPI	CSL	5000	\$118,341.00	AUGUSTA
BPI	CFV	3432	\$104,858.00	AUGUSTA
BPI	BPT	18720	\$429,650.00	AUGUSTA
BPI	CGH	58710	8,299,151.00	AUGUSTA
BPI	CKW	0	\$750,000.00	AUGUSTA
BPI	CLJ	11367	7,575,985.00	AUGUSTA
BPI	BVT	1487	\$105,978.00	AUGUSTA
BPI	BWN		6,165,785.00	AUGUSTA
BPI	CJD	6510	\$403,676.00	AUGUSTA
BPI	BVP	13144	\$634,568.00	AUGUSTA
BPI	BTJ	800	\$295,675.00	AUGUSTA
BPI	CKT	1395	\$88,795.00	AUGUSTA
BPI	BMT	13042	\$978,965.00	AUGUSTA
BPI	BPD	20960	\$481,700.00	AUGUSTA
BPI	CTH	5922	\$394,491.00	AUGUSTA
BPI	BJW		1,300,000.00	AUGUSTA
BPI	CFR	3100	\$326,575.00	AUGUSTA
BPT	CNB	3240	\$359,566.00	AUGUSTA
BPT	ਸਿਧ	44000	5,985,670,00	BANGOR
BPT	HTB	3640	\$92,000,00	HALLOWELL
BPT	HVH	20915	1.962.300.00	HALLOWELL
RDT	HT.T	9693	\$840 255 00	HALLOWFLL
BDT	UTP	8307	\$225 700 00	HALLOWFI.I.
BDT	111R UW7	16116	1 936 407 00	HALLOWFLL
BDT	1177D	4980	\$344 050 00	HALLOWFLL
DFI		2200	\$344,030.00	HALLOWELL
DPI		2137	\$101,030.00	HALLOWELL
DPI		1220	\$769,676.00 CED ECE 00	TUTTOMETT
BPI	HVZ	1320	\$53,565.00	HALLOWELL
BP1 BP1	HWB	0210	>>∠/,655.00	
RAT	HWJ	2137	\$144,521.00	HALLOWELL
BLI BLI	HWX	12948	1,255,319.00	HALLOWELL
BPI	HVL	5994	\$488,090.00	HALLOWELL
BPI	HTT	60765	5,590,100.00	HALLOWELL
BPI	HWT	350	\$60,301.00	HALLOWELL
BPI	HVT	3640	\$99,878.00	HALLOWELL
BPI	QXB	53040	2,060,000.00	VASSALBORO

NASH SCHOOL CULTURAL BLDG DACHSLAGER HOUSE LOCK HOUSE STATE POLICE GARAGE SMITH HOUSE DEERING BLDG HARLOW BUILDING NEW MOTOR VEHICLE BLDG NURSES HOME - CETA STATE PLANNING OFFICE WAREHOUSE (CENTRAL) OLD MAXIMUM SECURITY BLDG MAINTENANCE BLDG STATE CAPITOL BLDG STATE CRIME LAB BURTON M. CROSS BUILDING STATE PLANNING OFFICE GARAGE DEMAND RESP BLDG & OFFICE FAC TRANSPORTATION BLDG STATE POLICE HQ STORAGE #49 MAGAZINE BLDG. #41 CAMPBELL STORAGE BARN #45 MAROUARDT BLDG SWITCH GEAR BUILDING POWER HOUSE-ENGINE & BOILER RM GATE HOUSE GREENLAW BLDG NORTH BURLEIGH HSE GARAGE & OIL STORAGE BLDG EMERGENCY GENERATOR BLDG PAINT SHOP AUGUSTA DISTRICT CT BURLEIGH ANNEX TREASURER'S HOUSE-SCHOOL EDISON DRIVE KEY BANK BLDG MACHINERY STORAGE SOUTH BURLEIGH H BLDG OFFICE CENTER WATER ST SALT BARN CENTRAL BUILDING BAKER BLDG BOILER HSE STEVENS BLDG ADM BLDG-STAFF APT BLDG PRERELEASE DIRECTOR'S HSE FLAGG/DUMMER BLDG GARAGE & REPAIR SHOP HAYDEN BUILDING 59 WINTHROP ST REED AUDITORIUM CLEVELAND BLDG-WINTHROP ST BUR OF ALCOHOLIC BEVERAGES PUMP HSE 48H FARWELL HSE MCJA BUILDING B

BPI	QWZ	29112	1,534,700.00	VASSALBORO	MCJA BUILDING A
BPI	QXF	29897	1,534,700.00	VASSALBORO	MCJA BUILDING C
CCC	FQJ	1295	\$55,675.00	CHARLESTON	BLDG# 104 MOTOR POOL
CCC	FST	2425	\$94,962.00	CHARLESTON	BLDG# 111 CENTRAL SUPPLY BLDG
CCC	FTJ		\$752,538.00	CHARLESTON	DORM I
CCC	FSV	5710	\$225,303.00	CHARLESTON	BLDG# 114 MAINTENANCE BLDG
CCC	FOP	5710	\$336,378.00	CHARLESTON	BLDG# 107 RECEIVING
CCC	FOL	5710	\$336,378.00	CHARLESTON	BLDG# 105 DORM II
CCC	FOT	5710	\$336,378,00	CHARLESTON	BLDG# 112 DORM TIT
CCC	FSZ	1440	\$415,976,00	CHARLESTON	BLDG# 126 SEWAGE TREAT PLANT
CCC	FSH	2470	\$68 125 00	CHARLESTON	BLDG# 210 STORAGE WHSE
CCC	FCD	1179	\$185 012 00	CUADLESTON	BLDC# 100 VISITOR BM & CO2 OFF
CCC	FOR	3010	\$222 891 00	CUADLECTON	BLDC# 100 VIBITOR RM & COZ OFF
CCC	FOY	8824	\$530 953 00	CUADLECTON	BLDC# 119 CYMNASTIM
CCC	FCY	2667	\$82 190 00	CUADLECTON	BLDCH 115 METAI STOPACE BLDC
	FOR	4000	\$02,190.00	CHARDESTON CUADI ECTON	BLDG# 110 KITCHEN
CCC	FQR	2000	\$240,273.00 \$E04 060 00		BIDG# 102 ADM BIDG CECD BIDG
	FON	2714	3594,069.00		BIDG# 103 ADM BIDG SEGR BIDG
CONTROM	FUN	2/14	1,020,000.00	CHARDESION	BLDG# 106 HEALING PLANT
CONADM	BAR		\$92,302.00	AUGUSTA	HUUSE, TRIAL
CONTRS	BIP	600 C	\$200,109.00	AUGUSTA	ENTOMOLOGICAL LAB
DCF	DZH	6926	1,215,844.72	MACHIASPORT	REC/SEG BLDG #12-DCF
DCF	JZB	3510	\$325,675.00	MACHIASPORT	DORM III BLDG #15
DCF	JZF	2904	\$411,234.00	MACHIASPORT	MESS HALL BLDG #17
DCF	JZH	3273	\$141,235.00	MACHIASPORT	MOTOR POOL/WELDING BLDG #11
DCF	JZV	1995	\$303,125.00	MACHIASPORT	WATER STORAGE BLDG #845
DCF	JZN	1226	\$134,593.00	MACHIASPORT	SEWAGE FACILITY #250
DCF	JZP	1875	\$77,890.00	MACHIASPORT	STORAGE BLDG #300
DCF	JZR	4314	\$319,670.00	MACHIASPORT	TRAINING CTR #8
DCF	JZD	11333	1,007,890.00	MACHIASPORT	DORMS I & II BLDG #18
DCF	JYZ	2400	\$209,870.00	MACHIASPORT	BUILDING #16-CONTROL
DCF	DZF		\$84,131.77	MACHIASPORT	ADMINISTRATION BLDG
DCF	$\mathbf{J}\mathbf{Y}\mathbf{T}$	164	\$58,270.00	MACHIASPORT	424-SEWER LIFT STATION
DCF	JYR	7464	\$572,746.00	MACHIASPORT	12-RECREATION/SEGREGATION
DOTBPL	GYP		\$103,000.00	FREEPORT	12 DESERT RD
DTH	NJL	9600	\$144,000.00	ROCKLAND	ENGINE HSE-ROCKLAND RAILWAY
DVS	CSD		\$51,525.57	AUGUSTA	STEEL STORAGE BLDG
DVS	BMP	36391	4,128,376.00	AUGUSTA	AUGUSTA ARMORY
DVS	CSF	10390	\$234,575.00	AUGUSTA	STEEL STORAGE BLDG-CP KEYES-30
DVS	DDF		5,665,000.00	BANGOR	ARMED FORCES RES CTR
DVS	DDN	15652	\$972,518.00	BANGOR	B I A ARMORY
DVS	DPZ		\$50,185.00	BATH	STEEL STORAGE BLDG
DVS	FBX		\$69,300.00	CALAIS	STEEL STORAGE BLDG ARMORY
DVS	FGN	30821	2,135,675.00	CARIBOU	GENERAL CARTER ARMORY
DVS	GXR	16230	1,149,766.28	FORT KENT	FORT KENT ARMORY
DVS	HCN	16324	1,107,980.00	GARDINER	ARMORY
DVS	JBJ		\$95,033.00	HOULTON	STEEL STORAGE BLDG
DVS	PDL	14358	1,100,169.00	SKOWHEGAN	SKOWHEGAN ARMORY
DVS	RFR	36526	2,438,900.55	WATERVILLE	WATERVILLE ARMORY
EDVIS	нхл		\$50,200.00	HAMPDEN	VENDING MACHINE BLDG
EUT	DRN		1.500.000.00	BENADICTA	BENEDICTA SCHOOL
EUT	FWV	10138	1,486,000.00	CONNOR TWP	CONNOR CONSOLIDATED SCH
EUT	GGF	6716	2,067,677 90	EDMUNDS TWP	EDMUNDS CONSOLIDATED SCH
TUT	JGZ	4312	1,406,919 15	KINGMAN TWP	KINGMAN ELEM SCHOOL
EUT	JHB	1008	\$73,217 55	KINGMAN TWD	KINGMAN ELEM SCHOOL ANNEX
EUT	NKV	1000	1.030 000 00	ROCKWD STRID	ROCKWOOD ELEMENTARY SCH
EUT	OHL	12800	\$983,981 25	T17 R04 WRLS	PATRICK THERRIAIT SCHOOL
FFC	BCB	12000	\$175 000 00		STOREHOUSE
			~ <i>- , </i>		

FFC	BBZ		\$97,230.00	ALLAGASH	RANGER HOUSE
FFC	BDV		\$350,000.00	ASHLAND	STOREHOUSE
FFC	BDW		\$800,000.00	ASHLAND	OFFICE
FFC	CMH		\$421,717.00	AUGUSTA	REG HQS & WAREHOUSE
FFC	BPJ	4356	\$122,140.00	AUGUSTA	BUTLER BLDG
FFC	DRR		\$60,795.00	BENTON	RANGER HOUSE
FFC	DWV		\$75,000.00	BROWNVILLE	STOREHOUSE
FFC	DWT		\$75,000.00	BROWNVILLE	RANGER HOUSE
FFC	FFZ		\$61,005.00	CARATUNK	STORE HOUSE
FFC	FFX		\$62,895.00	CARATUNK	RANGER HOUSE
FFC	FWL		\$75,000.00	CHSNCOOK DAM	STOREHSE
FFC	FWJ		\$100,000.00	CHSNCOOK DAM	RANGER HOUSE QRTRS
FFC	FXL		\$61,005.00	CORNISH	RANGER HSE
FFC	FYF		\$51,135.00	CUPSUPTIC	STOREHOUSE, FIRE EQUIP BLDG
FFC	FXZ		\$200,000.00	CUPSUPTIC	DISTRICT HQ (220)
FFC	KHG		\$275,000.00	E MILLINOCKT	RANGER STATION
FFC	GLT		\$100,000.00	ENFIELD	RANGER HSE
FFC	GMJ		\$60,895.00	EUSTIS	RANGER HOUSE W/LIVING QTRS
FFC	GML		\$60,795.00	EUSTIS	STOREHOUSE
FFC	HPH		\$119,520.00	GRAY	RANGER HOUSE
FFC	HQB		\$200,000.00	GRAY	STOREHSE, DISTRICT HQ (210)
FFC	HRT		\$250,000.00	GREENVILLE	OFFICE BLDG
FFC	HQR		\$150,000.00	GREENVILLE	BUTLER BLDG
FFC	HXX		\$75,000.00	HANCOCK	RANGER HSE
FFC	JBR		\$80,000.00	ISLAND FALLS	POLE GARAGE BLDG
FFC	JBL		\$150,000.00	ISLAND FALLS	BUTLER BLDG
FFC	JBK		\$100,000.00	ISLAND FALLS	DISTRICT OFFICE
FFC	JDP		\$200,000.00	JEFFERSON	DISTRICT HQ (240)
FFC	JDL		\$87,780.00	JEFFERSON	BUTLER BLDG
FFC	JDX		\$78,960.00	JEFFERSON	RANGER HSE (240)
FFC	JFL		\$100,000.00	JONESBORO	RANGER HSE
FFC	JFR		\$200,000.00	JONESBORO	STOREHSE
FFC	JBN		\$80,000.00	LEE	STORAGE BLDG
FFC	JKH		\$100,000.00	LEE	DISTRICT RANGER OFFICE
FFC	JKL		\$158,000.00	LEE	STOREHSE
FFC	JKJ		\$125,000.00	LEE	POLE BARN
FFC	JRV		\$72,240.00	LYMAN	RANGER HSE
FFC	JSB		\$163,000.00	LYMAN	STOREHOUSE
FFC	KDR		\$90,000.00	MASARDIS	REG RANGER HSE
FFC	FWT		\$175,000.00	MASARDIS	STOREHSE
FFC	KDL		\$80,000.00	MASARDIS	POLE BARN
FFC	KDV		\$200,000.00	MASARDIS	STORE HSE/OFFICE
FFC	KKF		\$75,000.00	MOOSE RIVER	STORE HSE
FFC	KML		\$65,000.00	MUSQUACOOK	RANGER CAMP
FFC	\mathbf{KTT}		\$90,825.00	NORRIDGEWOCK	RANGER HSE
FFC	KVP		\$140,000.00	NORRIDGEWOCK	DISTRICT HQ (230)
FFC	KYX	1200	\$75,000.00	OLD TOWN	RANGER HOUSE-DEWITT FLD (100)
FFC	KXT		\$240,120.00	OLD TOWN	AIRCRAFT HANGAR (STORAGE)
FFC	KXV		\$250,000.00	OLD TOWN	BUTLER BLDG (SHOP)
FFC	KYB		\$200,000.00	OLD TOWN	BUTLER OFFICE BLDG HQ
FFC	KXR		\$308,000.00	OLD TOWN	AIRCRAFT HANGAR (MAIN)
FFC	KYN		\$75,000.00	OLD TOWN	POLE BARN (100)
FFC	MKP		\$75,000.00	PITTSTONFARM	RANGER HOUSE
FFC	MKR		\$150,000.00	PITTSTONFARM	STOREHOUSE
FFC	MMJ		\$60,000.00	PORTAGE	POLE BARN
FFC	MMN		\$200,000.00	PORTAGE	STOREHOUSE
FFC	NML		\$85,000.00	s agatha	RANGER HOUSE

FFC	NMT		\$100,000.00	S PAMPHILE	RANGER HOUSE
FFC	PFL		\$90,000.00	SNARE BRK	RANGER CAMP
FFC	PKP		\$85,260.00	SQUAW BROOK	HOUSE
FFC	FYL		\$80,000.00	T11 R17 WELS	DIST RANGER HSE
FFC	FYN		\$200,000.00	T11 R17 WELS	STOREHSE/OFFICE
FFC	QRP		\$150,000.00	TOPSFIELD	STOREHOUSE
FFC	ORN		\$100,000.00	TOPSFIELD	STORE HOUSE METAL
FFC	ORB		\$75,000.00	TOPSFIELD	DISTRICT RANGER HOUSE
FFC	RGV		\$62,895,00	WELD	RANGER OFFICE
FFC	RKP		\$100.000.00	WESLEY	STOREHOUSE METAL
FFC	RKN		\$175.000.00	WESLEY	STOREHOUSE
577	RIP		\$66 780 00	WEST PARTS	BANGER HSE
FFC	RIR		\$61 215 00	WEST PARTS	STOREHOUSE
FGO	GZT	11284	1 810 200 00	FREEDORT	HOUSE I & WORKSHOP
FGO	GZK	11284	\$175 000 00	FREEPORT	HOUSE II & WORKBHOF
COM	CNLT	1072	\$255 292 85		STAFE HOUSE
COV	DNU	1572	¢233,233.03	AUGUSIA	BLAINE HOUSE
TEWADM	DNI	2116	\$934,273.20 \$105 204 67	AUGUSIA	DECIONAL NO
TEWADN	סעם	2110	\$105,304.07 den enn 1e	AGRIIAND	CHORAGE RIDC ADMIN
TEMADM		2490	\$51,577.15	ASHLAND	SIORAGE BLDG-ADMIN
TEWADM	BIL	2075	\$70,000.00	AUGUSTA	ENGINEERING SIORHSE
TFWADM	CST	2620	\$261,662.00	AUGUSTA	STORE HOUSE/GARAGE
I F WADM	BDK		\$105,000.00	CLAYTON LAKE	CLAYTON LAKE HOUSE
1 FWADM	GLJ	1792	\$80,588.34	ENFIELD	HEADQUARTERS~ADMIN
IFWADM	HNN	8588	\$371,380.00	GRAY	GRAY HQ-ADMIN
IFWADM	HRJ	5760	\$348,655.70	GREENVILLE	GREENVILLE HQ-HANGAR
IFWADM	HRD	2600	\$83,677.54	GREENVILLE	GREENVILLE HQ GARAGE - ADMIN
IFWADM	HRF	4524	\$198,370.62	GREENVILLE	GREENVILLE HQ-ADMIN
IFWADM	JFC	2496	\$200,000.00	JONESBORO	REGIONAL HQ - ROUTE 1A
IFWADM	JTJ	2112	\$83,028.17	MACHIAS	MACHIAS HQ - ADMIN
IFWADM	JTL	1092	\$70,000.00	MACHIAS	MACHIAS HQ - STORAGE
IFWADM	NZL		\$466,575.00	SIDNEY	LYONS ROAD REGION B HQ
IFWADM	PPG	1440	\$200,000.00	STRONG	STRONG HEADQUARTERS
IFWRES	BWD	2496	\$55,455.00	AUGUSTA	GOVERNOR HILL GARAGE/GRIND RM
IFWRES	BWB	1512	\$76,750.80	AUGUSTA	GOVERNOR HILL CONANT HSE
IFWRES	CDD	2620	\$81,421.00	AUGUSTA	LABORATORY
IFWRES	BWH	6400	\$300,000.00	AUGUSTA	GOVERNOR HILL HATCHERY BLDG
IFWRES	FLJ	1024	\$100,000.00	CASCO	ULTRA VIOLET BLDG & UNITS
IFWRES	FLB	864	\$59,039.40	CASCO	CASCO HATCH GRIND RM&CLD STOR
IFWRES	FLF	4364	\$120,000.00	CASCO	DWELLING DUPLEX
IFWRES	FLD		\$66,000.00	CASCO	CASCO POOL ROOFS
IFWRES	FLH	4680	\$300,000.00	CASCO	HATCHERY DWELLING
IFWRES	GKN	1144	\$70,000.00	EMBDEN	GARAGE/GRINDING RM
IFWRES	GKL	2688	\$106,898.40	EMBDEN	DWELLING/DUPLEX
IFWRES	GKZ	896	\$76,750.80	ENFIELD	HATCHERY DWELLING #1
IFWRES	GLD	3500	\$118,077.75	ENFIELD	HATCHERY FILTER BLDG
IFWRES	GLB	896	\$76.750.80	ENFTELD	HATCHERY DWELLING #3
TEWRES	GKX	7936	\$236,155,50	ENFIELD	HATCHERY BLDG
TEWRES	GLR	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	\$66,000,00	ENFIELD	POOL ROOFS
TEWRES	HLB	600	\$85 000 00	GR LK STR PT	HOUSE #3
TEWRES	нкт	864	\$65,000,00	GR LK STR PT	#1 SINGLE DWELLING
TEWRES	HIF	2392	\$82,654 95	GR LK STR PT	GARAGE/GRINDING RM
TEMDEG	HI D	020	\$57 881 DE	CE IK CAD DA	FILTER BLDG
TEMPEC	עאד	200	\$70 946 EE	CR IK CTP DT	#2 SINGLE DWELLING
TEMPEC	HT.T	4320	\$177 117 1E	CD LK CTD DT	TTOLE DIELLIG
TEMUDEC	1110 1107	10/5	ΥΤΙΙ, ΤΤΙ. ΤΟ (ΕΕ <i>ΕΝ</i> Ο ΟΟ	CDAV	
TEMPEC		1400	450,047.90 660 E0	CDAV	TVD\PIOR PAOLENUMI PIOVENDE PAOLENUMI
TEWDEC		2700	\$16E 470 CE	CDVA	DDOODED UCE #1
TIMKEO	TIM	5120	YT07,472.05	GIVAT	DROODER HDE #1

IFWRES	HPD		\$69,503.70	GRAY
IFWRES	HMP	4680	\$207,937.80	GRAY
IFWRES	HNZ	1804	\$76,750.80	GRAY
IFWRES	HND	1897	\$83,468.70	GRAY
IFWRES	HNX	6216	\$350,000.00	GRAY
IFWRES	HNB	1664	\$70,290.15	GRAY
IFWRES	HMZ	1768	\$67,585.35	GRAY
IFWRES	HMR	4620	\$205,010.40	GRAY
IFWRES	HPL		\$90,000.00	GRAY
IFWRES	KJN	1536	\$67,360.65	MONTVILLE
IFWRES	KSJ	1728	\$64,431.15	NEW GLOUCSTR
IFWRES	KQN	1344	\$76,750.80	NEW GLOUCSTR
IFWRES	KSH	1152	\$64,431.15	NEW GLOUCSTR
IFWRES	KRL		\$425,000.00	NEW GLOUCSTR
IFWRES	LCJ	1425	\$59,039.40	ORONO
IFWRES	MDD	2464	\$64,431.15	PALERMO
IFWRES	MCZ	1768	\$76,750.80	PALERMO
IFWRES	MDB	1794	\$76,750.80	PALERMO
IFWRES	MHL	1054	\$67,540.20	PERKINS TWP
IFWRES	MGZ	1548	\$85,960.35	PERKINS TWP
IFWRES	MGX	1946	\$78,750.00	PERKINS TWP
TEWRES	мнд	2016	\$61,400,85	PERKINS TWP
TEWRES	мнт	900	\$65,000,00	PHILLIPS
TEWRES	MHR	2496	\$94 462 20	PHILLIPS
TEWRES	NGL	2190	\$74 970 00	RAYMOND
TEWRES	NX.T	813	\$70 061 00	SCARBORO
.ΠΠ	C.TP	6200	\$480 000 00	AUGUSTA
LABCO	BNZ	40530	4 250 000 00	AUGUSTA
leving	DGI.	40330	\$237 510 00	BANCOD
leving	DGH	21386	2 555 930 00	BANCOR
MCC	DUII.	21300	1 113 525 00	WINDUAM
MCC	DND	9360	1, 113, 323, 00	WINDHAM
MCC	ממס	9300	\$200 000 00	WINDHAM
MCC	DNU	2400	\$90,000.00	WINDHAM
MCC		2400	\$20,000.00	WINDHAM
MCC	DND	2504	\$220,000.00	WINDHAM
MCC	DND	1600	\$95,000.00	WINDHAM
MCC	DMT	1000	JJJZ,400.55	WINDHAM
MCC		90094	13125000.00	WINDHAM
Maa	RNB	2475	\$929,862.83	
MCC	RMR	24/5	\$241,500.00	
Maa	RININ	250	6,890,625.00	WINDHAM
MCC		200	\$160,000.00	
MCC	RMP	12170	\$241,500.00	
Maa	RPU	13170	\$600,000.00	WINDHAM
MCC	RMI	24/5	\$305,847.83	WINDHAM
MCC		2475	\$252,000.00	WINDHAM
MCC	RPH	113	\$822,509.10	WINDHAM
MCC	RMV	4004	1,113,525.00	WINDHAM
MCJA	RDN	4984	\$484,336.41	WATERVILLE
MOJA	RDR	2112	\$193,734.33	WATERVILLE
MCJA	RUX	/600	\$500,480.64	WATERVILLE
MCJA	KFH DFT	7570	\$371,325.58	WATERVILLE
MCJA	KFT	14160	\$887,949.31	WATERVILLE
MEMA	GCD	180	\$150,828.15	DIXMON'I'
MEMA	HVN	135	\$150,828.15	HALLOWELL
MEMA	QWV	180	\$150,828.15	VASSALBORO
MFS	NJK	12960	1,620,000.00	ROCKLAND

POOL ROOFS BROODER HSE #2 OLD HATCHERY/WORKSHOP #7 DWELLING/GARAGE MAIN HATCHERY DWELLING DWELLING SINGLE #20 DWELLING SINGLE #17 BROODER HSE #3 REHAB BLDG FRYE MOUNTAIN STORE HSE SINGLE DWELLING #36 HATCHERY BLDG SINGLE DWELLING #30 MARLENE NEW GLOUCESTER FISH HATCH DEER PENS HOUSE GARAGE/GRINDING ROOM HATCHERY DWELLING, SINGLE, BY POOLS DWELLING, SINGLE, ON HILL SLTBX HEBBARDHSE SPOWELL WMA POWELL HOUSE-STEVE POWELL WMA PARKRBLENHSE-CUSTD SPOWELL WMA REED HOUSE STEVE POWELL WMA SINGLE DWELLING GARAGE/HATCHERY FISH TRAP FACILITY NATURE CTR WILDLIFE MGMT AREA OFF OF CHF JUST & COMP SVCS 20 UNION ST ENCLOSED POOL STRUCTURE ELIZABETH LEVINSON CTR MIN SEC DORM #5 KITCHEN/DINING HALL MAINTENANCE HEADOUARTERS MAINTENANCE PIPE SHOP PIGGERY PASTORAL CARE CENTER OAK HAVEN ADMIN BUILDING INDUSTRIES BLDG BARRACK BLDG #3 MULTI-PURPOSE HSING BLDG SEWAGE PUMPING STATION BARRACK BLDG #2 WAREHOUSE & OFFICE BARRACK BLDG #4 BARRACK BLDG #1 TREATMENT PLANT DORM #6 ADMINISTRATION BLDG-MCJA CONFERENCE BLDG HENNESSEY HALL NICHOLS HALL PARKS HALL COMMUNICATIONS BLDG & TWR COMMUNICATIONS BLDG & TOWER COMMU BLDG&EQUIP&TWR COOK HILL ROCKLAND TRAIN STATION

MIL	BGN	6160	\$247,569.00	AUBURN
MIL	BFP	0	\$178,958.67	AUBURN
MIL	CPJ	50439	3,526,086.90	AUGUSTA
MIL	BMX	1024	\$78,393.28	AUGUSTA
MIL	BLP	4782	\$321,928.95	AUGUSTA
MIL	CLT	3600	\$175,888.65	AUGUSTA
MTT	BVL	23056	\$935.319.00	AUGUSTA
MTT.	CTV	7358	1,162,008,75	AUGUSTA
MTT.	CTP	3848	\$283 651 20	AUGUSTA
MTT	CIR	25440	1 1/5 219 00	
MTT		231210	1, 140, 310, 00	AUGUSIA
	DOM	21215	1,549,453.50	AUGUSIA
	BÖN	11000	\$208,650.55	AUGUSTA
MIL	B.II.	11000	\$894,143.25	AUGUSTA
MTT	BVH	2460	\$130,793.25	AUGUSTA
MIL	CJT	1350	\$199,185.00	AUGUSTA
MIL	BWX	3154	\$270,784.50	AUGUSTA
MIL	CHF	10000	\$287,676.90	AUGUSTA
MIL	CHJ	9540	\$293,884.50	AUGUSTA
MIL	CKR	8900	\$628,719.00	AUGUSTA
MIL	CKB	1715	\$320,506.20	AUGUSTA
MIL	BVV	560	\$248,172.75	AUGUSTA
MIL	CJX	2700	\$160,392.75	AUGUSTA
MIL	CVX	2316	\$77,989.80	AUGUSTA
MTL	CKD	1500	\$99,153.60	AUGUSTA
MTT	CGN	821	\$50,221,50	AUGUSTA
MTT.	CLL	512	\$138 519 15	AUGUSTA
MTT.	CTT	910	\$144 768 75	BANGOR
мтт			¢112 205 00	DANGOR
MTT	DND	22575	\$113,393.00	DANGOR
MTT	DDH	225/5	1,3/9,91/.35	BANGOR
MIL	DKR		\$424,803.75	BANGOR
MIL	DFN		\$988,100.40	BANGOR
MIL	DLB		1,297,248.75	BANGOR
MIL	DDJ		2,347,569.00	BANGOR
MIL	CZX	64000	6,069,945.00	BANGOR
MIL	DPJ	17835	1,120,156.80	BATH
MIL	DQP	21287	1,349,312.93	BELFAST
MIL	DTB	23056	1,742,633.55	BREWER
MIL	DTL		\$55,387.50	BREWER
MIL	DXN	216	\$64,061.19	BRUNSWICK
MIL	DXV	21680	1,362,784.50	BRUNSWICK
MIL	DXL	210	\$62,282.88	BRUNSWICK
MIL	DZJ		\$179,751.31	BUXTON
MTT.		15186	1,144 783 50	CALAIS
MTT.	FRD	3439	\$165 768 75	CALAIS
MTT.	ਸ ਸਾਹ ਸ਼ਾਸ਼ਾਹ	4236	\$239 064 00	CARTROIL
мтт	FID	4230	\$239,004.00	CARIBOU
мтт	гль	3200	\$192,808.25	CARIBOU
MIL	FHL		\$88,654.65	CARIBOU
МТТ	FGV	3500	\$130,809.00	CARIBOU
MTT MTT	GYD		\$89,761.53	FORT KENT
MIL	HBD	22624	1,576,412.25	F'I' FAIRFIELD
MIL	HBF		\$107,064.30	FT FAIRFIELD
MIL	HCZ	3439	\$236,722.50	GARDINER
MIL	HDB		\$82,005.00	GARDINER
MIL	HCR		\$341,358.17	GARDINER
MIL	HGP	0	\$79,685.57	GILEAD
MIL	HGN		\$231,461.98	GILEAD
MIL	HGF	0	\$53,655.91	GILEAD

ORGANIZATIONAL MAINT SHOP 2 BAFFLE RANGE AUBURN TNG SITE STATE HEADQUARTERS & WHSE BARRACKS ADMIN AND MESS HALL BLDG RATION BREAKDOWN BLDG GAR, AMRY, HISMUS-CP KEYES 6A-6B US PROPERTY & FISCAL OFF BLDG US PROP & FISCAL OFF PRINT PLT US PROP & FISCAL OFF WHSE COMBINED SUPPORT MAINT SHOP CONTINGENCY SITE STORAGE BLDG FACILITIES MGMT OFFICE FMO WAREHOUSE OFFICE BUILDING HANGAR 1957 MOTOR VEHICLE STOR BLDG&WHSE MOTOR VEHICLE STORAGE BLDG ORGANIZATIONAL MAINT SHOP 4 OFFICER QUARTERS 1 GENERATOR BLDG OFFICE BUILDING-CP KEYES-10 WAREHOUSE/SHOP OFFICES MCPHERSON HALL PUMP HOUSE-CP KEYES MOTOR VEHICLE STORAGE BLDG STEEL STORAGE BLDG ARMORY ORGANIZATIONAL MAINT SHOP 3 COLD STORAGE BLDG PINE TREE INN-BILLET ARMY AVIATION SUPPORT FAC 300-ARMED FORCES RES CTR BATH ARMORY BELFAST ARMORY BREWER ARMORY STEEL STORAGE BLDG ARMORY **#9 AMMU BUNKER** BRUNSWICK ARMORY #8 AMMU BUNKER BAFFLE RANGE CALAIS ARMORY MOTOR VEHICLE STORAGE BLDG ORGANIZATIONAL MAINT SHOP 5 MOTOR VEHICLE STORAGE BLDG STEEL STORAGE BLDG-ARMORY MAINTENANCE BLDG STEEL STORAGE BLDG ARMORY ARMORY STEEL STORAGE BLDG MOTOR VEHICLE STORAGE BLDG STEEL STORAGE BLDG-ARMORY BAFFLE RANGE TNG SITE KITCHEN EDUCATION BLDG #5 DORMITORY

MTT.	HGD		<u> </u>	GILEAD	#4 DORMITORY	
MTT.	HGL.	U	\$53 655 91	GILEAD	#4 DORMITORY	
MTT.	HGH	0	\$53 655 91	GILEAD	#6 DORMITORY	
MIL	HGJ	Ū	\$53,655,91	GILEAD	#7 DORMITORY	
MIL	HGX	0	\$51,100.87	GILEAD	TOILET/SHWR	•
MIL	HFX	0	\$53,655.91	GILEAD	#1 DORMITORY	
MIL	HFZ	0	\$53,655.91	GILEAD	#2 DORMITORY	
MIL	HGB	0	\$53,655.91	GILEAD	#3 DORMITORY	
MIL	HZP	17090	1,217,652.45	HOULTON	HOULTON ARMORY	
MIL	JLX	•	\$104,769.00	LEWISTON	STEEL STORAGE BLDG-ARMORY	
MIL	JLF	25897	1,784,470.80	LEWISTON	LEWISTON ARMORY	
MIL	KWZ		\$70,202.38	NORWAY	STEEL STORAGE BLDG ARMORY	
MIL	KWX	15337	1,350,104.43	NORWAY	NORWAY ARMORY	
MIL	MSX	61550	3,770,145.75	PORTLAND	STEVENS AVE ARMORY & OMS 1	
MIL	MQT	8080	\$261,312.84	PORTLAND	MOTOR VEHICLE STORAGE BLDG	
MIL	NCL	18396	1,250,413.50	PRESQUE ISLE	PRESQUE ISLE ARMORY	
MIL	NDF		\$78,362.55	PRESQUE ISLE	STEEL STORAGE BLDG-ARMORY	
MIL	NTB	28620	2,263,453.50	S PORTLAND	SOUTH PORTLAND ARMORY	
MIL	NVP	30073	1,916,277.13	SACO	SACO ARMORY	
MIL	NWH	15148	1,088,794.99	SANFORD	SANFORD ARMORY	
MIL	PDX		\$57,219.75	SKOWHEGAN	STEEL STOR BLDG-ARMORY	
MIL	RLX	14862	1,132,348.83	WESTBROOK	WESTBROOK ARMORY	
MIL	RLV	3439	\$217,760.13	WESTBROOK	MOTOR VEHICLE STORAGE BLDG	
MR	DZB	2244	\$700,000.00	BOOTHBAY HBR	WELCH HOUSE	
MR	DYJ	1596	\$400,000.00	BOOTHBAY HBR	BOILER PUMP BLDG	
MR	DYL	1152	\$411,683.00	BOOTHBAY HBR	DOCK HOUSE	
MR	DYF	4560	\$646,754.00	BOOTHBAY HBR	BIOCHEMISTRY BLDG	
MR	DYV		\$109,200.00	BOOTHBAY HBR	MILLER PORTABLE LAB	
MR	DYX	1540	\$115,500.00	BOOTHBAY HBR	STORAGE BARN	
MR	DYH	9145	\$900,000.00	BOOTHBAY HBR	BOAT STORAGE SHOP	
MR	DYN	7042	\$693,472.50	BOOTHBAY HBR	LIBRARY BUILDING	
MR	DY.I.	7489	\$950,000.00	BOOTHBAY HBR	MAIN OFFICE/LAB	
MR	JJZ	1 - 0 0	\$224,700.07	LAMOINE	WATER QUALITY LAB	
MD	NJF	1500	\$86,467.50	ROCKLAND	BOAT REPAIR/DIV OFFICE	
MD	OVC		\$75,000.00	SOUTHPORT	BUAINOUSE	
MD	OVE		\$500,000.00	SOUTHPORT	OIL HOUSE	
MD	OVH OVH		2 000 000 00	W BOOTHBAY	WATERERONT OFFICE BLDG	
MP		25156		W BOOTHBAY	LAB/AOUARTIM	•
MR	OVE	20100	\$331 489 20	W BOOTHBAY	WD EAST PIER AT OFFICE/LAB	
MR	OYB	116	\$60,926,25	W BOOTHBAY	GENERATOR SHED	
MR	0YJ	2030	\$200,000,00	W BOOTHBAY	WD WEST PIER AT OFFICE/LAB	
MSP	OPP	13200	1,357,459,87	THOMASTON	ALL PURPOSE BLDG & GARAGE	
MSP	OPT	5120	\$178,304.74	THOMASTON	BUS OFF	
MSP	00J	600	\$54,723.90	THOMASTON	SAWDUST BLDG & DUST COLLECTOR	
MSP	OPN	41800	12339723.00	THOMASTON	ADMIN & CELL BLDG	
MSP	ONT	3440	1,854,000.00	THOMASTON	433-RECREATION BLDG	·
MSP	QNZ	2700	7,273,965.00	THOMASTON	467-COMBINATION BLDG	
MSP	QNN	6600	\$150,828.15	THOMASTON	201 MAIN ST	
MSP	QPZ .	8160	\$180,994.43	THOMASTON	INDUS STOREHSE 1 & APARTMENT	
MSP	QQF	20160	2,500,000.00	THOMASTON	PEARSON BLDG-SHOWROOM	
MSP	QNR	30000	1,900,421.51	THOMASTON	430-WHSE, SEGREGATION & DORMS	
MSP	QPJ	130	\$150,000.00	THOMASTON	473-FREEZER HOUSE	
MSP	QNV	280	\$162,894.00	THOMASTON	434-TRANSFORMER HSE	
MSP	QQD		\$536,559.19	THOMASTON	MAINTENANCE BLDG	
MSP	QPR	3750	1,809,944.33	THOMASTON	BOILER HSE & EMER PWR PLANT	
MSP	QNX	21:60	\$101,661.00	THOMASTON	466-FIRE HOUSE	

.

MSP	RBN	15500	1,855,533.88	WARREN	BOLDUC HOUSING #1
MSP	RBT	3840	\$296,885.81	WARREN	BOLDUC RECREATION BLDG
MSP	RCN		13965000.00	WARREN	MCI WARREN FAC MAX SEC BLDG
MSP	RBP		1,855,533.88	WARREN	BOLDUC HOUSING #2
MSP	\mathtt{RBL}	15500	1,963,683.88	WARREN	BOLDUC ADMIN BLDG
MSP	RBR	3840	\$196,075.95	WARREN	BOLDUC NOVELTY/CLASS/AUTO BODY
MSP	RCP	23104	\$150,000.00	WARREN	PIGGERY
MTS	BKB		\$157,430.00	AUGUSTA	(G) STORAGE SHED 26 TO 47
MTS	BKJ		\$178,675.00	AUGUSTA	55699 (G) WAREHOUSE (NEW)
MTS	BJZ		\$154,945.00	AUGUSTA	(G) STORAGE SHED 1 TO 21
MTS	BJT		\$225,560.00	AUGUSTA	(G) AUG SANITARY BLDG
MTS	BKH		\$120,960.00	AUGUSTA	(G) STORAGE SHED 71 TO 78
MTS	BJX		\$710,900.00	AUGUSTA	55700 NEW SIGN SHOP BLDG
MTS	BKD		\$151,900.00	AUGUSTA	(G) STORAGE SHED 48 TO 60
MTS	BKF		\$152,250.00	AUGUSTA	(G) STORAGE SHED 61 TO 70
MTS	BJR		2.549.802.00	AUGUSTA	55698 CAPITOL ST OFFICE BUILDING
MTS	CXF	4000	\$112.000.00	BATLEYVILLE	55428 5 STALL STORAGE BLDG 1
MTS	CXB	2400	\$112,000.00	BATLEYVILLE	55240 3 STALL SHED
MTS	FGB	2100	1 400 000 00	CARTROII	55695 (G) NEW GAR BLDG 556
MTS	CBH		\$177 250 00	DIXELELD	55214 (C) BRIDGE PT 2 BLDG
MTS	GB.T		\$336 000 00	DIXFIELD	55213 (C) MAINT DIV7 CAP BLOG
MTG	GHZ		\$216 780 00	FLIGWORTH	55052 (C) 15 STALL STOP BLDC
MTS	G.TR		\$168 000 00	FLISWORTH	(C) CAPACE
MTG	G.TD		\$108 900 00	FLIGWORTH	55053 (C) STOPACE STOCK BLDC
MTC	GVD		\$288 000 00	FORT KENT	55406 6 STALL ST BLD LOT 12
MTC	UMD		\$52 920 00	CDAV	55400 0 SIALL SI BLD LOI 12 E5154 UTD CAD/MT CAD/CD CAD
MTC			\$52,920.00	CUTI FORD	55154 HIR GAR/MI GAR/GR GAR
MTC	152		\$140,000.00	UOULTON	55265 VEHICLE STORAGE
MIG			\$288,000.00	REDUCTION	55407 6 SIALL SI BLD LUI 106
MTC	UGF		\$336,000.00	ABUNK	55048 (G) MAINI STORAGE
MIS	NED.		\$336,000.00	DEMDDOKE	55349 6 STALL ST BLDG
MTS	MFD		\$83,913.00	PEMBROKE	55545 (G)
MIS	MAH		\$268,800.00	PRESQUE ISLE	55034 (G) S A I
MTS	NXQ		\$541,600.00	SCARBORO	55664 SALT SHED SA II
MTS	PDF		\$80,000.00	SKOWHEGAN	55696 POLE BARN
MTS	NZT		\$150,640.00	SKOWHEGAN	55335 (G) NEW RT 2 BLDG
MTS	QVD		\$105,000.00	TURNER	55225 (G) MTS GARAGE
MIS	RRP	41.00	\$800,000.00	YARMOUTH	55409 (G) MAINT STORAGE
MVD	RCL	4160	1,122,449.92	WARREN	DICENSE PLATE SHOP
MIC	NQP	1557	\$445,393.00	S PORTLAND	GROUNDS BLDG
MIC	NSN	10100	5,000,000.00	S PORTLAND	NEW SECURITY BLDG
MIC	NQ.L.	5865	\$678,875.00	S PORTLAND	HAYDEN
MIC	NNX	1/594	1,631,410.00	S PORTLAND	CORNISH BLDG - GYMNASIOM
MYC	NQV	2300	\$375,675.00	S PORTLAND	HEATING PLANT
MYC	NNH	8160	\$695,640.00	S PORTLAND	A R GOULD SCHOOL
MYC	NRH	2296	\$63,800.00	S PORTLAND	IMPLEMENT SHED
MYC	NTR	15560	1,765,780.00	S PORTLAND	VOCATIONAL-PURINGTON
MYC	NNJ	37440	2,875,675.00	S PORTLAND	ADMIN BLDG-675 WESTBROOK ST
MYC	NQN	4198	\$150,000.00	S PORTLAND	HOUSE A-HERITAGE HOUSE
MYC	NQS	3614	\$125,000.00	S PORTLAND	HOUSE B
MYC	NPJ	8160	\$696,806.00	S PORTLAND	COTTAGE #6
MYC	NPB	8160	\$818,650.00	S PORTLAND	COTTAGE #2 & GARAGE
MYC	NPF	8160	\$835,525.00	S PORTLAND	COTTAGE #4
MYC	NNZ	8160	\$825,765.00	S PORTLAND	COTTAGE #1
MYC	NPH	8160	\$261,262.00	S PORTLAND	COTTAGE #5
MYC	NPD	8160	\$835,525.00	S PORTLAND	COTTAGE #3
NMJD	FTN		2,700,000.00	CHARLESTON	NO MAINE JUVENILE DETENTN FAC
OCMED	BQD	8157	1,030,747.00	AUGUSTA	CHIEF MEDICAL EXAMINER'S FACIL

· · ·

PARK	DVY		\$75,000.00	BROOKSVILLE	BARN
PARK	DVN		\$165,375.00	BROOKSVILLE	BARN, ISLAND
PARK	DVR		\$147,000.00	BROOKSVILLE	DWELLING
PARK	DWN		\$100,000.00	BROWNVILLE	KILN, CHARCOAL D
PARK	DWL		\$100,000.00	BROWNVILLE	FURNACE D
PARK	FCR		\$200,000.00	CAMDEN	LATRINE, UPPER CA
PARK	FCN		\$200,000.00	CAMDEN	LATRINE
PARK	FCT		\$100,000.00	CAMDEN	SERVICE BLDG & GARAGE
PARK	FCD		\$75,000,00	CAMDEN	SHELTER
PARK	FCP		\$225 000 00	CAMDEN	LATRINE LOWER CA
PARK	FCL		\$135,000,00	CAMDEN	HDORTRS & GARAGE
DADK			\$200,000,00	CANDE FLI7	BIO CONCESSION
PARK	rrd FFD		\$200,000.00	CAPE ELIZ	BIO CONCESSION B11 MAINTENANCE BIDC
PARK			\$200,000.00	CAPE ELIZ	ALE TOLL STATION OF THE
PARK			\$125,000.00	CAPE ELIZ	DIS TOLL STATION-OFFICE
PARK	FFP		\$270,000.00	CAPE ELIZ	BY BATHROUSE
PARK	FFH		\$450,000.00	CAPE ELIZ	B5 LATRINES (2)
PARK	F.F.F.		\$200,000.00	CAPE ELIZ	B4 DWELLING & GARAGE
PARK	FFN		\$175,000.00	CAPE ELIZ	B8 PICNIC SHELTER
PARK	FFJ		\$125,000.00	CAPE ELIZ	B6 SERVICE BLDG
PARK	FJX		\$200,000.00	CASCO	A 23 SERV BLDG & GARAGE
PARK	FKL		\$200,000.00	CASCO	A28 LATRINES, FLUSH (2)
PARK	FKF		\$200,000.00	CASCO	A 31 CONCESSION
PARK	FJV		\$275,000.00	CASCO	A 22 SOUTHERN REGION HQS
PARK	FKR		\$65,000.00	CASCO	A33 LATRINE, CHEMICAL
PARK	FKV		\$65,000.00	CASCO	A35 PICNIC SHELTER
PARK	FKN		\$225,000.00	CASCO	A29 BATHHOUSES (3)
PARK	FJZ		\$100,000.00	CASCO	A 24 GARAGE & STORAGE
PARK	FKD		\$125,000.00	CASCO	A 26 RANGER STA DWELLING
PARK	FKH		\$130,000.00	CASCO	A 32 SHELTERS
PARK	QDH		\$135,500.00	CHURCHILL	RANGER CABIN
PARK	GCP		\$350,000.00	DOVR FOXCRFT	LATRINES (3)
PARK	GDB		\$100,000.00	DOVR FOXCRFT	SERVICE BLDG
PARK	GCJ		\$120,000.00	DOVR FOXCRFT	BATHHOUSE
PARK	GCZ		\$75,000.00	DOVR FOXCRFT	RANGERS RESIDENCE
PARK	GHF		\$125,000.00	EDMUNDS TWP	MGR RESIDENCE
PARK	GGR		\$100,000.00	EDMUNDS TWP	OFFICE/SHOP
PARK	GHD		\$94,500.00	EDMUNDS TWP	RANGERS RESIDENCE
PARK	GGJ		\$115,500.00	EDMUNDS TWP	EQUIPMENT BLDG
PARK	GHH		\$94,500.00	EDMUNDS TWP	SHOWER BLDG
PARK	GXJ		\$250,000.00	FORT KENT	BLOCKHOUSE
PARK	GZB		\$200,000.00	FREEPORT	A 49 LATRINE
PARK	GYV		\$125,000.00	FREEPORT	A 46 CAMP
PARK	FDN		\$65,000.00	FREEPORT	SHELTER
PARK	PCH	200	\$100,000.00	GARFTON NOTCH	CAMP/STORAGE
PARK	HFT		\$195,000.00	GEORGETOWN	C8 LATRINE
PARK	HFL		\$100,000.00	GEORGETOWN	C4 SCHOOL HOUSE D
PARK	HFN		\$200,000.00	GEORGETOWN	C5 BATHHOUSE (GH)
PARK	HDP		\$100,000,00	GEORGETOWN	C11 STORAGE BLDG
PARK	HDL		\$100,000.00	GEORGETOWN	C1 SHELTER (KIDD BEACH)
PARK	HDX		\$175,000,00	GEORGETOWN	C16 HO & RESIDENCE
PARK	HE.T		\$125 000 00	GEORGETOWN	C3 CHECKING STATION
PARK	HDN		\$200,000,00	GEORGETOWN	C10 SERV BLDG & GARAGE
PARK	HFV		\$300,000 00	GEORGETOWN	C9 BATHHSE/CONCESS (TP)
PARK	HEE		\$100 000 00	GEORGETOWN	C2 CONCESSION (GH)
DABK	HI'B		\$125 000 00	GRAFTN NOTCH	HEADOILARTERS
DABK	HI W		\$75 000.00	GRAFTN NOTCH	STORAGE BLDG
DADK	FT.T.		\$600 000 00	HARDSWELL	ADMIRAL PEARVIS HOUSE
			4000,000.00		IBILIAR I BACI D HOUDE

PARK	FLN		\$150,000.00	HARPSWELL	B2 CARETAKERS HOUSE
PARK	FLM		\$100,000.00	HARPSWELL	B1 PIER
PARK	HYJ		\$115,500.00	HERMON	HOUSE
PARK	JCB		\$150,000.00	ISLESBORO	FLOAT & PIER
PARK	JFD		\$55,000.00	JEFFERSON	TOILET BLDG
PARK	JHF		\$150,000.00	KITTERY	B17 LATRINE/STORAGE
PARK	JHD		\$300,000.00	KITTERY	B16 BLOCK HSE
PARK	JHH		\$65,000.00	KITTERY	B19 SHELTER
PARK	PCD	504	\$225,000.00	LAMOINE	TOILET/SHOWER BLDG
PARK	JJN		\$225,000.00	LAMOINE	BARN
PARK	JJT		\$126,000.00	LAMOINE	DWELLING - HDOS
PARK	JMD		\$175,000.00	LIBERTY	C51 HO, DWELL, SHED & BARN
PARK	JMJ		\$150,000.00	LIBERTY	E55 TOILET BLDG
PARK	JNR		\$450,000.00	LINCOLNVILLE	DINING HALL & KITCHEN VILLAGE
PARK	JMZ		\$63,300.00	LINCOLNVILLE	CABIN STYLE A OTY:6 HABITAT
PARK	JNB		\$63,300.00	LINCOLNVILLE	CABIN STYLE A OTY:6 LEDGES
PARK	JNV		\$75,000,00	LINCOLNVILLE	HILLTOP, VILLAGE
PARK	JNN		\$105,505,00	LINCOLNVILLE	CABIN STYLE C LEDGES
PARK	JPH		\$62,000,00	LINCOLNVILLE	LODGE, HABITAT
PARK	JNP		\$62,000.00	LINCOLNVILLE	CRAFT SHOP OR ART CTR VILLAGE
PARK	JPJT		\$58,000,00	LINCOLNVILLE	LODGE LEDGES
PARK	JPF		\$62,000,00	LINCOLNVILLE	LODGE, BIG PINE
PARK	JOH		\$75,000,00	LINNEUS	DWELLING R
DARK	TRR		\$175,000,00	LIBEC	DIIPLEX RESIDENCE / OFFICE
DABK	K.TR		\$120 000 00	MONMOLITH	COTTAGE
DABK	KMR		\$60,000,00	N EDGECOMB	C23 CHECKING STA & STOR BLDG
PARK	KMP		\$275 000 00	N EDGECOMB	C21 BLOCKHOUSE
DABK	KNIN		\$175,000,00	NADLES	A19 LATRINE (CONTROL STA)
PARK	KNR		\$125,000,00	NAPLES	AS RANGER ST DWELLING
PARK	KMX		\$65,000,00	NADLES	A15 AMPHITHEATRE
PARK	KMT		\$67 515 00	NADLES	A10 LATRINE, LOG #2
DAPK	KNT		\$170 000 00	NADLES	A9 ICE & WOOD BLDG & GARAGE
PARK	KMV		\$125,000,00	NAPLES	A14 CHECKING STATION
PARK	KNP		\$175,000,00	NAPLES	A7 HO & DWELLING
PARK	KNF		\$900.000.00	NAPLES	A11 LATRINES. (4)
PARK	MDZ		\$350,000,00	PEMAOUTD	RESTAIRANT
PARK	MFB		\$60,000,00	PEMAOUTD	SERVICE BUILDING
PARK	MDT		\$500 000 00	PEMAOUTD	FORT HOUSE
PARK	MDV		\$350,000,00	PEMAOUITD	MISEIM
PARK	MDX		\$200 000 00	PEMAOUTD	PTER
PARK	MDR		\$400.000.00	PEMAQUID	FORT
PARK	MJB		\$100,000.00	PHIPPSBURG	C27 SHOP
PARK	MJD		\$350,000.00	PHTPPSBURG	C28 FORT
PARK	MJT,		\$250,000.00	PHIPPSBURG	S31 LATRINES & CHANGE AREA
PARK	MJJ		\$200,000.00	PHIPPSBURG	S24 MATHERSON BLDG / HDO
PARK	MJZ		\$250,000.00	PITTSTON	C45 COLBURN HOUSE
PARK	MKD		\$75,000,00	PTTTSTON	C47 CARRAIGE SHED D
PARK	MKB		\$100,000,00	PITTSTON	C46 BARN D
PARK	MIN		\$200,000,00	POLAND	A38 MENS BATHHOUSE/TOILET
PARK	MTITI		\$125,000.00	POLAND	A37 MGRS RESIDENCE
PARK	MLP		\$200,000.00	POLAND	A39 WOMENS BATHOUSE/TOILET
PARK	MLR		\$100.000.00	POLAND	A40 MAINTENANCE BLDG
PARK	MLJ		\$75,000.00	POLAND	A 43 FIRST AID BLDG
PARK	нүл		\$150,000.00	PORTLAND	CARE TAKERS HOUSE
PARK	нуј		\$600.000.00	PORTLAND	ADMIRAL PEARY'S HOUSE
PARK	MVR		\$65,000.00	POWNAL	A5 SHELTER
PARK	MVP		\$350,000.00	POWNAL	A1 HQ, DWELL, SHOP & GARAGE
				-	

PARK	MVV		\$125,000.00	POWNAL	CHECKING STATION
PARK	NBT		\$152,107.00	PRESQUE ISLE	HQ & DWELLING
PARK	PBT	580	\$120,000.00	PRESQUE ISLE	TOILET BLDG
PARK	NDM		\$75,000.00	PRESQUE ISLE	SERVICE BLDNG
PARK	PCJ	230	\$125,000.00	PROSPECT	SHOP / OFFICE
PARK	NDV		\$75,000.00	PROSPECT	BARN
PARK	NDZ		\$120,000.00	PROSPECT	DWELLING
PARK	NFH		\$210,000.00	PROSPECT	TORPEDO SHED / VISITORS CTR
PARK	NFL		\$75,000.00	PROSPECT	TOILET BLDG
PARK	NFX		\$550,000.00	RANGELEY	LATRINES (3)
PARK	NFV		\$125,000.00	RANGELEY	CONTROL STATION
PARK	NGF		\$65,000.00	RANGELEY	STORAGE SHED
PARK	NGH		\$100,000.00	RANGELEY	SVC BUILDING
PARK	NGJ		\$75,000.00	RANGELEY	WOOD SHED
PARK	NGB		\$125,000.00	RANGELEY	RANGER STATION
PARK	NGP		\$75,000.00	RICHMOND	C35 MAINTENANCE BUILDING
PARK	NLN		\$115,500.00	ROQUE BLUFFS	HOUSE/OFFICE
PARK	NMR		\$100,000.00	S BERWICK	SHOP/OFFICE
PARK	NTZ		\$100,000.00	SACO	B33 SHOP
PARK	NVB		\$80,000.00	SACO	B34 LATRINES (2)
PARK	NWT		\$150,000.00	SCARBORO	B25 BEACH HOUSE / CHANGE AREA
PARK	NYH		\$150,000.00	SEARSPORT	REG SRVC BLDG
PARK	NZZ		\$80,854.00	SKOWHEGAN	ADLER HOUSE
PARK	PNV		\$150,000.00	STOCKTON SPR	PIER, 2 FLOATS
PARK	PNR		\$176,400.00	STOCKTON SPR	LIGHTKEEPERS RESIDENCE
PARK	OHP		\$82,500.00	T02 R10 WELS	MANAGERS CAMP
PARK	OHZ		\$75,600.00	T03 R14 WELS	RANGER CAMP LOBSTER
PARK	OKP		\$80,955.00	TO6 R11 WELS	CABIN UMBAZOOKSUS RD
PARK	OKX		\$90,000.00	T06 R11 WELS	MAINTENANCE BLDG
PARK	OKZ		\$90,000.00	TOG R11 WELS	RANGER STATION - CTB
PARK	£= OLH		\$75,000.00	T07 R12 WELS	LEASEES RESIDENCE NUGENTS
PARK	OMD		\$100,000.00	T07 R12 WELS	MAIN LODGE NUGENTS
PARK	PCL	300	\$90,000.00	T07 R14 WELS	RANGER STATION
PARK	ONB		\$60,000,00	T08 R13 WELS	CAMP EAGLE 1
PARK	OPV		1,250,000,00	T10 R12 WELS	CHURCHILL DAM
PARK			\$150,000.00	T10 R12 WELS	SUPERVISOR RES / HDOS
PARK	OD J		\$175,500.00	TIO RI2 WELS	STOREHOUSE/BARN
PARK	222		\$70,000,00	T10 R12 WELS	WORKSHOP / CHURCHILL
PARK	ODF		\$150,000,00	TIO RI2 WELS	BOARDING HOUSE
PARK			\$90,000,00	TIL RIS WELS	CONTROL STATION A UMSASKIS
PARK	OGN		\$90,000.00	TIS RII WELS	RANGER CAMP - MICHAUD
PARK	OKC		1.300.000.00	T6 R11	
PARK	OKG		\$80,000,00	T6 R11	MAIN LODGE
PARK	HRI.		\$90,000,00	TD R11 TD2 R13c14	TOHNSON CAMP (CROSS)
PARK	HRN		\$150 000 00	TA2 R13c14	REGIONAL SHOP
PARK	HOZ		\$53 130 00	TA2 R13614 TA2 R13614	CONTROL STATION
PARK	HOX		\$125 000 00	TA2 R13c14	CAMP ROWELLS COVE & WOOD SHED
DABK	HSD		\$75,000.00	TA2 R13614	SVC BLDG 2-BAY
DABK	BCC		1 000 000 00	TOT RIS WELS	POCK DAW
PARK	RHB		\$150,000,00	MELD	RECREATION BUILDING
PARK	RGJ		\$200,000,00	WELD	HO DWELLING
PARK	RGF		\$125,000.00	WEID	CONTROL STATION WERE BEACH
PARK	RFZ		\$100,000 00	WELD	4-BAY STORAGE
PARK	RGD		\$200,000,00	WELD	BATHHOUSE, WEBB BEACH
PARK	RHR		\$75,000.00	WELD	WOODSHED
PARK	RGT		\$100,000 00	WELD	RANGER CAMP MT BLUE D
PARK	RGZ		\$100 000 00	WELD	RANGER STATION WEBB BCH
			7100,000.00	· · · · · · · · · · · · · · · · · · ·	

PARK	RGX		\$100,000.00	WELD	RANGER STATION CENTER HILL
PARK	RHD		\$200,000.00	WELD	SERVICE BUILDING
PARK	RGL		\$75,000.00	WELD	LATRINES, CHEM, WEBB BEACH
PARK	RGM		\$275,000.00	WELD	LATRINE / SHOWER COMPLEX
PARK	RHJ		\$100,000.00	WELD	SHELTERS (2) BEACH
PARK	RPX		\$145,000.00	WINSLOW	FORT HALIFAX
POLICE	BBT		\$542,926.12	ALFRED	STATE POLICE BARRACKS
POLICE	GDN		1,273,387.50	DRY MILLS	STATE POLICE BARRACKS
POLICE	GDP		\$132,917.00	E MACHIAS	STATE POLICE BARRACKS
POLICE	JBH	3703	\$329,205.00	HOULTON	STATE POLICE BARRACKS
POLICE	JBM		1,500,000.00	HOULTON	US ROUTE 1 STATE POLICE BARRACKS
POLICE	LYX	3450	\$475,670.00	ORONO	STATE POLICE BARRACKS
POLICE	NTF		\$552,187.12	S PORTLAND	STATE POLICE GARAGE
POLICE	PDT	3450	\$253,455.00	SKOWHEGAN	STATE POLICE BARRACKS
POLICE	QQL	4200	\$362,161.82	THOMASTON	STATE POLICE BARRACKS
PUBLIC	BDH		1,000,000.00	ASHLAND	ASHLAND FACILITY
PUBLIC	DSX		\$484,800.00	BIGELOW	FLAGSTAFF LODGE
PUR	CMN	12852	\$229,198.00	AUGUSTA	ROOT CELLAR (SURPLUS)
RETIRE	BKL		3,313,485.00	AUGUSTA	2 CENTRAL PLAZA
SALMON	FVK	33	\$132,000.00	CHERRYFIELD	RT 193, DEBLOIS RD
SALMON	FVG		\$250,000.00	COLUMBIA FALLS	COLUMBIA FALLS FISH WEIR
SALMON	FVF		\$250,000.00	DENNYSVILLE	DENNYSVILLE FISH WEIR
SEED	BDN		\$132,759.74	ASHLAND	PACKING SHED
SEED	HYV	2000	\$116,303.83	HOMESTEAD FL	DWELLING
SEED	нүх	6000	\$90,000.00	HOMESTEAD FL	PACKING SHED
SEED	KCZ		\$65,000.00	MASARDIS	GREENHOUSE #2
SEED	KDN	2400	\$65,000.00	MASARDIS	POTATO STORAGE HSE PORTER
SEED	KDD	10500	\$200,000.00	MASARDIS	METAL POTATO WHSE
SEED	KDH	2400	\$305,000.00	MASARDIS	OFFICE & CONTROL STA
SEED	КСТ	1000	\$69,457.50	MASARDIS	DWELLING AT SAL-MOR FARM
SEED	KDP	2400	\$65,000.00	MASARDIS	POTATO STORAGE HSE SAL MOR
SEED	KCV	8000	\$100,000.00	MASARDIS	EQUIPMENT/MACHINE SHOP
SEED	KDB		\$64,878.52	MASARDIS	GREENHOUSE #3
VC	CGC	3000	\$400,000.00	AUGUSTA	ADMIN BLDG MT VERNON RD
VC	CVJ	1766	\$100,000.00	AUGUSTA	VET CEMETERY OFFICE & GARAGE#1
VC	CGD	1612	\$262,500.00	AUGUSTA	MAINE VETERANS MEM CEM CHAPEL
WAR	DST	864	\$77,175.00	BIG TWTY TWP	ESTCOURT WARDEN HSE
WAR	GDZ	1800	\$80,000.00	EAGLE LAKE	PILOT DWELLING
WAR	GDT	1900	\$118,077.75	EAGLE LAKE	AIRCRAFT HANGER
WAR	HRR	. 896	\$80,000.00	GREENVILLE	MECHANIC'S HSE
WAR	KPB	1430	\$70,000.00	NAPLES	NAPLES WARDEN CAMP
WAR	MKJ	720	\$59,039.40	PITTSTONACAD	PITTSTON FARM HOUSE
WAR	PYX		\$80,000.00	T03 R11 WELS	RIPOGENUS PRE FAB RESIDENCE
WAR	QBH	608	\$65,000.00	T05 R20 WELS	BOUNDARY COTTAGE-ST ZACHARIE
WAR	QKR		\$75,000.00	T06 R11 WELS	COFFELOS CAMP - T6 R11
WAR	QFH	720	\$59,039.40	T11 R13 WELS	UMSASKIS LK WARDEN CAMP
WAR	QFL	590	\$65,000.00	T11 R17 WELS	DAAQUAM WARDEN HOUSE #2
WAR	QJB	768	\$65,000.00	T31 MD BPP	WESLEY WARDEN CAMP

_

Procedure to Compile Data

The Property Management Division of the Bureau of General Services currently tracks and collects utility data with the use of the "**Utility Analysis Report**". This report was the result of a program done in 1998, and eliminated a spreadsheet tracking system which was in place.

The Utility Analysis Report keeps track of oil, gas/propane, electric, sewer, water, fire protection, and catch basin use and fees. It has the ability to sort data by window of time, utility compilation, or by building. The data is compiled from utility bills received from the utility companies. This information is then entered in the report and available for recovery. We have compiled information for this report by building for the years 1998 and 1999 and put them in an easy to read format.

FUEL OIL/PROPANE	1998		
BUILDING	соѕт	•54/gal.	
HALLOWELL COMPLEX		\$10,439.22	Ī
DISTRICT COURT		\$4,571.34	
BLAINE HOUSE		\$2,837.11	
SURPLUS PROPERTY		\$939.84	
MEDICAL EXAMINERS BUILDING		\$1,793.57	
CULTURAL BUILDING		\$1,276.84	
DACHSLAGER HOUSE		\$1,550.98	
DEP RESPONSE BUILDING		\$1,165.24	
AMHI HOUSE #1		\$749.16	
AMHI HOUSE #2		\$707.67	
AMHI FARM HOUSE		\$1,408.90	
TRIAL HOUSE		\$423.94	
HUMAN SERVICES		\$32,434.40	
AMHI MACHINE SHOP		\$6,361.34	
BGS SERVICE BUILDING		\$3,510.22	
MCCLEAN HOUSE		\$1,768.28	
MERRILL HOUSE	······	\$1,005.62	
NASH SCHOOL		\$2,091.52	
MOTOR VEHICLE BUILDING		\$13,306,45	
NORTON HOUSE		\$603.27	
PUC BUILDING		\$4,068.53	
AMHI HEATING PLANT		\$193,212.95	> En
SMITH HOUSE		\$977.99	-
STAFF HOUSE/GARAGE		\$1,088.52	
CRIME LAB		\$5,441.56	
STATE OFFICE BUILDING		\$106,468.82	
MTA/GANNETT HOUSE		\$1,753.00	
STATE POLICE HEADQUARTERS		\$5,439.75	
STATE POLICE GARAGE		\$7,191.76	
AMHI HOUSE #3		\$738.03	
DOT BUILDING		\$21,878,58	
ADMIN. BUILDING HALLOWELL		\$2,073.30	
BAKER BUILDING	ye w	\$2,220.30	
CENTRAL HEAT PLANT HALLOWELL		\$21,950,36	\
LIQUOR/LOTTERY BUILDING		\$6.097.23	
CLEVELAND BUILDING		\$3,646,59	
PRE-RELEASE GARAGE		\$670.81	
59 WINTHROP ST.		\$244.14	
89 WINTHROP ST.	· · · · · · · · · · · · · · · · · · ·	\$918.61	
REED BUILDING		\$6,307,33	
PRE-RELEASE CENTER		\$1 637 89	
OAK GROVE COBURN		\$14,785.00	
TOTAL COST FOR 1998		\$497.756.47	

ELECTRICAL	1998	
BUILDING	COST	
HALLOWELL COMPLEX	\$84,185	.01
STREET LIGHTS	\$1,962	.82
STREET LIGHTS	\$712	.34
DISTRICT COURT	\$8,183	.48
MEDICAL EXAMINERS BLDG.	\$10,303	.75
TRIAL HOUSE	\$972	.08
MCLEAN HOUSE	\$1,085	.61
MOTOR VEHICLE BUILDING	\$98,139	.69
SWITCH GEAR BUILDING	\$661,179	.26
CRIME LAB	\$16,836	.69
STATE OFFICE BUILDING	\$378,195	.80
STATE POLICE HEADQUARTERS	\$14,350	.24
LIQUOR/LOTTERY BUILDING	\$42,577	.60
OAK GROVE COBURN	\$5,713	.87
TOTAL COST FOR 1998	\$1,324,398	.24

•

	1998	AVG COST	TOTAL	1999	AVG COST	TOTAL	1998	COST PER	TOTAL	1999	COST PER	TOTAL	1998	COST PER	TOTAL	1999	COST	TOTAL
BUILDING/COMPLEX	ELECTRIC	PER KWH	KWH	ELECTRIC	PER KWH	KWH	FUEL OIL	GALLON	GALLONS	FUEL OIL	GALLON	GALLONS	PROPANE	GALLON	GALLONS	PROPANE	GALLON	GALLONS
65M Capitol Park		-																
		+														ļ		
ti Conitel Complex													·	+				
(: Capitor Complex																		
"pier farking hous																		
														<u> </u>				
67M:	\$84,310.1	5\$0.72	925109	\$105,533.41	\$0.72	1016571								<u> </u>				
Hallowell Complex																		
68M: AMHI	\$1,472.90	\$0.07		\$1,896.37	\$0.72								1					
Street Lights																		
													L					
69M: Capitol Complex																		
Birchwood/Columbia St.																		
70M. Capital Complay							<u> </u>						+					
Capitol Child																		
Valley & Gage Sts.							-											
71M: East Side																		
Hosptial St. Parking											1							
BMT: Capitol Complex	\$10,911.32	\$0.72	100372	\$13,071.59	\$0.72	103920	\$4,571.34	0.645	7043.5	\$5,346.36	\$0.59	9061						
District Court																		
BNH: Capitol Complex							\$2,837.11	0.645	4352.5	\$2,529.26	\$0.59	4296.4						
Blaine House													<u> </u>					
RPT. AMUI Complex							¢020 04	0.645	1452.5	¢1 100 FF	¢0.50	1001 0						
Surplus Property							4939.04	0.045	1452.5	\$1,109.55	\$0.55	1991.0						
														+				
د. Capitol Complex	\$12,364.51	\$0.72	104570	\$14,723.29	\$0.72	113701	\$1,590.37	0.645	2462.6	\$535.20	\$0.59	910.8	\$135.40	\$0.66	\$203.20	\$207.12	\$0.68	\$304.60
Medical Examiner's Bldg.																		
BQR: Capitol Complex			1										\$360.33	\$0.95	\$377.70	\$195.71	\$0.68	\$286.80
Cultural Building																		
BQZ: Capitol Complex							\$1,550.98	0.645	2394.7	\$1,625.95	\$0.59	2777.7						
Dachstager House		+											<u> </u>					
BRH: AMHI Complex													<u> </u>					
Deering Building																		
												······································						
BRP: AMHI Complex		T					\$973.07	0.645	1546.1	\$1,346.93	\$0.59	2276.4				\$916.27	\$0.68	1339.8
DEP Response Building																		
									-									
BRT: AMHI Complex																		
Ray Building													<u> </u>					
PPV. AMUT Complex							6740.10	0.645	1150 0	600F 00	<u> </u>	1267 6						
House #1							\$/49.16	0.645	1120.8	\$805.08	\$0.59	130/.0						
		<u> </u>												<u> </u>		· · · · · · · · · · · · · · · · · · ·		
BRZ: AMHI Complex							\$707.67	0 645	1106.6	\$363 21	\$0.59	607.7	<u> </u>	···				
House #2								0.010		+000121	+0.00	÷ - · · ·						
			•		I	A		1					•			.		<u> </u>
									-									

F	1000			1			1000			1000		, <u> </u>	1000			1000		
	1998	COST PER	TOTAL	1999	COST PER	TOTAL	1998	COST PER	TOTAL	1999	COST PER	TOTAL	1998	COST PER	TOTAL	1999	COST	TOTAL
BOILDING/COMPLEX	ELECTRIC	KWH	KWH	ELECTRIC	KWH	KWH	LEORD OID	GALLON	GALLONS	FUEL OIL	GALLON	GALLONS	PROPANE	GALLON	GALLONS	PROPANE	GALLON	GALLONS
BSX: Capitol Complex																		1
Producation Building					<u> </u>	<u></u>	ļ		<u> </u>	<u> </u>								
						<u> </u>								<u> </u>				
BTZ: AMHI Complex							\$1,408.90	0.645	2165.7	\$1,206.91	\$0.59	2033.2						1
Farm House									L									
			ļ	<u></u>	L					<u> </u>				L				Į
BWZ: AMHI Complex																		1
Harlow Building																		L
																		ļ!
BXR: AMHI Complex				\$684.94		5221	\$423.94	0.645	651.7	\$366.61	\$0.59	615.4						1
Trial House																		L
																		L
BXT: Capitol Complex		ļ				1	\$32,434.40	0.645	50202.2	\$30,027.97	\$0.59	51729.2		1		\$1,468.47	\$0.69	\$2,128.20
Human Services Building																		l
														<u> </u>				
CFR: AMHI Complex							\$6,361.34	0.645	9777.2	\$6,647.32	\$0.59	11187.7						I I
Machine Shop	1						l	}										[]
CGF: Capitol Complex							\$3,510.22	0.645	5367.6	\$3,289.76	\$0.59	5460.6				\$58.72	\$0.69	\$85.10
BGS Service Building]													i
	1]												
CGJ: Capitol Complex							\$1,768.28	0.645	2729.8	\$1,710.72	\$0.59	2885.4						
McClean House																		·
								1										i
CGZ: Capitol Complex							\$1,005.62	0.645	1541.2	\$1,077.31	\$0.59	1837.6						
Merrill House																		L
														1				
CHR: Capitol Complex							\$2,091.52	0.645	3238.3	\$1,824.43	\$0.59	3099.5						
Nash School																		1
: East Side	\$98,139.69	9\$0.72	1193760	\$133,074.24	\$0.72	1234800	\$13,306.45	0.645	20789.5	\$13,647.06	\$0.59	23548.1						
New DMV Building																1		1
													-					1
CJH: AMHI Complex										\$684.49	\$0.59	1173.1						1
Norton House																		(
																		l
CJJ: AMHI Complex														ł				1
CETA Building								· · ·										L
P-0								·										i
CKH: AMHI Complex																		1
Old Max Building																		I
	<u> </u>																	
CKJ: Capitol Complex/West										\$3,442.80	\$0.59	5857.14						1
PUC Building																		L
				<u> </u>		l		<u></u>		ļ				<u> </u>	L	L		
CKV: Capitol Complex/West													4					1
Parking Garage	<u></u>										<u> </u>							
CKW: Capitol Complex/West	\$850,085.26	5\$0.72	9910928	\$1,302,800.91	\$0.72	11409348												1
Feeds Entire West Side Complex																		í [,]
Except District Court	<u></u>		······							ļ								
								ļ	•									
CLJ: AMHI Heat Plant #6 Fuel							\$193,212.95	0.398	484484.39	\$158,889.29	\$0.41	391071.34						1
Feeds entire Complex Except			1	ļ														1
House 1-3, Norton, Farm House,														1				1
Surplus Property																		
										4002 10	<u> </u>	1.607						l
r : Capitol Complex West		1								\$893.18	ŞU.59	1601.7		1				1
In House		<u> </u>						+					<u></u>	+				
CNT. Comitol Complete State	<u> </u>	+		<u> </u>				<u> </u>		6700 75	en En	1257 0	<u>├</u>	+				i
Staff House (Compass	1							Į	1	51.961¢	۶0.59	1337.8			1	ļ		i i
Stall nouse/Garage		+						<u> </u>	 	<u>}</u>								/ [/]
CNP: Capitol Complex Most	<u> </u>	+						<u> </u>						+		<u> </u>		
State House															1			l I

	1998	COST PER	TOTAL	1999	COST PER	TOTAL	1998	COST PER	TOTAL	1999	COST PER	TOTAL	1998	COST PER	TOTAL	1999	COST	TOTAL
BUILDING/COMPLEX	ELECTRIC	KWH	KWH	ELECTRIC	KWH	KWH	FUEL OIL	GALLON	GALLONS	FUEL OIL	GALLON	GALLONS	PROPANE	GALLON	GALLONS	PROPANE	GALLON	GALLONS
me Lab	\$20,277.49	\$0.72	2041209	\$72,528.91	\$0.72	566221		*		\$5,397.30	\$0.59	9104.3	\$403.39	\$0.68	\$593.20	\$1,626.03	\$0.68	\$2,387.20
CPL: Capitol Complex West State Office Bldg. Heats, SOB, State House, Education and Cultural Bldg. / Electrical was changed over to CKW in 1998	\$378,195.80		3068800				\$89,342.70 \$17,030.47	0.645	1399242.4 41074.61	\$73,627.49	\$0.59	124020	\$95.65		\$50.70	\$3,051.99	\$0.69	\$4,423.40
CRL: Capitol Complex West MTA/Gannett House							\$1,743.40	0.645	2702.96	\$1,956.95	\$0.59	3326.3						
CRR: Capitol Complex East State Police Headquarters	\$14,350.24	\$0.72	162480	\$32,033.97	\$0.72	326280	\$5,439.75	0.645	8389	\$5,826.57	\$0.59	9748.1						
CRX: Capitol Complex East State Polic Garage							\$3,595.88	0.645	5534.3	\$2,375.08	\$0.59	4037						
CSV: AMHI Complex House #3							\$738.03	0.645	1148.3	\$674.02	\$0.59	1120.6						
CTB: Capitol Complex West DOT Building													\$21,878.58	\$0.68	\$32,173.90	\$24,149.17	\$0.68	\$35,367.90
HTD: Hallowell Complex Admin. Building							\$2,073.30	0.645	3224.7	\$1,931.64	\$0.59	3176.82						
HTJ: Hallowell Complex er Building							\$2,220.30	0.645	3511.9	\$110,142.33	\$0.59	6099				\$14.01	\$0.68	\$20.60
HTR: Hallowell Complex Heat Plant feeds: Central Bldg. Erksine , Central Maine Pre-Release & Flagg/Dummer							\$5,219.61 \$16,631.79	0.645 0.414	8501 40113.04	\$21,491.23	\$0.59	35002	\$98.96		\$75.60	\$171.19	\$0.69	\$248.10
HTT: Hallowell Complex Liquor/Lottery Building	\$51,091.60	\$0.72	539550	\$48,979.36	\$0.72	480545	\$6,026.92	0.645	9156.2	\$8,802.41	\$0.59	14972.64	\$70.31	\$0.68	103.4	\$94.01	\$0.69	\$137.10
HVL: Hallowell Complex Cleveland Building							\$3,646.59	0.645	5635.3	\$3,148.58	\$0.59	5343.8						
HVZ: Hallowell Complex Pre-Release Garage							\$670.81	0.645	1030.1	\$664.76	\$0.59	1117.9						
HWJ: Hallowell Complex 59 Winthrop St.							\$244.14	0.645	372.6	\$305.09	\$0.59	514.5						
HWP: Hallowell Complex 89 Winthrop St.							\$918.61	0.645	1421.2	\$815.99	\$0.59	1372.5						
HWX: Hallowell Complex Reed Building				-			\$6,208.37	0.645	9540.6	\$5,851.46	\$0.59	9902.4	\$98.96		\$75.60			
HWZ: Hallowell Complex Central Maine Pre-Release							\$1,637.89	0.645	2573.4							\$134.00	\$0.69	\$194.20
: Vassalboro	\$5,713.87		49333	\$1,691.59		6586	\$14,785.51	0.645	22895.3	\$13,230.84	\$0.59	21375.8						
FUEL OIL/PROPANE	1999	a a a a a a a a a a a a a a a a a a a																
------------------------------	-------	---------------------------------------																
		10/-1																
BUILDING	COST	007/gal,																
DISTRICT COURT		\$5,346.36																
BLAINE HOUSE		\$2,529.26																
SURPLUS PROPERTY		\$1,189.55																
MEDICAL EXAMINERS BUILDING		\$742.32																
CULTURAL BUILDING		\$195.71																
DACHSLAGER HOUSE		\$1,625.95																
DEP RESPONSE BUILDING		\$2.263.20																
AMHI HOUSE #1		\$805.08																
AMHI HOUSE #2		\$363.21																
AMHI FARM HOUSE		\$1,206.91																
TRIAL HOUSE		\$366.61																
HUMAN SERVICES		\$31,496.44																
AMHI MACHINE SHOP	·····	\$6,647.32																
BGS SERVICE BUILDING	``	\$3,348.48																
MCCLEAN HOUSE		\$1,710.72																
MERRILL HOUSE		\$1,077.31																
NASH SCHOOL		\$1,824.43																
MOTOR VEHICLE BUILDING		\$13,647.06																
NORTON HOUSE		\$684.49																
PUC BUILDING		\$3,442.80																
AMHI HEATING PLANT		\$158,889.29																
SMITH HOUSE		\$893.18																
STAFF HOUSE/GARAGE		\$798.15																
STATE HOUSE		\$1,039.97																
CRIME LAB		\$7,023.33																
STATE OFFICE BUILDING		\$76,679.48																
MTA/GANNETT HOUSE		\$1,956.95																
STATE POLICE HEADQUARTERS		\$5,826.57																
STATE POLICE GARAGE		\$4,750.16																
AMHI HOUSE #3		\$674.02																
DOT BUILDING		\$24,149.17																
ADMIN. BUILDING HALLOWELL		\$1,931.64																
BAKER BUILDING		\$110,156.34																
CENTRAL HEAT PLANT HALLOWELL		\$21,662.42																
LIQUOR/LOTTERY BUILDING		\$8,896.42																
CLEVELAND BUILDING		\$3,148.58																
PRE-RELEASE GARAGE		\$664.76																
59 WINTHROP ST.		\$305.09																
89 WINTHROP ST.		\$815.99																
REED BUILDING		\$5,851.46																
PRE-RELEASE CENTER		\$1,990.14																
OAK GROVE COBURN		\$13,230.84																
TOTAL COST FOR 1999		\$531.847.16																

ELECTRICAL	1999
BUILDING	COST
HALLOWELL COMPLEX	\$64,361.96
STREET LIGHTS	\$1,896.37
STREET LIGHTS	\$535.66
DISTRICT COURT	\$8,714.39
MEDICAL EXAMINERS BUILDING	\$9,815.53
TRIAL HOUSE	\$684.94
MOTOR VEHICLE BUILDING	\$88,716.24
SWITCH GEAR BUILDING	\$1,202,159.94
CRIME LAB	\$48,352.63
STATE POLICE HEADQUARTERS	\$23,737.97
LIQUOR/LOTTERY BUILDING	\$28,571.36
OAK GROVE COBURN	\$1,691.59
TOTAL COST FOR 1999	\$1,479,238.58

Executive Summary Life Cycle Analysis

Title 5: Administrative Procedures And Services

Part 4: Finance

Chapter 153: Public Improvements

Subchapter 1-A: Energy Conservation in Buildings Act Sections: 1762,1763,1764

The Energy Conservation In Buildings Act was passed in 1977 by the 108th legislature and gave The Bureau of General Services authorization to implement the Act. Sections 1762, 1763, and 1764 of the Act requires a life cycle analysis be provided for facilities constructed in excess of 5000 square feet and for facilities leased in excess of 10,000 square feet.

The Bureau of General Services with the cooperation of the Department of Education and Department of Energy Resources published rules and procedures to implement the Act. The rules and procedures were promulgated in 1977 and were revised in 1983-1984.

The rules and procedures handbook contains instructions and forms used by architects and engineers in generating the life cycle analysis. Two forms are used and submitted in the analysis: Form "LCA-1" is the Required Energy Items form used to identify the energy usage items and calculate the yearly energy usage of the facility in MBTU per year. Form "LCA-2" is the life cycle cost- benefit analysis form used to calculate the annual cost per square foot of the total system over its projected life, generally 30 years.

The Bureau of General Services requires that the life cycle analysis report be submitted as part of the design development submission. During this phase of the project the design engineer determines which energy efficient systems are applicable to the facility and what systems the budget will support. The architect provides an energy efficient envelope that complies with the Energy Conservation in Buildings Act, which is met by compliance with the ASHRAE energy standard 90.1. The life cycle report defines all of the energy used by the facility as well as the energy losses of the structure. The ASHRAE standard provides minimum energy-efficient requirements for the design and construction of new buildings and their systems, new additions to buildings or renovations to buildings and their systems, as well as new systems and equipment in existing buildings. The standard applies to the envelope of the building and all systems and equipment used in the building. Because buildings and their systems are being designed to meet the ASHRAE standards the owner is getting the most energy efficient building that the budget will allow while at the same time minimizing energy use

Although the Bureau of General Services does require that a life cycle analysis be completed per Title 5, at this time the Bureau does not keep formal records substantiating that the life cycles analysis are always done. The Bureau of General Services will set up a database for gathering and compiling data, and verifying that the life cycle analysis are being completed per Title 5.

Appendices

- Appendix I Life Cycle Analysis
- Appendix II ASHRAE Standard
- Appendix III Life Cycle Analysis Maine Criminal Justice Academy Madison Elementary School

LIFE CYCLE ANALYSIS

STATE OF MAINE

BUREAU OF GENERAL SERVICES

Elaine L. Clark, Director Angus S. King, Jr., Governor

BUREAU OF GENERAL SERVICES STATE HOUSE STATION 77 AUGUSTA, MAINE 04333-0077

PHONE # (207) 287-4000 FAX # (207) 287-4039

March 19, 1984 1st_Reprint June 1986 2nd Reprint November 1999

STATE OF MAINE

LIFE CYCLE ANALYSIS

PUBLIC IMPROVEMENTS INCLUDING PUBLIC SCHOOL PROJECTS

Constructed Under the Supervision of The Bureau of General Services In Cooperation with the Department of Education and the Department of Energy Resources

Augusta, Maine

July 1977

Revised - 1983-84

TABLE OF CONTENTS

Section I - History - Laws and Rule Making

I.A. <u>Responsibilities and Duties</u>

I.B. <u>History</u>

Section II - General

- II.A. <u>General Instructions</u>
- II.B. Life-Cycle Costs

II.C. Energy Performance Index (and Section III)

<u>Section III - Application</u>

III.A. Introduction

A.1.0	Purpose
A.1.1	Goals
A.1.2	Sunnary

III.B. Energy Performance Index

B.1.0	Energy	Performance	Index	(EPI)

- B.1.1 Introduction
- B.1.2 Limits
- B.2.0 Required Energy Items (<u>Reporting Format</u>)

III.C <u>Analysis of Energy</u>

C.1.0 Approved Systems

- C.2.0 Modified Degree Day Procedure/ASHRAE
- C.2.1 Table/Degree Days/Maine
- C.3.0 Hand Calculations Method for Life Cycle Analysis
- C.3.1 Base Electrical Load
- C.3.2 Comfort Conditioning System
- C.4.0 Bin Method
- C.4.1 Explanation of Forms

C-1	Heating Form	
C-2	Cooling Form	

- C.4.2 Passive Solar Temperature Factor
- C.4.3 Heating Energy Form
- C.4.4 Cooling Energy Form
- C.5.0 Computer Method for Energy Analysis
- C.6.0 Passive Solar Energy Gains and Losses
- C.7.0 Active Solar Systems

• • •

- III.D. Life Cycle Costing/Financial Analysis
 - D.1.0IntroductionD.2.0Hand CalculationD.3.0Form/Life Cycle Cost-Benefit Analysis (Reporting Format)D.4.0Interest Table

.

- Appendix A: Sample Problems
- Appendix B: References
- Appencix C: Heating Form C-1 Cooling Form C-2

User's Guide

	Page #
Who Shall File for Life-Cycle Analysis	1
Codes and Alternate Conformance	2
Maximum Energy Goals	4
Building Energy (<u>Reporting Format</u>) Form "ICA-1"	6
Energy Calculations - Modified Degree Day	7
Energy Calculations - Bin Method	12
Energy Calculations - Computer Method	15
Passive Solar Analyzing	16
Active Solar Analyzing	18
Life Cycle Cost (<u>Reporting Format</u>) Form "LCA-2"	20

.

PREFACE

These instructions pertain to an Act Passed by the 108th Legislature which enacted Sub-Chapter 153, Public Laws of 1977, authorizing the Bureau of Public Improvements to implement the "Energy Conservation in Buildings Act"; and revised in 1981, Chapter 353 L.D. 1363 "An Act Concerning Energy Efficiency in Buildings Financed with Public Funds".

These rules and procedures have been promulgated by the Bureau of Public Improvements in consultation and coordination with the Department of Education and Cultural Services and the Office of Energy Resources to achieve these purposes.

> Leighton Cooney, Director Bureau of Public Improvements

STATE OF MAINE

LIFE CYCLE ANALYSIS

PUBLIC IMPROVEMENTS INCLUDING PUBLIC SCHOOL PROJECTS

Constructed Under the Supervision of The Bureau of General Services In Cooperation with the Department of Education and the Department of Energy Resources

Augusta, Maine

July 1977

Revised - 1983-84

TABLE OF CONTENTS

- Section I History Laws and Rule Making
- I.A. <u>Responsibilities and Duties</u>
- I.B. <u>History</u>
- <u>Section II General</u>
- II.A. <u>General Instructions</u>
- II.B. <u>Life-Cycle Costs</u>
- II.C. Energy Performance Index (and Section III)

<u>Section III - Application</u>

>	
TTT 0 270	THEFORGEFICIT

A.1.0	Purpose
A.1.1	Goals
A.1.2	Summary

- III.B. Energy Performance Index
 - B.1.0 Energy Performance Index (EPI)
 - B.1.1 Introduction
 - B.1.2 Limits
 - B.2.0 Required Energy Items (<u>Reporting Format</u>)

III.C <u>Analysis of Energy</u>

	C.1.	0	Approved	System
--	------	---	----------	--------

- C.2.0 Modified Degree Day Procedure/ASHRAE
- C.2.1 Table/Degree Days/Maine
- C.3.0 Hand Calculations Method for Life Cycle Analysis
- C.3.1 Base Electrical Load
- C.3.2 Comfort Conditioning System
- C.4.0 Bin Method
- C.4.1 Explanation of Forms

C-1 Heating Form C-2 Cooling Form

- C 2 00011119 1011
- C.4.2 Passive Solar Temperature Factor
- C.4.3 Heating Energy Form
- C.4.4 Cooling Energy Form
- C.5.0 Computer Method for Energy Analysis
- C.6.0 Passive Solar Energy Gains and Losses
- C.7.0 Active Solar Systems

III.D. Life Cycle Costing/Financial Analysis

D.1.0	Introduction
D.2.0	Hand Calculation
D.3.0	Form/Life Cycle Cost-Benefit Analysis (Reporting Format)
D.4.0	Interest Table

- Appendix A: Sample Problems
- Appendix B: References
- Appencix C: Heating Form C-1 Cooling Form C-2

User's Guide

	Page #
Who Shall File for Life-Cycle Analysis	1
Codes and Alternate Conformance	2
Maximum Energy Goals	4
Building Energy (Reporting Format) Form "ICA-1"	6
Energy Calculations - Modified Degree Day	· 7
Energy Calculations - Bin Method	12
Energy Calculations - Computer Method	15
Passive Solar Analyzing	16
Active Solar Analyzing	18
Life Cycle Cost (Reporting Format) Form "LCA-2"	20

PREFACE

These instructions pertain to an Act Passed by the 108th Legislature which enacted Sub-Chapter 153, Public Laws of 1977, authorizing the Bureau of Public Improvements to implement the "Energy Conservation in Buildings Act"; and revised in 1981, Chapter 353 L.D. 1363 "An Act Concerning Energy Efficiency in Buildings Financed with Public Funds".

These rules and procedures have been promulgated by the Bureau of Public Improvements in consultation and coordination with the Department of Education and Cultural Services and the Office of Energy Resources to achieve these purposes.

> Leighton Cooney, Director Bureau of Public Improvements

STATE OF MAINE

LIFE CYCLE ANALYSIS

PUBLIC IMPROVEMENTS INCLUDING PUBLIC SCHOOL PROJECTS

Constructed Under the Supervision of The Bureau of General Services In Cooperation with the Department of Education and the Department of Energy Resources

Augusta, Maine

July 1977

Revised - 1983-84

TABLE OF CONTENTS

- Section I History Laws and Rule Making
- I.A. <u>Responsibilities and Duties</u>
- I.B. <u>History</u>
- Section II General
- II.A. <u>General Instructions</u>
- II.B. <u>Life-Cycle Costs</u>
- II.C. <u>Energy Performance Index (and Section III)</u>

Section III - Application

III.A. Introduction

A.1.0	Purpose
A.1.1	Goals
A.1.2	Summary

- III.B. <u>Energy Performance Index</u>
 - B.1.0 Energy Performance Index (EPI)
 - B.1.1 Introduction
 - B.1.2 Limits
 - B.2.0 Required Energy Items (<u>Reporting Format</u>)
- III.C <u>Analysis of Energy</u>

	C.1.0	Approved	Systems
--	-------	----------	---------

- C.2.0 Modified Degree Day Procedure/ASHRAE
- C.2.1 Table/Degree Days/Maine
- C.3.0 Hand Calculations Method for Life Cycle Analysis
- C.3.1 Base Electrical Load
- C.3.2 Comfort Conditioning System
- C.4.0 Bin Method
- C.4.1 Explanation of Forms

C-1	Heating Form
C-2	Cooling Form

- C.4.2 Passive Solar Temperature Factor
- C.4.3 Heating Energy Form
- C.4.4 Cooling Energy Form
- C.5.0 Computer Method for Energy Analysis
- C.6.0 Passive Solar Energy Gains and Losses
- C.7.0 Active Solar Systems

.

III.D. Life Cycle Costing/Financial Analysis

D.1.0IntroductionD.2.0Hand CalculationD.3.0Form/Life Cycle Cost-Benefit Analysis (Reporting Format)D.4.0Interest Table

.

- Appendix A: Sample Problems
- Appendix B: References
- Appencix C: Heating Form C-1 Cooling Form C-2

User's Guide

	Page #
Who Shall File for Life-Cycle Analysis	1
Codes and Alternate Conformance	2
Maximum Energy Goals	4
Building Energy (<u>Reporting Format</u>) Form "ICA-1"	6
Energy Calculations - Modified Degree Day	7
Energy Calculations - Bin Method	12
Energy Calculations - Computer Method	15
Passive Solar Analyzing	16
Active Solar Analyzing	18
Life Cycle Cost (<u>Reporting Format</u>) Form "LCA-2"	20

PREFACE

These instructions pertain to an Act Passed by the 108th Legislature which enacted Sub-Chapter 153, Public Laws of 1977, authorizing the Bureau of Public Improvements to implement the "Energy Conservation in Buildings Act"; and revised in 1981, Chapter 353 L.D. 1363 "An Act Concerning Energy Efficiency in Buildings Financed with Public Funds".

These rules and procedures have been promulgated by the Bureau of Public Improvements in consultation and coordination with the Department of Education and Cultural Services and the Office of Energy Resources to achieve these purposes.

> Leighton Cooney, Director Bureau of Public Improvements

Section I

<u>History - Laws and Rule Making</u> I.A. Responsibilities and Duties

The law requires that there shall be no public improvement constructed in excess of 5,000 square feet, leased in excess of 10,000 square feet without verification of life cycle costs that will meet or exceed the energy efficiency standards promulgated by the Office of Energy Resources under Title 10, Chapter 214, and the Bureau of Public Improvements under Title 5, Section 1764.

The Bureau of Public Improvements shall review and approve life cycle costs for the following:

1. All state government construction work regardless of source of funding.

2. All state government leased space where more than 5,000 square feet of combined leased area occurs in one building, life cycle costs shall comply.

I.B. History

The 108th Legislature required that life cycle costing become a part of public improvement projects to assure that energy considerations, first cost, operating costs and long term costs are consistently analyzed and approved by the Bureau of Public Improvements. The law was later amended to include compliance with energy efficiency building performance standards (building envelope energy loss) promulgated by the Office of Energy Resources.

Life cycle energy evaluation required by the Bureau of Public Improvements addresses the total energy used by a facility (envelope, equipment, process, etc.). Because of Maine's climatic economic and social conditions, the efficient use of energy in all forms must be promoted in all new, renovated and leased buildings. Energy efficient buildings should be less expensive to own and operate over its expected life.

Section II

General

II.A. General Instructions

1. All public improvement projects must have life cycle analysis developed by the Architect and/or Engineer to select the best alternative total energy system that will serve the project needs at the minimum energy cost over the project life.

2. Designer has the option of selecting designated hand calculation method or computer system to provide the desired comparative information. In the event the designer desires to use other alternative system(s), he must secure prior approval from the Bureau of Public Improvements.

3. Copies of sample calculations and base data tables showing typical comparative information can be obtained by request from the B.P.I.

II.B. Life Cycle Costs

1. Other factors to be considered influencing life cycle costs shall include, but not be limited to:

A. Design Code for the State of Maine: As a minimum, energy conservation standards as called for in "The BOCA Basic Energy Conservation Code" or its approved successor. This code is a part of the BOCA Code or its approved successor which is the design code for the State of Maine and implements the recommendations contained in the ASHRAE, Energy Conservation Standards.

B. <u>Maine Office of Energy Resources</u>: As a minimum, the design shall meet the building performance standard set for in O.E.R. -"Maine Energy Conservation Building Standards".

C. For these studies, the useful life of the building structure will be assumed at 30 years unless otherwise approved by the Bureau of Public Improvements and/or the Department of Education. The study will reflect the parts of the building such as roof, mechanical and electrical system, exterior finishes and other components as applicable with the appropriate life in accordance with industry standards.

2. <u>Alternate Conformance</u>: All public improvements under 5,000 square feet and leased space under 5,000 square feet, if certified to B.P.I. that construction is in conformance with the "Manual of Accepted Practices" issued by the Maine Office of Energy Resources, will be acceptable in lieu of life cycle analysis.

II.C. Energy Performance Index

See Section III.B. for energy performance indexes to be used in the evaluation of design proposals submitted for public improvement and for public school construction.

Section III

Application

III.A. Introduction

The Maine Life Cycle Energy Evaluation Technique

A.1.0 <u>Purpose:</u> The procedures have been developed in response to actions taken by the Maine Legislature requiring the life cycle costing become a part of the evaluation process for public improvements to assure that energy considerations, first cost, operating costs and long term costs are consistently analyzed as public improvement projects are being considered for approval.

A.1.1 <u>Goals</u>: It is readily recognized that the life long energy usage of a building is largely determined by the original design and selection of detail equipment. Once a building has been erected, it becomes very expensive and difficult to modify construction to accommodate more energy conservation equipment.

1. <u>Energy Performance Index (EPI)</u>: Target goals have been established to limit total building energy usage.

2. <u>Analysis of Energy:</u> The Maine Life Cycle Energy Evaluation Technique Program is intended to help the designer quickly evaluate his alternative designs to determine those which may save the most energy.

3. <u>Life Cycle Economic Analysis:</u> An evaluation format to be used in the final design selection. This procedure identifies the initial capital cost and the owning cost (energy cost and equipment maintenance cost) to determine the life cycle costs throughout the project life.

A.1.2 <u>Summary:</u> The purpose of the design standards is not to limit architectural freedom, but is intended to create an awareness that all designs must effectively minimize the use of energy.

1. <u>Hand Calculations:</u> It is anticipated that the hand calculation method of analyzing the technical portion and the hand calculation method of financial analysis for life cycle costing will be adequate for most of the anticipated construction in the area of public education and state facilities.

2. <u>Computer Models</u>: Computer programming for the analysis of both or either the technical or financial portions of the study will be acceptable to the Bureau if the Base Model meets the following requirements:

A. The Bureau has on file the operation manual of the program.

B. Base Model to be evaluated by B.P.I. or certified by a third party professional acceptable to B.P.I. and the applicant.
C. Submits unmodified base data runs of the analysis.

3. <u>Submissions</u>: The following is the minimum requirements for submission of life cycle analysis to B.P.I.:

A. Building Energy Form "LCA-1"

B. Life Cycle Cost Form "LCA-2"

C. Solar Analysis (if applicable)

D. All backup calculations and data for all the above submitted energy and cost analysis.

E. Preparers information to include name, affiliation, telephone number, registration (stamp or number), and date.

III.B. Energy Performance Index (EPI)

B.1.0 Energy Performance Index (EPI)

B.1.1 <u>Introduction</u>: The goal of this program is to encourage the development of the most energy conservation building that is consistent with current standards, codes and practices for the buildings intended use.

B.1.2 Limits: In no instance will total building designed energy consumption exceed the following standards:

1. <u>Maximum Energy Goals</u>: Goals are established from recent construction experience utilizing passive and active solar, energy recovery, alternate energy use and other innovated techniques.

Α.	Elementary and Junior High Schools	40,000 BTU/s.f.
в.	High Schools	45,000 BTU/s.f.
c.	Vocational Technical Schools	50,000 BTU/s.f.
D.	Office Buildings (12 month use)	
	1) New Construction 2) New Leased/Renovated	65,000 BTU/s.f. 70,000 BTU/s.f.
E.	Dormitories (9 month use)	
	1) Regular 2) Apartment Style	45,000 BTU/s.f. 46,000 BTU/s.f.

B. The above listed BTU/s.f. limits are based on 100% system and equipment efficiency and shall be increased by an appropriate factor representing seasonal efficiency of the selected system and equipment to reflect estimated annual fuel use.

C. Values based on 8,000 degree days. Additional allowances will be allowed in locations where total degree days exceed 8,000 degree days according to the following table or graph below:

D. The Director, upon staff recommendations, may increase the above energy goals by 10% for historic buildings, hardship occurances, facility reuse and other non-reoccuring and unique circumstances.

B.2.0	Required Ener	gy Items (Reporting For	mat)			
		State of Ma	aine			
		Energy Conservation	in Bu	uldings		
Building	g Name/Use					
Building	g I.D	·····	Locat	ion	·····	·····-
Date _				-		
1.	Average Number	of Occupants		-		
2.	Degree Days	/year				
3.	Design Tempera	iture		-		
4.	Building Area			-		
Energy/	Point of Use Pe	r Year				
5.	Lighting		Base	Units #1		MBTU
. 6.	Heating			Π		MBTU
7.	Cooling			Π		MBTU
8.	Water Heating			Π		MBTU
9.	Equipment			Π		MBTU
10.	Other			Π		MBTU
11.	Total Energy			Ħ		MBTU
12.	Yearly Energy Per Building S Foot Area	Usage Guare				

FORM "LCA-1"

#1 Base Units of Energy - KWH of electricity, gallons of oil (#2, #4, #5 or #6), tons of coal. etc. shall be evaluated a N = 100% to determine annual energy consumption (BTU/square foot).

Note: Apply factors on Page 8 "Cd" and "N" to develop projected fuel usage (gallons of oil, tons of coal, etc.) to report on Form "LCA-2".

III.C. Analysis of Energy

C.1.0 <u>Approved Systems:</u> The ASHRAE's Modified Degree Day Procedure will be used in analyzing the <u>simple</u> heating and ventilation systems. For those systems which involve computing cooling and night setback loads, internal and solar gains, the bin method or computer modeling is required.

Both methods are included in this document (see C.2.0 and C.4.0).

A sample is included in the Appendix A of the Modified Degree Day calculation.

C.2.0 <u>Modified Degree Day Procedure:</u> (Chapter 43, ASHRAE 1980 System Handbook) The general equation for calculating the probable energy consumption by the modified degree day method is as follows:

$$E = (HI \times D \times 24) \qquad (C_d)$$

$$(At \times N \times V)$$

where

E = Fuel or energy consumption for the estimate period.

 H_1 = Design heat loss, including infiltration, BTU per hour.

D =Number of 65° F degree days for the estimate period.

t = Design temperature difference, Fahrenheit.

N = Correction factor for equipment efficiency.

V = Heating value of fuel, consistent with H₁ and E.

 C_d = Interim correction factor for heating effect vs. degree days.

Values of heating load. H_1 must be determined for the particular building for which the estimate is being made. It must account for size, building materials, architectural features, use, and climatic conditions. Table 1 gives values for C_d and N.

- mail 1		-
111001	~ ^ ~	
10		
	A	

Correction	Factor	Vs.	Degree	Days	Interim				
Factor Ca									

Design Degree Days	6,000	7,000	8,000	9, 000	10,000
Factor C _d	.60	.64	.68	.71	.71

The correction factor N is empirical and should not be confused with any ratings for "seasonal efficiency". The following values shall be used:

- N = 1 Electric Resistance Heating
- N = .75 Pressurized Gas Fired Boiler or System
- N = .70 Oil Fired Boiler with Air Atomizing or Flame Retention Burner
- N = .65 Atmospheric Gas Fired System

N = .50 - Coal Fired Boiler Conventional Stoker

N = .65 - Coal Fired Boiler Pressurized Forced Draft Firing System

N = .55 - Old Oil Fired Systems

Note: If other values are to be used, submit verification and backup data.

C.2.1 <u>Table/Degree Days/Maine</u>

<u>Maine</u>

Monthly and Annual Heating Degree Day Normals

Station	July	Aug.	Sept	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	Annual
Bar Harbor	47	49	193	459	741	1153	1280	1137	99 8	669	381	133	7240
Caribou	84	122	327	657	1008	1516	1683	145 9	1283	849	474	170	9632
Eastport	117	109	246	499	762	1175	1314	1162	1048	744	499	258	7833
Farmington	40	75	239	555	891	1361	1500	12 96	1107	705	364	104	8237
Gardiner	29	51	204	502	816	1274	1414	1232	1060	681	364	99	7726
Greenville	86	119	321	639	9 78	1460	1628	1417	1249	837	481	172	9387
Houlton	61	91	271	5 9 2	936	1426	1584	1369	1181	780	409	127	8827
Lewiston	12	33	163	456	798	1234	1383	1196	1035	657	331	76	7374
Madison	29	5 9	214	530	864	1339	1482	1285	1101	702	370	9 6	8071
Millinocket	38	65	245	580	912	13 9 8	1553	1352	1147	741	3 9 8	104	8533
Old Town FAA Airport	53	83	273	5 9 5	9 00	1380	1531	1347	115 9	756	431	140	8648
Portland	27	55	200	493	792	1218	1349	117 9	1029	669	381	106	7498
Presque Isle	66	98	283	614	969	1473	1624	1408	1231	804	431	134	9135
Ripogenus Dam	76	106	277	605	9 57	1466	1637	1450	1265	831	471	147	9 288
Rockland	41	57	1 9 5	481	765	1175	1293	1142	1008	672	3 9 7	127	7353
Rumford Power Plant	36	64	216	521	858	1305	1438	1246	1076	6 9 3	361	· 98	7 9 12
Waterville Pump Station	n 20	32	181	477	810	1277	1417	1224	1039	642	31 9	75	7513
Woodland	37	82	218	53 9	846	1305	1454	1294	1107	723	397	119	8121

C.3.0 Hand Calculations Method for Life Cycle Analysis

DATE	ARCHITECT
PROJECT	ENGINEER
LOCATION	DATA OBTAINED BY:

Energy needs for buildings can be divided into three basic categories: (1) Base Electrical Loads; (2) Comfort Conditioning System; (3) Domestic Hot Water. The calculation sequence has been segmented accordingly. The analysis must start with an understanding of the proposed building usage and will require detailed data on the sub-components of the electrical and HVAC system. This detailed data should be available as a result of (1) preliminary design and (2) analysis of methods that will optimize energy conservation within the building.

C.3.1 <u>Base Electrical Load:</u> This section analyzes the annual electrical energy consumption due to the lighting system, HVAC system, (fans, pumps, etc.), exhaust fans, kitchens, shops, elevators, and other specialized operations. A "guideline" comment follows each topic area to clarify the type of data sought. The diversity factor represents the fact that lighting, for instance, is rarely <u>all</u> on or <u>all</u> off.

- 1. Lights, Miscellaneous Power Usages:
 - A. KW connected _____ KW
 - B. Usage _____ hrs./day x _____ days/week _____ hours/month 12 month/year = _____ hours/year
 - C. Diversity _____%

D. _____ KW x _____ Diversity = _____ KW

E. ____ KW x ____ hours/year = ____ KWH/year

Guidelines:

1) <u>Example:</u> 8 hours/day + 4 hours for lunch and cleanup = 12 hours/day.

2) Weeks/Month = 4.3

3) 80 - 100% Diversity

2. <u>Air Distribution System Electrical Usages (Heating, Cooling</u> and Ventilation):

- A. HP connected _____ HP
- B. 746 KW/HP x _____ HP = ____ KW Efficiency _____%
- C. Diversity _____%
- D. Occupied ____hours/month
- E. Unoccupied _____hours/month
- F. ____ KW x ____ Diversity = ____ KW
- G. _____ KW x _____ hours/month = _____ KWH/month
- H. _____ KWH/month x _____ month/year = ____ KWH/year

Guidelines:

1) <u>Hours Operation:</u> 400 hours/month or 4000 to 4800 hours/annum.

- 2) 80% Diversity
- 3) Will system operate during unoccupied hours?
- 3. Exhaust Fan System Usages:
 - A. HP connected _____ HP
 - B. .746 KW/HP x _____ HP = ____ KW Efficiency _____%
 - C. Occupied _____ hours/month
 - D. Diversity ______{
 - E. <u>Usage:</u> 25% x Occupied Hours = _____ hours/month
 - F. _____ KW x _____ Diversity = _____ KW
 - G. _____ KW x _____ hours/month = _____ KWH/month
 - H. _____ KWH/month x _____ month/year = _____ KWH/year

<u>Guidelines:</u>

1) <u>Hours Operation:</u> 300 hours/month - 3600 to 4000 hours/annum.

2) 100% Diversity

3) Will system operate during unoccupied hours?

4. <u>Elevator Usages (if required)</u>:

- A. HP connected _____
- B. .746 KW/HP x _____ HP = ____ KW Efficiency _____%
- C. Occupied _____ hours/month
- D. Diversity _____%
- E. <u>Usage:</u> 25% x occupied hours = _____ hours/month
- F. _____ KW x _____ Diversity = _____ KW
- G. _____ KW x _____ hours/month = _____ KWH/month
- H. _____ KWH/month x _____ month/year = ____ KWH/year

Guidelines:

- 1) 50% Diversity for Office Buildings
- 2) 25% Usage for Office Buildings

C.3.2 <u>Comfort Conditioning System</u>: Similar to the previous section, this section emphasizes the derivation of the annual energy consumption for the HVAC system for space heating and cooling. But since heating and cooling is functionally related to ambient environment, a different technique must be utilized to derive annual energy temperature differential between inside and ambient, a separate calculation using "bin" method is necessary. The method statistically arranges weather data in "bins" by day period according to 5° F increments and numbers of hours per year.

1. Building Load Information:

A. Winter Heating - Outside Design _____ $F^{O}D.B.$ Inside Design _____ $F^{O}D.B.$ Heat Loss _____ BTUH Ventilation _____ CFM x 1.08 x _____ OFTD =____ BTUH Total Heat Loss _____ BTUH

в.	Summer Cooling - Outside Design Inside Design	°F.D.B °F.D.B.	F.W.B.
	Solar Heat Gain	BTUH	
	Transmission	BTUH	
	Motors	BTUH	
	Lights	BTUH	
	People	BTUH	
	Other Heat Sources	BTUH	
	Ventilation		
	CFM x 4.5 xAh**	BTUH	
	Total Heat Gain	BTUH	

*Notes: This load information should include both sensible and latent heat requirements.

**AH = Enthalpy at Saturation BTU Per Pound of Dry Air

C.4.0 <u>Bin Method</u>: See Chapter 43, ASHRAE, 1981 Systems Handbook for General Reference

C.4.1 Explanation of Forms

C-l Heating Form (see Appendix C) C-2 Cooling Form (see Appendix C)

Column 1 Three eight hour periods during the day.

Column 2 Average monthly temperature from weather data.

<u>Column 3</u> Temperature difference equals temperature inside minus (AVG) temperature outside.

<u>Column 4</u> "U" value times area equals heat gain or heat loss per degree of temperature, including infiltration & ventilation or greater of the two.

Column 5 Column 3 times Column 4

Column 6 Hours listed in the weather data of each "bin" of temperature.

Column 7 Column 5 times Column 6

Column 8/8a Peak internal load in MBTU: Peak solar load in MBTU.

Column 9/9a Annual Factor in a percentage of the time that the internal or solar loads occur, and are <u>useable</u>. (Note: A percentage of the available internal & solar gain must be rejected during day occupied cycle.) Column 10Esitmated hours of internal load.Column 10aSame as Column 6. (For C-2 Cooling Form Only)Column 11Column 8 x 9 x 10.Column 11aColumn 8a x 9a (For C-1 Heating Form Only)Column 12Column 7 + 11 + 11a.

C.4.2 Passive Solar

Values for Δt in solar analysis shall be determined using the three eight hour periods above.

C.4.3 Heating Energy

- 1. Electric Consumption
 - A. MBTU/YR. = MBTU/KWH = KWH/YR.

Guidelines:

- 1) Resistance Heating 3.413 MBTU/KWH
- 2. Oil Consumption

A. _____MBTU/YR. X MBTU/GAL. = _____ GAL/YR. Boiler Efficiency

Guidelines:

- 1) #2 oil = 140 MBTU/GAL.
- 3. Energy Performance Index (Annual)
 - A. Electrical Heating Consumption
 - 1. KW/HR : Gross Sq. Ft. = KWH/SQ.FT.
 - 2. KWH/SQ. FT. X 3.413 MBTU/KWH = MBTU/SQ. FT.
 - B. Heating Consumption (Oil Fired)
 - 1. GAL. : X Gross Sq. Ft. = GAL/SQ. FT.
 - 2. KWH/SQ. FT. X MBTU/GAL. = MBTU/SQ. FT.

C.4.4 COOLING ENERGY

- 1. Electrical Consumption
 - A. ____MBTU/YR : 12 MBTU/TON = ____TON HR/YR.
 - B. _____TON/HR/YR X _____KW/TON = _____KWH/YR.

Guidelines:

- 1) Reciprocating Equipment 1.2 to 1.7 KW/TON
- 2) Centrifugal Equipment .75 to 1.1 KW/TON
- 2. Absorption System Consumption (Oil Fired)
 - A. ____MBTU/YR. : 12 MBTU/TON = ____TON/HR/YR.
 - B. ____TON/HR/YR. X ____GAL/TON = ____GAL/YR.

Guidlelines:

- 1) High Pressure Absorption .1 GAL/TON
- 2) Low Pressure Absorption .13 GAL/TON
- 3. Energy Performance Index (Annual)
 - A. Electric Cooling Consumption
 - 1. _____KWH : _____Gross Sq. Ft. = _____KWH/SQ./FT.
 - 2. _____KWH/SQ. FT. x 3,413 MBTU/KWH = _____MBTU/Sq. Ft.
 - B. Absorption System Consumption (Oil Fired)*
 - 1. ____GAL x 140MBTU = ____MBTU/HR.
 - 2. ____MBTU : ____Gross Sq. Ft. = ____MBTU/SQ. FT.

*Absorption system run by "waste" heat or by solar heat should not be included. Guidelines:

1) <u>Electrical Cost:</u>

- 2) Fossil Fuel Cost:
 - a. <u>Fuel Oil Cost:</u> _____ GAL/YR x _____ CENTS/GAL = \$____/YR

b. <u>Coal:</u> TON COAL/YR x $\frac{1}{70}$ TON =

c. <u>Steam:</u> POUNDS OF STEAM/YR x _____ CENIS/POUND = \$____/YR

C.5.0 Computer Method for Energy Analysis

1. Computer programs that provide a simulated analysis of a facility for a complete year of usage will be considered by B.P.I. The computer base model will be evaluated by B.P.I. or certified by a third party professional acceptable to B.P.I. and the applicant. The following data must be submitted and kept on file at the B.P.I.:

A. Program Operation Manual

B. A dump of the basic computer program or submission of base data used in the program.

C. A computer run (modified) of a base data building. Base data building to be selected by B.P.I.

2. Computer Programs Now Acceptable:

A. "ECM 5" currently running on the University of Maine at Orono main computer.

B. "BPI Model" currently being run on the Bureau of Public Improvements in-house computer "TRS 80".

C.6.0 <u>Passive Solar</u>: This section analyzes the energy gains and losses due to southern exposed glass. The windows analyzed under this section should not be included in the previous sections, but shall be added on to obtain the total energy usage in the building.

1. EQ (1) Qtotal = Qgain - Qcond

where:

Qtotal = net energy. if positive then it represents a gain in energy and shall be subtracted from the building energy load; if negative then it represents a loss of energy and shall be added to the energy load. 2. EQ (2) Qgain = (B) (C) (ST) (A) (D)

where:

Qgain = solar gain through southern exposed glass.

B = BTU/sq. ft. day, see solar intensity table.

C = Percentage of possible sunshine, see table.

ST = Percentage of solar transmittance, obtained from window manufacturer.

A = Area of glass.

D = Days in month analyzed.

3. EQ (3) Qcond =
$$(U_1 \Delta t_1 + U_2 \Delta t_2 + U_2 \Delta t_3)$$
 (8) (D) (A)

where:

Qcond = Energy conducted through the glass.

 $U_1 = U$ factor during the day.

 $U_2 = U$ factor during the night (if different from U_1).

 Δt_1 = Inside temperature minus average outdoor temperature during the day.

 Δt_2 = Inside temperature minus average outdoor temperature during early morning period.

 Δt_3 = Inside temperature minus average outdoor temperature during the night.

D = Days in month analyzed.

A = Area of glass.

Values of Δt are determined using the bin method (see Section C.4.2).

SOLAR INTENSITY TABLE

Month	*BTU/Square Foot Day	**% of Sunshine
January	860	55
February	1,044	59
March	1,113	56
April	1.051	56
May	947	56
June	90 4	60
July	924	64
August	1,092	65
September	1,153	61
October	1,138	58
November	825	47
December	735	53

Portland

* Obtained from Passive Solar Design Handbook, Volume 2.

** Obtained from Local Climatological Data for Portland, Maine

Example Problem: For a southern exposed double glazed window, for the month of January.

January	At _l	= (68-27) = 41
	∆t ₂	= (68-18.7) = 49.3
	∆t ₃	= (68-21.4) = 46.6
	В	= 860, C = .55, ST = .73
	A	= 20
	Ul	= .53
	U ₂	= With panel of R-7 placed over the windows at night - U_2 = .14.
EQ (2) Qg	yain = (B)	(C) (ST) (A) (D)
	= (860)	(.55) $(.73)$ (20) $(31) = 214,080$ BTU month

With Insulated Panel:

EQ (3) Qcond = $(U_1 \triangle t_1 + U_2 \triangle t_2 + U_2 \triangle t_3)$ (8) (D) (A) = (.53 x 41 + .14 x 49.3 + .14 x 46.6) (8) (31) (20) = 174,374 <u>BTU</u>

month

EQ (1) Qtotal = Qgain - Qcond

= 214,080 - 174,374 = 39,706 BTU/month gain.

This value is to be subtracted from the buildings total energy usage.

Without Insulated Panel:

- EQ (2) Qgain = 214,080
- EQ (3) Qcond = (41 + 49.3 + 46.6) (.53) (8) (31) (20)

= 359,883 BTU/month

EQ (1) Qtotal = Qgain - Qcond

= 214,080 - 359,883 = -145,803 BTU/month loss.

This value is to be added to the buildings total energy usage.

C.7.0 Active Solar Analyzing

All active solar systems shall be analyzed separate from this document and submitted to the B.P.I. for review. The designer must compare alternate combinations of heating systems and document. An acceptable life cycle analysis would include, but not be limited to the following scope: 10% cost of money, total system cost, system efficiency, total estimate available energy/sq. ft. of panel, total estimated usable energy, present worth of replacement energy, component life, and operational and maintenance cost.

Exclusions to this are as follows:

1. Financing of the total system is from other than state funds.

2. The system is for education purposes and accepted by DECS (Department of Educational and Cultural Services).

Building energy credits would be applicable at such time the <u>actual</u> cost of the system is known.

III.D. Life Cycle Costing/Financial Analysis

D.1.0 Introduction

Life Cycle Costing is a conceptual extension of the conventional method for awarding contracts to the lowest bidder. Instead of focusing just on the initial cost, Life Cycle Costing takes into account the additional costs for energy, operation and maintenance, and system replacements. In this manner, <u>all</u> costs associated with building ownership are fully taken into account when selecting the best alternative design. The overall objective of Life Cycle Costing is more extensive than conventional first cost analysis since it seeks to evaluate the quality of the building over its lifetime. This concept is especially important when energy costs are rapidly increasing.

D.2.0 Hand Calculation

The Life Cycle cost evaluation has been established utilizing the uniform annual cost model.

The annual cost model has been developed by forecasting all cost, whether positive or negative, involved with the total system over its projected life. These costs are divided into annual payments taking into account the time value of money for an appropriate interest rate associated with the project.

For the purpose of our project, a 10% rate has been assigned. We have also assigned a 30 year life to the building structure.

Mathematically we are using a uniform recover rate as follows:

A = P (i (1+i) Y) * (1+i) Y-1)

A = uniform end of year sum.

P = present value of today's cost.

i = interest rate for period.

y = number of years

Table has been included with values for given interest and applicable years.

*Material from text by K and G Associates, Box 7596, Inwood Station, Dallas, Texas 75209.

D.3.0	(Reporting	<u>Cost-</u> Forma	<u>Benefit Anal</u> t)	<u>YS1S</u>	DA PI	NTE REPARE	D BY			
			S	TATE (OF MAI	NE				
PROJEC	T						DISCO	UNT RAT	Е	
Column	Identifica	tion	<u>A</u>	В		D		E	F	G
	Item		Estimated First Cost P	Est. Life	UCR (P-A) Factor	Salva	ge (1 Sa U	st Cost lvage X CR = A)	Salvage X Interes	e Remarks st
Site D	evelopment						•			
Buildin (All i of tho	ng Structur tems exclus se listed b	e sive xelow.)			•••					
Roofin	g		•							
Convey	ing Systems	5								
Mechan	ical		۵							
Electri	ical						,			
Equipm	ent Built-I	in i i								
IOTAL I CONSTRU	ESTIMATED JCTION COSI	1		SUBI	OTALS	œL.	E			. •
ENERGY	USAGE A	NNUAL	OST		œL.	F				
		HEATI	NG FUEL (Oil RICITY (Exce	.,Gas,G ept for	Coal,El Heati	.ec.) .ng)				
		SEWER INSUR TAXES MAINT MAINT OTHER TOTAL UNIFO	ANCE (Or Loss of ENANCE AND R ENANCE CONTR UNIFORM ANN RM ANNUAL SU	Taxes EPAIR ACTS UAL SU M/SQ F	s) M T (New	Only)	-		AIA GROSS SQ. FT	5

FORM LCA-2

D.4.0 Interest Table:

10% Interest Factors

YEAR	SCA P-F	SPW F-P	UCA	USF 	UCR P-A	UPW
1	1.100	.9091	1.000	1.000	1.000	0.909
2	1.210	.8264	2.100	.4762	.5762	1.736
3	1.331	.7513	3.310	.3021	.4021	2.487
4	1.464	.6830	4.461	.2155	.3155	3.170
5	1.611	.6209	6.105	.1638	.2638	3.791
6	1.772	.5645	7.716	.1296	.2296	4.355
7	1.949	.5132	9.487	.1054	.2054	4.868
8	2.144	.4665	11.44	.0874	.1874	5.335
9	2.358	.4241	13.58	.0736	.1736	5.759
10 ·	2.594	.3855	15.94	.0628	.1628	6.144
11	2.853	.3505	18.53	.0540	.1540	6.500
12	5.054	.1978	40.54	.0247	.1247	8.022
18	5.560	.1799	45.60	.0219	.1219	8.201
19	6.116	.1635	51.16	.0196	.1196	8.365
20	6.727	.1486	57.28	.0175	.1175	8.514
21	7.400	.1351	64.00	.0156	.1156	8.649
22	8.140	.1228	71.40	.0140	.1140	8.772
23	8.954	.1117	79.54	.0126	.1126	8.883
24	9.850	.1015	88.50	.0113	.1113	8.985
25	10.84	.0923	98.35	.0102	.1102	9.077
30	17.50	.0573	164.5	.0061	.1061	9.427
35	28.10	.0356	271.0	.0037	.1037	9.644
40	45.26	.0221	442.6	.0023	.1023	9.779
45	72.89	.0137	718.9	.0014	.1014	9.863
50	117.4	.0085	1164.	.0009	.1009	9.915
60	304.5	.0033	3035.	.0003	.1003	9.967
70	789.7	.0013	7877.	.0001	.1001	9.987
80	2048.	.0005	20474.	.0001	.1001	9.995
90	5313.	.0002	53120.	.0000	.1000	9.999

APPENDIX A

SAMPLE PROBLEMS

A copy of sample problems is available upon request.

Contents	Page
Hand Calculation - Modified Degree Day Procedure	22.1 - 22.11
Hand Calculation - Bin Method	22.12 - 22.28
Computer Method	22.29 - 22.40
Weather Data	22.41 - 22.50

FORM "LCA-1"

B.2.0 Required Energy Items (Reporting Format)

State of Maine

Energy Conservation in Buildings

Building Name/Use Sample School - Hand Calculation Method

Building I.D. <u>Sample</u> Location <u>Sample</u>

Date _____ Sample

- 1. Average Number of Occupants _____66
- 2. Degree Days <u>8,500</u>/year
- 3. Design Temperature ____20°_F____
- 4. Building Area _____5,634 _____

Energy/Point of Use Per Year

5.	Lighting	7,955 KWH	Base Units #1	<u>27,150</u> MBTU
б.	Heating	934 gallons	Π	<u>130,760</u> MBTU
7.	Cooling		Π	MBTU
8.	Water Heating	101 gallons	Π	<u>14,140</u> MBTU
9.	Equipment	10,999 KWH	Π	<u>37,471</u> MBTU
10.	Other (Kitchen, Exte	12,036 KWH erior Lighting)	Π	<u>41,079</u> MBTU
11.	Total Energy		n	
12.	Yearly Energy Per Building S Foot Area	Usage Square 44.5 MBTU		
Ì3.	Yearly Energy from Passive S MBTU per Build Foot Area	Gain Solar in Ling Square 5,5 MBTU		

TOTAL

39 MBTU/square foot with Solar

#1 Base Units of Energy - KWH of electricity, gallons of oil (#2, #4, #5 or #6), tons of coal, etc. shall be evaluated a N = 100% to determine annual energy consumption (BTU/square foot).

<u>Note:</u> Apply factors on Page 8 C_d and "N" to develop projected fuel usage (gallons of oil, tons of coal, etc.) to report on Form "LCA-2".

HAND CALCULATION METHOD FOR LIFE CYCLE ANALYSIS SAMPLE PROBLEM

- 1. LIGHTS, MISCELLANEOUS POWER USAGES:
 - A. KW Connected 4.5 KW
 - B. Usage: 10 hours/day x 5 days/week x 37 weeks/year = <u>1,850</u> hours/year.
 - C. Diversity: <u>95%</u>
 - D. 4.5 KW x .95 = 4.3 KW
 - E. 4.3 KW x 1.850 hours/year = 7,955 KWH/year
- 2. HEATING SYSTEM:
 - A. <u>Air Distribution:</u>
 - 1) HP Connected <u>3.5 HP</u>
 - 2) .746 KW/HP x 3.5 HP = 2.61 KW
 - 3) Diversity: 90% occupied 10% unoccupied
 - 4) Occupied 200 hours/month
 - 5) Unoccupied <u>472 hours/month</u>
 - 6) Occupied KW:
 - a. 2.61 x .9 = 2.35 KV
 - b. 2.35 KW x 200 hours/month x 9.25 months/year = 4,348 KWH/year
 - 7) Unoccupied KW:
 - a. 2.61 x .1 = .26 KW
 - b. .26 KW x 472 hours/month x 9.25 months/year = 1.140 KWH/year
 - 8) Total KW = 4,348 + 1.140 = <u>5,488 KWH/vear</u>
 - B. Hot Water Distribution:
 - 1) HP Connected <u>2/3 HP</u>
 - 2) .746 KW/HP x 2/3 HP = .5 KW
 - 3) Diversity: 95% occupied 85% unoccupied
 - 4) Occupied <u>200 hours/month</u>
 - 5) Unoccupied <u>472 hours/month</u>

6) Occupied KW:

a. $.5 \text{ KW} \times .95 = .475$

b. .475 KW x 200 hours/month x 9.25 months/year = <u>879 KW/year</u>

7) Unoccupied KW:

a. $.5 \text{ KW} \times .85 = .425 \text{ KW}$

b. .425 KW x 472 hours/month x 9.25 months/year = 1.856 KW/year

8) Total KW = 1,856 + 879 = <u>2,735 KW/year</u>

3. KITCHEN:

- A. Total Connected <u>20 KW</u>
- B. Usage: 4 hours/day x 5 days/week x 37 weeks/year = <u>740 hours/year</u>
- C. Diversity: <u>75%</u>
- D. 20 KW x .75 = 15 KW
- E. 15 KW x 740 hours/year = <u>11.100 KWH/year</u>

4. EXHAUST FAN SYSTEM:

- A. Connected <u>2 HP</u>
- B. .746 KW/HP x 2 HP = 1.49 KW
- C. Occupied 200 hours/month
- D. Diversity: 100%

E. 1.49 KW x 200 hours/month x 9.25 months/year = <u>2,756 KWH/year</u>

5. EXTERIOR LIGHTING:

- A. Connected <u>.3 KW</u>
- B. Usage: 60 hours/week x 52 weeks/year = 3.120 hours/year
- C. .3 KW x 3.120 hours/year = <u>936 KW/year</u>

TOTALS

1.	Lights, Miscellaneous Power Usages	7,95 5
2.	Heating System	5,488
		2,735
3.	Kitchen	11,100
4.	Exhaust Fan System	2,756
5.	Exterior Lighting	936
	TOTAL =	30,970 KWH/YEAR

WINTER HEATING LOAD

•

•

1. Building Load Information

2.

Winter Heating	: Outside Design	-20 ⁰ F DB
	Inside Design	70 ⁰ F DB
	Heat Loss	47,938 BTUH
<u>Ventilation:</u>	380 CFM x 1.08 x 90 ⁶	^o FTD = 36.936 BTUH
TOTAL HEAT LOS	S	<u>84.874 BTUH</u>
Modified Degre	e Day Procedure:	
$E = \frac{(H1x)}{(4tx)}$	$\frac{D \times 24}{(N \times V)}$ (Cd)	
Hl = 84,87	4 BTUH	
D = 8,121		
$\Delta t = 90^{\circ} F$,	
N = .65		
V = 140,0	00 BTU/gallon	
Cd = .68		
$E = \frac{(84, 82)}{(90)}$	74 x 8,500 x 24) x .65 x 140,000) (.68) = 1.438 gallons/year
Hot Water Load	l:	
A. Usage Per	Week: <u>5 gallons/pers</u>	<u></u>
B. Occupancy:	<u>66 people</u>	
C. 5 gallons/	person/week x 66 people	e x 37 weeks/year = <u>12,210 gallons</u>
D. 12,210 gal	lons x l <u>BIU</u> x 8.33 1 lb F	lb./gallon x 140 ⁰ = <u>14,239,302 BTU</u>
E. <u>14,239</u> 140,000 BI	0,30 <u>2 BTU</u> U/gallon x .65 = 156 c	gallons
TOTAL OIL USAG	E	156 + 1.438 = <u>1.594 gallons</u>
Usage at 100%	efficiency	
1.438 gallons	x .65 = <u>934 gallons</u>	
156 gallons x	.65 = <u>101 gallons</u>	

```
SOLAR TROMBE WALL
```

EQ(1) $Qtotal = Qgain - Qcond$ EQ(2) $Qgain = (B)(C)(ST)(A)(D)$ EQ(3) $Qcond = (Ul\Delta t + U2\Delta t2 + U2\Delta t3)(8)(D)(A)$
Peek Heat Loss for the Gym = 55,360
Heat Gain:
Lights - 24 lights x 100 watts/light x 3.413 BTU/light = 8,191
People - 15 people x approximately 255 BTU/person =
Total = 12,016 BTU
Gym Usage Factor = 60%
Total Heat Gain = $.6 \times 12.016 = 7.210 \text{ BTU}$
$Q = \Delta t \mathbf{x} \mathbf{u} \mathbf{x} \mathbf{A}$
let u x A = C (constant)
$Q = \Delta t \times C$ $C = 55,360/90 = 615.1$
let Q = Internal Heat Gain = 7,210 BTU, find At
$7,210 = \Delta t (615.1)$
$\Delta t = 11.7^{\circ} F$
Building will heat itself at $65^{\circ} - 11.7^{\circ} = 53.3^{\circ}$ F
or by using solar heat gain graph:
% Heat Gain = 7,210 / 55,360 = .13 or 13%
%∆t from graph which building will heat itself = 13%
$\Delta t = .13 \times 90 = 11.7^{\circ} F$
Building will heat itself at 65° F - 11.7° = 53.3° F

Therefore, heating season based on average monthly bin temperatures is between October - May.

. .

U Value = .1

BLOCK

Oct: EQ(2) Qgain = (1042) (.58) (.74) (378) (31) = 5,240,599 EQ(3) Qcond = [(65-40.2) + (65-50.4) + (65-42.2)] (.1)(8)(31)(378) = 583,088

(1) Qtotal = 5,240,599 - 583,088 = 4,657,511 BTU/month gain

Dec: (2) Qgain = (691)(.53)(.74)(378)(31) = 3,175,698
(3) Qcond =
$$[(65-14.1) + (65-20.7) + (65-16)](.1)(8)(31)(378) = 1,351,788$$

(1) Qtotal = 3,175,698 - 1,351,788 = 1,823,910 BTU/month gain

(1)
$$Qtotal = 5,609,863 - 1,263,306 = 4,346,577$$
 BTU/month gain

April: (2) Qgain = (1257) (.56) (.74) (378) (30) = 5,907,015

(3) Qcond = [(65-33.4) + (65-44.4) + (65-36.5)] (.1) (8) (30) (378) = 732,110

(1) Qtotal = 5,907,015 - 732,110 = 5,174,905 BTU/month gain

May: (2) Qgain = (1055)(.56)(.74)(378)(31) = 5,123,016

(3) Qcond = [(65-44.8) + (65-54.7) + (65-47.8)] (.1) (8) (31) (378) = 447,158

(1) Qtotal = 5.123.016 - 447.158 = 4,675,857 BTU/month gain

Summation of Qtotal = 31,171,127 BTU/year gain

31,171,127/5,634 = 5,533 BTU/square foot

SOLAR INTENSITY TABLE

Month	* BTU/Sg. ft. Day	** % of Sunshine
January	881	55
February	1,214	59
March	1,424	56
April	1,257	56
May	1,055	56
June	1,023	60
July	1,084	64
August	1,170	65
September	1,206	61
October	1,042	58
November	722	47
December	691	53

* Obtained from passive solar design handbook. Volume 2 (for Caribou, Maine). ** Used values on page 17 of Life Cycle Analysis.

DATA FOR "LCA-2" FORM

Oil Usage = 1,594 gallons - solar gain

Solar Gain = 31,171,127 BTU/year

With a boiler at 65% efficiency the solar gain will reduce oil usage by:

 $\frac{31,171,127 \text{ BTU/gallon}}{.65 \times 140,000 \text{ BTU/year}} = 342 \text{ gallons}$

Total Oil Usage = 1,594 - 342 = 1,252 gallons at 65% efficiency

1,252 gallons at \$1.00/gallon = \$1,252

30,970 KWH at \$.075/KWH = 2.323

\$ 3,575

FORM "LCA-2"

D.3.0 <u>Life Cycle Cost</u> (Reporting Forma	<u>Benefit Ana</u> t)	<u>lysis</u>	D/ PF	ATE REPARED I	Sampl	e Sample		
· · ·		STAT	e op i	AINE				
PROJECT <u>Sample School</u>	- Hand Calo	culatio	on_Meth	od DIS	SCOUNT RAT	E <u>10%</u>	-	
Column Identification	A	B	C	D	E	F	G	
Item	Estimated First Cost P	Est. Life	UCR (P-A) Factor	Salvage	(lst Cost Salvage X UCR = A)	Salvage X Interest	Remarks	
Site Development	23,210	30 yr	.106	0	2,460			
Building Structure (All items exclusive	200 020	30 177	106	0	22 156			
Doofing	209,020	20	100	0	1 622			
	15,400	30 yr	•100	U	1,032			
Conveying Systems				·	· .			
Mechanical	60,000 6,000	30 yr 15 yr	.106 .1315	0 5 0	6,360 787			
Electrical	24,400	30 yr	.106	0	2,586			
Equipment Built-In	8,560	30 yr	.106	0	908			
TOTAL EST IMATED CONSTRUCTION COST	346,590	SUB	IOTALS	OCL. E	36,891	0		
ENERGY USAGE ANNUAL	COST		COL.	F	0			
1,252 Gal. HEAT 30,970 KWH ELECT	FUEL (Oil,Ga RICITY (Exce	as,Coal ept for	,Elec. Heati	.) .ng)	1,252 2,323			
SEWER INSUR TAXES MAINT MAINT OTHER TOTAL UNIFO	ANCE (Or Loss of ENANCE AND I ENANCE CONTR UNIFORM ANI RM ANNUAL SI	f Taxes REPAIR RACIS WUAL SI JM/SQ I	5) .5 x 5 JM ET (New	5964 Only)	500 2,982 43,948 7.37	AIA GROSS SQ. FT. <u>5</u>	,964	

-

HAND CALCULATION - BIN METHOD

FORM "LCA-1"

B.2.0 Required Energy Items (Reporting Format)

State of Maine

Energy Conservation in Buildings

Building Name/Use <u>Sample School - Hand Calculation Method</u>

Building I.D. <u>Sample</u> Location <u>Sample</u>

Sample Date _____

1. Average Number of Occupants _____66

- 2. Degree Days <u>9,000</u>/year
- 3. Design Temperature <u>-20° F</u>
- 4. Building Area 5,634

Energy/Point of Use Per Year

5.	Lighting	<u>7,955 KWH</u>	Base Units #1	<u>27,150</u> MBTU
6.	Heating	751 gallons		<u>105,140</u> MBTU
7.	Cooling		Π	MBTU
8.	Water Heating	101 gallons		<u>14,140</u> MBTU
9.	Equipment	10,999 KWH	Π	<u>37,471</u> MBTU
10.	Other (Kitchen, Ext	<u> 12,036 KWH</u> erior Lighting)	'n	<u>41,079</u> MBTU
11.	Total Energy		Π	224.980_ MBTU
12.	Yearly Energy Per Building Foot Area	Usage Square 39.9 MBTU		
13.	Yearly Energy	Gain Solar in		

from Passive Solar in MBTU per Building Square Foot Area 5.5 MBTU

TOTAL

34.4 MBTU/square foot with Solar

#1 Base Units of Energy - RWH of electricity, gallons of oil (#2, #4, #5 or #6), tons of coal, etc. shall be evaluated a N = 100% to determine annual energy consumption (BTU/square foot).

<u>Note:</u> Apply factors on Page 8 "C_d" and "N" to develop projected fuel usage (gallons of oil, tons of coal, etc.) to report on Form "LCA-2".

HAND CALCULATION METHOD FOR LIFE CYCLE ANALYSIS SAMPLE PROBLEM

- 1. LIGHTS, MISCELLANEOUS POWER USAGES:
 - A. KW Connected 4.5 KW
 - B. Usage: 10 hours/day x 5 days/week x 37 weeks/year = 1,850 hours/year.
 - C. Diversity: <u>95%</u>
 - D. 4.5 KW x .95 = 4.3 KW
 - E. 4.3 KW x 1,850 hours/year = 7.955 KWH/year
- 2. HEATING SYSTEM:

A. <u>Air Distribution:</u>

- 1) HP Connected <u>3.5 HP</u>
- 2) .746 KW/HP x 3.5 HP = 2.61 KW
- 3) Diversity: 90% occupied 10% unoccupied
- 4) Occupied 200 hours/month
- 5) Unoccupied <u>472 hours/month</u>
- 6) Occupied KW:
 - a. 2.61 x .9 = 2.35 KV
 - b. 2.35 KW x 200 hours/month x 9.25 months/year = <u>4.348 KWH/year</u>
- 7) Unoccupied KW:
 - a. $2.61 \times .1 = .26 \text{ KW}$

b. .26 KW x 472 hours/month x 9.25 months/year = 1,140 KWH/year

8) Total KW = 4,348 + 1,140 = <u>5,488 KWH/year</u>

B. <u>Hot Water Distribution:</u>

- 1) HP Connected <u>2/3 HP</u>
- 2) .746 KW/HP x 2/3 HP = .5 KW
- 3) Diversity: 95% occupied 85% unoccupied
- 4) Occupied <u>200 hours/month</u>
- 5) Unoccupied <u>472 hours/month</u>

HAND CALCULATION - BIN METHOD

6) Occupied KW:

a. $.5 \text{ KW} \times .95 = .475$

b. .475 KW x 200 hours/month x 9.25 months/year = <u>879 KW/year</u>

7) Unoccupied KW:

- a. .5 KW x .85 = <u>.425 KW</u>
- b. .425 KW x 472 hours/month x 9.25 months/year = 1.856 KW/year
- 8) Total KW = 1,856 + 879 = 2,735 KW/year

3. KITCHEN:

- A. Total Connected 20 KW
- B. Usage: 4 hours/day x 5 days/week x 37 weeks/year = <u>740 hours/year</u>
- C. Diversity: <u>75%</u>
- D. 20 KW x .75 = 15 KW
- E. 15 KW x 740 hours/year = <u>11,100 KWH/year</u>

4. EXHAUST FAN SYSTEM:

- A. Connected <u>2 HP</u>
- B. .746 KW/HP x 2 HP = 1.49 KW
- C. Occupied 200 hours/month
- D. Diversity: 100%
- E. 1.49 KW x 200 hours/month x 9.25 months/year = 2.756 KWH/year

5. EXTERIOR LIGHTING:

- A. Connected _____ KW_
- B. Usage: 60 hours/week x 52 weeks/year = <u>3,120 hours/year</u>
- C. .3 KW x 3,120 hours/year = <u>936 KW/year</u>

TOTALS

1.	Lights, Miscellaneous Power Usages	7 ,9 55
2.	Heating System	5,488
		2,735
з.	Kitchen	11,100
4.	Exhaust Fan System	2,756
5.	Exterior Lighting	936

TOTAL =

30,970 KWH/YEAR

WINTER HEATING LOAD

September

Average	2.0	10 E	<i>с</i> 3
Temperature	2-9	10-5	0-1
67	17 = 1,139	44 = 2,948	16 = 1,072
62	26 = 1,612	50 = 3,100	30 = 1,860
57	35 = 1,995	46 = 2,622	43 = 2,451
52	47 = 2,444	29 = 1,508	51 = 2,652
47	42 = 1,974	12 = 564	40 = 1,880
42	32 = 1,344	2 = 84	28 = 1,176
37	22 = 814	1 = 37	17 = 629
32	11 = 352	0 = 0	6 = 192
27	4 = 108	0 = 0	1 = 27
	236 =11,782	184 =10,863	232 =11,939
	11,782/236 = 49.9 ⁰	10,863/184 = 59 ⁰	11,939/232 = 51.5 ⁰

<u>October</u>

Average	· · ·		
Temperature	2-9	10-5	6-1
67	2 = 134	16 = 1,072	2 = 134
62	5 = 310	24 = 1,488	9 = 558
57	10 = 570	34 = 1,938	16 = 912
52	24 = 1,248	53 = 2,756	28 = 1,456
47	43 = 2,021	48 = 2,256	40 = 1,880
42	43 = 1,806	34 = 1,428	42 = 1,764
37	42 = 1,554	20 = 740	46 = 1,702
32	47 = 1,504	6 = 192	38 = 1,216
27	24 = 648	l = 27	16 = 432
22	7 = 154	0 = 0	2 = 44
17	<u> 1 = 17 </u>	0 = 0	0 = 0
	248 = 9,966	236 =11,897	239 =10,098
	9,966/248 = 40.2 ⁰	11,897/236 = 50.4 ⁰	$10,098/239 = 42.2^{\circ}$

.

Average			
Temperature	2–9	10-5	6-1
67 62 57 52 47 42 37 32 27 22 17 12 7 22 -3	1 = 62 $2 = 114$ $3 = 156$ $9 = 423$ $19 = 798$ $34 = 1,258$ $63 = 2,016$ $47 = 1,269$ $31 = 682$ $18 = 306$ $7 = 84$ $3 = 21$ $2 = 4$ $1 = -3$ $240 = 7,190$	1 = 67 $2 = 124$ $5 = 285$ $8 = 416$ $17 = 799$ $40 = 1,680$ $53 = 1,961$ $58 = 1,856$ $34 = 918$ $13 = 286$ $0 = 0$ $3 = 36$ $0 = 0$ $0 = 0$ $234 = 8,428$	1 = 62 $2 = 114$ $6 = 312$ $9 = 423$ $25 = 1,050$ $31 = 1,147$ $69 = 2,208$ $49 = 1,323$ $26 = 572$ $11 = 187$ $5 = 60$ $4 = 28$ $2 = 4$ $0 = 0$ $240 = 7,490$
	7, 100 (0 (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0		
·	$/,190/240 = 30^{\circ}$	$8,428/234 = 36^{\circ}$	$7,490/240 = 31.2^{\circ}$
	Decer	nber	
Average Temperature	2-9	10-5	6-1
67 62 57 52 47 42 37 32 27 22 17 12 7 2 2 -3 -8 -13 -18 -23 -28	$1 = 52$ $2 = 94$ $5 = 210$ $11 = 407$ $20 = 640$ $26 = 702$ $37 = 814$ $28 = 476$ $27 = 324$ $25 = 175$ $22 = 44$ $12 = -36$ $14 = -112$ $10 = -130$ $5 = -90$ $2 = -46$ $1 = -28$ $248 = 3,496$ $3.496/248 = 14 1^{\circ}$	$1 = 52$ $4 = 188$ $5 = 210$ $19 = 703$ $30 = 960$ $35 = 945$ $42 = 924$ $37 = 629$ $33 = 396$ $21 = 147$ $11 = 22$ $7 = -21$ $3 = -24$ $0 = 0$ $0 = 0$ $0 = 0$ $248 = 5,131$ $5.131/248 = 20 7^{\circ}$	$0 = 0$ $2 = 94$ $6 = 252$ $11 = 407$ $24 = 768$ $32 = 864$ $30 = 660$ $29 = 493$ $34 = 408$ $30 = 210$ $19 = 38$ $14 = -42$ $9 = -72$ $5 = -65$ $2 = -36$ $1 = -23$ $0 = 0$ $248 = 3,956$ $3.956/248 = 16^{\circ}$
	$3,496/248 = 14.1^{\circ}$	5,131/248 = 20.7 ⁰	3,956/248 = 16 ⁰

November

Average			
Temperature	2-9	10-5	6-1
42	3 = 126	8 = 336	3 = 126
37	7 = 259	18 = 666	6 = 222
32	18 = 576	25 = 800	22 = 704
27	27 = 729	31 = 837	30 = 810
27 .	27 - 504	32 - 836	35 - 550
17			25 - 550
1/	29 = 493	33 = 333	20 = 4/6
12	21 = 252	-31 = 3/2	25 = 300
7	21 = 147	28 = 196	25 = 175
2	22 = 44	22 = 44	26 = 52
-3 ·	19 = -57	16 = -48	26 = -78
-8	23 = -184	4 = -32	19 = -152
-13	15 = -195	1 = -13	8 = -104
-18	8 = -144	1 = -18	3 = -54
-23	5 = -115	0 = 0	2 = -46
-28	2 = -56	0 = 0	0 = 0
-33	<u>1 = -33</u>	0 = 0	0 = 0
	248 = 2,436	258 = 4,571	248 = 2,981
•	$2,436/248 = 9.8^{\circ}$	4,571/258 = 17.7 ⁰	$2,981/248 = 12^{\circ}$

January

February

Average Temperature	2-9	10-5	6-1
47	0 = 0	1 = 47	0 = 0
42	2 = 84	5 = 210	1 = 42
37	5 = 185	12 = 444	8 = 296
32	16 = 512	30 = 960	22 = 704
27	20 = 540	40 = 1,080	30 = 810
22	20 = 440	42 = 924	28 = 616
17	30 = 510	37 = 629	33 = 561
12	26 = 312	29 = 348	28 = 336
7	21 = 147	11 = 77	25 = 175
2	22 = 44	9 = 18	18 = 36
-3	20 = -60	5 = -15	13 = -39
-8	13 = -104	3 = -24	8 = -64
-13	8 = -104	0 = 0	6 = -78
-18	8 = -144	0 = 0	3 = -54
-23	4 = -92	0 = 0	l= -23
-28	2 = -56	0 = 0	0 = 0
-33	<u> </u>	0 = 0	0 = 0
	218 = 2,181	224 = 4,698	224 = 3,318
	$2,181/218 = 10^{\circ}$	4,698/224 = 21 ⁰	$3,318/224 = 14.8^{\circ}$
	4-3	10-5	6-1
------------	-------------------------------	-------------------------------	-------------------
52	0 = 0	1 = 52	0 = 0
47	0 = 0	9 = 423	0 = 0
42	2 = 84	26 = 1,092	6 = 252
37	19 = 703	59 = 2,183	29 = 1,073
32	46 = 1,472	58 = 1,856	53 = 1,696
27	30 = 810	41 = 1,107	48 = 1,296
22	37 = 814	27 = 594	41 = 902
17	31 = 527	18 = 306	28 = 476
12	28 = 336	6 = 72	20 = 240
7	16 = 112	2 = 14 .	11 = 77
2	10 = 20	1 = 2	5 = 10
-3	8 = -24	0 = 0	4 = -12
-8	4 = -32	0 = 0	1 = -8
-13	3 = −39 .	0 = 0	1 = -13
-18	3 = -54	0 = 0	1 = -18
-23	1 = -23	0 = 0	0 = 0
-28	<u> 1 = -28 </u>	<u> </u>	0 = 0
* .	239 = 4,678	248 = 7,703	248 = 5,971
	4,678/239 = 19.6 [°]	7,703/248 = 31.1 ⁰	5,971/248 = 24.1°

March

-		•	-	
	-	-		
- A T 3	· •	т.		
* 1		-	-	
	_			

Average Temperature	2-9	10-5	6-1
67	0 = 0	5 = 335	0 = 0
62	0 = 0	9 = 558	1 = 62
. 57	1 = 57	17 = 969	8 = 456
52	4 = 208	27 = 1.404	8 = 416
47	10 = 470	55 = 2.585	18 = 846
42	31 = 1,302	59 = 2,478	44 = 1,848
37	68 = 2,516	41 = 1,517	65 = 2,405
32	61 = 1,952	18 = 576	57 = 1.824
27	34 = 918	5 = 135	30 = 810
22	19 = 418	2 = 44	9 = 198
17	8 = 136	1 = 17	3 = 51
12	3 = 36	0 = 0	2 = 24
7	1 = 7	0 = 0	0 = 0
2	0 = 0	0 = 0	0 = 0
	240 = 8,020	239 =10,618	245 = 8,940
	$8,020/240 = 33.4^{\circ}$	$10,618/239 = 44.4^{\circ}$	$8,940/245 = 36.5^{\circ}$

Average Temperature	2-9	10-5	6-1
67	5 = 335	26 = 1,742	8 = 536
62	7 = 434	44 = 2,728	15 = 930
57	20 = 1,140	47 = 2,679	31 = 1,767
52	38 = 1,976	40 = 2,080	45 = 2,340
47	56 = 2,632	35 = 1,645	58 = 2.726
42	51 = 2.142	19 = 7,980	47 = 1,974
37	40 = 1,480	6 = 222	24 = 888
32	21 = 672	1 = 32	13 = 416
27	7 = 189	$\bar{0} = 0$	3 = 81
22	1 = 22	0 = 0	0 =
	246 = 11,022	218 =11,926	244 =11,658

May

 $11,022/246 = 44.8^{\circ}$ $11,926/218 = 54.7^{\circ}$ $11,658/244 = 47.8^{\circ}$

-

- 22.19 -

2 - 9 1. = 57.5

10 - 5 T. = 70

6 - 1 T. = 50

BY

C-1 HEATING FORM

JOB

BLDG. TYPE

DATE

SPACE TEMP. _____ WEATHER STA._____

HEATING DESIGN TEMP. _____

Ť	м				leating	Load	*****	·······	In	ernal	Load		Sol	lar Ioa	3	Net Load
	0	Period	Avg.	ΔT=	Heat Loss		lours	Annual	Peak	Ann.	llours	Annual	Peak	Ann.	Annual	
		of	Temp.	$T_1 - T_0$	MBTU	MBTU	in	MBTU	Internal	Factor	in	MBTU	Solar	Factor	MBTU	
	Ĥ	Day (1)	(2)	(3)	(4)	(5)	"Bin" (6)	(7)	Load MBTU (8)	(9)	"Bin" (10)	(11)	(8a)	(9a)	(lla)	(12)
ļ-	s	2-9	49.9	1.0		9.12	236	2147.5			60	3182.4				-
	εľ	10-5		11	1.2	13.2	184	2428.8	66.3	.8	240	12729.6				-
1	P	6-1	51.5	-												-
_∦-	1	2-9	40.2	17.3	1.2	20.75	248	5158.4	66.3	.8	62	3288.5				1,870
Į.	~ l	10-5	50.4	19.6	1.2	23.52	236	5546	66.3	.8	248	13153.9				
	ř	6-1	42.2	7.8	1.2	9.36	239	2246.6	66.3	.8			l			2,247
1		2-9	30	27.5	1.2	33	240	7920	60.3	.8	60	3182.4			•	4,738 .
2	5 [10-5	36	34	1.2	40.8	234	. 9547.2	60.3		240	12729.6				-
ΝL	Ŷ	6-1	21.2	18.8	1.2	22.6	240	5424	66.3	,8						5,424
ЫĽ	n	2-9	14.1	43.4	1.2	52.1	248	12921	65.3	.8	62	3288.5	1			-9,033
	Ĕ	10-5	20.7	49.3	1.2	59.2	240	14001.0	66.3	.8	248	13153.9				1,528
1	C	6-1	10	34	1.2	40.0	248	10118.4	66.3	.8						19,118
))	1	2-9	9.8	47.7	1.2	57.2	248	14185.6	66.3	.8	62	3288.5		 	······································	10,997
	- 11	10-5	17.7	52.3	1.2	62.8	248	15574.4	66.3	.8	248	13153.9	ļi —	 		2,421
1	-#1	6-1	12	38	1.2	45.0	248	11308.8	00.3			2070 2	<u> </u>	}}		H- 11,309
		2-9	_]	47.5	1.2	50 8	224	12/08	00.J		30	11880 1	 	├ ───┤		H 27389
	B	_10-5	14 8	15 2	1.2	42.2	224	9452.8	66.3	1	224	11000.1	<u> </u>	<u> </u> }		9.453
	7	2_0	19.6	37.9	1.2	45.5	248	11284	66.3	.8	62	13288.5	<u> </u>	ギ ק. · −−−-‡		1 7 996
		10-5	31.1	38.9	1.2	46.7	248	11581.6	55.3		248	3153.9		┝╼╼═┥	·	(<u> </u>
		-10 5-	24.1	25.9	1.2	31.1	248	7712.8	66.3	.8						7,713
ŀ	- 1	2-9	33.4	24.1	1.2	28.9	240	6936	66.3	.8	60	3182.4	1			3,754
	4	10-5	44.4	25.6	1.2	30.7	239	7337.3	66.3	.8	240	12.729.6		11		
	Ŕ	6-1	35.5	13.5	1.2	16.2	240	3888	<u>65.J</u>	1.8			[/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			J.888
l.		2-9	44.8	12.7	1.2	15.2	246	3739.2	55.3	. 8	62	3288.5		11		451
		10-5	54.7	15.3	1.2	18.4	218	4011.2	66.3	.8	248	13,153.9	1			
11		6-1	47.8	2.2	1.2	2.5	244	634.4	66.3	.8				1		634
l I	-*	2-9					+		1 × 1 ×	1						111
N.	1	10-5					1		}	1		·······	1			11
Ű.		6-1					1									1
1														choce r	YYTIN T	105:163

GROSS TOTAL

HAND CALCULATION -BIN METHOD 1

B.P.I. 6 REV: 3-84

WINTER HEATING LOAD

1. Total Heating Load = 105,163,000 BTU/year

Oil Usage =
$$\frac{105,163,000}{.65 \times 140,000}$$
 = 1,156 gallons/year

2. Hot Water Load:

A. Usage Per Week: <u>5 gallons/person</u>

B. Occupancy: <u>66 people</u>

- C. 5 gallons/person/week x 66 people x 37 weeks/year = <u>12,210 gallons</u>
- D. 12,210 gallons x 1 <u>BTU</u> x 8.33 lb./gallon x $140^{\circ} = 14.239.302$ BTU lb $^{\circ}$ F

E.
$$\frac{14,239,302 \text{ BTU}}{140,000 \text{ BTU/gallon x .65}} = 156 \text{ gallons}$$

TOTAL OIL USAGE

$$1,156 + 156 = 1,312$$
 gallons

Usage at 100% efficiency

1,156 gallons x $.65 = _751 \text{ gallons}$

156 gallons x .65 = 101 gallons

HAND CALCULATION - BIN METHOD

SOLAR TROMBE WALL

```
EQ(1) Qtotal = Qgain - Qcond
EQ(2) Qgain = (B).(C) (ST) (A) (D)
EO(3) Ocond = (U1st + U2st2 + U2st3) (8) (D) (A)
Peek Heat Loss for the Gym = 55,360
Heat Gain:
     Lights - 24 lights x 100 watts/light x 3.413 BTU/light =
                                                                      8,191
     People - 15 people x approximately 255 BTU/person =
                                                                      3,825
                                                      Total =
                                                                     12,016 BTU
Gym Usage Factor = 60\%
     Total Heat Gain = .6 x 12,016 = _7,210 BTU_
Q = \Delta t x u x A
     let u \ge A = C (constant)
             C = 55,360/90 = 615.1
Q = \Delta t \mathbf{x} C
let Q = Internal Heat Gain = 7,210 BTU, findAt
7,210 = △t (615.1)
    \Delta t = 11.7^{\circ} F
   Building will heat itself at 65^{\circ} - 11.7^{\circ} = 53.3^{\circ} F
or by using solar heat gain graph:
     % Heat Gain = 7,210 / 55,360 = .13 or 13%
     \Delta t from graph which building will heat itself = 13%
     \Delta t = .13 \times 90 = 11.7^{\circ} F
Building will heat itself at 65^{\circ} F - 11.7° = 53.3° F
Therefore, heating season based on average monthly bin temperatures is between October -
May.
```


HAND CALCULATION - BIN METHOD

April:(2) Qgain = (1257)(.56)(.74)(378)(30) = 5,907,015

(3) Qcond = [(65-33.4) + (65-44.4) + (65-36.5)] (.1) (8) (30) (378) = 732,110

(1) Qtotal = 5,907,015 - 732,110 = 5,174,905 BTU/month gain

May: (2) Qgain = (1055) (.56) (.74) (378) (31) = 5,123,016

(3) Qcond = [(65-44.8) + (65-54.7) + (65-47.8)] (.1) (8) (31) (378) = 447,158

(1) Qtotal = 5,123,016 - 447,158 = 4,675,857 BTU/month gain Summation of Qtotal = 31,171,127 BTU/year gain

31,171,127/5,634 = 5,533 BTU/square foot

SOLAR INTENSITY TABLE

Month	* BIU/Sq. ft. Day	** % of Sunshine
January	881	55
February	1,214	59
March	1,424	56
April	1,257	56
May	1,055	56
June	1,023	60
July	1,084	64
August	1,170	65
September	1,206	61
October	1,042	58
November	722	47
December	691	53

* Obtained from passive solar design handbook. Volume 2 (for Caribou, Maine). ** Used values on page 17 of Life Cycle Analysis.

DATA FOR "LCA-2" FORM

Oil Usage = 1,312 gallons - solar gain

Solar Gain = 31,171,127 BTU/year

With a boiler at 65% efficiency the solar gain will reduce oil usage by:

 $\frac{31,171,127 \text{ BTU/gallon}}{.65 \times 140,000 \text{ BTU/year}} = 342 \text{ gallons}$

Total Oil Usage = 1,312 - 342 = 970 gallons at 65% efficiency

970 gallons at \$1.00/gallon = \$ 970 30,970 KWH at \$.075/KWH = <u>2,323</u> \$ 3,293

D.3.0 Life Cycle Cost- (Reporting Forma	Benefit Ana t)	lysis	D7 PF	TE	Sampl BY	e Sample	-
	<i>L7</i>	STAT	TEOFI	AINE			·
				•			
PROJECT <u>Sample School</u>	- Hand Calo	culatio	on Meth	iod DI	SCOUNT RAT	E <u>10%</u>	-
Column Identification	A	В	<u>C</u>	D	E	F	
Item	Estimated First Cost P	Est. Life	UCR (P-A) Factor	Salvage	e (lst Cost Salvage X UCR = A)	Salvage H X Interest	Remarks
Site Development	23,210	30 yr	.106	0	2,460		
Building Structure (All items exclusive							
of those listed below.)	209,020	30 yr	.106	0	22,156		
Roofing	15,400	30 yr	.106	0	1,632		
Conveying Systems							
Mechanical	60,000 6,000	30 yr 15 yr	.106 .1315	0	6,360 787		
Electrical	24,400	30 yr	.106	0	2,586		
Equipment Built-In	8,560	30 yr	.106	0	908		•
TOTAL ESTIMATED CONSTRUCTION COST	346,590	SUB1	IOTALS	COL. E	2 36,891	0	· <u>···</u>
ENERGY USAGE ANNUAL AMOUNT TYPE	OST		COL.	F	0		
970 Gal. HEAT 30,970 KWH ELECT	FUEL (Oil,G RICITY (Exce	as,Coal ept for	Heati) ng)	970 2,323		
SEWER INSUR TAXES MAINT MAINT OTHER TOTAL UNIFO	ANCE (Or Loss of ENANCE AND I ENANCE CONTR UNIFORM ANI RM ANNUAL SI	f Taxes REPAIR RACTS NUAL SI JM/SO F	s) •5 x 5 JM T (New	964 Onlv)	500 2,982 43,666 -7,32	ALA GROSS	
				-		SQ. FT5	964

FORM LCA-2

COMPUTER METHOD

FORM LCA-1"

B.2.0 <u>Required Energy Items (Reporting Format)</u>

State of Maine

Energy Conservation in Buildings

Building Name/Use Sample School - Computer Method

Building I.D. <u>Sample</u> Location <u>Sample</u>

Date <u>Sample</u>

1. Average Number of Occupants _____66

2. Degree Days <u>8,750</u>/year

3. Design Temperature <u>-20⁰ F</u>

4. Building Area _____5,634 square feet ____

Energy/Point of Use Per Year

5.	Lighting and				
	Equipment	19,595 KWH	Base Units #1	66,878_	MBTU
6.	Heating	732 gallons	At 100% Eff.	102,512	MBIU
7.	Cooling		n	دا مید در اکری می ادی ماریخ افغانی میادی	MBTU
8.	Water Heating	<u>113 gallons</u>	. 17	15,764	MBTU
9.	Equipment	10,668 KWH	n	36,410	MBTU
10.	Other (Exterio Lights)	or 936_KWH	**	3,195	MBTU
11.	Total Energy			224,759	MBTU
12.	Yearly Energy Per Building : Foot Area	Usage Square 39.9 MBTU			
13.	Yearly Energy from Passive a MBTU per Build Foot Area	Gain Solar in ding Square 5.5 MBTU			

TOTAL

34.4 MBTU/square foot with Solar

#1 Base Units of Energy - KWH of electricity, gallons of oil (#2, #4, #5 or #6), tons of coal, etc. shall be evaluated a N = 100% to determine annual energy consumption (BTU/square foot).

<u>Note:</u> Apply factors on Page 8 C_{d} and "N" to develop projected fuel usage (gallons of oil, tons of coal, etc.) to report on Form "LCA-2".

BUILDING TOPS REVISION 08 03/27/84	
: WEATHER STATE AND ZONE:	ME4
GREE DAYS LANGELYS WINTER WIND SPEED	
50 315 12	
: TOTAL ENCLOSED SQ FT:	5634.00
: NUMBER OF OCCUPANTS:	66.00
: AVERAGE LIGHTING (WATTS/SQ FT):	1.80
: AVERAGE EQUIPMENT (WATTS/SQ FT):	0.10
: AVERAGE OCCUPIED HOURS PER WEEK DURING WINTER:	40.00
: HOURS PER WEEK THAT INTERIOR LIGHTS ARE ON:	50.00
: LENTGTH OF SUMMER OCCUPANCY SCHED IN WEEKS:	15.00
: SUMMER OCCUPANIS:	0.00
CIMMED FOULD DED OF FT.	0.00
· AVERAGE OCCUPTED HOURS PER WEEK (SUMMER) ·	0.00
· WINTER INDOOR TEMP DURING DAY:	68.00
: CONTROLLED WINTER INDOOR RELATIVE HUMIDITY DURING DAY:	0.00
: WINTER O.A. VENT RATE DURING THE DAY:	380.00
: WINTER EXHAUST RATE TO O.A. DURING THE DAY:	380.00
: HRS/WEEK THAT DAYTIME ENVIRONTL CONDITIONS ARE MAINTAINED DUR	50.00
: WINTER INDOOR TEMP DURING NIGHT:	55.00
: WINTER O.A. VENT RATE DURING THE NIGHT:	0.00
: WINTER EXHAUST RATE TO O.A. DURING THE NIGHT:	0.00
: HEATING FUEL:	1.00
: PLANT SEASONAL EFFICIENCY:	0.65
: PLANT COOLED IN SUMMER:	NO
: CONTROLLED SUMMER INDOOR DAYTIME TEMP:	0.00
: CONTROLLED SUMER INDOOR DAYTIME RELATIVE HUMIDITY:	0.00
: SUMMER OUTSIDE AIR VENTILATION:	0.00
: SUMMER EXHAUST AIR RATE TO U.A.:	0.00
: HOURS PER WEEK SUMMER DAYTIME ENVIR CONDITIONS ARE MAINTAINED	2.00
· TYDE OF OUTLIED.	1 00
· CONTING PLANT SEASONAL FEETCETNCY.	0.00
• WINTER FAN HORSEROWER DIRING DAY.	4.20
: WINTER FAN HORSEPOWER DURING THE NIGHT:	0.00
: WINTER PUMP HORSEPOWER DURING DAY:	1.17
: WINTER PUMP HORSEPOWER DURING THE NIGHT:	1.00
: NUMBER OF WEEKS PER YEAR OF WINTER PLANT PLANT OPERATION:	37.00
: SUMMER FAN HORSEPOWER DURING DAY:	0.00
: SUMMER FAN HORSEPOWER DURING THE NIGHT:	0.00
: SUMMER PUMP HORSEPOWER DURING THE NIGHT:	0.00
: SUMMER PUMP HORSEPOWER DURING THE NIGHT:	0.00
: HOURS PER WEEK SUMMER DAYTIME ENVIR CINDITIONS ARE MAINITAINE	15.00
: NUMBER OF WEEKS PER YEAR OF SUMMER PLANT OPERATION:	15.00
: HOT WATER USE PER PERSON PER WEEK:	5.00
: DOMESTIC HOT WATER TEMP:	120.00
· FUTERIOD I TOTTING (MATTER	200 00
· HAIDS DED MEETE EVEN I ICUMINAL IS NOTA	50.00
· NOUND FER WEER EAL. INGLING ID UDED:	1 00
· PRICE OF RESID OTL (DOLLARS/CAT) ·	0 00
: PRICE OF ELECTRICITY (DOLLARS/KWH) ·	0.07
: PRICE OF NAT GAS (DOLLARS/FT3):	- 0.00
: PRICE OF STEAM (DOLLAR/KIBS):	0.00

كيليا					
	AREA	ORIENT	SHADE	. U —	ABSOR
10 10 10T2 VS VS VS UTP UTP LTP LTP F F STOR	170.00 40.00 24.00 60.00 208.00 45.00 1260.00 1020.00 882.00 39.00 343.00 182.00	1 2 1 4 1 2 1 2 3 2 3 3 3	0 1 0 0 0 0 0 0 0 0 0	0.05000 0.05000 0.05000 0.05000 0.05000 0.05000 0.05000 0.05000 0.05000 0.05000 0.05000	
NDOWS					
	MULT AREA	DIR SHADE	U —	FRAME CF	RACK SC
10 10A EST EST F	1 18.0 1 10.0 2 11.0 1 10.0 1 12.0 1 8.0	1 0 1 0 4 1 4 1 4 0 3 0	0.58000 0.58000 0.58000 0.58000 0.58000 0.58000	1 14 1 1 1	0 0.92 12 0.92 0 0.92 0 0.92 0 0.92 12 0.92
OFS				·	
10 11 12 3 14 15 16 17	AREA 483.00 42.00 334.00 136.00 176.00 3570.00 420.00 207.00	U 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400	ABSOR 1 1 1 1 1 1 1 1 1 1		
18	322.00	0.0400	1		

DRS

	MULT	TYPE	AREA	USE
				
11	1	6	21.00	1
15	1	5	21.00	3
15	1	5	21.00	3
16	1	5	21.00	0

.

ILDING NAME: TOPS REVISION LEVEL: 08

03/27/84

ALYSIS FOR: SAMPLE COMPUTER METHOD

TAL INTERNAL HEAT GAIN: -55156192 -81.28 & :.828 PERCENT OF THE HEAT GAIN MUST BE REJECTED

LL ID	HEAT LOS	S	HEAT LOSS	PER SQFT
:10	1242676	1.21%	7310	0.01%
:10	292394	0.29%	7310	0.01%
:10T2	175437	0.17%	7310	0.01%
NS	43 85 91	0.43%	7310	0.01%
NS	1520450	1.48%	7310	0.01%
NS	289351	0.28%	6430	0.01%
LTP	9210420	8.98%	7310	0.01%
LTP	6558615	6.40%	6430	0.01%
LTP	4962928	4.84%	5627	0.01%
T	250771	0.24%	6430	0.01%
Т	1930027	1.88%	5627	0.01%
STOR	1024096	1.00%	5627	0.01%

TAL WALL CONDUCTION:

27895755.166 27.21%

OF ID	HEAT	LOSS	HEAT L	DSS PER SQFT
10	2579822	2.52%	5341	0.01%
11	224332	0.22%	53 41	0.01%
12	1783977	1.748	53 41	0.01%
3	726410	0.71%	5341	0.01%
14	940060	0.92%	5341	0.01%
15	19068253	18.60%	53 41	0.01%
16	2243324	2.19%	5341	0.01%
17	1105638	1.08%	5341	0.01%
18	1719882	1.68%	5341	0.01%

TAL ROOF CONDUCTION:

30391697.445 29.65%

NDOW ID	HEAT LOS	SS	INFILTR	ATION LOAD	HEAT I	OSS PER	SQFT
10	1494624	1.46%	0	0.00%	83035	0.08%	
10A	830347	0.81%	1289985	1.26%	83035	0.08%	
-ST	1826763	1.78%	0	0.00%	83035	0.08%	
EST	830347	0.81%	0	0.00%	83035	80.0	•

					COMPU	TER METHOD	
EST T	806867 356900	0.7 <i>9</i> % 0.35%	0 1289985	0.00% 1.26%	67239 44612	0.07% 0.04%	
TAL TAL	WINDOW CONDUCT WINDOW INFILTE	rion/ShG: Ration:			6145847.096 2579970.351	6.00% 2.52%	
OR I	D HEAT LOS	SS	INFILTR	ATION LOA	D HEAT I	OSS PER SQFI	1
11 15 15 16	810557 1486022 1486022 1486022	0.7 <i>9</i> % 1.45% 1.45% 1.45%	13462466 3127348 3127348 3611958	13.13% 3.05% 3.05% 3.52%	38598 70763 70763 70763	0.04% 0.07% 0.07% 0.07%	
TAL TAL	DOOR INFILTRAT DOOR CONDUCTIO	TION: ON LOSS:		2	3329121.214 5268623.472	22.76% 5.14%	
VTIL CUPA GHTI TERN TAL	ATION AIR LOAI NT LOAD: NG LOAD: AL EQUIP LOAD INTERNAL HEAT	D: : GAIN:		27 4 -63 -133 -7 -205	03549 26. 78643 -6. 80427 -13. 43357 -0. 02427 -20.	73 % 22 % 05 % 73 % 00 %	·
* *	TOTAL WINTER I	LOAD * * :	* :	10251213 15771097 112 112	6.81 BTU/YR 9.70 BTU/YR 6.51 GALLONS 6.51 DOLLARS	WITH EFFIC S OF DIST OII S	
ECIR	CICITY FOR LIG	HTS AND B	QUIP: COST:	19 \$1	595 KWH 274 DOLLARS		
ECIR	ICITY FOR EXT	ERIOR LIG	HTING: COST:		936KWH \$61DOLLARS		
MEST	'IC HOT WATER I	LOAD:	ч.	\$	4467 BTU/YR 113 GALLONS 113 DOLLARS	OF DIST OIL	
N&	PUMP ELECTRIC	AL USAGE: COST:		10 \$	668 KWH 693 DOLLARS		
TOT	TAL ENERGY CON	SUMPTION:					
				1239 0 31199 0 0	GALLONS OF I GALLONS OF I KWH OF ELEC CUBIC FEET (KLBS OF STE	DIST OIL RESID OIL IRICITY DF GAS AM	
* *	TOTAL C	0 S T * *	*	\$3	267 DOLLARS	-	
ΓΟ	TAL ENE	RGY	USE*	3 4 - 22	9893 BTU PE 19691 BTU PE .33 -	R SQFT ACTUA R SQFT WITH :	L SYSTEM EFFIC

COMPUTER METHOD

```
SOLAR TROMBE WALL
```

```
EQ(1) Qtotal = Qgain - Qcond
EQ(2) Qgain = (B)(C)(ST)(A)(D)
EQ(3) Ocond = (U1\Delta t + U2\Delta t2 + U2\Delta t3) (8) (D) (A)
Peek Heat Loss for the Gym = 55,360
Heat Gain:
     Lights - 24 lights x 100 watts/light x 3.413 BTU/light =
                                                                       8,191
     People - 15 people x approximately 255 BTU/person =
                                                                      3,825
                                                       Total =
                                                                      12,016 BTU
Gym Usage Factor = 60%
     Total Heat Gain = .6 x 12,016 = _7,210 BTU
Q = \Delta t x u x A
     let u \ge A = C (constant)
Q = \Delta t \times C C = 55,360/90 = 615.1
let Q = Internal Heat Gain = 7,210 BTU, find △t
7,210 = \Delta t (615.1)
    \Delta t = 11.7^{\circ} F
   Building will heat itself at 65^{\circ} - 11.7^{\circ} = 53.3^{\circ} F
or by using solar heat gain graph:
     % Heat Gain = 7,210 / 55,360 = .13 or 13%
     \Delta t from graph which building will heat itself = 13%
    \Delta t = .13 \times 90 = 11.7^{\circ} F
Building will heat itself at 65^{\circ} F - 11.7° = 53.3° F
Therefore, heating season based on average monthly bin temperatures is between October -
May.
```


COMPUTER METHOD

Cct: EQ(2) Qgain = (1042)(.58)(.74)(378)(31) = 5,240,599EQ(3) Qcond = [(65-40.2) + (65-50.4) + (65-42.2)](.1)(8)(31)(378) = 583,088(1) Qtotal = 5,240,599 - 583,088 = 4,657,511 BTU/month gain

$$(5) \quad (20101 - ((65-10) + (65-21) + (65-14.6)) \quad (.1) \quad (6) \quad (26) \quad (5/6) = 1,265,30$$

(1)
$$Q$$
total = 5,609,863 - 1,263,306 = 4,346,577 BTU/month gain

April:(2) Qqain = (1257)(.56)(.74)(378)(30) = 5,907,015

(3) Qcond = [(65-33.4) + (65-44.4) + (65-36.5)] (.1) (8) (30) (378) = 732,110

(1) Qtotal = 5,907,015 - 732,110 = 5,174,905 BTU/month gain

May: (2) Qgain = (1055)(.56)(.74)(378)(31) = 5,123,016

(3) Qcond = [(65-44.8) + (65-54.7) + (65-47.8)] (.1) (8) (31) (378) = 447,158

(1) Qtotal = 5,123,016 - 447,158 = 4,675,857 BTU/month gain

Summation of Qtotal = 31,171,127 BTU/year gain

31,171,127/5,634 = 5,533 BTU/square foot

COMPUTER METHOD

SOLAR INTENSITY TABLE

Month	* BTU/Sg. ft. Day	** % of Sunshine
January	881	. 55
February	1,214	59
March	1,424	56
April	1,257	56
May	1,055	56
June	1,023	60
July	1,084	64
August	1,170	65
September	1,206	61
October	1,042	58
November	722	47
December	691	53

* Obtained from passive solar design handbook. Volume 2 (for Caribou, Maine). ** Used values on page 17 of Life Cycle Analysis.

DATA FOR "LCA-2" FORM

Oil Usage = 1,126 gallons - solar gain

Solar Gain = 31,171,127 BTU/year

With a boiler at 65% efficiency the solar gain will reduce oil usage by:

<u>31,171,127 BTU/gallon</u> = 343 gallons .65 x 140,000 BTU/year

Total Oil Usage = 1,126 - 343 = 783 gallons at 65% efficiency

783 gallons at \$1.00/gallon = \$ 783

30,970 KWH at 0.075/KWH = _____.

\$ 3,106

COMPUTER METHOD

FORM "LCA-2"

D.3.0 Life Cycle Cos (Reporting For	t-Benefit Ana mat)	lysis	DA PR	TE EPARED H	SampleSYS	ample	
		STAI	E OF P	AINE			
PROJECT <u>Sample Scho</u>	01 - Computer	Methor	<u>1</u> DIS	COUNT RA	YTE		
Column Identification	A	_ <u>B</u>	C	<u>D</u> .	<u> </u>	F	<u> </u>
Item	Estimated First Cost P	Est. Life	UCR (P-A) Factor	Salvage	(lst Cost Salvage X UCR = A)	Salvage X Interest	Remarks
Site Development	23,210	30 yr	.106	0	2,460		
Building Structure (All items exclusive of those listed below	.) 209,020	30 yr	.106	0	22,156		
Roofing	15,400	30 yr	.106	0	1,632		
Conveying Systems				<u>.</u>			
Mechanical	60,000 6,000	30 yr 15 yr	.106 .1315	0	6,360 789		
Electrical	24,400	30 yr	.106	0	2,586		
Equipment Built-In	8,560	30 yr	.106	0	908		
TOTAL ESTIMATED CONSTRUCTION COST	346,590	SUB!	IOTALS	COL. E	36,891	0	
ENERGY USAGE ANNUA	L COST		COL.	F	0		
783 Gal. HEZ 31,199 KWH ELL	T FUEL (Oil,G CIRICITY (Exc	as,Coa ept foi	l,Elec. r Heati) ng)	783 2,340		
SEA INS TAX MAI MAI OTH TOY UNI	TER SURANCE KES (OT LOSS O INTENANCE AND I INTENANCE CONT IER IAL UNIFORM AN IFORM ANNUAL S	f Taxes REPAIR RACIS NUAL S UM/SQ 1	s) .5 x 5 JM FT (New	964 Only)	500 2,982 43,496 7.29	AIA GROSS SQ. FT	5,964_

DEPARTMENT OF THE AIR FORCE MANUAL
DEPARTMENT OF THE ARMY TECHNICAL MANUAL
DEPARTMENT OF THE NAVY MANUAL

AFM 88-29

TM 5-785

NAVFAC P-89

Facility Design and Planning

ENGINEERING WEATHER DATA

DEPARTMENTS OF THE AIR FORCE, THE ARMY, AND THE NAVY

1 JULY 1978

				WINT	ER DE NEAT	SIGN D ING	ATA	DEGREE DAYS				St	JWMEI AIR I	T DESIGI	E BAI	IA .				1	UWMER Air C	CRITERI ONDITIO	A BATA NING
STATE		LOCATION		Dry	Bulb					•		Day Bi	uib				T	Wet l	Bulb	Dr	y Bulb		Wel Bulb
Station	Lat	Long	[lev	1 9%	97.57	Pvig 6 Wind	Mean Speed	Heating	ix	NCWB	2.5%	. NCW	Mean Daily B Rang	Mg e Wind	5%	NCW	1x	2.5%	5%	2 937	≥ <u>80-</u> 1	2 114	2 677
	• •	• •	læt	٦	7	din	trols	annual	4	۴	4	7	7	đin	7	7	7	7	7	hrs	hrs	Ars	hrs.
KENTUCKY Ashland Blue Grass Army Depot Covington Fort Campbell/Campbell AAF Fort Knox/Godman AAF	N 38 33 37 41 39 03 36 40 37 54	W 82 44 84 14 84 40 87 29 85 58	546 1035 869 571 753	5 3 1 4 1	10 8 6 10 7	WW WW WW WW WW WW WW WW WW WW WW WW WW	6 9 9 6 7	4555 4729 5070 4290 4616	94 93 92 94 92	76 73 73 77 76	91 91 90 92 90	74 73 72 75 75	27 24 23 22 22	SW SW SW WSW	89 88 88 89 88	73 72 72 74 74	78 77 77 79 79	77 76 75 77 77	75 75 74 76 76	47 37 24 56 20	797 822 748 998 847	470 401 316 664 543	1671 1641 1423 1975 1740
Lexington/Blue Grass Field Louisville/Standiford Field Owensboro Richmond	38 02 38 11 37 45 37 40	84 36 85 44 87 10 84 15	966 477 407 1043	3 5 5 3	8 10 10 8	WNW NW NW WNW	9 8 9 9	4729 4640 4220 4729	93 95 97 93	73 74 76 73	91 93 94 91	73 74 75 73	24 24 25 24	SW SW SW	88 90 91 88	72 74 75 72	77 79 79 77	76 77 78 76	75 76 77 75	37 80 113 37	822 1022 1106 822	401 668 777 401	1641 1886 1942 1641
LOUISIANA Alexandria/Esler Field Barksdale AFB/Shreveport Baton Rouge/Ryan Aprt Claibourne England AFB/Alexandria	N 31 24 32 30 30 32 31 07 31 20	W 92 18 93 40 91 09 92 35 92 33	92 167 64 200 89	23 19 25 23 23	27 24 29 27 27	N N ENE N N	7 6 8 7 7	2200 2337 1670 1964 1964	95 96 95 95	77 77 77 77 77	94 94 93 94 94	77 77 77 77 77	20 22 20 20 20	S S W S S	92 93 92 92 92	77 77 77 77 77	80 80 80 80 80	79 79 80 79 79	78 78 79 79 79	133 156 116 133 133	1599 1518 1607 1599 1599	1797 1558 2150 1797 1797	3264 2996 3482 3264 3264
Fort Polk/Polk AAF Hammond ANG Comm Sta Lafayette Lake Charles AFS Lake Charles MAP	31 03 30 31 30 12 30 10 30 07	93 11 90 24 92 00 93 10 93 13	330 40 42 15 9	23 26 26 27 27	27 30 30 31 31	N ENE N N N	7 8 9 9	1889 1591 1551 1498 1498	95 95 95 95	77 77 78 77 77	94 93 94 93 93	77 77 78 77 77	20 20 22 18 18	S W SW SSW SSW	92 92 92 92 92	77 77 78 77 77	80 80 81 80 80	79 80 80 79 79	79 79 79 79 79	133 116 142 92 92	1599 1667 1678 1766 1766	1797 2150 2476 2475 2475	3264 3482 3577 3589 3589
Louisiana Ordnance Plant Monroe MAP New Orleans Army Terminal New Orleans/Moisant IAP New Orleans NAS	32 34 32 31 29 58 29 59 29 59	93 34 92 02 90 02 90 15 90 01	195 79 5 4 3	19 20 29 29 28	24 25 33 33 31	N NNE NNE NNE NNE	6 9 9 8	2337 2311 1465 1465 1617	96 99 93 93 93	77 77 78 78 78	94 96 92 92 91	77 76 78 78 78	22 22 18 18 16	S S S S W W	93 94 90 90 90	77 76 77 77 78	80 79 81 81 82	79 79 80 80 81	78 78 79 79 80	156 244 44 44 33	1518 1774 1727 1727 1639	1558 1853 2572 2572 2479	2996 3194 3670 3670 3618
Shreveport	32 28	93 49	254	20	25	N	9	2167	99	77	96	76	22	S	94	76	79	79	78	244	1774	1853	3194
WAINE Augusta Bangor IAP/Dow AFB Bar Harbor Brunswick NAS Bucks Harbor AFS	N 44 19 44 48 44 27 43 54 44 38	69 48 68 50 68 22 69 56 67 24	353 192 84 75 221	-7 -11 -7 -6 -11	-3 -6 -3 -2 -5	NNE WNW NW NW	10 7 8 7 7	7826 8034 7240 7552 8056	88 86 86 85 86	73 70 70 70 70	85 83 83 81 83	70 68 68 68 69	25 24 22 21 22	WNW S W S WSW	82 80 80 79 80	68 67 67 67 67	74 73 73 72 73	72 71 71 70 71	70 69 69 68 69	5 2 1 1	246 181 170 121 171	63 34 34 20 34	442 321 321 289 321
Caribou MAP	46 52	68 01	624	-18	-13	WSW	10	9632	- 84	69	81	67	25	SW	78	66	71	69	67	0	_ 103	13	195

- 22.42 -

- <u>-</u>				WINT	ER DES HEATI	SIGN DATA Ing	DEGREE DAYS			SUN A	INER IR CI	DESIGN Onditio	I DATI Ning	L				S	UMMER Air C	CRITERIA ONDITION	DATA ING
STATE	LOC	ATION		Dry I	Bulb				Dr	ry Bul	b				<u> </u>	Wet B	ulb	Dŋ	Oulb	١	Ket Bulb
Station	Lat	Long	Elev	99 %	97.51	Pvig Mean Wind Speed	Heating	1% MCWB	2.5X	MCWB	Mean Daily Range	Pvlg Wind	5%	MCWB	1%	2.5%	52	≥ 93 4	≧ 10 7	≧ <i>1</i>]¶	≧ 6/7
	• •	• •	leel	۲	۲	dir knots	annual	44	٣	۳	۲	dir	۳	۳	7	۲	7	hrs	hrs	hrs	hrs
MAINE (CONT) Caswell AFS Charleston AFS Loring AFB Millinocket	N 46 58 45 05 46 57 45 39	W 67 50 69 05 67 53 68 42	843 930 746 413	-16 -16 -16 -13	-12 -10 -12 -9	NW 8 WNW 7 NW 8 WNW 11	9500 9008 9500 8533	83 68 86 70 83 68 87 69	80 82 80 83	66 68 66 68	23 26 23 27	S WSW S WNW	77 79 77 80	65 66 65 66	71 72 71 72	69 70 69 70	67 69 67 68	0 2 0 5	85 138 85 188	9 23 9 23	155 280 155 279
Portland Searsport Winter Harbor	43 39 44 27 44 20	70 19 68 55 68 04	43 7 11	-6 -11 -7	-1 -6 -3	₩ 7 N₩ 8 N₩ 8	7498 7467 7240	87 72 86 70 86 70	84 83 83	71 68 68	25 24 22	S W W	81 80 80	69 67 67	74 73 73	72 71 71	70 69 69	3 2 1	206 181- 170	68 34 34	458 321 321
MARYLAND Aberdeen PG/Phillips AAF Andrews AFB Annapolis USNA Bainbridge NTC Baltimore/Martin Aprt	N 39 28 38 49 38 59 39 37 39 20	W 76 10 76 52 76 29 76 04 76 25	57 279 40 50 24	, 11 10 15 11 14	15 14 18 15 17	NW 8 NW 10 WNW 9 NW 8 WNW 9	5184 4551 4548 5184 4866	94 77 92 75 91 77 94 77 92 77	90 90 89 90 89	75 74 77 75 76	21 20 16 21 18	SSW SSW SSW SSW S	88 87 86 88 87	75 73 75 75 75	80 78 80 80 80	78 76 79 78 78	76 75 77 76 76	42 16 13 42 27	713 729 742 713 727	601 445 879 601 740	1630 1573 1990 1630 1810
Baltimore/Washington IAP Bethesda NAVNATMEDCEN Bethesda NSRDC Cumberland MAP Edgewood Arsenal	39 11 39 00 38 59 39 37 39 24	76 40 77 06 77 12 78 46 76 18	148 310 130 790 22	10 12 11 6 13	13 15 15 10 16	W 9 NW 10 WNW 11 WNW 10 WNW 9	4729 4645 4290 5012 4866	94 75 94 75 94 75 92 75 92 77	91 92 91 89 89	75 74 74 74 76	22 20 19 26 18	WSW SSW S W SSW	89 89 88 87 87	74 73 74 74 75	78 78 78 77 80	77 76 77 76 78	76 75 76 75 76	43 47 41 20 28	790 726 809 596 713	533 445 580 314 700	1613 1573 1744 1254 1761
Fort Detrick Fort Holabird Fort Meade/Tipton AAF Fort Richie Frederick	39 26 39 16 39 05 39 40 39 27	77 26 76 32 76 46 77 28 77 25	355 32 150 1320 313	8 15 9 8	12 19 11 12 12	N 9 WNW 9 NW 6 WNW 10 N 9	5059 4101 4733 5897 5059	93 76 92 77 92 75 91 74 94 76	91 90 90 88 91	75 76 74 73 75	26 15 24 26 26	WNW SW W WNW	88 87 88 86 86	74 75 73 73 74	79 80 78 76 78	77 78 77 75 77	76 77 75 74 76	35 23 22 16 41	647 813 767 416 693	472 800 398 221 469	1492 1892 1393 1078 1466
, Hagerstown Indian Head NOS Patuxent River NAS White Oak NAVSURFWPNCEN	39 42 38 36 38 17 39 02	77 44 77 10 76 26 76 59	704 15 38 200	8 10 15 12	12 14 18 15	WNW 10 NW 6 NW 11 NW 10	5152 4498 4307 4483	94 75 93 77 92 75 93 75	91 91 89 90	74 76 75 74	26 21 17 20	W S SW SSW	89 89 87 87	74 75 74 73	77 80 79 78	76 78 77 76	75 77 76 75	44 37 20 27	702 892 772 670	384 710 682 445	1383 1884 1850 1573
WASSACHUSETTS Army Mat/Nech Res Cen Boston/Logan IAP Boston Navy Base Fall River Fort Devens/Devens AAF	N 42 21 42 22 42 21 41 43 42 34	W 71 10 71 02 71 03 71 08 71 36	40 15 15 190 268	6 6 5 -3	9 9 9 1	WNW 16 WNW 16 WNW 16 NW 10 NW 8	5621 5621 5621 5774 6475	91 73 91 73 91 73 87 72 92 73	88 88 88 84 89	71 71 71 71 71 72	21 21 21 20 24	SW SW SW SW WSW	85 85 85 81 86	70 70 70 69 70	75 75 75 74 76	74 74 74 73 74	72 72 72 72 73	16 16 16 5 26	394 394 394 230 466	125 125 125 90 154	762 762 762 780 770

,

ł

.

.

WEATHER DATA

· - -- - -

BANGOR IAP/DOW AFB MAINE

حاجا الادراد الصاد فاعتل سفوتها بسيعت فتعد والالاراد

LAT 44 48N LONG 68 50W ELEV 192 FT

MEAN FREQUENCY OF OCCURRENCE OF DRY BULD TENPERATURE (DEGREES F) WITH MEAN COINCIDENT WET BULD TENPERATURE (DEGREES F) FOR EACH DRY BULD TENPERATURE AANGE

			MAY				J	UNE		_	_		JUL	۲			AL	JGUS	T			SEP	TEMB	ER				IOBE	R	
Tempera- ture Range	01 te	Obin Hour Cl Og te	17 10	Total Obsa	л С V 8	Di te	Obin Hour Cp Og te	17 10	To La L Ob Sin	N C V 8	01 10	Obin our Cp 09 10	17	Tata) Obsn	N C V D	01 10	Obin Iour Cp 09 10	17 10	Teləl Obin	л С V В	, 01 10	Obsn Hour Cp 09 10	17 to	Total Obin	N C V 8	H 01 10	00541 our Cp 09 18	17 to	total Obsn	л С Ч
95/99 90/94 85/89 80/84 75/79		<u>16 (</u> 3 5 12	24 0 1 2	0 3 6 14	70 66 64 61	0	16 2 8 22 40	24 0 1 4 11	2 9 26 52	69 69 66 63	0 0 0 3	16 0 4 14 41 58	24 0 2 8 21	0 4 16 49 82	75 74 71 68 65	0	16 1 31 57	24 1 4 14	1 9 35 72	74 71 60 66	0	16 1 3 10 18	24 0 1 4	1 3 11 23	74 72 69 66	<u> 09</u>]	<u>16</u>]	_24	[1 5	67 65 63
50/54 50/54	1 9 24 47	19 35 48 49 39	13 26 42 57	50 83 115 143	55 52 50 47	5 18 45 75 60	52 44 39 22 10	25 41 59 54 35	82 103 143 151	61 59 57 53 49	14 49 92 61 24	63 40 21 5 0	42 74 65 30 5	119 163 174 96 29	64 62 59 55 50	48 82 62 33	71 51 22 6	40 71 69 36	119 170 173 104 45	63 62 59 54 49	2 18 40 48 49	52 56 35 23	12 28 54 57 45	51 98 150 140	60 57 53 49	1 6 20 41	9 15 33 50 57	1 4 14 31 53	20 53 101	58 56 52 48
45/49 40/44 35/39 30/34 25/29	64 55 36 10	26 9 3 0	57 31 11 1 0	147 95 50 11	43 39 35 31 25	28 7 1	1	9 1	38 8 1	45 40 36	4.		0	4	44	13 2 0	0	1	14 3 0	45 40 37	38 26 14 4	5	24 10 4 0	67 37 18 4	45 40 36 31 27	51 43 41 31	37 24 11 4	55 42 28 15 4	143 109 80 50	43 39 34 30 25
20/24 15/19																										4		1	5 0	21 18
																		•	:											
																								1						

BANGOR IAP/DOW AFB MAINE

22.44

BANGOR IAP/DOW AFB MAINE

174 Martineza 1		NO	VEME	IER			0	ECE	BER			J۶	NUA	RY			FE	BRU	ARY			M	ARCH	1			A	PRIL			A	NNUA	ιι τα	TAL	
tenpera- ture Range	01	00511 1017 G 09 T	, 	total Obsn	н С ¥	01	Obsn Hour C		Tota) Objn	N C V	H	Obin our Cp		Total Obsn	R C V	H	Obsn our Cp		totat Obsn	П С V	-	Obsn Iour Cp		Total Obsn	N C V	+	Obsn Iour Cp		Total Obsn	н с у	H	00sn Kour Cp	, 	totat Obsn	R C V
	10 08	10 16	10 24		•	10 08	10 16	10 24		8	10 08	10 16	10 24		•	10 06	10 16	10 24		•	01 10 08	10 16	10 [°] 24		•	10 08	10 16	10 24		8	10 08	10 16	10 24		•
95/99 90/94 85/89 80/84		•																													0 0	0 8 37 110	0 4 18	0 8 41 128	75 72 70 67
75/79 70/74 65/69 60/64 55/59	1 5	0 1 11	0 9	0 4 25	56 57 54	0	1		ì	55												0 1	0	0 1	50 45	0	1 2 5 14 24	0 0 1 3 9	1 2 6 17 34	57 55 52 49 46	6 30 136 275 296	191 253 242 236 204	52 126 232 290 268	249 409 610 801 768	65 62 60 57 52
50/54 45/49 40/44 35/39 30/34	12 23 26 42 58	27 38 48 48 41	14 25 34 49 56	53 86 108 139 155	49 44 38 34 29	1 3 • 7 20 24	2 8 18 26 38	1 5 11 23 32	4 16 36 69 94	48 44 39 34 29	0 1 2 10 24	1 6 21 30	2 2 15 31	1 4 10 46 93	47 45 39 34 30	1 2 6 23	0 1 8 26 35	0 1 3 14 33	0 3 13 46 91	47 44 38 34 30	1 6 26 57	7 20 37 59 61	1 6 21 49 70	8 27 64 134 188	42 40 37 33 29	6 14 42 68 67	43 48 53 34 14	20 38 56 64 39	69 100 151 166 120	44 41 37 34 30	273 241 219 264 298	210 185 204 228 231	242 223 212 257 277	725 649 635 749 806	48 43 38 34 30
25/29 20/24 15/19 10/14 5/9	35 25 9 4 0	18 4 1 0	34 14 4 1 0	87 43 14 5 0	25 20 16 11 7	36 38 30 33 27	42 42 30 24 11	34 42 37 32 16	112 122 97 89 54	25 20 15 11 6	26 28 29 31 32	32 42 38 30 19	34 32 33 37 25	92 102 100 98 76	25 20 15 10 6	25 27 29 29 29 27	41 37 30 20 13	39 35 33 23 20	105 99 92 72 60	25 20 15 11 6	49 46 30 16 11	31 20 7 3 1	47 29 13 7 4	127 95 50 26 16	24 20 15 11 6	30 10 2 1	3 0	8 1 0	41 11 2 1	25 19 15 11	213 178 129 114 97	168 145 106 77 44	200 154 120 100 65	581 477 355 291 206	25 20 15 11 6
0/4 -5/-1 -10/-6 -15/-11 -20/-16						13 9 4 1 0	5 2 1 0	8 5 1 0	26 16 6 1 0	1 -3 -0 -13 -17	24 17 11 8 2	31 6 4 1 0	16 12 5 2 0	51 35 20 11 2	1 -3 -8 -13 -18	21 16 11 5 2	6 4 2 0	12 6 2 1 0	39 26 15 6 2	1 •4 •13 •17	6 2 0		1	7 2 0	1 -3 -7						64 44 26 14 4	22 12 7 1 0	37 23 8 3 0	123 79 41 18 4	1 -3 -8 -13 -10
-25/-21 -30/-26											1 0	0		1 0	-23 -27	0 0	0		0 0	-23 -28											1 0	0		1 0	-23 -27
																				-															
						1																			j.										

4

WEATHER DATA

BRUNSWICK NAS MAINE

.....

.....

LAT 43 54N LONG 69 56W ELEV 75 FT

۰.

ACAN FREQUENCY OF OCCURRENCE OF DAY BULD TERPERATURE (DEGREES F) WITH MEAN COINCIDENT VET BULD TERPERATURE (DEGREES F) FOR EACH DAY BULD TERPERATURE RANGE

	MAY						J	UNE					JUL	Y			AL	GUS	T			SEP	TEMO	ER			001	OBE	R	
Tenpera- ture Bange	01	Obsa Hour (Og	.e 17	Teta) Obsa	H C V	01	001n Hour G	0	total Obsn	N C V	н 01 }	Obin our Cp	17	tola) Obin	N C V	01	06371 607 CQ 09	17	Total Obsn	N C V	01	001A 607 Cg	17	Total Obsn	ж с ж	H 01	00311 our 69 09	17	Tatal Obsa	A C V
	10 00	10 16	10 24		•	18 08	10 10	to 24		•	10 00	10 16	10 74		•	10 00	10 16	10 24		•	10 08	10 16	to 24		•	10 08	10 16	10 24		•
90/94 85/89 80/84		1 3	0 0	1	70 66	0	2 4 16	0 1 2	2 5 14	70 69 67	1	2 10 29	Ó 1 5	2 11 35	75 71 68		0 6 24	0 3	0 6 27	69 72 69		0 2 6	0 · 1	0 2 7	70 72 68		0		0	61
75/79 70/74 65/69 60/64 55/59	0 1 2 0	· 6 17 31 49	1 4 9 22	7 22 42 79	62 58 54 53	2 7 20 52	35 52 48 45 27	8 21 36 66	45 80 104 163	64 62 59 57	3 17 56 102 62	63 73 45 22	15 46 79 79	81 136 180 203	65 63 62 59	1 11 52 90	64 72 54 21	11 41 60 75	76 124 186 166	66 64 62 59	0]] 16 45 47	19 38 52 59	2 11 29 59	21 52 97 166	66 63 69 57	0 6 26) 9 16 38	0 2 17	3 9 18 61 121	63 60 58 56 52
50/54 45/49 40/44 35/39 30/34	59 69 50 25 7	44 23 8 2 0	74 60 29 7 0	181 152 87 34 7	47 43 40 35 31	60 23 4	11 11 1	37 6 0	108 32 4	50 45 41	16 2 0		3 0	19 2 0	49 44 42	31 9 1 0	1	9 1 0	41 10 1 0	49 45 40 37	52 37 24 12 1	18 4 1	44 21 9 2 0	114 62 34 14	49 44 40 36 31	46 52 46 41 22	67 34 18 6 2	59 55 19 22 10	172 141 103 69 34	48 "43 39 34 30
25/29 20/24 15/19	0			0	26																0			0	27	8 2 0		1 0	9 2 0	26 22 19
																		•	:											•
												•																		
																														·
																			-											
														•																

BRUNSWICK NAS MAINE

WEATHER DATA

1

BRUNSWICK NAS MAINE

·		NO	VEM	BER				D	ECEM	BER			J	ANUA	RY			FE	BRU	ARY			M	ARCH	1			A	PRI	-		· A	NNU/	L TO	OTAL	
Tempera- ture		0610 (our C	.o	tota Obsr		i C	1	Obsn Hour C	P	Total Obsn	, M C	н	Obsn kur Cp		Tola) Obsn	. M C	н	Obin our Cp		Total Obsn	R C	•	Oban Kaur Gp		fotal Obsn	R C	,	Obsn Hour Gp)	tatal Obsn	N C	,	Obin our Cp	,	Tota] Obsn	R C
Range	01 to 08	09 10 16	17 to 24			0	01 to 08	09 10 16	17 10 24		4 0	01 to 08	09 10 16	17 10 24		8	01 to 08	09 to 16	17 10 24		¥ B	01 10 06	09 to 16	17 to 24		8	01 to 08	09 to 16	17 10 24		¥ 8	01 10 08	09 to 16	17 10 24		8
90/94 85/89 80/84																												0		0	64	1	4 23 78	0 2 11	4 25 90	72 71 68
75/79 70/74 65/69 60/64 55/59	0 5	0 2 14	19	2	0 3 8	55 54 54	0	0 1		0 1	48 47							0	•	0	51		0	0	0 1	50 46	0	0 1 3 13 30	0 2 7	0 1 3 15 38	65 56 53 50 46	6 39 146 306 286	190 262 249 249 238)7 123 235 321 271	233 424 630 876 795	65 63 61 57 53
50/54 45/49 40/44 35/39 30/34	18 28 31 47 52	34 49 54 47 29	20 31 41 55 49	7 10 12 14 13	2 8 6 9 0	49 44 39 34 30	1 4 11 20 34	3 8 29 33 42	1 6 14 30 40	5 18 54 83 116	49 44 39 34 29	1 3 17 27	0 3 16 31 43	2 5 25 38	0 6 24 73 108	46 44 38 34 30	1 3 11 24	0 2 15 35 46	0 1 6 22 41	0 4 24 68 111	46 41 38 33 29	1 9 41 62	7 21 54 72 46	1 6 27 66 69	8 28 90 179 177	43 40 37 33 29	7 24 63 73 48	45 61 52 27 7	22 47 75 61 22	74 132 190 161 77	44 41 38 34 30	290 251 245 287 277	234 206 247 253 215	270 238 245 290 269	794 695 737 830 761	48 43 38 34 29
25/29 20/24 15/19 10/14 5/9	34 19 6 2	9 2 1	25 7 1	6 2	8 8 8 3	25 21 16 12	47 33 32 30 18	48 36 24 14 7	44 41 32 25 10	139 110 88 69 35	25 20 16 11 7	35 31 33 34 25	45 41 29 20 11	42 37 36 26 20	122 109 98 80 56	24 20 15 11 6	32 37 31 26 21	40 38 21 14 8	43 38 26 22 12	115 113 78 62 41	24 20 15 11 6	56 36 21 13 6	26 13 6 1 0	43 19 10 5 1	125 68 37 -19 7	24 20 15 10 6	17 5 1 0	1	3 1 0	21 6 1 0	25 20 15 13	229 163 124 105 70	169 130 81 49 26	201 143 105 79 43	599 436 310 233 139	25 20 15 11 6
0/4 -5/-1 -10/-6 -15/-11 -20/-16				·			12 5 2 0	2 0 0	4 3 0	18 8 2 0	2 -3 -8 -13	19 13 6 3 1	\$ 3 1 0	10 4 2 0	34 20 9 3	1 -4 -13 -17	17 15 5 2 0	4 2 0	8 3 1 0	29 20 6 2 0	1 -4 -8 -13 -17	3 1		0	3 1	2 .3						51 34 13 5 1	11 5 1 0	22 10 3 0	84 49 17 5 1	1 -3 -8 -13 -17
-25/-21												0			0	• 22																			0	-22
																																		÷.		
												-		•																						÷

22.47

LORING AFB MAINE

LAT 46 57N LONG 67 53W ELEV 746 FT

MEAN FREQUENCY OF OCCURRENCE OF DRY BULB TEMPERATURE (DEGREES F) WITH MEAN COINCIDENT WET BULB TEMPERATURE (DEGREES F) FOR EACH DRY BULB TEMPERATURE RANGE

			MAY				JI.	UNE					JUL	Y			AL	I CUS	T	_		SEPT	TEMB	ER			001	OBE	R		
Tempera- ture		Obsa Hour C	P	Total Obin	# C		Obin Iour Cp		Total Cosn	A C	H	ODSA OUF CØ		Totat Costa	H C		Obsn Iour Cp		Total Obin	" (,	Obsn Hour Cp	1	Total Obsn	T C	Ļ	Cosn our Cp		1013) 0014	R C	
t ange	01 16 06	09 te 16	17 10 24		U 9	01 10 08	09 10 16	17 10 24			0) 10 09	09 10 16	17 10 24			0) 10 06	09 to 16	17 10 24		V B	0) 16 08	09 te 16	17 to 24		V 8	01 10 08	09 to 16	17 10 24		v 9	
90/94 85/89 80/84		ļ	0	1	66 63		0 6 13	1 9	0 7 10	71 66 65		1 9 21	0 1 6	1 10 27	71 70 63		0 2 8	0 2	0 2 10	68 70 68		4	0	4	68						
75/79 70/74 65/69 60/64 55/59	1 2 6 17	9 14 23 34 44	3 7 13 25 33	12 22 38 65 94	60 57 54 52 49	1 - 15 - 30 - 54	21 38 51 49 36	9 22 41 53 47	31 63 107 140 139	63 60 58 56 52	1 8 37 67 74	40 65 58 36 16	17 39 50 67 42	50 112 153 170 132	65 63 61 50 54	0 3 22 57 65	33 51 64 58 24	9 24 52 65 53	42 78 138 160 142	65 63 61 58 54	1 9 20 34	9 22 37 46 54	2 7 19 38 50	11 30 65 104 138	65 62 60 57 52	2 10	1 4 9 17 28	0 2 10 17	1 4 11 29 55	64 61 58 56 52	
50/54 45/49 40/44 35/39 30/34	29 54 62 46 27	46 40 23 10 2	45 49 42 22 8	120 143 127 78 37	45 42 38 34 30	58 41 22 5 0	17 7 1 0	36 21 5 1 0	113 69 28 6 0	48 44 40 35 32	4) 15 2 0	2	16 2 0	61 17 2 0	50 45 40 37	53 36 10 1	5 2 0)2 10 1 0	90 48 11 1	49 45 41 37	50 52 37 23 13	40 23 4 0	47 42 23 10 2	137 117 64 33 15	48 44 40 35 31	26 37 46 48 49	42 54 45 28 18	32 48 48 43 35	100 139 139 119 102	48 43 39 34 30	
25/29 20/24 15/19	5	0	0 0	5 1	25 20														•		1		0	I	27	22 0 1	3 0	11 2	36 10 1	26 22 17	
		•																	•	•											
												•																			

LORING AFB MAINE

WEATHER DATA

I

LORING AFB MAINE

	NOVEMBER				DECEMBER JANUARY						FEBRUARY				MARCH			APRIL ANNUAL TO				OTAL															
Tenpera- ture		Obin Hour (ip	101) 001		M C		Obs Hour	n Cp		Tota) Oban	н с	н	Obsn Iour Cp	,	Total Obsn	n C		Obsn Kour Cp		total Obsn	я С		Obsn Hour Cj	,	Tota) Obsn	N C		Obsn Kour Cp		Total Obsn	A C		Obsn Hour Cj	,	Tota) Obsn	. # C
	01 10 00	09 to 16	17 10 74			•	01 10 08	09 10 16	1 1 2) 0 4		8	01 to 08	5 5 5	17 10 24		V 8	01 10 08	09 18 16	17 10 24		•	01 10 06	09 10 16	17 10 24		8	01 10 08	09 16 16	17 10 24	ŀ		01 10 08	09 to 16	17 16 24		•
90/94 85/89 60/84		•																		- <u>-</u>							•							1 18 49	0 2 14	1 20 63	71 68 67
75/79 70/74 65/69 60/64 55/59	0 1	1 5	0	3	1 2	57 54																		0 0 0	0 0 0	0 0 0	54 52 50 45	0	0 2 4 12	0 0 1 4	0 0 2 5 16	55 54 53 49 46	2 16 85 190 259	113 194 244 245 219	40 99 185 259 250	155 309 514 694 728	64 62 59 56 52
50/54 45/49 40/44 35/39 30/34	5 14 17 27 51	11 15 31 44 60	8 14 17 33 67	2 4 6 10	4 3 5 4 8	49 45 39 34 30	1 2 4 10 21	1 2	1 1 4 5	1 2 3 13 23	3 5 11 38 72	51 46 40 35 30	0 1 3 11	1 8 18	0 1 4 15	0 3 15 44	45 40 34 30	0 1 4 8	0 3 9 20	1 1 7 12.	1 5 20 40	44 39 34 29	0 1 16 39	1 6 23 44 58	1 2 9 35 49	2 8 33 95 146	43 39 36 33 29	2 7 19 54 78	24 40 51 56 36	11 26 45 63 58	37 73 115 173 172	43 40 37 33 30	267 258 222 237 297	189 188 186 214 240	229 217 195 231 269	685 663 603 682 806	48 43 38 34 30
25/29 20/24 15/19 10/14 5/9	52 33 21 12 5	39 24 7 3	44 28 18 6		5 5 6 1 7	25 21 16 12 7	25 29 33 32 28) 3 4 3 2	1 9 2 3 4	27 37 33 36 29	83 105 108 101 81	26 21 16 11 6	19 27 25 26 32	26 34 36 39 31	24 28 32 35 37	69 89 93 100 100	25 21 16 11 6	19 27 26 28 30	32 35 39 30 22	29 34 33 36 26	80 96 98 94 78	25 20 16 11 6	43 39 37 33 18	44 31 20 14 6	54 39 29 17 18	141 109 86 64 32	25 20 15 11 6	46 19 9 3 1	9 3 2 0	22 7 3 0 0	77 29 14 3	25 19 15 10 6	232 103 152 134 114	184 166 146 119 84	211 175 148 130 101	627 524 446 383 299	25 20 16 11 6
0/4 -5/-1 -10/-6 -15/-11 -20/-16	1		0		1 0	2 •2	26 18 13 6 0	1	6 9 3 1 0	23 13 6 1 0	65 40 22 8 0	1 •3 •8 •13 •17	34 28 20 12 7	23 16 10 4 2	29 19 16 6 2	86 63 46 22 11	1 -4 -8 -13 -18	25 22 18 10 6	15 9 5 3	20 14 8 3 1	60 45 31 16 8	1 -4 -8 -13 -18	12 7 2 0	2 0	5 1	19 8 2 0 0	1 -4 -8 -14 -16	0			0	2	98 75 53 28 13	56 34 18 6 3	77 47 30 10 3	231 156 101 46 19	1 -4 -13 -18
-25/-21 -30/-26							0					·25	1 0	. 0	0	1 0	•22 •21	20	0	0	2 0	-22 -21											3 0	0	0) 0	-22 -27
																,																I					

.

.

and the second second

22.49 -

ı

1

State	Annual Cooling	State	Annual Cooling
Station	Degree Days	Station	Degree Days
· · ·		·	
LOUISIANA (continued)		Fort Holabird	1491
New Orleans Army Terminal	2706	Fort Meade/Tipton AAF	. 1039
New Orleans/Moisant IAP	2706	Fort Richie	688
New Orleans NAS	2703	Frederick	948
		Hagerstown	891
Shreveport	2538		
-		Indian Head NOS	1348
MAINE		Patuxent River NAS	1377
Augusta	271	White Oak NAVSURFWPNCEN	1161
Bangor IAP/Dow AFB	304		
Bar Harbor	167	MASSACHUSETTS	
Brunswick NAS	308	Army Mat/Mech Res Cen	661
Bucks Harbor AFS	121	Boston/Logan IAP	661
	· · · · · · · · · · · · · · · · · · ·	Boston Navy Base	661
Caribou MAP	128	Fall River	599
Caswell AFS	152	Fort Devens/Devens AAF	560
Charleston AFS	 		
Loring AFB	152	Hanscom AFR/Bedford	591
Millinocket	231		566
maranocket	2 J X	Lynn	661
Portland	252	Mavnarð	591
Searsport	200	Nantucket	284
Winter Barbor	167	Huncução	2.01
	207	Natick Laboratories	636
MARYLAND		New Bedford MAP	635
Aberdeen PG/Philling AAF	1076	North Truro AFS	502
Andrews AFB	1237	Otis AFB/Falmouth	490
Annapolis USNA	1155	Pittefiald MAP	117
Bainbridge NTC	1076	ricorreit nat	517
Baltimore/Martin Aprt	1115	Ouincy	661
	1115	Salom	450
Baltimore/Washington TAP	1108	South Woymouth NAS	450
Bethesda NAVNATMEDCEN	1100	South Reymouth HAS	740
Cumberland MAP	114/ 000	Wollogly ANC Chatter	24U 236
Edgewood Arconal	020	WEITESTA WAG SCACION	030
Port Detrick	1110	Mark Edold Mannar HAD	C D 4
TOLE MULLUR	948	Westrield/Barnes MAP	100 100
		Wescover Arb	384

۲

- 22.50 -

Definitions and Example Format For Backup Calculations and Data

In order to facilitate the acceptance process of Life Cycle Energy Analysis, the Bureau feels that submittal of pertinent information is vital. These shall include:

- 1. Heat transfer coefficients and areas of all envelope components used in calculating the overall heat loss factor in Column 4 of Heating Form C-1.
- Infiltration rate data, documentation and methodology.
 - 3. Perimeter heat loss factors used in calculating UA overall.
 - 4. Ventilation rate.
 - 5. Number of persons during peak occupancy, sensible heat gain/person, diversity of occupancy during various bin periods.
 - 6. Install kilowatts of lighting and equipment within the space which may contribute to internal gain, diversity of usage during various bin periods and duration of use.

<u>Guideline</u>: Only equipment (supply fan motors within the air stream of the distribution system) or lights which are uniformally distributed throughout the space may be considered for internal gain contribution. Heat gain given off by exhaust fans are generally exhausted with the air and in large equipment gains in highly localized area, such as boiler rooms, are generally vented out.

7. Calculations for internal heat gain adjustment factor F_c . See 1977 ASHRAE Fundamentals, Chapter 25.23, Equations 30, 31 and example 9, page 25.25.

EXAMPLE:

ί.

		U-FACIOR		AREA		<u>UA</u>
1.	Roof (Type 1)	0.034	X	26000	=	884
•	Roof (Type 2)	0.026	. Χ	6000	=	156
	Wall (Type 1)	0.041	Х	17000	=	697
	Wall (Type 2)	0.05	Х	2000	÷	100
	Window (Type 1)	0.5	Х	2550	-	1275
	Window (Type 2)	0.34	Х	100	=	34
	Doors	0.22	X	200	=	44
	Infiltration	1.085	х	1067 CFM	=	1157
	Perimeter Heat Loss	0.55	Х	700 Ft.	=	385
						4732

$(UA) = 4732 Btu/hr^{\circ}F(Col. 4)$

2. Air Change Method

Volume = 320,000 Ft³ ACH = 0.2 Infiltration = (320000)(.2)=1067 CFM 60

- 3. 1" Insulation on foundation frost wall, equation 4, Chapter 24.5 ASHRAE 1972 Fundamentals.
- 4. 5 CFM/Person X 200 Persons = 1000 CFM
- 5. 200 Persons peak occupancy SBG/Per = 210 Btu/hr. person Diversity of occupancy 1-8 = 20% 9-4 = 85% 5-12 = 20%
- 6. 20 KW Installed Diversity

1 .

1-8 = 40% 9-4 = 90% 5-12 = 40%

7. $K_{t} = \frac{1}{1} (U_{w}A_{w} + U_{wi}A_{wi} + U_{R}A_{R} + U_{D}A_{D})$ If $= \frac{1}{700} (697 + 100 + 1275 + 34 + 884 + 156 + 44)$ = 4.56

 $F_c = 1 - .02 (K_t) = 1 - .02 (4.56) = 0.91$

8. Peak Internal Load (Col. 8, Form C-1) (200)(210) + (20)(3.413) = 110.26 Mbtu/hr

9. Annual Factors (Col. 9, Form C-1) Bins (1-8), (5-12): $(200)(\frac{210}{1000})(.2) + (20)(3.413)(.4) * 0.91 = 0.29$ Bin (9-4): $(200)(\frac{210}{1000})(.85) + (20)(3.413)(.90) * .91 = 0.80$

BIN METHODOLOGY FOR ENERGY ESTIMATION

Simply stated, the bin method is an energy balance assuming steady state conditions over the time interval ("bin") of 8 hours. In equation form this is stated as:

Qin + Qgen = Qout + Qstor

where the generation term Ogen represents internal and solar gains and since assuming steady state, the time rate of storage term (Ostor) equals zero.

Proper interpretation and use of this method is to calculate the terms Qout and Qgen, multiply by the appropriate time intervals and sum up for the required amount of energy to balance the equation, (Qin). Form C-1 of the Life Cycle Analysis document provides the format to do this. However, care must be exercised when using the form, not to forget the basic premise of the energy balance equation, when summing the numbers. An example, for a typical month, is in order:

 $= 55^{\circ}F$

= 100 Ft. Sq.

Month: Average	January monthly	ambient	temperatures	5 =	17.5°F 25.2°F 22.1°F	(01-08) (09-16) (17-24)	

Occupied temperature set point = 70°F

Unoccupied temperature set point

South facing glass

Solar transmittance of glass = .7

Max. number of occupants = 100

Ventilation rate during occupied cycle = 500 CFM

Sensible heat gain/person = 200 Btu/hr
Connected KW of lights and equipment which contribute heat to space: 15KW*

* Only those electrical loads which are uniformly distributed throughout the space or supply fan motors which are in the air stream of the distribution system. (Heat given off by exhaust fans is generally exhausted with the air and large equipment gains in highly localized areas, such as boiler rooms, are generally vented out).

Heat loss factor (UA) overall = 2.0 MBtu/hr°F (includes infiltration heating load and heat loss due to <u>all</u> windows)

No. of days occupied = 17 days No. of days unoccupied (weekends, holidays) = 14 days

(01-08) Bin

Qout = (UA) \therefore T · time = (2.0 MBtu/ °F hr) (55°F - 17.5°F) (31 days) ($\frac{8 \text{ hr}}{\text{day}}$) = 18600 MBtu (col.7, C-1 Form)

 $Qgen = F_{C}*[(KW)(3.413 \frac{MBTU}{KWH})(diversity)(time) + ($ people)(\frac{SHG}{person})(diversity)(time)]$ $.9 [(15KW)(3.413 \frac{MBTU}{KWH})(0.2)(17 \text{ days})(\frac{1hr}{day}) + (100 \text{ persons})(.2)\frac{MBTU}{person}(.2)(17 \text{ days})(\frac{1hr}{day})]$ = .9 [174 + 68]

= 217.8 MBtu (col. 11, C-1 Form)

Qin = Qout - Qgen

Qin = 18600 - 217.8 = 18382 MBtu (col. 12, C-1 Form)

(09-16) bin

Occupied Days = 17

$$Qout = (UA)_{0} \cdot T \cdot time + 1.085 \cdot CFM \cdot T \cdot time$$

$$= (2.6 \frac{MBTU}{hr})(70-25.2^{\circ}F)(17 \text{ days})(\frac{8 \text{ hrs}}{\text{day}}) + \frac{(1.085)(500 \text{ CFM})(70-25.2^{\circ}F)(17 \text{ days})(\frac{6\text{hrs}}{\text{day}})}{1000}$$

$$= 12185.6 + 2479$$

$$= 14665 \text{ MBtu}$$

$$Qgen = F_{c}[(KW)(3.413 \frac{MBTU}{KWH})(\text{diversity})(\text{time}) + (people)(\frac{SHG}{person})(\text{diversity})(\text{time})] + (\frac{insolation}{day}ft \text{ sq}})(\text{clearness factor})(\text{area})(\text{transmittance})(\frac{4}{days})$$

$$Qgen = .9 [(15KW)(3.413 \frac{MBTU}{KWH})(.85)(17 \text{ days})(\frac{8 \text{ hrs}}{day}) + (100 \text{ persons})(.2 \text{ MBtu/person})(.8)$$

$$(17 \text{ days})(8 \text{ hrs/day})] + \frac{(860 \text{ Btu/ft}^2 \text{ day})(.55)(100 \text{ ft}^2)(.7)(17 \text{ days})}{1000}$$

$$= .9 [5918 + 2176] + 562.9$$

$$(Qin)_1 = Qout - Ogen$$

 $(Qin)_1 = 14665 - 7848$
 $= 6818 MBtu$

If $(Qin)_1$ had been less than zero, $(Qin)_1 = 0$

Unoccupied Days

Qout = $(UA)_0$ \therefore T \cdot Time = $(2 \cdot \frac{MBTU}{hr})(55-25 \cdot 2^\circ F)(14 \text{ days})(\frac{8hrs}{day})$ = 6675.2 MBtu

 $Qgen = (\frac{insolation}{day ft sq})(Cl. factor)(are)(transmittance)(time)$ = (860 Btu/ft².day)(.55)(100 ft²)(.7)(14 days)1000

= 463.5 MBtu

$$\begin{array}{l} (\mathrm{Qin})_2 = 6675.2 - 463.5 \\ = 6212 \ \mathrm{MEtu} \\ \\ \mathrm{If} \ (\mathrm{Qin})_2 \ \mathrm{had} \ \mathrm{been} \ \mathrm{less} \ \mathrm{than} \ \mathrm{zero}, \ \mathrm{then} \ (\mathrm{Qin})_2 = 0 \\ (\mathrm{Qin}) \ \mathrm{Total} = (\mathrm{Qin})_1 + (\mathrm{Qin})_2 \\ (\mathrm{Qin}) \ \mathrm{Total} = 6818 + 6212 \\ = 13030 \ \mathrm{MBtu} \ (\mathrm{col.} \ 12, \ \mathrm{C-1} \ \mathrm{Form}) \\ \\ \mathrm{(17-24) \ Bin} \\ \\ \mathrm{Qout} = (\mathrm{UR})_0 \ \therefore \ \mathrm{T} \ \mathrm{time} \\ = (2.0 \ \frac{\mathrm{METU}}{\mathrm{F} \ \mathrm{hr}}) (55-22.1^{\circ}\mathrm{F}) (31 \ \mathrm{days}) (\frac{8 \ \mathrm{hr}}{\mathrm{day}}) \\ = 16318 \ \mathrm{MEtu} \ (\mathrm{col.} \ 7, \ \mathrm{C-1} \ \mathrm{Form}) \\ \\ \mathrm{Qgen} = [(\mathrm{KW}) (3.413 \ \frac{\mathrm{METU}}{\mathrm{KWH}}) (\mathrm{diversity}) (\mathrm{time}) + (\$ \ \mathrm{people}) (\frac{\mathrm{SHG}}{\mathrm{person}}) (\mathrm{diversity}) (\mathrm{time})] \ ^{\ast}\mathrm{F_C} \\ = [(15\mathrm{KW}) (3.413 \ \frac{\mathrm{METU}}{\mathrm{KWH}}) (.2) (17 \ \mathrm{days}) (\frac{1 \ \mathrm{hr}}{\mathrm{day}}) + (100) (.2 \ \frac{\mathrm{METU}}{\mathrm{person}}) (.2) (17 \ \mathrm{days}) (\frac{1 \ \mathrm{hr}}{\mathrm{day}})] .9 \\ = 174 + 681 \ (.9) \\ = 217.8 \ \mathrm{MEtu} \ (\mathrm{col.} \ 11, \ \mathrm{C-1} \ \mathrm{Form}) \\ \\ \mathrm{Qin} = \mathrm{Qout} - \mathrm{Qgen} \\ = 16318 - 217.8 \end{array}$$

= 16100.2 (Col. 12, C-1 Form)

Definitions, Solar Energy Systems

- 1. Solar Collector/Energy Systems Type
 - A. Passive A passive solar energy system is one where available solar radiation is admitted directly into the space, stored with a mass and re-readiated or direct radiation is incident upon a mass wall adjoining the space, stored and indirectly radiated to the space.
 - B. Active An active system is primarily characterized by virtue of the fact that no energy delivery to the space will occur unless the heat transport medium, be it air or water, is mechanically (i.e. fans, pumps) introduced.

2. Solar Energy Analysis

- A. Passive solar energy systems shall be analyzed in accordance with Section C.6.0 of the Life Cycle Analysis Document.
- B. Active solar systems shall be analyzed as stipulated in Section C.7.0. Among the variables required but not limited to submittal for review are:
 - 1. Substantiated documentation as to the heat removal factor or collector efficiency curve.
 - 2. Effective transmissivity of cover plate assembly (time averaged value due to dependence on incidence angle of sun and collector orientation).
 - 3. Effective collector aperture area.
 - 4. Tilt angle.
 - 5. Mass flow rate of collector fluid.
 - 6. Typical day hourly insulation data used.
 - 7. Control sequence of solar collector and interlocking of auxiliary heating system plus the system modelling technique used.
 - 8. Evaluation of the percentage of useful available solar energy supplied to the load for the typical day of each month.

ECONOMIC BENCHMARKS FOR SOLAR DESIGN ("INDICES")

I. INTRODUCTION

In recognition of the need to promote a better understanding of solar energy utilization and the requirements of an economically viable design the Bureau has prepared the following indices and discussion. It is not intended that such material or figures contained herein are to be used in lieu of good design practice or system analysis in justification of a solar project.

CONTENTS: II. Indices III. System Characteristics IV. Use of Indices V. Bureau Recommendations VI. Tables and Figures

II. INDICES

Figure 1. - tabulates the amount of insolation (direct & diffuse) which contributes to heat gain for various Maine latitides, orientations and tilt angles. These values are summations of hour by hour calculations using standard mathematical modelling of solar geometry, atmospheric extinction ratios and terrestrial radiation flux values as outlined in ASHRAE 1980 SYSTEMS Volume, Chapter 59. Similarly the transmissivity (being a function of incidence angle) was calculated on an hour by hour basis for single glazing and double glazing (values in parentheses). Table values reflect the effective transmissivity as well as a time weighted annual average for percent possible sumshine equal to 0.56. Monthly hour by hour tabulations of insolation rates or the computer program (in BASIC) for calculating them are available from the Bureau, upon request, for design analyses.

Figure 2. - tabulates the values of solar radiation in Figure 1 for a thirty year period with the cost of money at 10 percent. The title "theoretical ceiling" denotes that these figures are the upper bound on costs simply due to the fact that no more energy can be collected than is typically available. It is not to be inferred that these costs represent acceptable design costs as they are theoretical maximums (i.e. 100% collector efficiency, utilization). They are presented in order to give the designer a "feel" for the limits of solar potential and design costs. Historically the Bureau has been presented designs for approval which exceed these maximums.

Three things should be readily apparent from examination of Figure 2:

1. Optimum solar energy collection will occur when angle of aperture is equal to latitide.

- 2. Even at 100% efficiency and utilization vertically hung collection systems will have a relatively low upper bound for square foot costs.
- 3. A design which is just economically viable in southern Maine would have to be improved in northern Maine, not only due to more severe climatic conditions, but reduced insolation as well.

III. SYSTEM CHARACTERISTICS

- 1. Passive
 - A. Direct Gain
 - Used when sizeable thermal fluctuations can be tolerated
 - Assymetric solar excitation, such as occurs in south aperture systems, naturally drives a north-south separation. Mechanically assisted heat transfer would be appropriate.
 - For low (0-25%) solar heating fractions generally no additional thermal mass storage is required
 - To achieve large (more than 25%) solar heating fractions additional thermal mass is required to decrease temperature fluctuations. This additional thermal mass can be a significant expense.
 - Glare, ultraviolet degradation can result from direct exposure
 - Interior space temperature swings of 15 to 20 degree Fahrenheit are common even in well designed buildings.
 - Moveable insulation systems over the glazing are generally required to reduce night losses, but such systems can be awk-ward and expensive for large areas.
 - Use of operable shades by occupants to control temperature swings will result in reduced energy collection
 - Spaces with internal gains sufficient to offset heating load of well insulated structures will result in heat rejection diminishing solar utilization percentage unless mechanical transport of energy to cooler zones is included in design.

B. Indirect Gain

- Energy delivery to space more controllable than for direct gain systems. It can be immediate convective thermosyphon loop to satisfy daytime load or delayed through conduction and reradiation from the walls inside surface to meet evening and nighttime loads.
- Indoor temperature swings are less than indirect gain systems on the order to 10 to 15 degrees Fahrenheit.
- Heat losses are increased due to proximity of thermal storage mass to the glazing, reducing efficiency.
- To minimize overheating during spring and summer months a mass wall must be shaded and vented to the outdoors.
- As with direct gain systems, spaces with internal gains and insulation to offset daytime heating loads will suffer a decrease in solar utilization and efficiency unless the mass of the wall is sized to store captured energy for delivery to nighttime loads.

The additional mass can lead to significant increases in cost. Isolated indirect gain systems (interior of wall insulated) will re-radiate absorbed energy back to the atmosphere expecially if delivery to load is deferred.

2. Active

- A. Space heating collectors with air as the thermal transport medium
 - Generally more appropriate for small buildings
 - Simpler in design and components than liquid systems
 - No freeze protection required
 - Lower maintenance and easier leakage repair
 - Low heat capacity and density of air requires large volumes and bulky ductwork and storage
 - Higher energy requirements for fans than pumps noisier in operation
- B. Space heating collectors with liquid as thermal transport medium
 - Generally preferred for commercial buildings because such buildings are nearly always heated by fan coil units, heating coils in air ducts and radiant hot water units all requiring hot water.

- Liquid collectors are generally more efficient
- Potential for combination with domestic hot water system
- More convenient to install in existing buildings.
- Greater supply of data and product availability due to greater attention given to liquid systems by solar industry.
- Higher installation costs for collectors and storage components
- Precautions must be taken against leakage, corrosion and boiling. Freeze protection may require antifreeze and heat exchangers which reduces efficiency.
- Greater maintenance requirements

IV. USE OF INDICES

As was previously stated, indice tables are based on 100% system efficiency and utilization. From the discussion of system characteristics it should be apparent that some adjustment for these factors must be figured in to arrive at the system cost for a viable design. A step wise procedure with guidelines for doing so, with examples, follows.

Before proceeding it is essential that the definitions of solar efficiency and utilization percentages, which must be initially assumed, are properly understood.

Solar efficiency as defined here refers to the ratio of energy collected (available minus losses) to energy available. Instantaneous collector efficiency is, of course, a function of a number of parameters, but reasonable average values for non-concentrating collectors range between 0.85 and 0.90 for a liquid heater and between 0.6 and 0.7 for an air heater.

Solar utilization defined as the portion of collected energy which actually offsets the building's or zone's heating load. Heating loads of buildings are often poorly matched to the time profile of the supply of available solar energy (se figure 3). Additionally, the seasonal variation of the sun's intensity and climate conditions works against total utilization of the annual figure presented in figure 1. The most obvious case of this mismatch is manifested in our inability to use summer warmth for winter heating needs. Designs without provision for properly sized storage means and/or peak internal heat gain profiles during solar availability will have poor utilization percentages.

Step 1. The first step in a preliminary study of a building's potential for solar energy is to determine/estimate the building's or zone's thermal energy requirements. To proceed with a solar analysis independent of the space to which it will be an integral part (i.e. thermally interlocked) is to invite folly both economically and comfort-wise.

- Step 2. Decide the fractional portion of heating load solar is to provide. While it is theoretically possible to design a solar space heating system to supply 100% of the annual energy requirements given sufficient collector area and thermal storage capacity, it is generally not cost effective to do so. A solar system is normally designed to meet 20 to 60 percent of the heating requirements. Modest expectations in Maine's severe climate are more likely to be realized in actual use.
- Step 3. Calculate collector area: Area = (fuel unit)(conventional system eff.)(fuel BTU content/unit) (solar eff.) (solar utilization) (radiation available)

where radiation available is taken from figure 1 for latitude, tilt and orientation applicable.

Step 4. Calculate Total Allowable System Costs. TASC = (area) (solar eff.) (Solar utilization) (ceiling s.f. cost)

where ceiling s.f. costs are taken from figure 2 for latitude, tilt and orientation of collector.

- Step 5. Calculate actual maximum solar collector square foot costs. COST/S.F. = TASC/area
- Step 6. If it is still anticipated that the project can be implemented at the square foot cost determined in Step 5, then a thorough analysis should be performed by the designer/engineer to validate the assumptions made regarding utilization and efficiencies and a life cycle costing that reflects maintenance costs and system life.

EXAMPLE 1. Active Space Heating System

Collector system - single glazed, flat plate liquid heater Iatitude = 45 Tilt Angle = 45 Assumed annual collector efficiency = 0.9 Assumed annual solar utilization = 0.6

- Step 2. Solar participation to be 1/3 of heating requirement or 300 gallons/year.
- Step 3. Collector area = (300 gal.)(0.7)(140000BTU/GAL) = 196 S.F.(0.9)(0.6)(277700BTU/S.F.)
- Step 4. TASC = (\$26.71/S.F.)(0.9)(0.6)(196 S.F.) = \$2827
- Step 5. COST/S.F. = \$2827/196 S.F. = \$14.42/S.F.
- Step 6. Monthly "typical day" calculation of zone load profile and solar insolation profile recommended.

EXAMPLE 2. Passive Direct Gain System

Double glazed windows, south facing, vertical U-factor = 0.5 BTU/s.f. - degree, no night insulation Latitude - 42

- Step 1. 900 gallons/year
- Step 2. 300 gallons/year
- Step 3. From bin method calculations it is determined that a square foot of window will lose 84.3 MBtu/year through conduction.

Efficiency = (153.9-84.3)/153.9 = 0.45Utilization assumed = 0.5 Glazing Area = (300)(0.7)(140000) = 849 square feet (0.45)(0.5)(153900)

Step 4. TASC = (\$14.08)(.45)(0.5)(849) = \$2827.00

Step 5. COST/S.F. = \$2827.00/849 = \$3.33/S.F.

- V. BUREAU RECOMMENDATIONS
- 1.0. Five Rules of Thumb:
- 1.1. Retain Priorities Solar heating should never be a first priority. Putting a solar system on a building that is inherently inefficient is a virtual waste of money and time. The essential first step in solarizing of any building is to get the basic structure airtight and insulated and to make sure the non-solar space and water heating systems operate at peak efficiency.
- 1.2. Keep it simple In the abstract, solar heating is a simple idea. But, making it work in the real world is a little more complex. As the number of components goes up it tends to be expensive, takes up inordinate space and poses major reliability problems as Murphy's Law goes wild with each of the systems parts. Due to the amount of experimentation still going on in solar research it's become important to rely on objective tests to tell the ineffective from the effective designs.
- 1.3. Use simple reliable high quality components and accept no substitutes.
- 1.4. Make special provisions in specifications for quality control of installation and testing requirements for solar design.
- 1.5. Educate the owner or personnel in maintenance and operation of solar energy system.

- 2.0. The designer (Architect/Engineer) should make the owner aware of the drawbacks, such as increased maintenance, etc., to the solar energy systems as well as the benefits (basically reduced operating costs) to allow a more objective decision making process.
- 3.0. The designer employ a qualified individual experienced in solar design and evaluation to perform required calculations.
- 4.0. Solar designer should coordinate closely with controls designer.
- 5.0. Designers are encouraged to call on the Bureau of Public Improvements for guidance, information and such help as to what is required in evaluating solar energy system designs early on in the approval process.
- 6.0. Recommend that hourly typical day calculations for each month be done to evaluate solar energy system performance (efficiency, utilization). Clear day insolation values should be used for calculations and then monthly totals corrected for percent possible sunshine.
- 7.0. Preferred systems should:
 - 1. Rely on as few field connections (site built collectors) as possible.
 - 2. Avoid use of hard to find/replace/maintain components.
 - 3. Use gravity exhaust for summertime venting mode versus powered exhaust.
 - 4. Have considered being integrated into sloped roof structure to avoid damage due to wind loadings and increase collection of solar radiation.
 - 5. Have been evaluated/optimized to utilize some means of low temperature storage system in buildings or spaces with high internal heat gain profiles during insolation periods. System efficiency could potentially be improved by capture and storage of excess internal heat gains for delivery to night time loads.
 - 6. Maximize use of auxilliary heating and ventilation system, by supplying the solar output for distribution and any required "boosting" through those systems. A larger percentage of collected solar energy will thereby be used and the complicated control sequences of two independent systems eliminated. Additionally, any competition between solar and auxilliary systems will be avoided.
 - 7. Strive to achieve maximum utilization of solar energy collected by performing more than one function, i.e. domestic hot water (during spring, fall) as well as space heating (during winter)

Page 22.64

8.0. Studies by the Solar Energy Research Institute would seem to indicate that a solar collector system in combination with a heat pump will function better than either system independently. Evaluate and investigate options.

SUMMARY:

The Bureau of Public Improvements purposes in publishing the observations contained herein is not to establish itself as an authority on solar design or limit the creativity of the designer in solarization of commercial sized structures. Rather, by identifying the critical factors leading to a successful solar design, it is hoped that the design challenge can be more successfully met than has historically been the case. Input from the professional community to items or ideas which are meritorious would be a welcome addition to our store of knowledge and goal of more energy efficient buildings.

Indice Table (Figure 2) assumes use of #2 oil heating plant, 70% efficient with cost of fuel \$1.00/gal. For different heating fuels, efficiencies or cost multiply the table figure by the following factor:

F =	98040	x	(fuel cost/unit)	
-			(efficiency)(Btu/fuel	unit)

BIBLIOGRAPHY:

"Solar Design Workbook", Solar Energy Research Institute, Publication SP-62-308. 1981

"Solar-Thermal Energy Systems, Analysis and Design", by Howard Bannerot, Vliet, MacGraw-Hill 1982.

ASHRAE Systems Volume, 1980

"Active Solar", by Frederic S. Langa, New Shelter, March 1983, Vol. IV, No. 3 (issue)

FIGURE 1. ANNUAL^{*} AVERAGE SOLAR RADIATION AVAILABLE (BTU/S.F. - YR)

TILT ANGLE		ORIENTATION	
	SOUTH	S 15 E/W .	S 30 E/W
T_{1}			
Borizontal	203500 (164400)	203500 (164400)	203500 (164400)
30	279000 (235400)	275600 (232500).	266100 (224300)
45	286400 (242700)	281800 (239000)	270000 (229700)
60	272500 (230000)	267800 (226600)	256600 (215700)
Vertical	188400 (153900)	188600 (152900)	186500 (146800)
• •			
Latitude - 45	100400 (151000)	100400 (151000)	-
Horizontal	189400 (151900)	189400 (151900)	189400 (151900)
30	267700 (225600)	264300 (222600)	254700 (214400)
45	277700 (235400)	273100 (231600)	261100 (215500)
60	267100 (225700)	262200 (222200)	250700 (211000)
Vertical	190400 (156300)	190100 (155100)	186700 (147900)
Latitude = 48		• •	
Horizontal	175100 (139500)	175100 (139500)	175100 (139500)
30	255300 (214800)	251800 (211800)	242300 (203600)
45	267500 (226700)	262900 (223000)	250900 (212400)
60	259900 (219900)	255400 (216300)	243400 (204900)
Vertical	190500 (157200)	189800 (155600)	185500 (147800)

* Based on typical school year calendar

FIGURE 2. THEORETICAL^{*} "CEILING" SQUARE FOOT COSTS FOR SOLAR COLLECTOR SYSTEMS

TILT ANGLE		ORIENTATION	
	SOUTH	S 15 E/W	S 30 E/W
Latitude = 42 Horizontal	\$19.57 (15.81)	\$19.57 (15.81)	\$19.57 (15.81)
30	26.83 (22.64)	26.51 (22.36)	25.59 (21.57)
45	27.54 (23.34)	27.10 (22.98)	25.96 (21.99)
60	26.21 (22.12)	25.75 (21.79)	24.68 (20.75)
Vertical	18.12 (14.80)	18.14 (14.71)	17.93 (14.12)
• •			
$T_{2}+i+id_{2} = A_{2}$			
Horizontal	\$18.21 (14.61)	\$18.21 (14.61)	\$18.21 (14.61)
30	25.75 (21.69)	25.42 (21.41)	24.49 (20.62)
45	26.71 (22.64)	26.26 (22.28)	25.11 (21.27)
60	25.69 (21.71)	25.22 (21.37)	24.11 (20.29)
Vertical	18.31 (15.03)	18.28 (14.91)	17.96 (14.23)
T_{2}			
Horizontal	\$16.84 (13.41)	\$16.84 (13.41)	\$16.84 (13.41)
30	24.55 (20.65)	24.22 (20.37)	23.30 (19.58)
45	25.73 (21.80)	25.28 (21.44)	24.13 (20.43)
60	24.99 (21.15)	24.56 (20.81)	23.41 (19.71)
Vertical	18.32 (15.12)	18.25 (14.97)	17.84 (14.22)

* NOTE: Costs shown <u>must</u> be adjusted for collection efficiency and solar utilization. Refer to text. Designer <u>must</u> be prepared to demonstrate that values used for collection efficiency and percent utilization were responsibly derived through building thermal performance analysis. Solar collector systems which have not adequate provision for storage of thermal energy will have resultant poor utilization of solar gain as bottom figure demonstrates. Shaded portions represent solar gain which actually offset the heating requirements of the space.

-

APPENDIX B

REFERENCES

BOCA -		The BOCA Basic Energy Conservation Code - Latest Edition (Maine Design Code)						
ASHRAE -		55-74 - Thermal Environmental Conditions for Human Occupancy						
		62-73 - Natural and Mechanical Ventilation						
		90-75 - Energy Conservation in New Building Design						
		ASHRAE Handbook of Fundamentals - Latest Edition						
		ASHRAE Systems Handbook - Latest Edition						
IES	-	IES Lighting handbook - Latest Edition						
NBSI	-	74.452 Evaluation Criteria for Energy Conservation in						
		New Buildings; U. S. Department of Commerce, National Bureau Standards						
KGF Assoc		Life Cycle cost Benefit Analysis						
Passive Solar Design Bandbook -		Volume Two of Two Volumes - January 1980.						
Design and Performance of Passive Solar Beating Systems for Maine		By Chad P. Clark, Department of Mechanical Engineering						
•		April 1981.						
Local Climato- Logical								
Data	-	National Oceanic and Atmospheric Administration						

·

APPENDIX C

SAMPLE FORMS

C-1 Heating Form

C-2 Cooling Form

JOB	
BLDG. TYPE	

C-1 HEATING FORM

HEATING DESIGN TEMP. _____ T:_____

SPACE TEMP.

DA	TE		BY				:	SPACE TEMP			WEATHER ST	'A.			
М	M Heating Load						Internal Load			Solar Load			Net Load		
O N T	Period of Day	Avg. Temp.	т= т ₁ -т ₀	Heat Loss MBTU	MBTU	Hours in "Bin"	Annual MBTU	Peak Internal Load MBTU	Ann. Factor	Hours in "Bin"	Annual MBTU	Peak Solar Load MBTU	Ann. Factor	Annual MBTU	
н	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(8a)	(9a)	(11a)	(12)
	1-8							<u> </u>				<u> </u>	:		
	9-4														
	<u></u>														l
	<u> </u>	{											<u> </u>		[
	-9-4					··							<u> </u>		·
	1-8	}											1		
	9-4														
	<u>9-4</u> 5-12	<u> </u>						<u> </u>					F		J
	1-8														
	9-4											<u> </u>	}		J
	5-12														
	1-8					L						·			
	9-4	<u> </u>			<u> </u>			<u> </u>					ŀ		
	5-12														
	$\frac{1-8}{3-8}$	<u> </u>			· · · · · · · · · · · · · · · · · · ·							<u> </u>			J
	9-4														
J	5-12	ļ													
	9-4	<u> </u>	<u></u> i												
	9-4														
}	- 5-12.	<u> </u>						<u></u>					<u>├</u>		<u> </u>
	5-4 -	1													
	9-4									[
			ļ						<u> </u>			<u> </u>	+		h
	9-4	+							f					·····	
	<u> </u>							[ļ			
 	$-\frac{5-12}{1-8}$ -		<u> </u>									<u> </u>	+		┟
	9-4	1								ļ		L			
1	9-4	ļ		ļ		ł		<u> </u>	<u> </u>	}	}	<u> </u>	 		H
}	<u> </u>	4	↓	l	L	J				L	t	<u>L</u>			

B.P.I. 6

REV: 6-85

GROSS TOTAL

JOB______ BLDG. TYPE______ DATE BY C-1 COOLING FORM

HEATING DESIGN TEMP.: _____ T: _____

SPACE TEMP. WEATHER STA.

М	1 COOLING LOAD						INTERNAL LOAD			SOLAR LOAD				NET LOAD		
O N T H	Period of Day	Avg. Temp.	$\Delta T = T_1 - T_0$	Heat Gain MBIU	MBTU	Hours in "Bin"	Annual MBIU	Peak Internal Load MBIU	Ann. Factor	Hours In "Bin"	Annual MBTU	Peak Solar Load MBTU (82)	Ann. Factor	Hours In "Bin"	Annual MBTU	(12)
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(04)	(94)	(10a)	(114)	(12)
	2-9												}			
	<u> 10-5 </u>							· · · · · · · · · · · · · · · · · · ·	}				<u>}</u>			
	2-9				······································											
	10-5															
 	6-1	 							 							
	2-9	1	}						 				}		·····	· · · · · · · · · · · · · · · · · · ·
i l	6-1	1							<u> </u>				<u> </u>			}
	2_0	<u> </u>	1													
	10-5							······	1						}	ţ
	6-1	1											[
	2-9	1	1				· ·						[
5	10-5															
	6-1	<u> </u>	<u> </u>		l											

GROSS TOTAL

NOTE: Heating Form C 1, solar and internal annual MBTU for a building must be subtracted from the heating annual MBTU during the hours they occur and if more solar and internal consumption remains, those annual MBTU for solar and internal annual MBTU must be added to the total MBTU for cooling.

B.P.I. 6 REV.: 3-84

ASHRAE/IESNA Standard 90.1-1999

STANDARD

Energy Standard for Buildings Except Low-Rise Residential Buildings

I-P Edition

Approved by the ASHRAE Standards Committee June 19, 1999, and by the ASHRAE Board of Directors June 24, 1999.

This standard is under continuous maintenance by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the standard. The change submittal form, instructions, and deadlines are given at the back of this standard and may be obtained in electronic form from ASHRAE's Internet Home Page, http://www.ashrae.org, or in paper form from the Manager of Standards. The latest edition of an ASHRAE Standard and printed copies of a public review draft may be purchased from ASHRAE Customer Service, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. E-mail: orders@ashrae.org, Fax: 404-321-5478. Telephone: 404-636-8400 (worldwide), or toll free 1-800-527-4723 (for orders in the U.S. and Canada).

©1999 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

ISSN 1041-2336

Jointly sponsored by

Illuminating **Engineering Society** of North America AUTHORITY

120 Wall Street, 17th Floor, New York, NY 10005-4001

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS, INC. 1791 Tullie Circle, NE · Atlanta, GA 30329

The LIGHTING

·

LIFE CYCLE ANALYSIS

FOR

MAINE CRIMINAL JUSTICE ACADEMY

VASSALBORO, MAINE

·

DESIGN DEVELOPMENT SUBMISSION

February 18, 1999

ΒY

NEILL AND GUNTER INCORPORATED SCARBOROUGH, MAINE 04074 207-883-3355

FOR

PDT ARCHITECTS PORTLAND, MAINE

RECEIVED

JAN 1 9 2001

STATE OF MAINE BUREAU OF GENERAL SERVICES

24081

NEILL AND GUNTER INCORPORATED

Life Cycle Analysis Maine Criminal Justice Academy PDT Architects, Portland, Maine Design Development Submission

INDEX

SUBJECT	PAGE
Form "LCA-1"	1
Form "LCA-2"	22
Energy Consumption - By Component	3 - 9
Calculations and Back-up Data	Appendix A

. . . .

Index

Project: Maine Criminal Justice Academy

Prepared By: NEILL AND GUNTER INCORPORATED FILE: 24081/1 DATE: February 18, 1999

FORM "LCA-1"

B.2.0 Required Energy Items

State of Maine

Energy Conservation in Buildings

Building Name/Use: Maine Criminal Justice Academy

Location: Vassalboro, Maine

Date: February 18, 1999

1. Average Number of Occupants: 250

2. Degree Days: 8000 per year

Inside Design Temperature: 72⁰ F.
 Outside Design Temperature: -10^o F.

4. Building Area: 130,000 SF

Energy/Point of Use per Year

- 5. Lighting: 608,400
- 6. Heating: 23,908
- 7. Cooling: 27,344
- 8. Water Heating: 5,885
- 9. Equipment: 260,171
- 10. Other:* 0
- 11. Total energy:
- Yearly Energy Usage per Building Square Foot Area: 55.2 MBTU/Sq. Ft./Yr.

2,077,686 MBTU 3,299,372 MBTU 93,325 MBTU 812,175 MBTU 888,484 MBTU 0 MBTU 7,171,042 MBTU

kwh (100% efficiency)

kwh (100% efficiency)

kwh (100% efficiency)

not applicable

gal No.2 oil @ 100% efficiency

gal No.2 oil @100% efficiency

Project: Maine Criminal Justice Academy

PREPARED BY: NEILL AND GUNTER INCORPORATED FILE: 24081/1 DATE: February 18, 1999

FORM "LCA-2"

D.3.0 Life Cycle Cost-Benefit Analysis

State of Maine								
Discount Rate:	10%							
Column								
Identification	Α	В	C C	D	E			
Item	Estimated First	Estimated Life	UCR (P-A)	Salvage	(First Cost x			
	Cost (P)	(Yrs.)	Factor	Value	UCR) = A			
Site	\$1,800,000	30	1061	0	\$ 190,980			
Development	<u> </u>	•		8				
Building	\$3,440,000	30	1061	U	\$ 364,984			
Structure	£200.000	20	1061		£ 31.330			
Elevators	\$200,000	06	1001	Ŭ	♦ ۲۱٫۲۲۵			
Roofing	\$310 (#00	30	1061	0	\$ 32 891			
Mechanical	\$1 980 000	30	1061	0	<u>\$ 210 078</u>			
Electrical	\$1 140 000	30	1061	Q	\$ 120.954			
Built-in Equip	\$50,000	30	1061	0	\$ 5305			
					······································			
SUBTOTALS C	OLUMN "E"				\$ 946,412			
ESTIMATED T	OTAL CONSTRU	CTION COST =	= \$8,920,000					
Energy Amour	nt	Usage	Туре	An	inual Cost - Col. F			
10 5 (2		1) 	5(2)			
42,003 gail	IONS NO. Z	neating oil @1.0	U/gal (70% Efficient	$1 \operatorname{Cy}$ 542	,003 5 428			
095,915 K	WI Electri	$\operatorname{City}(\underline{w}, \underline{5}, \underline{14}, \mathbf{K}, \mathbf{W})$	n (Except for near	ing) 512	5,420			
Sewer					\$ -			
Insurance @ \$. 2	25/ sf				\$32,500			
Taxes (or loss of	taxes)				\$ -			
Maintenance and Repair @ \$.50/ sf								
Maintenance Contracts								
Other	Other \$-							
Total Uniform A	nnual Sum							
\$1,211,903								
Unitorm Annual	Sum/ SF	\$9.32						

Project: Maine Criminal Justice Academy

AIA Gross Square Feet = 130,000

PREPARED BY: NEILL AND GUNTER INCORPORATED FILE: 24081/1 DATE: February 18, 1999

HAND CALCULATION - BIN METHOD

Hand Calculation Method for Life Cycle Analysis

1. Lights, Miscellaneous Power Usages:

- A. KW Connected: 130,000 sf x 2.0 w/sf = 260.0 KW
- B. Usage: 10 hrs/day x 5 days/wk x 52 wks/yr = 2600 hrs/yr
- C. Diversity : 90%
- D. 260.0 KW x .9 = 234.0 KW
- E. 234.0 KW x 2600 hrs/yr = 608,400 KWH/yr
- 2. Heating System:
 - A. Air Distribution:
 - 1. Hp Connected : 40.0 HP (Average)
 - 2. $.746 \text{ KW/HP} \times 40.0 \text{ HP} = 29.84 \text{ KW}$

 - 4. Occupied: 168 Hrs/Month
 - 5. Unoccupied: 576 Hrs/Month
 - 6. Occupied KW:
 - a. 29.84 KW x .9 = 26.9 KW
 - b. 26.9 KW x 168 hrs/month x 12 months/yr = 54,230 KWH/yr
 - 7. Unoccupied KW:
 - a. $29.84 \text{ KW} \times .1 = 2.98 \text{ KW}$
 - b. 2.98 KW x 576 hrs/month x 12 months/yr = 20,598 KWH/yr
 - 8. Total KWH = 54,230 + 20,598 = 74,828 KWH/yr
 - B. Hot water distribution :
 - 1. HP Connected: 15.0 HP
 - 2. .746 KW/HP x 15.0 HP = 11.2 KW
 - C. Diversity: 100%

PROJECT: MAINE CRIMINAL JUSTICE ACADEMY

PREPARED BY: NEILL AND GUNTER INCORPORATED FILE: 24081/1 DATE: February 18, 1999

Continuous during the heating season. Hours of operation =744 hr/month

KWH: 744 hr/month x 11.2 KW X 9.0 months/yr = 74,995 KWH/yr

4. Total KWH = 74,828 KWH + 74,995 KWH = 149,823 KWH/yr

16

3. Exhaust fan system:

- A. Connected: 20.0 HP
- B. .746 KW/HP x 20.0 HP = 14.9 KW
- C. Occupied: 210 hrs/month
- D. Diversity: 100%
- E. 14.9 KW x 210 hrs/month x 12 months/yr = 37,548 KWH/yr

- -

- 4. Exterior Lighting:
 - A. Connected: 20.0 KW____
 - B. Usage: 70 hrs/wk x 52 wks/yr = 3,640 hrs/yr
 - $C_{20.0}$ KW x 3,640 hrs/yr = 72,800 KWH/yr

5. Air Conditioning:

A. Connected: 62.5 tons x 1.25 KW/ton x 350 equivalent full-load hours = 27,344 KWH

Totals

1.	Lights, Miscellaneous Power Usages	608,400 KWH/ут
2.	Heating System	149,823 KWH/yr
3.	Exhaust Fan System	37,548 KWH/yr
4.	Exterior Lighting	72,800 KWH/yr
5.	Air conditioning	27,344 KWH/yr
6.	Domestic water heating	KWH/yr
	TOTAL	895,915 KWH/yr

PROJECT: MAINE CRIMINAL JUSTICE ACADEMY

PREPARED BY: NEILL AND GUNTER INCORPORATED FILE: 24081/1 DATE: February 18, 1999

"UA" Calculation (See attached heating load calculation)

- 1. Total calculated heating transmission and infiltration load = 1,874,000 BTUH
- 2. South-facing glass = 2157 SF

Domestic Hot Water Use For Service Water Heating

1. 250 occupants x 13.0 gal/day per occupant x 8.33 lb/gal x 1.0 BTU/LB-⁰F. x 300 days per year x 1.25(standby losses) x 80⁰F = 812,175,000 BTU/yr / 138,000 btu/gal = 5885 gal/yr

5885 gal/yr of heating oil at 100% efficiency. 8408 gal/yr of heating oil at 70% efficiency

Outside Air Ventilation Requirements

1. The calculated minimum outside air for ventilation =

250 students x 15 cfm per occupant = 3750 CFM

Total heating (transmission, ventilation and infiltration) requirements

- 1. 3,299,372 MBTU/yr / 138.0 MBTU/gallon = 23,908 gal/yr @ 100% efficiency
- 2. OR 34,155 gal/yr @ 70% efficiency

(

•

.

APPENDIX "A" (BACK-UP CALCULATIONS)

8

PREPARED BY: NEILL AND GUNTER INCORPORATED FILE: 24081/1 DATE: February 18, 1999

MAINE CRIMINAL JUSTICE ACADEMY Vassalboro, Maine

Total calculated heating load = 3,909,097 BTUH (from load calculations) Ventilation preheat load = 279,495 BTUH (from load calculations) Ventilation reheat load = 109,924 BTUH (from load calculations) Total transmission and infiltration load = 1,874,000 BTUH BTUH/SF transmission + infiltration = 14.4 BTUH/SF

še i

Overall "UA" = 1874.0 MBTUH / 87°F. = 21.6 MBTUH / °F Ventilation load = 250 occupants x 15 cfm / student = 3750 CFM

Lighting = $2 \text{ W} / \text{SF} \times 130,000 \text{ SF} = 260.0 \text{ KW}$

South - facing glass = 2157 SF

Annual net heating load = 3,299,372 MBTU / yr. (BGS Calculation)

INPUT NAME OF BLDG Maine Criminal Justice Academy

SELECT REGION (1-SOUTHERN 2-CENTRAL 3-NORTHERN) 2 SELECT SCHEDULE (1-ELEMENTARY 2-HIGH SCHOOL, VOCATIONAL 3-OFFICE 4-OTHER) 4 INPUT VENTILATION CFM 3750 INPUT OVERALL (UA) FACTOR 21.6 INPUT OCCUPIED TEMPERATURE 72 INPUT UNOCCUPIED TEMPERATURE 65 INPUT SOUTH FACING GLASS AREA 2157 INPUT SHADING COEFFICIENT .6 INPUT U-FACTOR FOR SOLAR GLASS .6 INPUT KILOWATTS OF LIGHTING, MISC 260 INPUT DIVERSITY OF LIGHTING DURING OCCUPIED CYCLE .8 INPUT DIVERSITY FOR LIGHTING DURING UNOCCUPIED CYCLE .1 INPUT PEAK NO. OF OCCUPANTS 250 INPUT DIVERSITY OF OCCUPANTS DURING OCCUPIED CYCLE .8 INPUT DIVERSITY OF OCCUPANT DURING UNOCCUPIED CYCLE .5 INPUT SENSIBLE HEAT GAIN DUE TO OCCUPANTS (BTU/PERSON-HR) 255 INPUT INTERNAL HEAT GAIN ADJUSTMENT FACTOR (Fc) .95

HEATING LOAD NET LOAD	/	INTERNAL LOAD	/	SOI	lar loa	JD /		
(4) (2) (3) (4) (9a) (9a)	(5) (11a)	(6) (7) (12)	(8)	(9)	(10)	. (
14.2 -50.8 %21.600	%-1097.3	248 %-272125.	5 951.1	0.015	248	3552		
JAN_20.951.1 %25.669	%-1311.7	248 %-325295.	0 951.1	0.760	248	846		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-952.6	0 0.0	951. 1 0.	000	C	0.0		
<u>846.3</u> 0.00 18.2 -46.8 %21.600 .1 0.0 0.00	0.0 %-1010.9 0.0	248 %-250698. 247146.2	2 951.1	0.015	248	3552		
14.5 -50.5 %21.600	%-1090.8	224 %-244339.	2 951.1	0.015	224	3208		
.3 0.0 0.00 FEB 23.4 -48.6 %25.669	0.0 %-1247.5	241130.9 224 %-279440.	3 951.1	0.760	224	939		
.2 26.6 \$24982.75 23.4 -41.6 \$21.600	92537.2	0 0.0	951.1 0.	000	0	0.0		
939.2 0.00 20.4 -44.6 %21.600 0.0 0.00	0.0 -963.4 2 0.0	0.0 24 %-215792.7 212584.3	951.1	0.015	224	3208.3		
24.8 -40.2 %21.600	-868.3 2	48 %-215343.4	951.1	0.015	248	3552.1		
0.0 0.00 MAR 34.4 -37.6 %25.669	0.0 -965.1 2	211791.3 48 %-239356.0	951.1	0.760	248	742.1		
29.5 %21856.20 34.4 -30.6 %21.600	38230.8	0 0.0	951.1 0.	000	0	0.0		
742.1 0.00 30.3 -34.7 %21.600 0.0 0.00	0.0 -749.5 2 0.0	0.0 48 %-185881.0 182328.9	951.1	0.015 :	248	3552.1		
35.4 -29.6 %21.600	-639.4 2	40 %-153446.4	951.1	0.015	240	3437.5		
0.0 0.00 APR 46.5 -25.5 %25.669 28.5 %13673.90	0.0 -654.6 2 0.0	150008.9 40 %-157092.8	951.1	0.760	240	479.8		
				. •				1. 1
----------------------	--	----------------------	------------	------------------------------	-------	-------	-------	--------
		<u> </u>						
46.5	-18.5 %21.600	-399.6	0	0.0	951.1	0.000	0	0 0
479.8 41.0 0.	0.00 -24.0 %21.600 0 0.00	0.0 -518.4 0.0	240 1	0.0 %-124416.0 20978.5	951:1	0.015	240	3437.5
46.5	-18.5 %21.600	-399.6	248	-99100.8	951.1	0.015	248	3552.1
MAY 56.7	-15.3 %25.669	-392.7	95 248	-97397.5	951.1	0.760	248	331.2
56.7	-8.3 %21.600	-179.3	0	0.0	951.1	0.000	0	0.0
51.5 0.0	-13.5 %21.600 0.00	0.0 -291.6 0.0	248 68	-72316.8 764.7	951.1	0.015	248	3552.1
56.1	-8.9 %21.600	-192.2	240	-46137.6	951.1	0.015	240	3437.5
JUN 69.5	-2.5 %25.669	-64.2	42 240	-15401.3	951.1	0.760	240	325.4
69.5	4.5 %21.600	97.2	0	0.0	951.1	0.000	0	0.0
61.8 0.0	-3.2 %21.600 0.00	-69.1 0.0	240 13	-16588.8 151.3	951.1	0.015	240	3437.5
62.3	-2.7 %21.600	-58.3	248	-14463.4	951.1	0.015	248	3552.1
JUL 73.2	1.2 %25.669	30.8	248	7639.0	951.1	0.760	248	375.2
73.2	8.2 %21.600	177.1	0	0.0	951.1	0.000	0	0.0
66.3 0.0_	0.00 	28.1 0.0	248	6963.9 0.0	951.1	0.015	248	3552.1
60.6	-4.4 %21.600	-95.0	248	-23569.9	951.1	0.015	248	3552.1
AUG 72.2	0.2 %25.669	5.1	248 248	1273.2	951.1	0.760	248	540.9
72.2	7.2 %21.600	155.5	0	0.0	951.1	0.000	0	0.0
65.2 0.0	0.00 0.2 %21.600 0.00	4.3 0.0	248	1071.3 0.0	951.1	0.015	248	3552.1
52.6	-12.4 %21.600	-267.8	240	-64281.6	951.1	0.015	240	3437.5
SEP 60.6	-11.4 %25.669	-292.6	240	-70229.7	951.1	0.760	240	769.7
28.5	-4.4 %21.600	-95.0	0	0.0	951.1	0.000	0	0.0
769.7 56.3 0.0	0.00 -8.7 %21.600 0.00	0.0 -187.9 0.0	240 41	0.0 -45100.8 .663.3	951.1	0.015	240	3437.5
43.4	-21.6 %21.600	-466.6	248	%-115706.9	951.1	0.015	5 248	3552.1
0. OCT 52.5 29	.u 0.00 -19.5 %25.669 .5 %25886 40	0.0 -500.5	1 248	.⊥∠⊥54.8 %-124134.1	951.1	0.760	248	879.0
52.5 879 0	-12.5 %21.600	-270.0	0	0.0	951.1	0.000	0	0.0
47.2	-17.8 %21.600 0.00	-384.5 0.0	248 91	-95351.0 .799.0	951.1	0.015	248	3552.1
34.4	-30.6 %21.600	-661.0	240	%-158630.4	951.1	0.015	5 240	3437.5

0.0 0.00	0.0 1	55192.9				
NOV 40.6 -31.4 %25.669	-806.0 240	%-193439.7	951.1	0.760	240	702.6
28.5 %20022.86	0.0					
40.6 -24.4 %21.600	-527.0 0	0.0	951.1 0	.000	0	0.0
702.6 0.00	0.0	0.0				
36.5 -28.5 %21.600	-615.6 240	8-147744.0	951.1	0.015	240	3437.5
0.0 0.00	0.0 1	.44306.5				
19.9 -45.1 %21.600	-974.2 248	%-241591.7	951.1	0.015	248	3552.1
	0.0 2	238039.6	- 0-1 1	0 70	0 040	
DEC 25.6 -46.4 %25.669	8-1191.0 24	18 8-295375.	.5 951.1	. 0.760	J 248	740
	94289.9	0 0	0 - 1 1 0	000	0	0 0
25.6 -39.4 321.600	-851.0 0	0.0	951.1 0	.000	0	0.0
	-015 0 240	U.U 8.007108 3	951 1	0 015	248	2552 1
	-915.0 240	3-22/120.5 003576 3	227.7	0.015	240	3552.1
0.0 0.00	0.0 2	×.				
SOLAR RADIATION AVAILABLE	3879079	MBTU/YR				
SOLAR ENERGY UTILIZED =	113533.9 MB1	TU/YR				
HEAT LOSS DUE TO SOLAR AN	PERTURE = 272	2144.4 MBTU/Y	YR			
NET SOLAR GAIN = -158610 .	6 MBTU/YR	· · · · · · · · · · · · · · · · · · ·				
	,					
ENTER 3140762 ON LINE 6	OF FORM LCA-	-1				
ENTER (+) 1.220081 ON LI	NE 13 OF FORM	1 LCA-1				
(-)-1.220081 ON LINE 13	OF FORM LCA-	-1				
ANNUAL NET HEATING LOAD =	= 3299372 ME	BTU/YR				
			-			

- - - -

.

Trane Air Conditioning Economics By: C.D.S. MARKETING

**********	****	******	****	******	*****
******	****	******	*****	******	********
**					**
**	ΤR	ACE	600.	ANALYSIS	* =
**					**
**	ьу	C.D.S.	MARKETING		**
**					**
*****	****	******	******	******	*****
******	****	******	*****	****	*****

MAINE CRIMINAL JUSTICE ACADEMY
VASSALBORO, ME
PDT ARCHITECTS
SP DOEL "
FILE 24081

-- -----

.....

Weather File Code:	PORTLA	NM
Location:	PORTLA	ND, ME
Latitude:	44.0	(deg)
Longitude:	70.0	(deg)
Time Zone:	5	
Elevation:	61	(ft)
Barometric Pressure:	29.9	(in. Hg)
Summer Clearness Number:	1.02	
Winter Clearness Number:	1.02	
Summer Design Dry Bulb:	84	(F)
Summer Design Wet Bulb:	72	(F)
Winter Design Dry Bulb:	-15	(F)
Summer Ground Reflectance:	0.20	
Winter Ground Reflectance:	0.20	
Air Density:	0.0759	(Lbm/cuft)
Air Specific Heat:	0.2444	(Btu/lbm/F)
Density-Specific Heat Prod:	1.1128	(Btu-min./hr/cuft/F)
Latent Heat Factor:	4,898.6	(Btu-min./hr/cuft)

Enthalpy Factor: 4.5526 (Lb-min./hr/cuft) Design Simulation Period: June To November System Simulation Period: January To December Cooling Load Methodology: CLTD/CLF (Transfer Function Method)

Time/Date	Program	was	Run :	15:19:40	2/ 9/99
Dataset Na	ame:			24081	. TM

V 60 PAGE 1

%FLOW - ALTERNATIVE 1
LOAD CALCULATION

				- SYSTE	EM SU	MMARY						
				(Design A	Airflow Qu	antities)						
					Main			Auxil.	Room			
		Outsid	de Cool	ling He	ating	Return	Exhaust	Supply	Exhaust			
System	System	Airflo	ow Air:	flow Ai	irflow	Airflow	Airflow	Airflow	Airflow			
Number	Туре	(Cfr	π).((Cfm)	(Cfm)	(Cfm)	(Cfm)	(Cfm)	(Cfm)			
1	RAD	4,50	00	0	0	0	5,474	0	0			
2	VRH	2,00	00 23	,519	7,056	25,025	3,507	0	0			
3	SZ	2,00	00 4	,307	4,307	4,593	2,287	0	0			
4	RAD	8,00	00	0	0	0	9,134	0	0			
5	RAD	3,00	00	0	0	0	3,775	0	0			
6	RAD	1,00	00	0	0	0	1,210	0	0			
7	RAD	1,10	58	0	0	0	1,168	0	0			
Totals		21,60	58 27	,825 1	L1,362	29,619	26,556	0	0			
CAPACIT	Y - ALTE	ERNATIVE 1										
LOAD CA	LCULATIO	N										
					•							
					S '	YSTEM	SUMMAR	Y				
					(De	sign Capacit	y Quantitie	S)				
			Coo	ling				H	leating			
		Main Sys.	Aux. Sys.	Opt. Vent	Cooling	Main Sys.	Aux. Sys.	Preheat	Reheat	Humidif.	Opt. Vent	Heating
System	System	Capacity	Capacity	Capacity	Totals	Capacity	Capacity	Capacity	Capacity	Capacity	Capacity	Totals
Number	Туре	(Tons)	(Tons)	(Tons)	(Tons)	(Btuh)	(Btuh)	(Btuh)	(Btuh)	(Btuh)	(Btuh)	(Btuh)
1	RAD	0.0	0.0	0.0	0.0	-861,131	0	0	0	0	0	-861,131
2	VRH	52.7	0.0	0.0	52.7	-506,875	/ 0	-156,786	-109,924	0	` _0	-663,661
3	SZ	13.8	0.0	0.0	. 13.8	-322,919	0	-122,710	0	0	0	-322,919
4	RAD	0.0	0.0	0.0	0.0	-1,262,236	0	0	0	0	0	-1,262,236
5	RAD	0.0	0.0	0.0	0.0	-469,627	0	0	0	0	0	-469,627
б	RAD	0.0	0.0	0.0	0.0	-216,413	0	0	0	0	0	-216,413
7	RAD	0.0	0.0	0.0	0.0	-113,111	0	0	0	0	0	-113,111
Totals		66.5	. 0.0	0.0	66.5	-3,752,311	· * 0	-279,495	-109,924	0	0	23,909,097

The building peaked at hour 17 month 7 with a capacity of 66.4 tons

to TAR VENTILATION LOAD (HEATING)= 21, 668 cpn + 87°F. + 1,08= 2,036 MBH, TOTAL TRANSMISSION LOND (HEATING) -3,910 MBH - 7,036 MBH = 1874 MBH UA-1874/87=21.6

PEQ & Boiler CAYANTY.

By: C.D.S. MARKETING

.

;INEERING CHECKS - ALTERNATIVE 1 LOAD CALCULATION

•

 ENGINEERING	СНЕСК 5
•	

			Percent		Cool:	ing		Heating					
System	Main/	System	Outside	Cfm/	Cfm/	Sq Ft	Btuh/	Cfm/	Btuh/	Floor Area			
Number	Auxiliary	Туре	Air	Sq Ft	Ton	/Ton	Sq Ft	Sq Ft	Sq Ft	Sq Ft			
1	Main	RAD	0.00	0.00	0.0	0.0	0.00	0.00	-29.58	29,112			
2	Main	VRH	8.50	0.64	445.9	693.1	17.31	0.19	-18.15	36,562			
3	Main	SZ	46.44	1.29	312.5	242.7	49.45	1.29	-96.57	3,344			
4	Main	RAD	0.00	0.00	0.0	0.0	0.00	0.00	-42.22	29,897			
5	Main	RAD	0.00	0.00	0.0	0 0	0.00	0.00	-24.54	19,138			
6	Main	RAD	0.00	0.00	0.0	0.0	0.00	0.00	-59.32	3,648			
7	Main	RAD.	0.00	0.00	0.0	0.0	0.00	0.00	-9.68	11,683			
		• '											

.. _____

.

-

. _____

PAGE 3

STEM CHECKSUMS

.

System 1

a dense a stand se a

Block RAD - RADIATION HEATING SYSTEM

******	******	******* C	OOLING COIL	PEAK *****	*******	*******	******* CL	G SPACE	PEAK *****	****** <u>HE</u>	ATING COIL	PEAK *	******
Peaked at	: Time ==:	>	Mo/Hr:	0/ 0			* M	o/Hr: C)/o *		Mo/Hr: 1	13/ 1	
Outside A	Air ==>	OA	DB/WB/HR:	0/ 0/ 0.	0		*	OADB :	o *		OADB: ·	·15	
							*		*				
		Space	Ret. Air	Ret. Air	Net	Percnt	*	Space	Percnt *	Space P	eak Coil	Peak	Percnt
	S	ens.+Lat.	Sensible	Latent	Total	Of Tot	* Sen	sible	Of Tot *	Space S	ens Tot	Sens	Of Tot
Envelope	Loads	(Btuh)	(Btuh)	(Btuh)	(Btuh)	(%)	* (Btuh)	(%) *	(Bt	uh) (E	3tuh)	(%)
Skylite	e Solr	0	0		0	0.00	*	0	0.00 *		0	0	0.00
Skylite	e Cond	0	0		0	0.00	*	0	0.00 *		0	0	0.00
Roof Co	ond	0	0		0	0.00	*	0	0.00 *	-31,	659 -31	.,659	3.68
Glass S	Solar	0	0		0	0.00	*	0	0.00 *		0	0	0.00
Glass C	lond	0	0		0	0.00	*.	0	0.00 *	-104,	333 -104	i,333	12.12
Wall Co	ond	0	0		0	0.00	. .	0	0.00 *	-195,	124 -199	,124	22.66
Partiti	ion	0			0	0.00	*	0	0.00 *		0	0	0.00
Exposed	l Floor	° o			0	0.00	* * * * * * * *	0	0.00 *		0	0	0.00
Infiltr	ration	0			0	0.00	*	0	0.00 *	-94,	338 -94	,338	10,96
Sub Tot	al==>	0	0		0	0.00	*	0	0.00 *	-425,	454 -429	,454	49.41
Internal	Loads						*		*				
Lights		0	0		0	0.00	*	0	0.00 *		0	0	0.00
People		0			0	0.00	*	0	0.00 *		0	0	0.00
Misc		0	0	0	0	0.00	*	0	0.00 *		0	0	0.00
Sub Tot	al==>	0	0	. 0	0	0.00	*	0	0.00 *		0	0	0.00
`miling I	Load	0	0		0	0.00	*	0	0.00 *		0	0	0.00
.tside A	Air	0	0	0	0	0.00	*	0	0.00 *	-435,	676 -439	,676	50.59
Sup. Fan	Heat				0	0.00	*		0.00 *			0	0.00
Ret. Fan	Heat				0	0.00	*		0.00 *			0	0.00
Duct Heat	: Pkup				0	0.00	*		0.00 *			0	0.00
OV/UNDR S	Sizing	0			0	0.00	*	0	0.00 *		0	0	0.00
Exhaust H	leat		0	0	0	0.00	*		0.00 *			0	0.00
Terminal	Bypass		0	<u> </u>	0	0.00	*		0.00 *		`	0	0.00
							*		*			•	
Grand Tot	al==>	0	0	0	0	0.00	*	0	0.00 *	-861,	131 -863	.,131	100.00
			600		ET DOPTON						ADEAC		
	Total	Capacity	Sens Can	Coil Airfl	ELECIION Enteri:	na DB/WB/	ידה ביייין. שנו ג'שנו	aving DF	3/WB/HR	Gross To	tal Gla	ass (sf) (%)
	(Tons)	(Mbh)	(Mbh)	(cfm)	Deg F Deg	g F Grai	.ns Deg F	Deg F	Grains	Floor	29,112		,,
Main Clq	0.0	0.0	0.0	0	0.0	0.0 0	1.0 0.0	0.0	0.0	Part	0		
Aux Clq	0.0	0.0	0.0	0	0.0	0.0 0	.0 0.0	0.0	0.0	ExFlr	0		
Opt Vent	0.0	0.0	0.0	0	0.0	0.0 0	.0 0.0	0.0	0.0	Roof	7,278		0 0
Totals	0.0	0.0								Wall	12,992	1,7	78 14
	HEATING	G COIL SEL	ECTION		AI	RFLOWS (c	:fm)	E	NGINEERING	CHECKS	TEMPE	LATURES	(F)
	Capacity	Y Coil A	irfl Ent	Lvg	Type	Cooling	Heating	Clg	; * OA	0.0	Type	Clg	Htg
	(Mbh)	(cf	m) Deg F	Deg F	Vent	0	4,50	0 Clg	g Cfm/Sqft	0.00	SADB	0.0	72.1
Main Htg	-861.3	1	0 0.0	0.0	Infil	0	97	4 Clg	; Cfm/Ton	0.00	Plenum	0.0	72.0
Aux Htg	0.0	0	0 0.0	0.0	Supply	0		0 Clg	g Sqft/Ton	0.00	Return	0.0	72.0
Preheat	0.0	0	0 0.0	0.0	Mincím	, 0		0 Clg	; Btuh/Sqft	0.00	Ret/OA	0.0	72.0
Reheat	0.0	C	0 0.0	0.0	Return	0		0 No.	People	0	Runarnd	0.0	72.0
idif	0.0	0	0 0.0	0.0	Exhaust	0		0 Htg	¶ % 0A	0.0	Fn MtrTI	0.0	0.0
Opt Vent	0.0	D	0 0.0	0.0	Rm Exh	0		0 Htg	g Cfm/SqFt	0.00	Fn BldTi	0.0	0.0
Total	-861.3	1			Auxil	0		0 Htg	g Btuh/SqFt	-29.58	Fn Frict	: 0 .0	0.0

PAGE 4

PAGE 5

a construction of the second second

JTEM CH	IECKSUMS		System	2	Bloc	k VRH	- 1	ARIABI	LE VOLUMI	E WITH	H REHEAT				
******	*******	*******	COOLING	COIL	PEAK *****	*******	*******	*****	** CLG SI	PACE 1	PEAK *****	***** HEA	TING COIL E	•EAK **	*****
Peaked at	: Time ==:	>	Mo/	'Hr: 7	/17			*	Mo/H	r: 7,	/17 *		Mo/Hr: 13	/ 1	
Outside A	ir ==>	(DADB/WB/	HR: 8	2/ 71/ 98.	0		*	OADI	B: 82	2 *		OADB: -1	.5	
								*			*				
		Space	e Ret	. Air	Ret. Air	Net	Percnt	*	Spac	ce	Percnt *	Space Pe	ak Coil E	eak	Percnt
	S	ens.+Lat	. Sen	sible	Latent	Total	Of Tot	*	Sensib	le	Of Tot *	- Space Se	ns Tot S	Sens	Of Tot
Envelope	Loads	(Btuh) (Btuh)	(Btuh)	(Btuh)	(%)	*	(Btul	h)	(왕) *	 (Btu	h) (Bt	uh)	(%)
Skylite	Solr		c	0		0	0.00	*	•	0	0.00 *		0	0	0.00
- Skylite	e Cond		0	0		0	0.00	*		0	0.00 *		0	0	0.00 \
Roof Co	ond	37,67	8	0		37,678	5.95	*	37.6	78	8.00 *	-50,8	21 -50	821	8,91
Glass S	Solar	156,37	6	0		156,376	24.70	*	156.3	76	33.19 *		0	0	0.00
Glass C	Cond	11,51	5	0		11,515	1.82	*	11.5	15	2.44 *	-208.5	49 -208.	549	36.55
Wall Co	ond	79.05	2	0		79.052	12.49	*	79.0	52	16.78 *	-287.7	61 -287	761	50.44
Partiti	ion		0			0	0.00	*		0	0.00 *		0	0	0.00
Exposed	i Floor		- D			0	0 00	*	-	0	0.00 *		0	0	0 00
. Infiltr	ation		0			. 0	0.00	*		0	0.00 *	-145.8	94 -145	894	25.57
Sub Tot	al==>	284 62	- n	0		284 620	44 97	*	284 6	20	60.42 *	-693 (-693	025/	121 47
Internal	Loads	201,02	-	•		201,020		*	201,0	20	*				;
Lights		124,78	6	0		124,786	19.71	*	124,7	86	26.49 *		0	0	0.00
People		51,00	0			51,000	8.06	*	25,5	00	5.41 *		0	0	0.00
Misc		36,19	6	0	0	36,196	5.72	*	36,1	96	7.68 *		0	0	0.00
Sub Tot	al==>	211,98	2	0	0	211,982	33.49	*	186,4	82	39.58 *		0	¢	0.00
iling I	Load		0	0		0	0.00	*		0	0.00 *		0 16	M	0.00
.side A	Air		0	0	0	69,476	10.98	*		0	0.00 *		0 -193	6341	33.94
Sup. Fan	Heat					66,897	10.57	*			0.00 *			0	0.00
Ret. Fan	Heat			0		` 0	0.00	*			- 0.00 *			0	0.00
Duct Heat	. Pkup			0		0	0.00	*			0.00 *			0	0.00
OV/UNDR S	Sizing		0			0	0.00	*		0	0.00 *	316.1	.42 316	. 142	-55.41
Exhaust H	leat			0	0	0	0.00	*		-	0.00 *	,-		0	0.00
Terminal	Bypass			0	0	0	-0.00	*			0.00 *			0	0.00
								*			*		· · · ·	43	
Grand Tot	al==>	496,60	3	0	0	632,976	100.00	*	471,1	03	100.00 *	-376,8	382 (-570	,516	100.00 -
											-		×		
				COOL	ING COIL S	ELECTION							AREAS-		
	Total	Capacity	Sens	Cap.	Coil Airfl	Enteri	ng DB/WB,	/HR	Leavi	ng DB	/WB/HR	Gross Tot	al Gla	ss (sf) (3)
	(Tons)	(Mbh)	(Mc	h)	(cfm)	Deg F De	g F Gra	ins	Deg F D	eg F	Grains	Floor	36,562		
Main Clg	52.7	633.	0.55	1.8	23,519,	76.5 6	2.3 6:	1.6	55.4	53.1	56.6	Part	0		
Aux Clg	0.0	٥.	0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	ExFlr	0		
Opt Vent	0.0	Ο.	C	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	Roof	11,683		0 0
Totals	52.7	633.	C									Wall	20,092	3,5	54 18
		G COTT. S	et. Fortow	T		»T	DELONG (-f		5	NGINEEDING	CUTCKS	TEMPER	ATTRES	(F)
	Canacity	v Coil	Airfl	Fnt	Tva	Trme	Cooling	(יווג) עם			2 03	g c	Tyme	Cla	Hta
	(Mbb)	y COI1		Dog P		туре	2 000	ne	2 000		3 OA	0.5	supa 1990	58 0	120.0
Main Ura	(PDC1)				Leg :	vent	2,000		2,000		Cim/Sqrt	V.04 . 	Dianum	76.0	72 0
Main Htg	-506.	<i>z '4</i>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	55.4	120.0	INIII	0		1,507	C±g		140.8/	Pature	76.0	72.0
Aux Htg	0.1		U 0.000	0.0	0.0	supply	519,ذ2		1,056	CTB	Sqit/Ton		Recurn	10.0	12.0
rreneat	-156.	з <i>г</i> и :	2,000	-15.0	55.4	Mincfm	7,056		7,056	Clg	stun/Sqft	17.31	RET/UA	/6.5	4/.3
Reneat	-109.	у. -	,056	58.0	72.0	Return	23,519		8,562	No.	People	100	Kunarnd	76.0	72.0
dif	0.0	U	0	0.0	0.0	Exhaust	2,000		3,507	Htg	3 OA	28.3	Fn MtrTD	0.6	0.6
Opt Vent	0.3	0	0	0.0	0.0	Rm Exh	0		С	Htg	Cfm/SqFt	0.19	Fn BldTD	0.5	0.5
Total	-663.1	7 い				Auxil	0		0	Htg	Btuh/SqFt	-18.15	Fn Frict	1.4	1.4

-663.7 V

.

By: C.D.S. MARKETING

STEM CH	ECKSUMS	S	ystem	3 Peak	s sz	- 5	INGLE ZONE	SYSTEM					
*******	******	******** C	COLING COLI	. PEAK *****	********	********	******** CL4	G SPACE	PEAK *****	****** HEAT	ING COIL P	EAK **	*****
Peaked at	Time ==	•>	Mo/Hr:	7/16			* M	o/Hr: 7	r/18 *		Mo/Hr: 13	/ 1	
Outside A	ir ==>	OA	DB/WB/HR:	84/ 72/ 98.	0		* (DADB: 8	•		OADB: -1	5	
							*		*				
		Space	Ret. Air	Ret. Air	Net	Percnt	*	Space	Percnt *	Space Pea	k Coil P	eak	Percnt
	S	Sens.+Lat.	Sensible	e Latent	Total	l Of Tot	* Sen	sible	Of Tot *	Space Sen	s Tot S	ens	Of Tot
Envelope	Loads	(Btuh)	(Btuh)	(Btuh)	(Btuh)) (名)	* (1	Btuh)	(%) *	- (Btuh	.) (Bt	սհ)	(%)
Skylite	Solr	0	c)	(0.00	*	0	0.00 *		0	0	0.00
Skylite	Cond	0	c)	(0.00	*	0	0.00 *		0	0	0.00
Roof Co	nd	10,768	c)	10,768	6.51	*	9,848	11.42 *	-14,54	6 -14,	546	4.50
Glass S	olar	8,910	c)	8,910	5.39	*	9,405	10.90 *		0	0	0.00
Glass C	ond	1,782	c)	1,782	2 1.08	*	1,129	1.31 *	-29,04	7 -29,	047	9.00
Wall Co:	nd	11,785	c)	11,785	5 7.13	* 1	4,248	16.52 *	-57,92	5 -57,	925	17.94
Partiti	on	0			(o.do.	********	0	0.00 *		0	0	0.00
Exposed	Floor	O			(0.00	*	0	0.00 *		0	0	0.00
Infiltr	ation	0			(o.oo	*	0	0.00 *	-27,76	7 -27,	767	8.60
Sub Tota	al==>	33,244	C)	33,244	4 20.10	* 34	4,630	40.14 *	-129,28	5 -129,	285	40.04
Internal :	Loads						*		*				
Lights		22,826	c	}	22,826	5 13.80	* 23	2,826	26.46 *		0	0	0.00
People		51,000			51,000	30.84	* 2	5,500	29.56 *		0	0	0.00
Misc		3,311	C) 0	3,312	2.00	*	3,311	3.84 *		0	0	0.00
Sub Tot.	al==>	77,137	c) 0	77,13	7 46.65	* 5	1,637	59.86 *		0	0	0.00
Ceiling L	oad	0	c)	(0.00	*	0	0.00 *		0	0	0.00
:side A	ir	0	c) 0	51,153	1 30.93	*	0	0.00 *		0 -193,	634	59.96
Sup. Fan 1	Heat				3,828	3 2.32	*		0.00 *			0	0.00
Ret. Fan 1	Heat		C)	(0.00	*		0.00 *			0	0.00
Duct Heat	Pkup		C) .	(0.00	*		0.00 *			⁻ 0	0.00
OV/UNDR S	izing	0			(0.00	*	0	0.00 *		0	0	0.00
Exhaust H	eat		C) 0	(0.00	*		0.00 *			0	0.00
Terminal 3	Bypass		C) 0	(0.00	*		0.00 *			0	0.00
	_						*		*				
Grand Tota	al==>	110,381	C) 0	165,360	0 100.00	* 8	6,267	100.00 *	-129,28	5 -322,	919	100.00
											12210		
		·	COC	Coil Sing	ELECTION		·	PT	·····	Chase Tota	AREAS		(%)
	(Tona)	(Mbb)	Sens Cap.	(ofm)	Des R D	ing DB/WB/	AK Le	Dog E	Caning	Floor	2 344	5 (SL)	(*)
Main Cla	12 0			(CIIII)		eg F Grai		Deg r	65 7	PICOI	J, JTT		
Main Cig	13.0	105.4	105.4	4,307	/9.5			30.1	0.0	Farc	0		
Opt Vent	0.0	0.0	0.0	0	0.0			0.0	0.0	Roof	3 344		0 0
Totals	13.8	165 4	0.0	0	0.0	0.0		0.0	0.0	Wall	3.824	49	5 13
IUCAIS	13.0	, 105.4								harr	5,021		5 15
	HEATIN	G COIL SEL	ECTION		A	IRFLOWS (:fm)	=	NGINEERING	CHECKS	TEMPERA	TURES	(F)
	Capacit	v Coil A	irfl Ent	Lva	Type	Cooling	Heating	Clo	7 % OA	46.4	Туре	Clq	Htg
	(Mbh)	(cī	m) Deg 5	Deg F	Vent	2.000	2.00	0 Cla	Cím/Sait	1.29	SADB	58.0	99.0
Main Htg	-322	9 4.	307 31 6	99.0	Infil	, 0	28	7 Cla	Cfm/Ton	312.53	Plenum	76.0	72.0
Aux Htg	0.	0	0 0.0	0.0	Supply	4.307	4.30	 7 Cla	saft/Ton	242.67	Return	76.0	72.0
Preheat	-122	7 4.	307 31 6	57.2	Mincfm	0	-, 50	0 Cla	Btuh/Saft	49.45	Ret/CA	79.5	31.6
Reheat	0.	0	0 0.0	0.0	Return	4.307	4.59	 3 No.	People	100	Runarnd	76.0	72.0
.dif	0.	0	0 0.0	0.0	Exhaust	2,000	2,28	7 Hta	A S OA	46.4	Fn MtrTD	0.1	0.1
Vent	0.	0	0 0.0	0.0	Rm Exh	_,0	_, ~-	0 HEG	Cfm/SaFt	1.29	Fn BldTD	0.2	0.2
Total	- 322	9.			Auxil	n		0 HEG	Btuh/SaFt	-96.57	Fn Frict	0.5	0.5
		-}				Ŭ				. –			

PAGE 6

4

By: C.D.S. MARKETING

JTEM CHECKSUMS

System

Block RAD - RADIATION HEATING SYSTEM

*******	*******	****** C	COLING COIL	PEAK *****	********	*******	*****	** CLG SP	ACE	PEAK *****	***** HE	ATING COIL	PEAK *	******
Peaked at	t Time ==>		Mo/Hr:	0/0			*	Mo/Hr	: 0	/ 0 *	,	Mo/Hr: 1	3/ 1	
Outside A	Air ==>	OA	DB/WB/HR:	0/ 0/ 0.	0		*	OADB	:	0 *	,	OADB: -	15	
							*			*	,			
		Space	Ret. Air	Ret. Air	Net	Percnt	*	Spac	e	Percnt *	Space P	eak Coil	Peak	Percnt
	Se	ns.+Lat.	Sensible	e Latent	Total	Of Tot	*	Sensibl	e	Of Tot *	Space S	ens Tot	Sens	Of Tot
Envelope	Loads	(Btuh)	(Btuh)	(Btuh)	(Btuh)	(*)	*	(Btuh)	(%) *	. (Bt	uh) (B	tuh)	(움)
Skylit	e Solr	0	0		0	0.00	*		0	0.00 *	,	0	0	0.00
Skylit	e Cond	0	0	1	0	0.00	*		0	0.00 *	r	0	0	0.00
Roof C	ond	0	0	1	0	0.00	*		0	0.00 *	-33,	269 -33	,269	2.64
Glass :	Solar	0	0		0	0.00	*		0	0.00 *	r	0	0	0.00
Glass (Cond	0	0		0	0.00	*		0	0.00 *	-115,	717 -115	,717	9.17
Wall Co	ond	0	0	1	0	0.00	*.,•		0	0.00 *	-228,	880 -228	,880	18.13
Partit	ion	. 0			0	0.00	*		0	0.00 *	•	0	0	0.00
Expose	d Floor				0	0.00	* *		0	0.00 *	•	0	0	0.00
Infilt	ration	0			0	0.00	*		0	0.00 *	-109,	834 -109	,834	8.70
Sub To	tal==>	0	· 0	1	0	0.00	*		0	0.00 *	-487,	699 -487	,699	38.64
Internal	Loads						*				•			
Lights		0	o	i i i	0	0.00	*		0	0.00 *	•	0	0	0.00
People		0			0	0.00	*		0	0.00	•	0	0	0.00
Misc		0	0	0	0	0.00	*		0	0.00 *	•	0	0	0.00
Sub To	tal==>	0	o	0	0	0.00	*		0	0.00 *	•	0	0	0.00
'ling	Load	0	a	}	0	0.00	*		0	0.00	•	0	0	0.00
.side .	Air	0	0	0	0	0.00	*		0	0.00 *	-774,	536 -774	,536	61.36
Sup. Fan	Heat				0	0.00	*			0.00 ,	•		0	0.00
Ret. Fan	Heat		. 0		0	0.00	*			0.00 *	•		0	0.00
Duct Hea	t Pkup		0)	0	0.00	*			0.00 *	•		0	0.00
OV/UNDR	Sizing	0			0	0.00	*		0	0.00 *	•	0	0	0.00
Exhaust	Heat		0	0	0	0.00	*			0.00	•		0	0.00
Terminal	Bypass		0	0	0	0.00	*			0.00 *	•		0	0.00
							*			•	•			
Grand To	tal==>	0	0	0	0	0.00	*		0	0.00 '	-1,262,	236 -1,262	236	100.00
			COC	LING COIL S	ELECTION			• • • • • • • • • • • •				AREAS		
	Total C	apacity	Sens Cap.	Coil Airfl	. Enteri	ng DB/WB	HR .	Leavir	g DB	/WB/HR	Gross To	otal Gla	ıss (sf	(*)
	(Tons)	(Mbh)	(Mbh)	(cfm)	Deg F De	g F Gra	ins	Deg F De	g F	Grains	Floor	29,897		
Main Clg	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	Part	0		
Aux Clg	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	ExFlr	0		
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	Roof	7,648		0 0
Totals	0.0	0.0									Wall	15,126	1,9	72 13
	HEATING	COIL SEL	ECTION		AI	RFLOWS (:fm)		E	NGINÉERING	G CHECKS	TEMPER	ATURES	; (F)
	Capacity	Coil A	irfl Ent	Lvg	Туре	Cooling	He	ating	Clg	° OA	0.0	Type	Clg	Htg
	(Mbh)	(cf	m) Deg 7	Deg F	Vent	0		8,000	Clg	Cfm/Sqft	0.00	SADB	0.0	72.1
Main Htg	-1,262.2		0 0.0	0.0	Infil	0		1,134	Clg	Cfm/Ton	0.00	Plenum	0.0	72.0
Aux Htg	0.0		0 0.0	0.0	Supply	0		0	Clg	Sqft/Ton	0.00	Return	0.0	72.0
Preheat	0.0		0 0.0	0.0	Mincfm	0		0	Clg	Btuh/Sqft	0.00	Ret/OA	0.0	72.0
Reheat	0.0		0.0	0.0	Return	0		9,134	No.	People	0	Runarnd	0.0	72.0
lif	0.0		0 0.0	0.0	Exhaust	0		9,134	Htg	% OA	0.0	Fn MtrTI	0.0	0.0
Opt Vent	0.0		0 0.0	0.0	Rm Exh	0		0	Htg	Cfm/SqFt	0.00	Fn BldTI) 0.0	0.0
Total	-1,262.2				Auxil	0		0	Hog	Btuh/Sqft	-42.22	Fn Frict	. 0.0	0.0

. . . .

and a second

By: C.D.S. MARKETING

PAGE 8

die die maakkenmaksel

.EM CH	HECKSUMS	S	ystem S	5 Block	c RAD	- F	ADIATION H	EATING S	YSTEM				
•													
*******	******	****** C	OOLING COIL	PEAK *****	*******	******	****** CLA	S SPACE	PEAK *****	****** HEA	ATING COIL P	EAK **	*****
Peaked at	: Time ==>	•	Mo/Hr:	0 \0			* Mo	0/Hr: 0	/ 0 . *		Mo/Hr: 13	/ 1	
Outside A	Air ==>	OA	DB/WB/HR:	0/ 0/ 0.0	0		* (DADB :	• •		OADB: -1	5	
							*		. *				
		Space	Ret. Air	Ret. Air	Ne	t Percnt	* 5	Space	Percnt *	Space Pe	eak Coil P	eak	Percnt
	Se	ens.+Lat.	Sensible	Latent	Tota	l Of Tot	* Sens	sible	Of Tot *	Space Se	ens Tot S	ens	Of Tot
Envelope	Loads	(Btuh)	(Btuh)	(Btuh)	(Btuh	ı) (%)	* (1	Stuh)	(%) *	(Bti	ih) (Bt	uh)	(%)
Skylite	e Solr	0	0			0 0.00	*	0	0.00 *		0	0	0.00
Skylite	e Cond	0	0			0.00	*	0	0.00 *		0	0	0.00
Roof Co	ond	0	0			0 0.00	*	0	0.00 *	-58,6	455 -58,	455	12.45
Glass S	Solar	0	0			0 0.00'	*	0	0.00 *		0	0	0.00
Glass (Cond	0	. 0			0 0.00	*	0	0.00 *	-*	763 -	763	0.16
Wall Co	ond	0	0			0 0.00	*	0	0.00 *	-44,9	905 -44,	905	9.56
Partiti	ion	0				0 0.00	*	0	0.00 *		0	0	0.00
Exposed	d Floor					0 0.00		0	0.00 *		0	0	0.00
Infilt	ration	0				0 0.00	*	0	0.00 *	-75,0	053 -75,	053	15.98
Sub Tot	tal==>	0	0			0 0.00	*	0	0.00 *	-179,	176 -179,	176	38.15
Internal	Loads						* .		*				
Lights		0	0			0 0.00	*	0	0.00 *		0	0	0.00
People		0				0 0.00	*	0	0.00 *		0	0	0.00
Misc		0	0	0		0 0.00	*	0	0.00 *		0	0	0.00
Sub Tot	tal==>	0	. 0	0		0 0.00	*	0	0.00 *		0 .	0	0.00
∩ 'ling I	Load	0	0			0 0.00	*	0	0.00 *		0	0	0.00
,ide /	Air	Ö	0	0		0 0.00	*	0	0.00 *	-290,	451 -290,	451	61.85
Sup. Fan	Heat					0 0.00	*		0.00 *			0	0.00
Ret. Fan	Heat		0			0 0.00	*		0.00 *			0	0.00
Duct Heat	t Pkup		0			0 0.00	*		0.00 *			0	0.00
OV/UNDR S	Sizing	0				0 0.00	*	0	0.00 *		0	0	0.00
Exhaust H	Heat		0	0		0 0.00	*	•	0.00 *			0	0.00
Terminal	Bypass		0	0		0 0.00	*		0.00 *		•	0	0.00
							*		*				
Grand Tot	tal==>	0	0	0		0 0.00	*	0	0.00 *	-469,	627 -469,	627	100.00
			COO	LING COIL SI	ELECTION						AREAS		
	Total (Capacity	Sens Cap.	Coil Airfl	Enter	ing DB/WB,	'HR Le	aving DB	8/WB/HR	Gross To	tal Glas	s (sf) (%)
	(Tons)	(Mbh)	(Moh)	(cím)	Deg F D	eg F Gra	ns Deg F	Deg F	Grains	Floor	19,138		
Main Clg	0.0	0.0	0.0	0	0.0	0.0	0.0 0.0	0.0	0.0	Part	0		
Aux Clg	0.0	0.0	0.0	0	0.0	0.0	0.0 0.0	0.0	0.0	ExFlr	0		
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	Roof	13,438		0 0
Totals	0.0	0.0								Wall	10,336		13 0
	HEATING	G COIL SEL	ECTION		A	AIRFLOWS (:fm)	E	NGINEERING	CHECKS	TEMPERA	TURES	(F)
	Capacity	Y Coil A	irfl Ent	Lvg	Туре	Cooling	Heating	Clg	* 0A	0.0	Type	Clg	Ħtg
	(Mbh)	(cf	m) Deg F	Deg F	Vent	0	3,00	0 Clg	g Cfm/Sqft	0.00	SADB	0.0	72.1
Main Htg	-469.6	5	0.0	0.0	Infil	0	77	5 Clg	Cfm/Ton	0.00	Plenum	0.0	72.0
Áux Htg	0.0	D	0 0.0	0.0	Supply	0		0 Clg	y Sqft/Ton	0.00	Return	0.0	72.0
Preheat	0.0	0	0 0.0	0.0	Mincfm	0		0 Clg	; Btuh/Sqft	0.00	Ret/OA	0.0	72.0
Reheat	0.0	D	0 0.0	0.0	Return	0		0. No.	People	0	Runarnd	0.0	72.0
: lif	0.0	0	0 0.0	0.0	Exhaust	0		0 Hig	; * 0A	0.0	Fn MtrTD	0.0	0.0
Opt Vent	0.0	D	0.0	0.0	Rm Exh	0		0 Htg	r Cfm/SqFt	0.00	Fn BldTD	0.0	0.0
Total	-469.6	5			Auxil	· 0		0 Htg	g Btuh/SgFt	-24.54	Fn Frict	0.0	0.0

0

0.0

-216.4

Ope Vent

Total

0.0

0.0

Rm Exh

Auxil

0

0

Htg Cfm/SqFt

Htg Btuh/SqFt

0

0

0.00

-59.32

Fn BldTD

Fn Frict

GE 9

0.0

C.O

0.0

0.0

and the second second

By: C.D.S	S. MARKET	ING												PA	.GE 9
TEM C	HECKSUMS		Syste	m 6	5 Bloc	k RAD)	- RAD	IATION HE	ATING S	YSTEM				
********	******	******	COOLI	NG COIL	PEAK *****	******	*****	******	***** CLG	SPACE 1	PEAK *****	****** HEA	TING COIL	PEAK *	******
Peaked at	t Time ==	•>	м	o/Hr: (o/ o			*	Mo	/Hr: 0,	/ 0 *		Mo/Hr: 1	3/ 1	
Outside A	Air ==>		OADB/W	B/HR:	0/ 0/ 0.	0		*	02	ADB: () *		OADB: -	15	
								*			*				
		Space	e R	et. Air	Ret. Air	Ne	et Pe	rcnt *	St	ace	Percnt *	Space Pe	ak Coil	Peak	Percnt
	s	ens.+Lat	. s	ensible	Latent	Tota	al Of	Tot *	Sensi	ible	Of Tot *	Space Se	ns Tot	Sens	Of Tot
Envelope	Loads	(Btuh)	(Btuh)	(Btuh)	(Btuh	ר)	(%) *	(Bt	uh)	(%) *	. ~ (Btu	h) (B	tuh)	(%)
Skylite	e Solr		0	0			0	0.00 *		0	0.00 *		0	0	0.00
Skylite	e Cond	·	0	0			0	0.00 *		0	0.00 *		0	0	0.00
Roof Co	ond		0	0		•	0	0.00 *		0.	0.00 *	-15,8	69 -15	,869	7.33
Glass S	Solar		0	0			0	0.00 *		0	0.00 *		0	0	0.00
Glass (Cond		0	0			0	0.00 +		0	0.00 *	-49,2	91 -49	,291	22.78
Wall Co	ond		0	0			0	0.00 +		0	0.00 *	-34,1	.04 -34	,104	15.76
Partit	ion	•	0				0	0.00 +		0	0.00 *		0	0	0.00
Exposed	d Floor		0				0	0.00 *	· . ·	0	0.00 *		0	0	0.00
Infilt	ration		0				0	0.00 *		0	0.00 *	-20,3	-20	,332	9.39
Sub Tot	tal==>		0	0			0	0.00 *		0	0.00 *	-119,5	96 -119	,596	55.26
Internal	Loads							*			*				
Lights			0	0			0	0.00 *		0	.0.00 *		0	0.	0.00
People			0				0	0.00 *		0	0.00 *		0	0	0.00
Misc			0	0	0		0	0.00 *		0	0.00 *		0	0	0.00
Sub Tol	tal==>		0	0	0		0	0.00 *		0	0.00 *	- .	0	0	0.00
Chiling 1	Load		0	0			0	0.00 *		0	0.00 *		0	0	0.00
side i	Air		0	0	0		0	0.00 *		0	0.00 *	-96,8	317 -96	,817	44.74
Sup. Fan	Heat						0	0.00 *		· · ·	0.00 *			0	0.00
Ret. Fan	Heat			0			0	0.00 *						0	0.00
OV/UNDE	c PRup		0	U			0	0.00 -		0	0.00 *		•	0	0.00
Expanse 1	Sizing Vest		0	0	0		0	0.00 *		0	0.00 *		0	0	0.00
Terminal	Bymass			0	0		0	0.00 *			0.00 *			ů 0	0.00
rerminar	Dibass			Ū	v		Ū	*			*		·· `	Ŭ	0.00
Grand Tol	tal==>		0	0	0		0	0.00 *		0	0.00 *	-216,4	113 -216	,413	100.00
					LING COTL S	ELECTION-							AREAS-		
	Total	Capacity	Sen	s Cap.	Coil Airfl	Enter	ring D	B/WB/HR	Lea	ving DB	/WB/HR	Gross Tot	al Gla	ss (st	E) (%)
	(Tons)	(Mbh)	(Mbh)	(cfm)	Deg F I	Dea I	Grains	Deg F	Deg F	Grains	Floor	3,648		
Main Clg	0.0	0.	0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	Part	o		
Aux Clg	0.0	ο.	0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	ExFlr	. 0		
Opt Vent	0.0	Ο.	0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	Roof	3,648		0 0
Totals	. 0.0	0.	0									Wall	2,800	8	340 30
	HEATIN	G COIL S	ELECTI	ON			AIRFLO	WS (cfm	1)	E	NGINEERING	CHECKS	TÉMPER	ATURES	5 (F)
	Capacit	y Coil	Airfl	Ent	Lvg	Type	Coo	ling	Heating	Clg	°r oa	0.0	Туре	Clg	Htg
	(Mbh)	(cfm)	Deg F	Deg F	Vent		0	1,000	Clg	Cím/Sqft	0.00	SADB	0.0) 72.1
Main Htg	-216.	4	0	0.0	0.0	Infil		0	210	Clg	Cfm/Ton	0.00	Plenum	0.0) 72.0
Aux Htg	0.	0	0	0.0	0.0	Supply		0	0	Clg	Sqft/Ton	0.00	Return	0.0) 72.0
Preheat	0.	0	0	0.0	0.0	Mincím		0	0	Clg	Btuh/Sqft	0.00	Ret/OA	0.0	j 72.0
Reheat	0.	0	0	0.0	0.0	Return		0	. 0	No.	People	0	kunarnd	0.0	J 72.0
dif	0.	0	0	0.0	0.0	Exhaust		0	0	Htg	¥ OA	0.0	fn MtrTD	0.0	7 · 0.0

BY: C.D.S. MARKE	IING										P.	AGE 10
RYSTEM CHECKSUMS	S	ystem 7	Block	RAD	- F	ADIAT	ION HEATING	SYSTEM				
*******	******** C(OOLING COIL	PEAK ******	*******	******	*****	** CLG SPAC	E PEAK ***	***	***** HEATING	COIL PEAK	******
Peaked at Time ==	=>	Mo/Hr: 0	/ 0			*	Mo/Hr:	0/ 0	*	Mc)/Hr: 13/ 1	
Outside Air ==>	OAI	DB/WB/HR:	0/ 0/ 0.0			*	OADB:	0	*	c	ADB: -15	
						*			*			
	Space	Ret. Air	Ret. Air	Net	Percnt	*	Space	Percnt	*	Space Peak	Coil Peak	Percnt
2	Sens.+Lat.	Sensible	Latent	Total	Of Tot	*	Sensible	Of Tot	*	Space Sens	Tot Sens	Of Tot
Envelope Loads	(Btuh)	(Btuh)	(Btuh)	(Btuh)	(%)	*	(Btuh)	(%)	* -	(Btuh)	(Btuh)	(%)
Skylite Solr	0	0		0	0.00	*	0	0.00	*	0	0	0.00
Skylite Cond	0	0		0	0.00	*	0	0.00	*	0	0	0.00
Roof Cond	0	0		. 0	0.00	*	0	0.00	*	0	0	0.00
Glass Solar	0	0		0	0.00	*	0	0.00	*	0	0	0.00
Glass Cond	0	0		0	0.00	*	0	0.00	*	0	0	0.00
Wall Cond	0	0		0	0.00	•	0	0.00	*	0	0	0.00
Partition	0			0	0.00	.*	0	0.00	*	0	0	0.00
Exposed Floor	0			0	01-00	*	0	0.00	*	0	0	0.00
Infiltration	0			0	0.00	*	΄ Ο	0.00	*	0	0	0.00
Sub Total==>	0	0		0	0.00	*	0	0.00	*	0	0	0.00
Internal Loads						*			*			
Lights	0	0		0	0.00	*	0	0.00	*	0	0	0.00
People	0			0	0.00	*	0	0.00	*	0	0	0.00
Misc	0	0	0	0	0.00	*	0	0.00	*	0	0	0.00
Sub Total==>	0	0	0	0	0.00	*	0	0.00	*	0	0	0.00
Ceiling Load	0	0		0	0.00	* .	0	0.00	*	0	0	0.00
<i>`utside Air</i>	0	0	0	0	0.00	*	0	0.00	*	-113,111	-113,111	100.00
up. Fan Heat				0	0.00	*		0.00	*		0	0.00
Ret. Fan Heat		0		0	0.00	*		0.00	*		0	0.00
Duct Heat Pkup		0		0	0.00	*		0.00	*		0	0.00
OV/UNDR Sizing	0			0	0.00	*	0	0.00	*	0	0	0.00
Exhaust Heat		0	0	0	0.00	*		0.00	*		0	0.00
Terminal Bypass		0	0	0	0.00	*		0.00	*		0	000
						*			*		۰.	
Grand Total==>	0	0	0	0	0.00	*	0	0.00	*	-113,111	-113,111	100.00

			c(XOLING COIL SH			AR	EAS		-					
	Total	Capacity	Sens Cap	. Coil Airfl	Ent	ering D	B/WB/HR	Lea	wing DE	/WB/HR	Gross	Total	Glass (sf)	(%)	
	(Tons)	(Mbh)	(Mbh)	(cfm)	Deg F	Deg F	Grains	Deg F	Deg F	Grains	Floor	11,683			
Main Clg	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	Part	0			
Aux Clg	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	ExFlr	0			
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	Roof	0	() (С
Totals	0.0	0.0									Wall	0	(o (с

	HEATING (COIL SELECTIO	N		A	IRFLOWS (cî	n) (n	ENGINEERING C	HECKS	TEMPERA	TURES	(F)
	Capacity	Coil Airfl	Ent	Lvg	Туре	Cooling	Heating	Clg % OA	0.0	Туре	Clg	Htg
	(Mbh)	(cím)	Deg F	Deg F	Vent	0	1,168	Clg Cfm/Sqft	0.00	SADB	0.0	72.1
Main Htg	-113.1	0	0.0	0.0	Infil	0	0	Clg Cfm/Ton	0.00	Plenum	0.0	72.0
Aux Htg	0.0	0	0.0	0.0	Supply	0	0	Clg Sqft/Ton	0.00	Return	0.0	72.0
Preheat	0.0	0	0.0	0.0	Mincfm	0	0	Clg Btuh/Sqft	0.00	Ret/OA	0.0	72.0
Reheat	0.0	0	0.0	0.0	Return	C	0	No. People	0	Runarnd	0.0	72.0
Humidif	0.0	0	0.0	0.0	Exhaust	0	0	Htg % OA	0.0	Fn MtrTD	0. 0	0.0
Vent	0.0	0	0.0	0.0	Rm Exh	0	0	Htg Cfm/SgFt	0.00	Fn BldTD	0.0	3.0
Total	-113.1				Auxil	0	0	Htg Btuh/SqFt	-9.68	Fn Frict	0.0	0.0

Zone System

System

IN SYSTEM COOLING - ALTERNATIVE 1 _JAD CALCULATION

3 Block 7/18 80 69 76 58.0

. .

. پر بین بر جا

					H	PEAK (COOLIN	G LO	ADS					
							(Main Syste	m)						
						Space	e					Coil		
		Peak	OA	Rm	Supp.	Space	Space	Space	Peak	OA F	m Supp.	Coil	Coil	Coil
		Time	Cond.	Dry	Dry	Air	Sens.	Lat.	Time	Cond. Dr	y Drý	Air	Sens.	Lat.
Room		Mo/Hr	DB/WB	Blb	Bulb	Flow	Load	Load	Mo/Hr	DB/WB B1	b Bulb	Flow	Load	Load
Number	Description		(F)	(F)	(F)	(Cfm)	(Btuh)	(Btuh)		(F) (F) (F)	(Cfm)	(Btuh)	(Btuh)
2	OWEN HALL	7/17	82 71	76	58.0	23,519	471,103	25,500	7/17	82 71 7	6 58.0	23,519	551,799	81,177
Zone	2 Total/A	ve.	82 71	76	58.0	23,519	471,103	25,500		82 71 7	6 58.0	23,519	551,799	81,177
Zone	2 Block	7/17	82 71	76	58.0	23,519	471,103	25,500	7/17	82 71 7	6 58.0	23,519	551,799	81,177
System	2 Total/A	ve.	82 71	76	58.0	23,519	471,103	25,500		82 71 7	6 58.0	23,519	551,799	81,177
System	2 Block	· 7/17	82 71	76	58.0	23,519	471,103	25,500	7/17	82 71 7	6 58.0	23,519	551,799	81,177
3	AUDITORIUM	7/18	80 69	76	58.0	4,307	86,267	25,500	7/16	84 72 7	6 58.3	4,307	105,402	59,959
Zone	3 Total/A	ve.	80 69	76	58.0	4,307	86,267	25,500		84 72 7	6 58.3	4,307	105,402	59,959

3 Total/Ave. 80 69 76 58.0 4,307 86,267 25,500 84 72 76 58.3 4,307 105,402 59,959

3 Block 7/18 80 69 76 58.0 4,307 86,267 25,500 7/15 84 72 76 58.3 4,307 105,402 59,959

· · · ·

نوية بتجا

4,307 86,267 25,500 7/16 84 72 76 58.3 4,307 105,402 59,959

. . .

By: C.D.S. MARKETING

N SYSTEM HEATING - ALTERNATIVE 1 LOAD CALCULATION

and the second second second

			P	EAK	К НЕА	TING	LOADS						
			,		(Mair	ı System)							
					Space						Coil		
			Peak OA	Rm	Supp.	Space	Space	Peak	OA	Rm	Supp.	Coil	Coil
		Floor	Time Cond.	Dry	Dry	Air	Sens.	Time	Cond.	Dry	Dry	Air	Sens.
Room	L	Area	Mo/Hr DB/WB	Blb	Bulb	Flow	Load	Mo/Hr	DB/WB	Blb	Bulb	Flow	Load
Number	Description	(Sq Ft)	(F)	(F)	(F)	(Cfm)	(Btuh)		(F)	(F)	(F)	(Cfm)	(Btuh)
1	BRIGGS HALL	29,112	13/ 1 -15 -15	72	72.1	0	-861,131	13/ 1	-15 -15	72	72.1	0	-861,131
Zone	1 Total/Ave.	29,112	-15 -15	72	72.1	ju 0	-861,131		-15 -15	72	72.1	0	-861,131
Zone	1 Block	29,112	13/ 1 -15 -15	72	72.1	0	-861,131	13/ 1	-15 -15	72	72.1	0	-861,131
System	1 Total/Ave.	29,112	-15 -15	72	72.1	Ö	~861,131		-15 -15	72	72.1	0	-861,131
System	1 Block	29,112	13/ 1 -15 -15	72	72.1	0	~861,131	13/ 1	-15 -15	72	72.1	0	-861,131
2	OWEN HALL	36,562	13/ 1 -15 -15	72	120.0	7,056	-376,882	13/ 1	-15 -15	72	120.0	7,056	-506,875
Zone	2 Total/Ave.	36,562	-15 -15	72	120.0	7,056	-376,882		-15 -15	72	120.0	7,056	-506,875
Zone	2 Block	36,562	13/ 1 -15 -15	72	120.0	7,056	-376,882	13/ 1	-15 -15	72	120.0	7,056	-506,875
System	2 Total/Ave.	36,562	-15 -15	72	120.0	7,056	-376,882		-15 -15	72	120.0	7,056	-506,875
System	2 Block	36,562	13/ 1 -15 -15	72	120.0	7,056	-376,882	13/ 1	-15 -15	72	120.0	7,056	-506,875
3	AUDITORIUM	3,344	13/ 1 -15 -15	72	99.0	4,307	-129,285	13/ 1	-15 -15	72	99.0	4,307	-322,919
Zone	3 Total/Ave.	3,344	-15 -15	72	99.0	4,307	-129,285		-15 -15	72	99.0	4,307	-322,919
7ne	3 Block	3,344	13/ 1 ~15 -15	72	99.0	4,307	-129,285	13/ 1	-15 -15	72	99.0	4,307	-322,919
zem	3 Total/Ave.	3,344	-15 -15	72	99.0	4,307	-129,285		-15 -15	72	99.0	4,307	-322,919
System	3 Block	3,344	13/ 1 -15 -15	72	99.0	4,307	-129,285	13/ 1	-15 -15	72	99.0	4,307	-322,919
4	SENIOR HALL	29,897	13/ 1 -15 -15	72	72.1	0	-1,262,236	13/ 1	-15 -15	72	72.1	0 -	1,262,236
Zone	4 Total/Ave.	29,897	-15 -15	72	72.1	0	-1,262,236		-15 -15	72	72.1	0 -	1,262,236
Zone	4 Block	29,897	13/ 1 -15 -15	72	72.1	0	-1,262,236	13/ 1	-15 -15	72	72.1	0 -	1,262,236
System	4 Total/Ave.	29,897	-15 -15	72	72.1	0	-1,262,236		-15 -15	72	72.1	0 -	1,262,236
System	4 Block	29,897	13/ 1 -15 -15	72	72.1	0	-1,262,236	13/ 1	-15 -15	72	72.1		1,262,236
5	SPECIAL TRAINING	19,138	13/ 1 -15 -15	72	72.1	0	-469,627	13/ 1	-15 -15	72	72.1		-469,627
Zone	5 Total/Ave.	19,138	-15 -15	72	72.1	0	-469,627		-15 -15	72	72.1	0	-469,627
Zone	5 Block	19,138	13/ 1 -15 -15	72	72.1 [.]	0	-469,627	13/ 1	-15 -15	72	72.1	0	-469,627
System	5 Total/Ave.	19,138	-15 -15	72	72.1	0	-469,627		-15 -15	72	72.1	0	-469,627
System	5 Block	19,138	13/ 1 -15 -15	72	72.1	0	-469,627	13/ 1	-15 -15	72	72.1	0	-469,627
6	GYMNASIUM	3,648	13/ 1 -15 -15	72	72.1	0	-216,413	13/ 1	-15 -15	72	72.1	0	-216,413
Zone	6 Total/Ave.	3,648	-15 -15	72	72.1	0	-216,413		-15 -15	72	72.1	0	-216,413
Zone	6 Block	3,648	13/ 1 -15 -15	72	72.1	0	-216,413	13/ 1	-15 -15	72	72.1	0	-216,413
System	6 Total/Ave.	3,648	-15 -15	72	72.1	0	-216,413		-15 -15	72	72.1	0	-216,413
System	6 Block	3,648	13/ 1 -15 -15	72	72.1	0	-216,413	13/ 1	-15 -15	72	72.1	0	-216,413
7	OWENS BASEMENT	11,683	13/ 1 -15 -15	72	72.1	0	-113,111	13/ 1	-15 -15	72	72.1	0	-113,111
Zone	7 Total/Ave.	11,683	-15 -15	72	72.1	0	-113,111		-15 -15	72	72.1	0	-113,111
Zone	7 Block	11,683	13/ 1 -15 -15	72	72.1	0	-113,111	13/ 1	-15 -15	72	72.1	0	-113,111
System	7 Total/Ave.	11,683	-15 -15	72	72.1	0	-113,111		-15 -15	72	72.1	0	-113,111
System	7 Block	11,583	13/ 1 -15 -15	72	72.1	0	-113,111	13/ 1	-15 -15	72	72.1	0	-113,111

PAGE 12

ÿ

•

ING LOADS AT COIL PEAK - ALTERNATIVE 1 LOAD CALCULATION

----- INTERNAL COOLING LOADS------. (At time of Coil Peak)

			Lights	Lights					Misc.	Misc.	Misc.
			Room	Ret. Air	Lites	People	People	Peopl	Space	Space	Ret. Air Misc.
Room			Sensible	Sensible	CLF	Sensible	Latent	CLF	Sensible	Latent	Sensible CLF
Number	Desc	ription	(Btuh)	(Btuh)		(Btuh)	(Btuh)		(Btuh)	(Btuh)	(Btuh)
2	OWEN	HALL	124,786	0	1.000	25,500	25,500	1.000	36,196	0	0 0.990
Zone	2	Total/Ave.	124,786	0	1.000	25,500	25,500	1.000	36,196	0	0 0.990
Zone	2	Block	124,786	0	1.000	25,500	25,500	1.000	36,196	0	0 0.990
System	2	Total/Ave.	124,786	0	1.000	25,500	25,500	1.000	36,196	0	0 0.990
System	2	Block	124,786	0	1.000	25,500	25,500	1.000	36,196	0	0 0.990
3	AUDIT	ORIUM	22,826	0	1.000	25,500	25,500	1 .000	3,311	0	0 0.990
Zone	3	Total/Ave.	22,826	0	1.000	25,500	25,500	1.000	3,311	0	0 0.990
Zone	3	Block	22,826	0	1.000	25,500	25,500	1.000	3,311	0	0 0.990
System	3	Total/Ave.	22,826	0	1.000	25,500	25,500	1.000	3,311	0	0 0.990
System	3	Block	22,826	0	1.000	25,500	25,500	1.000	3,311	0	0 0.990

COOLING LOADS AT SPACE PEAK - ALTERNATIVE 1 LOAD CALCULATION

-----INTERNAL COOLING LOADS -----

(At time of Space Peak)

Room Number	Desc		Lights Room Sensible (Btuh)	Lights Ret. Air Sensible (Btuh)	Lites	People Sensible (Btuh)	People Latent (Btuh)	Peopl CLF	Misc. Space Sensible (Btuh)	Misc. Space Latent (Btuh)	Misc. Ret. Air Misc. Sensible CLF (Btuh)
2	OWEN	HALL	124,786	0	1.000	25,500	25,500	1.000	36,196	0	0 0.990
Zone	2	Total/Ave.	124,786	. 0	1.000	25,500	25,500	1.000	36,196	0	0 0.990
Zone	2	Block	124,786	0	1.000	25,500	25,500	1.000	36,196	0	0 0.990
System	2	Total/Ave.	124, 786	0	1.000	25,500	25,500	1.000	36,196	0	0 0.990
System	2	Block	124,786	0	1.000	25,500	25,500	1.000	36,196	0	0 0.990
3	AUDIT	ORIUM	22,826	0	1.000	25,500	25,500	1.000	3,311	0	0 0.990
Zone	3	Total/Ave.	22,826	0	1.000	25,500	25,500	1.000	3,311	0	0 0.990
Zone	3	Block	22,826	0	1.000	25,500	25,500	1.000	3,311	0	0 0.990
System	3	Total/Ave.	22,826	0	1.000	25,500	25,500	1.000	3,311	0	0 0.990
System	3	Block	22,826	0	1.000	25,500	25,500	1.000	3,311	0	0 0.990

•

and the second second

.

By: C.D.S. MARKETING

.

.

ATING LOADS AT COIL PEAK - ALTERNATIVE 1 LOAD CALCULATION

(At time of Coil Peak)

		Lights	Lights				Misc.	Misc.	
		Room	Ret. Air	Lites	People	Peopl	Space	Ret. Air	Misc.
Room	×	Sensible	Sensible	CLF	Sensible	CLF	Sensible	Sensible	CLF
Number	Description	(Btuh)	(Btuh)		(Btuh)		(Btuh)	(Btuh)	
1	BRIGGS HALL	0	0	0.000	0	0.000	0	0	0.000
Zone	1 Total/Ave.	0	0	0.000	0	0.000	0	0	0.000
Zone	1 Block	0	0	0.000	0	0.000	0	0	0.000
System	1 Total/Ave.	0	0	0.000	0	0.000	0	0	0.000
System	1 Block	0	0	0.000	o`	0.000	0	0	0.000
2	OWEN HALL	0	0	0.000	0	0.000	0	0	0.000
Zone	2 Total/Ave.	0	0	0.000	0	0.000	0	0	0.000
Zone	2 Block	0	0	0.000	0	0.000	0	0	0.000
System	2 Total/Ave.	0	0	0.000	0	0.000	0	0	0.000
System	2 Block	0	0	0.000	0	0.000	0	0	0.000
3	AUDITORIUM	0	0 [°]	0.000	0	0.000	0	0	0.000
Zone	3 Total/Ave.	0	0	0.000	0	0.000	0	0	0.000
~⊃ne	3 Block	0	0	0.000	0	0.000	0	0	0.000
stem	3 Total/Ave.	0	0	0.000	0	0.000	0	0	0.000
System	3 Block	0	0	0.000	0	0.000	0	0	0.000
4 .	SENIOR HALL	0	0	0.000	0	0.000	0	0	0.000
Zone	4 Total/Ave.	0	0	0.000	0	0.000	0	0	0.000
Zone	4 Block	0	0	0.000	0	0.000	0	0	0.000
System	4 Total/Ave.	0	0	0.000	0	0.000	· 0	0	0.000
System	4 Block	0	0	0.000	0	0.000	0	0	0.000
5	SPECIAL TRAINING	0	0	0.000	0	0.000	0	0	0.000
Zone	5 Total/Ave.	0	0	0.000	0	0.000	0	0	0.000
Zone	5 Block	0	0	0.000	0	0.000	0	0	0.000
System	5 Total/Ave.	0	0	0.000	0	0.000	0	0	0.000
System	5 Block	0	0	0.000	0	0.000	0	0	0.000
. 6	GYMNASIUM.	0	. 0	0.000	0	0.000	٥	0	0.000
Zone	6 Total/Ave.		0	0.000	0	0.000	0	0	0.000
Zone	6 Block	0	0	0.000	0	0.000	0	0	0.000
System	6 Total/Ave.	0	0	0.000	0	0.000	0	0	0.000 .
System	6 Block	0	0	0.000	0	0.000	0	0	0.000
7	OWENS BASEMENT	0	0	0.000	0	0.000	0	0	0.000
Zone	7 Total/Ave.	0	0	0.000	0	0.000	0	0	0.000
Zone	7 Block	0	0	0.000	0	0.000	0	0	0.000
System	7 Total/Ave.	0	0	0.000	0	0.000	0	0	0.000
System	7 Block	0	0	0.000	0	0.000	0	0	0.000

PAGE 14

•

•

sector and a sector and a sec-

•••

EATING LOADS AT SPACE PEAK - ALTERNATIVE 1 LOAD CALCULATION

.

INTERNAL HEATING LOADS

.

(At time of Space Peak)

			Lights	Lights				Misc.	Misc.		
			Room	Ret. Air	Lites	People	Peopl	Space	Ret. Air	Misc.	
Room			Sensible	Sensible	CLF	Sensible	CLF	Sensible	Sensible	CLF	
Number		Description	(Btuh)	(Btuh)		(Btuh)		(Btuh)	(Btuh)		
1	BRIGG	S HALL	0	0	0.000	0	0.000	0	0	0 000	
Zone -	1	Total/Ave.	0	0	0.000	0	0.000	0	0	0.000	
Zone	1	Block	0	0	0.000	0	0.000	0	0	0.000	
System	1	Total/Ave.	0	0	0.000	0	0.000	0	0	0.000	
System	1	Block	0	0	0.000		0.000	. 0	0	0.000	
2	OWEN	HALL	0	0	0.000	0	0.000	0	0.	0.000	
Zone	2	Total/Ave.	0	0	0.000	0	0.000	0	0	0.000	
Zone	2	Block	0	0	0.000	0	0.000	0	0	0.000	
System	2	Total/Ave.	0	0	0.000	. 0	0.000	0	·0	0.000	
System	2	Block	0	0	0.000	0	0.000	o	0	0.000	
3	AUDIT	ORIUM	0	0	0.000	0	0.000	0	0	0.000	
Zone	3	Total/Ave.	0	0	0.000	0	0.000	0	0	0.000	
Zone	3	Block	0	0	0.000	0	0.000	0	0	0.000	
/stem	3	Total/Ave.	0	0	0.000	0	0.000	0	0	0.000	
System	3	Block	0	0	0.000	0	0.000	0	0	0.000	
4	SENIO	R HALL	0	0	0.000	0	0.000	0	0	0.000	
Zone	4	Total/Ave.	0	0	0.000	0	0.000	0	0	0.000	
Zone	4	Block	0	0	0.000	0	0.000	0	0	0.000	
System	4	Total/Ave.	0	0	0.000	0	0.000	0	0	0.000	
System	4	Block	0	0	0.000	0	0.000	0	0	0.000	
5	SPECI	AL TRAINING	0	0	0.000	0	0.000	0	0	0.000	
Zone	5	Total/Ave.	0	0	0.000	0	0.000	0	0	0.000	
Zone	5	Block	0	0	0.000	0	0.000	0	0	0.000	
System	5	Total/Ave.	0	0	0.000	0	0.000	0	0	0.000	
System	5	Block	0	0	0.000	0	0.000	0	. 0	0.000	
6	GYMNA	SIUM	0	0	0.000	0	0.000	0	0	0.000	
Zone	б	Total/Ave.	0	0	0.000	0	0.000	0	0	0.000	
Zone	6	Block	٥	0	0.000	0	0.000	0	0	0.000	
System	6	Total/Ave.	0	0	0.000	0	0.000	0	0	0.000	
System	6	Block	0	0	0.000	0	0.000	0	0	0.000	
7	OWENS	BASEMENT	0	0	0.000	0	0.000	0	0	0.000	
Zone	7	Total/Ave.	0	0	0.000	0	0.000	0	0	0.000	
Zone	7	Block	0	0	0.000	0	0.000	C	0	0.000	
System	7	Total/Ave.	0	0	0.000	0	0.000	0	0	0.000	
System	7	Block	0	0	0.000	0	0.000	0	0	0.000	

•

in the construction of the construction of the second second second second second second second second second s

PAGE 16

By: C.D.S. MARKETING

DLING LOADS AT COIL PEAK - ALTERNATIVE 1

			В	UILD	ING EN	VEL	OPE COO	LING	LOAD	s			
				•		(Roof	- Skylight)						
					(A	t time	of Coil Peak)						
			Roof		Roof					Skylight		Skylight	
			Return Air	Roof	Space	Roof	Skylight	Skylight	Skylt	Return Air	Skylt	Space	Skylt
			Sensible	R.A.	Sensible	Space	Return Air	Space	Solar	Conduction	R.A.	Conduction	Space
Room			Load	CLTD	Load	CLTD	Solar	Solar	CLF	Load	CLTD	Load	CLTD
Number		Description	(Btuh)	(F)	(Btuh)	(F)	(Btuh)	(Btuh)		(Btuh)	(F)	(Btuh)	(F)
2	OWEN	HALL	0	0.0	37,678	64.5	0	0	0.000	0	0.0	0	0.0
Zone	2	Total/Ave.	0	0.0	37,678	64.5	0	0	0.000	0	0.0	0	0.0
Zone	2	Block	0	0.0	37,678	64.5	0	0	0.000	0	0.0	0	0.0
System	2	Total/Ave.	0	0.0	37,678	64.5	0	0	0.000	0	0.0	0	0.0
System	2	Block	0	0.0	37,678	64.5	0	0	0.000	0	0.0	0	0.0
3	AUDIT	ORIUM	0	0.0	10,768	64.4	0	0	0.000	0	0.0	0	0.0
Zone	3	Total/Ave.	0	0.0	10,768	64.4	0	0	0.000	0	0.0	0	0.0
Zone	3	Block	0	0.0	10,768	64.4	0	0	0.000	0	0.0	0	0.0
System	3	Total/Ave.	0	0.0	10,768	64.4	0	0	0.000	0	0.0	0	0.0
System	3	Block	0	0.0	10,768	64.4	0	0	0.000	0	0.0	0	0.0

BUILDING ENVELOPE COOLING LOADS

(Wall - Window)

(At time of Coil Peak)

			Wall	Wall	Wall	Wall	Glass	Glass-	Glass	Glass	Glass	Glass	Glass
			Plenum	Plenm	Space	Space	Space	Return Air	Solar	Space	Space	Return Air	R.A.
Room			Load	CLTD	Load	CLTD	Solar	Solar	CLF	Conduction	CLTD	Conduction	CLTD
Number	Descr	iption	(Btuh)	(F)	(Btuh)	(F)	(Btuh)	(Btuh)		(Btuh)	(F)	(Btuh)	(F)
2	OWEN	HALL	0	0.0	79,052	23.9	156,376	0	0.440	11,515	5.4	. 0	0.0
Zone	2	Total/Ave.	0	0.0	79,052	23.9	156,376	0	0.440	11,515	5.4	0	0.0
Zone	2	Block	0	0.0	79,052	23.9	156,376	0	0.440	11,515	5.4	0	0.0
System	2	Total/Ave.	0	0.0	79,052	23.9	156,376	0	0.440	11,515	5.4	0	- 0.0
System	2	Block	0	0.0	79,052	23.9	156,376	0	0.440	11,515	5.4	. 0	0.0
з	AUDIT	ORIUM	· · 0	0.0 -	11,785	-17.7	8,910	0	0.630	1,782	6.0	0 -	. 0.0
Zone	3	Total/Ave.	0	0.0	11,785	17.7	8,910	0	0.630	1,782	6.0	0	0.0
Zone	3	Block	0	0.0	11,785	17.7	8,910	0	0.630	1,782	6.0	0	0.0
System	3	Total/Ave.	0	0.0	11,785	17.7	8,910	0	0.630	1,782	б.О	0	0.0
System	3	Block	0	0.0	11,785	17.7	8,910	0	0.630	1,782	6.0	0	0.0

-----BUILDING ENVELOPE COOLING LOADS------

(Exposed Floor - Partitions - Infiltration)

(At time of Coil Peak)

			Exposed	Expsd						Plenm	Ceiling	
			Floor	Floor	Partition	Part.	Infilt.	Infilt.	Infilt.	Dry B	Sensible	Envelope
Room			Sensible	CLTD	Sensible	CLTD	Airflow	Sensible	Latent	Temp.	Load	Total
ber	Desc:	ription	(Btuh)	(5)	(Btuh)	(F)	(Cfm)	(Bcuh)	(Btuh)	(F)	(Btuh)	(Btuh)
2	OWEN	HALL	0	0.0	0	0.0	0	0	0	76.0	0	284,620
Zone	2	Total/Ave.	0	0.0	0	0.0	0	0	0	76.0	0	284,620
Zone	2	Block	0	0.0	0	0.0	0	0	0	76.0	0	284,620
System	2	Total/Ave.	0	0.0	0	0.0	0	0	0	76.0	0	284,620

an a dhe da airig da da shekar airig da bara a shekar a shekar a

By: C.D.S. MARKETING

.

,LING LOADS AT COIL PEAK - ALTERNATIVE 1 LOAD CALCULATION

		Exposed	Expsd						Plenm	Ceiling	
		Floor	Floor	Partition	Part.	Infilt.	Infilt.	Infilt.	Dry B	Sensible	Envelope
Room		Sensible	CLTD	Sensible	CLTD	Airflow	Sensible	Latent	Temp.	Load	Total
Number	Description	(Btuh)	(F)	(Btuh)	(F)	(Cfm)	(Btuh)	(Btuh)	(F)	(Btuh)	(Btuh)
System	2 Block	0	0.0	0	0.0	0	0	0	76.0	0	284,620
3	AUDITORIUM	0	0.0	0	0.0	0	0	0	76.0	0	33,244
Zone	3 Total/Ave.	0	0.0	0	0.0	0	0.	0	76.0	0	33,244
Zone	3 Block	0	0.0	0	0.0	.0.	0	0	76.0	0	33,244
System	3 Total/Ave.	0	0.0	0	0.0	0	í. o	0	76.0	0	33,244
System	3 Block	0	0.0	0	0.0	0	- O	0	76.0	0	33,244

PAGE 17

and a second second

۰.

LING LOADS AT SPACE PEAK - ALTERNATIVE 1 LUAD CALCULATION

			В	υιιρ	ING E	NVEL	OPE CO	OOLING	LOA	D S			
				•		(Roof	- Skylight)						
					(1	At time	of Space Pe	eak)					
			Roof		Roof					Skylight		Skylight	
			Return Air	Roof	Space	Roof	Skylight	: Skyligh	t Skyl	t Return Air	Skylt	Space	Skylt
			Sensible	R.A.	Sensible	Space	Return Air	c Spac	e Sola	r Conduction	R.A.	Conduction	Space
Room			Load	CLTD	Load	CLTD	Solar	r Sola	r CL	F Load	CLTD	Load	CLTD
Number		Description	(Bcuh)	(F)	(Btuh)	(F)	(Btuh)	(Btuł	1)	(Btuh)	(F)	(Btuh)	(F)
2	OWEN	HALL	0	0.0	37,678	64.5	()	0 0.00	0 0	0.0	0	. 0.0
Zone	2	Total/Ave.	0	0.0	37,678	64.5	e. ()	0 0.00	o o	0.0	0	0.0
Zone	· 2	Block	0	0.0	37,678	64.5	()	0 0.00	o o	0.0	0	0.0
System	2	Total/Ave.	0	0.0	37,678	64.5	-,,- (ט'	0 0.00	o o	0.0	0	0.0
System	2	Block	0	0.0	37,678	64.5	14	. ر	0 0.00	o o	0.0	. 0	0.0
3	AUDI	TORIUM	0	0.0	9,848	58.9	() ´	0 0.00	o o	0.0	0	0.0
Zone	3	Total/Ave.	0	0.0	9,848	58.9	()	0 0.00	o 0	0.0	0	0.0
Zone	3	Block	0	0.0	9,848	58.9	()	0 0.00	0 0	0.0	0	0.0
System	3	Total/Ave.	0	0.0	9,848	58.9	()	0 0.00	o o	0.0	0	0.0
System	3	Block	. 0	0.0	9,848	. 58.9)	0 0.00	0 0	0.0	0	0.0
******			В О	ILD	ING EN	VELC (Wall -	PE CO Window)	OLING	LOA	D S			
					(At I	ime of	Space Peak						
			Wall	Wall	Wall	Wall	Glass	Glass	Glass	Glass (Glass	Glass	Glass
			Plenum	Plenm	Space	Space	Space	Return Air	Solar	Space	Space—1	Return-Air	R.A.
Room			Load	CLTD	Load	CLTD	Solar	Solar	CLF	Conduction	CLTD (Conduction	CLTD
Number	Desci	ription	(Bruh)	(F)	(Btuh)	(F)	(Bcuh)	(Btuh)		(Btuh)	(F)	(Btuh)	(F)

			 			1- /	1							
2	OWEN	HALL	0	0.0	79,052	23.9	156,376	0	0.440	11,515	5.4	۰.	0	0.0
Zone	. 2	Total/Ave.	0	0.0	79,052	23.9	156,376	0	0.440	11,515	5.4		0	0.0
Zone	2	Block	0	0.0	79,052	23. 9	156,376	0	0.440	11,515	5.4		0	0.0
System	2	Total/Ave.	0	0.0	79,052	23.9	156,376	0	0.440	11,515	5.4		0	0.0
System	2	Block	0	0.0	79,052	23.9	156,376	0	0.440	11,515	5.4		0	0.0
3	AUDIT	ORIUM	. 0	0.0	14,248	21.4	9,405	0	0.660	1,129	3.8		0	0.0
Zone	3	Total/Ave.	 0	0.0	14,248	21.4	9,405	0	0.660	1,129	3.8		0	0.0
Zone	3	Block .	0	0.0	14,248	21.4	9,405	0	0.660	1,129	3.8		0	0.0
System	3	Total/Ave.	0	0.0	14,248	21.4	9,405	0	0.660	1,129	3.8		0	0.0
System	3	Block	0	0.0	14,248	21.4	9,405	0	0.660	1,129	3.8		0	0.0

------BUILDING ENVELOPE COOLING LOADS------

(Exposed Floor - Partitions - Infiltration)

(At time of Space Peak)

Room	Desc	ription	Exposed Floor Sensible (Btuh)	Expsd Floor CLTD (F)	Partition Sensible (Btuh)	Part. CLTD (F)	Infilt. Airflow (Cfm)	Infilt. Sensible (Btuh,	Infilt. Latent (Btuh)	Plenm Dry B Temp. (F)	Ceiling Sensible Load (Btuh)	Envelope Tocal (Btuh)
2	OWEN	HALL	0	0.0	0	0.0	0	0	0	76.0	0	284,620
Zone	2	Total/Ave.	0	0.0	0	0.0	0	0	0	76.0	0	284,620
Zone	2	Block	0	0.0	0	0.0	0	0	0	76.0	0	284,620
System	2	Total/Ave.	0	0.0	0	0.0	0	0	· 0	76.0	0	284,620

PAGE 19

.....

.

JLING LOADS AT SPACE PEAK - ALTERNATIVE 1 LOAD CALCULATION

(At	time	.of	Space	Peak)	

		Exposed	Expsd		•		÷		Plenm	Ceiling		
			Floor	Floor	Partition	Part.	Infilt.	Infilt.	Infilt.	Dry B	Sensible	Envelope
Room			Sensible	CLTD	Sensible	CLTD	Airflow	Sensible	Latent	Temp.	Load	Total
Number	Desci	ription	(Btuh)	(F)	(Btuh)	(F)	(Cfm)	(Btuh)	(Btuh)	(F)	(Btuh)	(Btuh)
System	2	Block	0	0.0	0	0.0	0	0	0	76.0	0	284,620
3	AUDIT	ORIUM	0	0.0	0	0.0	0	0	0	76.0	0	34,630
Zone	3	Total/Ave.	0	0.0	0	0.0	0	0	0	76.0	0	34,630
Zone	З	Block	. 0	0.0	0	- 0.0	.0.	0	. 0	76.0	0	34,630
System	З	Total/Ave.	0	0.0	0	0.0	o T	0	0	76.0	0	34,630
System	3	Block	0	0.0	0	0.0	0	0	0	76.0	0	34,630

. - -

۰.

NTING LOADS AT COIL PEAK - ALTERNATIVE 1 .AD CALCULATION

			В	υιμο	ING EN	VEL	OPE H	EATING	LOA	D S			
					(1	(ROOI	- Skylight	,,,					
			Draf		(A Dec 6	AC CIME	or Coll Pe	ak)					
			ROOT	Deef	KOOI					Skyligh	t	Skylight	
			Recurn Air	ROOI	Space	ROOI	Skyligh	t Skylig	nt Skyl	t Return Ai	r Skylt	Space	e Skylt
_			Sensible	R.A.	Sensible	Space	Return Ai	r Spac	ce Sola	r Conductio	n R.A.	Conduction	n Space
Room	_		Load	CLTD	Load	CLTD	Sola	r Sola	ar CL	F Loa	d CLTD	Load	d CLTD
Number	De	scription	(BCUN)	(F)	(Btuh)	(F)	(Btuh) (Btul	1)	(Btuh) (F)	(Btuh)	(F)
1	BRIGGS	HALL	0	0.0	-31,659	-87.0		o	0 0.00	0	0 0.0	I	0.0
Zone	1 Te	otal/Ave.	0	0.0	-31,659	-87.0		0	0 0.00	0	0.0		0.0
Zone	1 B	lock	0	0.0	-31,659	-87.0		0 J	0 0.00	0	0.0	(0.0
System	1 T	otal/Ave.	0	0.0	-31,659	-87.0		o	0 0.00	0	0.0	(0.0
System	1 B.	lock	0	0.0	-31,659	-87.0		0	0 0.00	0	0.0	I	0.0
2	OWEN HA	LL	0	0.0	-50,821	-87.0		0	0 0.00	0	0.0	1	0.0
Zone	2 T	otal/Ave.	0	0.0	-50,821	-87.0		o	0 0.00	0	0.0	(0.0
Zone	2 B	lock	0	0.0	-50,821	-87.0		0	0 0.00	0	0.0	(0.0
System	2 T	otal/Ave.	0	0.0	-50,821	-87.0		o	0 0.00	0	0.0	(0.0
System	2 B.	lock	0	0.0	-50,821	-87.0		0	0 0.00	0	0.0	(0.0
З	AUDITOR	IUM	0	0.0	-14,546	-87.0		0	0 0.00	0	0.0	(0.0
Zone	. <u>3</u> . <u>T</u>	otal/Ave.		0.0	~14,546	-87.0		0	0 0.00	0	0.0	(0.0
Zone	3 B.	lock	0	0.0	-14,546	-87.0		0	0 0.00	0	0.0	(0.0
⁺tem	3 T.	otal/Ave.	0	0.0	-14,546	-87.0		0	0 0.00	0	0.0	(0.0
⊴tem	3 B.	lock	0	0.0	-14,546	-87.0		0	0 0.00	0	0.0	· · ·	0.0
4	SENIOR 1	HALL	0	0.0	-33,269	-87.0		0	0 0.00	o	o [.]	•••	0.0
Zone	4 Te	otal/Ave		0.0	-33,269	-87.0		o	0 0.00	0	000	······································	0.0
Zone	4 B.	lock	0	0.0	-33,269	-87.0		o	0 0.00	0	0.0		0.0
System	4 Te	otal/Ave.	0	0.0	-33,269	-87.0		0	0 0.00	0	0.0		0.0
System	4 B	lock	0	0.0	-33,269	-87.0		0	00.00	0	.000		0.0
5	SPECIAL	TRAINING	0	0.0	-58,455	-87.0		0	0 0.00	0	0.0	•. •	0.0
Zone	5 T	otal/Ave.	0	0.0	-58,455	-87.0		0	0 0.00	0	0.0		0.0
Zone	5 B.	lock	0	0.0	-58,455	-87.0		0	0 0.00	0	0.0		0.0
System	5 T.	otal/Ave.	0	0.0	-58,455	-87.0		0	0 0.00	0	0.0		0.0
System	5 B	lock	0	0.0	-58,455	-87.0		0	0 0.00	0	0 0.0		0.0
6	GYMNASI	MU	0	0.0	-15,869	-87.0		0	0 0.00	0	0 0.0		0.0
Zone	6 T	otal/Ave.	0	0.0	-15,869	-87.0		0	0 0.00	0	0 0.0		0.0
Zone	6 B	lock	0	0.0	-15,869	-87.0		0	0 0.00	0	0 0.0		0.0
System	6 T	otal/Ave.	0	0.0	-15,869	-87.0		0	0 0.00	0	0 0.0		0.0
System	6 B.	lock	0	0.0	-15,869	-87.0		0	0 0.00	0	0.0		0.0
7	OWENS B	ASEMENT	0	0.0	0	0.0		0	0 0.00	0	0.0		0.0
Zone	7 T	otal/Ave.	· 0	0.0	0	0.0		0	0 0.00	0	0 0.0		0.0
Zone	7 8	lock	0	0.0	0	0.0		ο.	0 0.00	0	0.0		0.0
System	7 T.	otal/Ave.	0	0.0	0	0.0		0	0 0.00	0	0 0.0		0.0
System	7 B	lock	0	0.0	0	0.0		0	0 0.00	0	0 0.0		0.0
			B U	ILD	ING EN (Act	VELC (Wall - time of) P E H E Window) Coil Peak)	ATING	LOA	D S			
			Wall	Wall	Wall	Wall	Glass	Glass	Glass	Glass	Glass	Glass	Glass
			Plenum	Plenm	Space	Space	Space	Return Air	Solar	Space	Space	Return Air	R.A.
Room			Load	CLTD	Load	- CLTD	Solar	Solar	CLF	Conduction	CLTD	Conduction	CLTD
Number	Descript	tion	(Btuh)	(F)	(Btuh)	(7)	(Btuh)	(Btuh)		(Btuh)	(F)	(Btuh)	(F)

PAGE 20

(

1 BRIGGS HALL

.

-195,124 -87.0

0

ta Sila Stage State

0.0

0

.

.

تقيشا 0 0.000

-104,333 -87.0

0 0.0

.

......

· .. ____ ,

-

· · _ -

By: C.D.S. MARKETING

.

. _ATING LOADS AT COIL PEAK - ALTERNATIVE 1 LOAD CALCULATION

-----BUILDING ENVELOPE HEATING LOADS------

(Wall - Window)

(At time of Coil Peak)

			Wall	Wall	Wall	Wall	Glass	Glass	Glass	Glass	Glass	Glass	Glass
			Plenum	Plenm	Space	Space	Space	Return Air	Solar	Space	Space	Return Air	R.A.
Room			Load	CLTD	Load	CLTD	Solar	Solar	CLF	Conduction	CLTD	Conduction	CLTD
Number	Descr	iption	(Btuh)	(F)	(Btuh)	(F)	(Btuh)	(Btuh)		(Btuh)	(F)	(Btuh)	(F)
Zone	1	Total/Ave.	0	0.0	-195,124	-87.0	0	0	0.000	-104,333	-87.0	0	0.0
Zone	l	Block	0	0.0	-195,124	-87.0	0	0	0.000	-104,333	-87.0	0	0.0
System	1	Total/Ave.	0	0.0	-195,124	~87.0	0	· 0	0.000	-104,333	-87.0	0	0.0
System	l	Block	0	0.0	-195,124	-87.0	<u>,</u>	•	0.000	-104,333	-87.0	0	0.0
2	OWEN	HALL	0	0.0	-287,761	-87.0	0	0	0.000	-208,549	-87.0	0	0.0
Zone	2	Total/Ave.	0	0.0	-287,761	-87.0	0	0	0.000	-208,549	-87.0	0	0.0
Zone	2	Block	0	0.0	-287,761	-87.0	0	0	0.000	-208,549	-87.0	0	0.0
System	2	Total/Ave.	0	0.0	-287,761	-87.0	0	0	0.000	-208,549	-87.0	0	0.0
System	2	Block	0	0.0	-287,761	-87.0	0	0	0.000	-208,549	-87.0	0	0.0
3	AUDIT	ORIUM	0	0.0	-57,925	-87.0	0	0	oo	-29,047	-87.0	0	0.0
Zone	з	Total/Ave.	0	0.0	-57,925	-87.0	0	0	0.000	-29,047	-87.0	0	0.0
Zone	3	Block	0	0.0	-57,925	-87.0	0	0	0.000	-29,047	-87.0	0	0.0
`tem	3	Total/Ave.	0	0.0	-57,925	-87.0	0	0	0.000	-29,047	-87.0	0	0.0
stem	3	Block	0	0.0	-57,925	-87.0	0	0	0.000	-29,047	-87.0	0	0.0
4	SENIO	R HALL	0	0.0	-228,880	-87.0	0	0	0.000-			0	0.0
Zone	4	Total/Ave.	0	0.0	-228,880	-87.0	0	0	0.000		-87.0	0	0.0
Zone	4	Block	0	0.0	-228,880	-87.0	0	0	0,000	-115,717	-87.0	0	0.0
System	4	Total/Ave.	0	0.0	-228,880	-87.0	0	0	0.000	-115,717	-87.0	0	0.0
System	4	Block	0	0.0	-228,880	-87.0	0	0	0.000	-115,717	-87.0	0	0.0
5	SPECI	AL TRAINING	0	0.0	-44,905	-87.0	0	0	0.000	-763	-87.0	0	0.0
Zone	5	Total/Ave.	0	0.0	-44,905	-87.0	0	0	0.000	-763	-87.0	、 0	0.0
Zone	5	Block	0	0.0	-44,905	-87.0	0	0	0.000	-763	-87.0	0	0.0
System	5	Total/Ave.	0	0.0	-44,905	-87.0	0	0	0.000	-763	-87.0	0	0.0
System	5	Block	0	0.0	-44,905	-87.0	0	0	0.000	-763	-87.0	0	0.0
6	GYMNA	SIUM	0	0.0	-34,104	-87.0	0	0	0.000	-49,291	-87.0	0	0.0
Zone	6	Total/Ave.	0	0.0	-34,104	87.0	0	0	0.000		87.0		0.0
Zone	6	Block	·- 0	0.0	-34,104	-87.0	0	0	0.000	-49,291	-87.0	0	0.0
System	6	Total/Ave.	0	0.0	-34,104	-87.0	0	0	0.000	-49,291	-87.0	0	0.0
System	6	Block	0	0.0	-34,104	-87.0	0	0	0.000	-49,291	-87.0	0	0.0
7	OWENS	BASEMENT	0	0.0	0	0.0	0	0	0.000	0	0.0	0	0.0
Zone	7	Total/Ave.	0	0.0	0	0.0	0	0	0.000	0	0.0	0	0.0
Zone	7	Block	0	0.0	0	0.0	0	0	0.000	0	0.0	0	0.0
System	7	Total/Ave.	0	0.0	0	0.0	0	0	0.000	0	0.0	0	0.0
System	7	Block	0	0.0	0	0.0	0	0	0.000	0	0.0	0	0.0
-													

-----BUILDING ENVELOPE HEATING LOADS ------(Exposed Floor - Partitions - Infiltration)

(At time of Coil Peak)

		Exposed	Expsd						Plenm	Ceiling	
		Floor	Floor	Partition	Part.	Infilt.	Infilt.	Infilt.	Dry B	Sensible	Envelope
Room		Sensible	CLTD	Sensible	CLTD	Airflow	Sensible	Latent	Temp.	Load	Total
Number	Description	(Btuh)	(F)	(Btuh)	(F)	(Cfm)	(Btuh)	(Btuh)	(F)	(Btuh)	(Btuh)
1	BRIGGS HALL	0	0.0	0	0.0	974	-94,338	0	72.0	0	-425,454

ITING LOADS AT COIL PEAK - ALTERNATIVE 1

-----BUILDING ENVELOPE HEATING LOADS------(Exposed Floor - Partitions - Infiltration)

(At time of Coil Peak)

			Exposed	Expsd						Plenm	Ceiling		
			Floor	Floor	Partition	Part.	Infilt.	Infilt.	Infilt.	Dry B	Sensible	Envelope	
Room			Sensible	CLTD	Sensible	CLTD	Airflow	Sensible	Latent	Temp.	Load	Total	
Number	Descr	iption	(Btuh)	(F)	(Btuh)	(F)	(Cfm)	(Btuh)	(Btuh)	(F)	(Btuh)	(Btuh)	
Zone	1	Total/Ave.	0	0.0	0	0.0	974	-94,338	0	72.0	0	-425,454	
Zone	1	Block	0	0.0	0	0.0	974	-94,338	0	72.0	0	-425,454	
System	1	Total/Ave.	0	0.0	0	0.0	974	-94,338	0	72.0	0	-425,454	
System	1	Block	0	0.0	0	0.0	974	-94,338	0	72.0	0	-425,454	
2	OWEN	HALL	0	0.0	0	0.0	1,507	-145,894	0	72.0	0	-693,025	
Zone	2	Total/Ave.	0	0.0	0	0.0	1,507	-145,894	0	72.0	0	-693,025	
Zone	2	Block	0	0.0	0	0.0	1,507	-145,894	0	72.0	0	-693,025	
System	2	Total/Ave.	0	0.0	0	0.0	1,507	-145,894	0	72.0	0	-693,025	
System	2	Block	0	0.0	0	0.0	1,507	-145,894	0	72.0	0	-693,025	
3	AUDIT	ORIUM	0	0.0	0	0.0	287	-27,767	0	72.0	0	-129,285	
Zone	3	Total/Ave.	0	0.0	0	0.0	287	-27,767	0	72.0	0	-129,285	
Zone	3	Block	0	0.0	0	0.0	287	-27,767	0	72.0	0	-129,285	
System	3	Total/Ave.	0	0.0	0	0.0	287	-27,767	0	72.0	0	-129,285	
,tem	3	Block	0	0.0	0	0.0	287	-27,767	0	72.0	0	-129,285	
4	SENIC	R HALL	0	0.0	0	0.0	1,134	-109,834	0	72.0	0	-487,699	
Zone	4	Total/Ave.	0	0.0	0	0.0	1,134	-109,834	0	72.0	0	-487,699	
Zone	4	Block	o	0.0	0	0.0	1,134	-109,834	0	72.0	00	-487,699	-
System	4	Total/Ave.	0	0.0	0	0.0	1,134	-109,834	0	72.0	0	-487,699	
System	4	Block	0	0.0	0	0.0	1,134	-109,834	0	72.0	0	-487,699	
5	SPECI	AL TRAINING	0	0.0	0	0.0	775	-75,053	0	72.0			
Zone	5	Total/Ave.	0	0.0	0	0.0	775	-75,053	0	72.0	٥`.	-179,176	
Zone	5	Block	0	0.0	0	0.0	775	-75,053	0	72.0	0	-179,176	
System	5	Total/Ave.	0	0.0	0	0.0	775	-75,053	0	72.0	0	-179,176	
System	5	Block	0	0.0	0	0.0	775	-75,053	0	72.0	0	-179,176	
6	GYMNA	SIUM	0	0.0	· 0	0.0	210	-20,332	0	72.0	0	-119,596	
Zone	6	Total/Ave.	0	0.0	0	0.0	210	-20,332	0	72.0	0	-119,595	
Zone	6	Block	0	0.0	0	0.0	210	-20,332	0	72.0	0	-119,596	
System	б	Total/Ave.	0	0.0	0	0.0	210	-20,332	0	72.0	0	-119,596	
System	6	Block	0	0.0	0	0.0	210	-20,332	0	72.0	0	-119,596	
7	OWENS	BASEMENT	0	0.0	0	0.0	0	0	0	72.0	0	0	
Zone	7	Total/Ave.	0	0.0	0	0.0	0	0	0	72.0	0	0	
Zone	7	Block	0	0.0	0	0.0	0	0	0	72.0	0	0	
System	7	Total/Ave.	0	0.0	0	0.0	0	0	0	72.0	0	0	
Svetam	7	Block	0	0.0	0	0.0	0	0	0	72.0	0	0	

			•		(Roof	- Skylight)			-			
				(A	t time	of Space Peak))					
		Roof		Roof					Skylight		Skylight	
		Return Air	Roof	Space	Roof	Skylight	Skylight	Skylt	Return Air	Skylt	Space	Skylt
		Sensible	R.A.	Sensible	Space	Return Air	Space	Solar	Conduction	R.A.	Conduction	Space
Room		Load	CLTD	Load	CLTD	Solar	Solar	CLF	Load	CLTD	Load	CLTE
Number	Description	(Btuh)	(F)	(Btuh)	(F)	(Btuh)	(Btuh)		(Btuh)	(F)	(Btuh)	(F)
1	BRIGGS HALL	0	0.0	-31,659	-87.0	0	0	0.000	0	0.0	0	0.0
Zone	1 Total/Ave.	0	0.0	-31,659	-87.0	0	0	0.000	0	0.0	0	0.0
Zone	1 Block	0	0.0	-31,659	-87.0	0	0	0.000	0	0.0	0	0.0
System	1 Total/Ave.	0	0.0	-31,659	-87.0	. 0	0	0.000	0	0.0	0	0.0
System	1 Block	0	0.0	-31,659	-87.0	0	0	0.000	0	0.0	0	0.0
2	OWEN HALL	0	0.0	-50,821	-87.0	0	0	0.000	0	0.0	0	0.0
Zone	2 Total/Ave.	0	0.0	-50,821	-87.0	0	0	0.000	0	0.0	0	0.0
Zone	2 Block	0	0.0	-50,821	-87.0	0	0	0.000	0	0.0	0	0.0
System	2 Total/Ave.	0	0.0	-50,821	-87.0	0	0	0.000	0	0.0	0	0.0
System	2 Block	0	0.0	-50,821	-87.0	0	0	0.000	0	0.0	0	0.0
3	AUDITORIUM	0	0.0	-14,546	-87.0	0	0	0.000	0	0.0	0	0.0
Zone	3 Total/Ave.	0	0.0	-14,546	-87.0	0	0	0.000	0	0.0	0	0.0
÷	3 Block	0	0.0	-14,546	-87.0	0	0	0.000	0	0.0	0	0.0
cem	3 Total/Ave.	0	0.0	-14,546	-87.0	0	0	0.000	0	0.0	0	0.0
System	3 Block	0	0.0	-14,546	-87.0	0	- 0-	- 0.00	0	0.0	C	0.0
4	SENIOR HALL	0	0.0	-33,269	-87.0	0	0	0.000	0	0.0	٥	0.0
Zone	4 Total/Ave.	0	0.0	-33,269	-87.0	0	0	0.000	0	0.0	٥	0.0
Zone	4 Block	0	0.0	-33,269	-87.0	0	0	0.000	0	0.0	٥	0.0
System	4 Total/Ave.	0	0.0	-33,269	-87.0	0	0	0.000	0	0.0	C	0.0
System	4 Block	0	0.0	-33,269	-87.0	0	0	0.000	0	0.0	. 0	0.0
5	SPECIAL TRAINING	0	0.0	-58,455	-87.0	0	0	0.000	0	0.0	. 0	0.0
Zone	5 Total/Ave.	0	0.0	-58,455	-87.0	0	0	0.000	0	0.0	c	0.0
Zone	5 Block	0	0.0	-58,455	-87.0	0	0	0.000	0	0.0	0	0.0
System	5 Total/Ave.	0	0.0	-58,455	-87.0	0	0	0.000	0	0.0	c	0.0
System	5 Block	0	0.0	-58,455	-87.0	0	0	0.000	0	0.0	0	0.0
6	GYMNASIUM	0	0.0	-15,869	-87.0	0	0	0.000	0	0.0	0	0.0
Zone	6 Total/Ave.	0	0.0	-15,869	-87.0	0	0	0.000	0	0.0	0	0.0
Zone	6 Block	0	0.0	~15,869	-87.0	0	0	0.000	0	0.0	0	0.0
System	6 Total/Ave.	0	0.0	-15,869	-87.0	0	0	0.000	0	0.0	0	0.0
System	6 Block	0	0.0	-15,869	-87.0	0	0	0.000	0	0.0	0	0.0
7	OWENS BASEMENT	0	0.0	0	0.0	0	0	0.000	0	0.0	0	0.0
Zone	7 Total/Ave.	0	0.0	0	0.0	0	0	0.000	0	0.0	0	0.0
Zone	7 Block	0	0.0	0	0.0	0	0	0.000	0	0.0	0	0.0
System	7 Total/Ave.	0	0.0	0	0.0	0	0	0.000	0	0.0	0	0.0
System	7 Block	0	0.0	0	0.0	0	0	0.000	0	0.0	0	0.0
		в и	ILDI	ING EN	VELO	PE HEAD	TING I	. O A D S	;			
					(Wall -	Window)						
				(A	t time	of Space Peak))					

Wall Wall Wall Wall Glass Glass Glass Glass Glass Glass Glass Plenum Plenm Space Space Space Return Air Solar Space Space Return Air R.A. Solar CLF Conduction CLTD Conduction CLTD Load CLTD Solar Load CLTD Room (Btuh) (Btuh) (F) (Btun) (Btuh) (Btuh) (F) (Btuh) (F) Number Description (F)

PAGE 23

1 BRIGGS HALL

0

.

...

*. .

. 0.0 -195,124 -87.0 0

0 0.000

.

-104,333 -87.0

0

0.0

a construction of the

n 1976 - Alexandri Station, and

.

By: C.D.S. MARKETING

.

.

ATING LOADS AT SPACE PEAK - ALTERNATIVE 1 LOAD CALCULATION

......

.

	(Wall - Window)													
				((Wall At time	- Window) of Space Pe	ak)							
		Wall	Wall	Wall	Wall	Glass	Glass	Glass	Glass	Glass	Glass	Glass		
		Plenum	Plenm	Space	Space	Space	Return Air	Solar	Space	Space	Return Air	R.A.		
Room		Load	CLTD	Load	CLTD	Solar	Solar	CLF	Conduction	CLTD	Conduction	CLTD		
Number	Description	(Btuh)	(F)	(Btuh)	(F)	(Btuh)	(Btuh)		(Btuh)	(F)	(Btuh)	(F)		
Zone	1 Total/Ave.	0	0.0	-195,124	-87.0	0	0	0.000	-104,333	-87.0	o	0.0		
Zone	1 Block	0	0.0	-195,124	-87.0	۰ ۵	0	0.000	-104,333	-87.0	0	0.0		
System	l Total/Ave.	0	0.0	-195,124	-87.0	.0	0	0.000	-104,333	-87.0	0	0.0		
System	1 Block	0	0.0	-195,124	-87.0	0	. 0	0.000	-104,333	-87.0	0	0.0		
2	OWEN HALL	0	0.0	-287,761	-87.0	0	· 0	0.000	~208,549	-87.0	0	0.0		
Zone	2 Total/Ave.	0	0.0	-287,761	-87.0	0	́ 0	0.000	-208,549	-87.0	0	0.0		
Zone	2 Block	0	0.0	-287,761	-87.0	0	0	0.000	-208,549	-87.0	0	0.0		
System	2 Total/Ave.	0	0.0	-287,761	-87.0	0	0	0.000	-208,549	-87.0	0	0.0		
System	2 Block	0	0.0	-287,761	-87.0	0	0	0.000	-208,549	-87.0	0	0.0		
3	AUDITORIUM	0	0.0	-57,925	-87.0	0	0	0.000	-29,047	-87.0	0	0.0		
Zone	3 Total/Ave.	0	0.0	-57,925	-87.0	0		0.000	-29,047	-87.0	0	0.0		
Zone	3 Block	0	0.0	-57,925	-87.0	0	0	0.000	-29,047	-87.0	0	0.0		
^ 'stem	3 Total/Ave.	0	0.0	~57,925	-87.0	0	0	0.000	-29,047	-87.0	0	0.0		
Jtem	3 Block	0	0.0	-57,925	-87.0	0	0	0.000	-29,047	-87.0	0	0.0		
4	SENIOR HALL	0	0.0	-228,880	-87.0	0	. 0	0.000	-115,717	-87.0	0	0.0		
Zone	4 Total/Ave.	0	0.0	-228,880	-87.0	0	0	0.000	-115,717	-87.0	0	0.0		
Zone	4 BLOCK	0	0.0	-228,880	-87.0	0	0	0.000	-115,717	~87.0	0	0.0		
System	4 Total/Ave.	0	0.0	-228,880	-87.0	0	0	0.000	-115,717	-87.0	0	0.0		
System	4 BLOCK	Ű	0.0	-228,880	-87.0			0.000	-115,717	-87.0	0	0.0		
5	SPECIAL TRAINING		0.0	-44,905	-87.0	0	0	0.000	-763	-87.0	、 ⁰	0.0		
Zone	5 Total/Ave.	0	0.0	-44,905	-87.0	0	0	0.000	- 763	-87.0	, U	0.0		
Sustan	5 BIOCK	0	0.0	44,905	-87.0	0	0	0.000	- 763	-87.0	0	0.0		
System	5 Dlock	0	0.0	-44,905	-87.0	0	0	0.000	- /63	-87.0	0	0.0		
syscen c	CVMND CTUM	0	0.0	-44,303	-87.0	0	0	0.000	- 763	-87.0	0	0.0		
7078	GIMMASION	0	0.0	-34,104	-07.0	0	. 0	0.000	-49,291	-07.0	0	0.0		
707e	6 Block	····· 0	0.0	-34,104	-97.0	0	0	0.000	-49,291	-87.0	0	0.0		
System	6 Total/Ave	- 0	0.0	-34,104	-87.0	0	0	0.000	-49,291	-87.0	0	0.0		
System	6 Dioch	0	0.0	-34,104	-87.0	0	0	0.000	-49,291	-87.0	0	0.0		
Jyscem 7	OWENC DISEMENT	0	0.0	-34,104	-87.0	0	0	0.000	-49,291	-07.0	0	0.0		
7079	7 Total/ave	0	0.0	0	0.0	0	0	0.000	0	0.0	0	0.0		
20115	7 Block	0	0.0	0	0.0	0	0	0.000	0	0.0	0	0.0		
Sveter	7 Total/Ave	0	0.0	0	0.0	0	0	0.000	0	0.0	ů O	0.0		
System	7 Block	0	0.0	0	0.0	0	0	0.000	0	0.0	0	0.0		
oyscem	/ BIOCK	0	0.0	U	0.0	. 0	0	0.000	Ū	0.0	U	0.0		
		в и	ILD	ING EN	VELO	ре не	ΑΤΙΝΟ	LOA	D S					
				(Exposed Fl	oor - Pa	artitions -	Infiltratio	n)						
				(At time	of Space Pe	ak)							

		Exposed	Expsd						Plenm	Ceiling	
		Floor	Floor	Partition	Part.	Infilt.	Infilt.	Infilt.	Dry B	Sensible	Envelope
Room		Sensible	CLTD	Sensible	CLTD	Airflow	Sensible	Latent	Temp.	Load	Total
Number	Description	(Btuh)	(F)	(Btuh)	(F)	(Cfm)	(Btuh)	(Btuh)	(F)	(Btuh)	(Btuh)
1	BRIGGS HALL	0	0.0	0	0.0	974	-94,338	0	72.0	0	-425,454

By: C.D.S. MARKETING

٠.

TING LOADS AT SPACE PEAK - ALTERNATIVE 1

(At time of Space Peak)

			Exposed	Expsd						Plenm	Ceiling	
			Floor	Floor	Partition	Part.	Infilt.	Infilt.	Infilt.	Dry B	Sensible	Envelope
Room			Sensible	CLTD	Sensible	CLTD	Airflow	Sensible	Latent	Temp.	Load	Total
Number	Descr	iption	(Btuh)	(F)	(Btuh)	(F)	(Cfm)	(Btuh)	(Btuh)	(F)	(Btuh)	(Btuh)
Zone	l	Total/Ave.	0	0.0	0	0.0	974	-94,338	0	72.0	0	-425,454
Zone	1	Block	0	0.0	0	0.0	974	-94,338	0	72.0	0	-425,454
System	1	Total/Ave.	0	0.0	0	0.0	974	-94,338	0	72.0	0	-425,454
System	1	Block	0	0.0	0	0.0	974	-94,338	0	72.0	0	-425,454
2	OWEN	HALL	0	0.0	0	0.0	1,507	-145,894	0	72.0	0	-693,025
Zone	2	Total/Ave.	0	0.0	0	0.0	1,507	-145,894	0	72.0	0	-693,025
Zone	2	Block	0	0.0	0	0.0	1,507	-145,894	0	72.0	0	-693,025
System	2	Total/Ave.	0	0.0	0	0.0	1,507	-145,894	0	72.0	0	-693,025
System	2	Block	0	0.0	0	0.0	1,507	-145,894	0	72.0	0	-693,025
3	AUDIT	ORIUM	0	0.0	0	0.0	287	-27,767	0	72.0	0	-129,285
Zone	3	Total/Ave.	0	0.0	0	0.0	287	-27,767	0	72.0	0	-129,285
Zone	3	Block	0	0.0	0	0.0	287	-27,767	. 0	720	0	-129,285
System	3	Total/Ave.	0	0.0	0	0.0	287	-27,767	0	72.0	0	-129,285
tem	3	Block	0	0.0	0	0.0	287	-27,767	0	72.0	0	-129,285
4	SENIO	R HALL	0	0.0	0	0.0	1,134	-109,834	0	72.0	0	-487,699
Zone	4	Total/Ave.	0	0.0	0	0.0	1,134	-109,834	0	72.0	0	-487,599
Zone	4	Block	0	0.0	0	0.0	1,134	-109,834	0	-72.0-		-487,699
System	4	Total/Ave.	0	0.0	0	0.0	1,134	-109,834	0	72.0	0	-487,599
System	4	Block	0	0.0	0	0.0	1,134	-109,834	0	72.0	0	-487,699
5	SPECI	AL TRAINING	0	0.0	0	0.0	775	-75,053	0-	720	0	
Zone	5	Total/Ave.	0	0.0	0	0.0	775	-75,053	0	72.0	ο.	-179,176
Zone	5	Block	0	0.0	0	0.0	775	-75,053	0	72.0	0	-179,176
System	5	Total/Ave.	0	0.0	0	0.0	775	-75,053	0	72.0	0	-179,176
System	5	Block	0	0.0	0	0.0	775	-75,053	0	72.0	0	-179,176
6	GYMNA	SIUM	0	0.0	0	0.0	210	-20,332	0	72.0	0	-119,596
Zone	6	Total/Ave.	- 0	0.0	· 0	0.0	210	-20,332	0	72.0	0	-119,596
Zone	6	Block	. 0	0.0	0	0.0	210	-20,332	0	72.0	0	-119,596
System	6	Total/Ave.	0	0.0	0	0.0	210	-20,332	0	72.0	0	-119,596
System	6	Block	0	0.0	0	0.0	210	-20,332	0	72.0	0	-119,596
7	OWENS	BASEMENT	0	0.0	0	0.0	0	0	0	72.0	0	0
Zone	7	Total/Ave.	0	0.0	0	0.0	0	0	0	72.0	0	0
Zone	7	Block	0	0.0	0	0.0	0	0	0	72.0	0	0
System	7	Total/Ave.	0	0.0	0	0.0	0	0	0	72.0	0	0
System	7	Block	0	0.0	0	0.0	0	0	0	72.0	0	0

PAGE 25

LING LOADS AT COIL PEAK - ALTERNATIVE 1 ...AD CALCULATION

-----AIRFLOW COOLING LOADS ------(At time of Coil Peak)

المن الم

				Ventilation		Opt	ional Ventila	tion		Bypass		
						-						0v/Undr
Room			Airflow	Sensible	Latent	Airflow	Sensible	Latent	Airflow	Sensible	Latent	Sizing
Number		Description	(Cfm)	(Btuh)	(Btuh)	(Cfm)	(Btuh)	(Btuh)	(Cfm)	(Btuh)	(Btuh)	(Btuh)
2	OWEN	HALL	2,000	13,799	55,677	0	0	0	0	· 0	o	0
Zone	2	Total/Ave.	2,000	13,799	55,677	0	, O	0	0	0	0	0
Zone	2	Block	2,000	13,799	55,677	0	0	0	0	0	0	0
System	2	Total/Ave,	2,000	13,799	55,677	0	0	0	0	0	0	0
System	2	Block	2,000	13,799	55,677	0	5. fg 0 -	0	0	0	0	0
3	AUDI	TORIUM	2,000	16,693	34,459	0	0	0	0	0	0	0
Zone	3	Total/Ave.	2,000	16,693	34,459	0	0	0	0	0	0	0
Zone	3	Block	2,000	16,693	34,459	0	0	0	· 0	0	0	0
System	. 3	Total/Ave.	2,000	16,693	34,459	0	0	0	0	. 0	0	0
System	3	Block	2,000	16,693	34,459	0	ò	0	; O	0	0	0

PAGE 26

٠,

<u>___</u>

By: C.D.S. MARKETING

TING LOADS AT COIL PEAK - ALTERNATIVE 1 LOAD CALCULATION

(At time of Coil Peak)

			Venti	lation	Op.	Vent	Re	eheat	Hum	idif	
Room			Airflow	Sensible	Airflow	Sensible	Airflow	Sensible	Airflow	Latent	Total
Number		Description	(Cfm)	(Btuh)	(Cfm)	(Btuh)	(Cfm)	(Btuh)	(Cfm)	(Btuh)	(Btuh)
1	BRIGG	S HALL	4,500	-435,676	0	0	· 0	0	0	. 0	-435,676
Zone	1	Total/Ave.	4,500	-435,676	0	0	. 0	0	0	0	-435,676
Zone	l	Block	4,500	-435,676	0	0	0	0	0	0	-435,676
System	1	Total/Ave.	4,500	-435,676	0	0	0	0	0	0	-435,676
System	1	Block	4,500	-435,676	0	0	0	0	0	0	-435,676
2	OWEN	HALL	2,000	-193,634	0	0	7,056	-109,924	0	0	-303,558
Zone	2	Total/Ave.	2,000	-193,634	0	0	7,056	-109,924	0	0	,-303,558
Zone	2	Block	2,000	-193,634	0	0	7,056	-109,924	0	0	-303,558
System	2	Total/Ave.	2,000	-193,634	0	0	7,056	-109,924	0	0	-303,558
System	2	Block	2,000	-193,634	0	0	7,056	-109,924	0	0	-303,558
3	AUDIT	ORIUM	2,000	-193,634	0	· 0	0	0	. 0	0	-193,634
Zone	· 3	Total/Ave.	2,000	-193,634	0	0	0	0	0	0	-193,634
The	3	Block	2,000	-193,634	0	0	0	0	0	0	-193,634
tem	3	Total/Ave.	2,000	-193,634	0	0	0	0	0	0	-193,634
System	3	Block	2,000	-193,634	0	0	0	0	0	0	-193,634
4	SENIO	R HALL	8,000	-774,536	0	0	0	0	0	0	-774,536
Zone	4	Total/Ave.	8,000	-774,536	0	0	0	0	0	0	-774,536
Zone	4	Block	8,000	-774,536	0	. 0	0	0	0	• 0	-774,536
System	4	Total/Ave.	8,000	-774,536	0	0	0	0	0	0	-774,536
System	4	Block	8,000	-774,536	0		. 0	0	0	0	-774,536
5	SPECI	AL TRAINING	3,000	-290,451	0	0	0	0	0	0	-290,451
Zone	5	Total/Ave.	3,000	-290,451	• • • •	0	0	0	0	0	-290,451
Zone	5	Block	3,000	-290,451	0	0	0	0	0	0	-290,451
System	5	Total/Ave.	3,000	-290,451	0	0	0	0	0	0	-290,451
System	5	Block	3,000	-290,451		0	. 0	0	0	0	-290,451
6	GYMNA	SIUM	1,000	-96,817	0	0	0	0	0	0	-96,817
Zone	6	Total/Ave.	.1,000	-96,817	0	0	0	0	0	0	-96,817
Zone	6	Block	1,000	-96,817	0	0	0	0	0	0	-96,817
System	6	Total/Ave.	1,000	-96,817	0	0	0	0	0	0	-96,817
System	6	Block	1,000	-96,817	0	0	0	0	0	0	-96,817
. 7	OWENS	BASEMENT	1,168	-113,111	0	0	0	0	0	0	-113,111
Zone	7	Total/Ave.	1,168	-113,111	0	0	0	0	0	0	-113,111
Zone	7	Block	1,168	-113,111	0	0	0	0	0	0	-113,111
System	7	Total/Ave.	1,168	-113,111	0	0	0	0	0	0	-113,111
System	7	Block	1,168	-113,111	0	0	0	0	0	C	-113,111

() 19

.

LING AIRFLOW HEAT GAIN/LOSS - ALTERNATIVE 1 LOAD CALCULATION

				- AIR	FLOW	HEAT	GAIN	AND	LOSS					
					(At	time of Co	il Peak)							
					· 			Cooling						
			Duct	Supply	Return	System		System	Room			Run		System
			Heat	Fan	Fan	Exhaust		Exhaust	Exhaust	Ducted	Plenum	Around	Corridr	Return
Room			Pickup	Heat	Heat	Heat Loss	Total	Airflow						
Number		Description	(Btuh)	(Btuh)	(Btuh)	(Btuh)	(Btuh)	(Cfm)						
2	OWEN	HALL	0	66,897	0	0	66,897	2,000	0	23,519	0	0	0	23,519
Zone	2	Total/Ave.	0	66,897	0	0	66,897	2,000	0	23,519	0	0	0	23,519
Zone	2	Block	0	66,897	0	0	66,897	2,000	0	23,519	0	0	0	23,519
System	2	Total/Ave.	0	66,897	0	0	66,897	2,000	0	23,519	0	0	0	23,519
System	2	Block	0	66,897	0	0	66,897	2,000	0	23,519	0	0	0	23,519
3	AUDI	FORIUM	0	3,828	0	0	3,828	2,000	0	4,307	0	0	0	4,307
Zone	3	Total/Ave.	0	3,828	0	0	3,828	2,000	0	4,307	0	0	. 0	4,307
Zone	3	Block	0	3,828	0	0	3,828	2,000	0	4,307	0	0	0	4,307
System	3	Total/Ave.	0	3,828	0	0	3,828	2,000	0	4,307	0	0	0	4,307
System	3	Block	0	3,828	0	0	3,828	2,000	0	4,307	0	0	0	4,307

· · · · · ·

- - -

.

•

-

PAGE 28

•

ATING AIRFLOW HEAT GAIN/LOSS - ALTERNATIVE 1 LOAD CALCULATION

(At time of Coil Peak)

.

			Supply	Return	System		System	Room			Run		System
			Fan	Fan	Exhaust		Exhaust	Exhaust	Ducted	Plenum	Around	Corridr	Return
Room			Heat	Heat	Heat Loss	Total	Airflow	Airflow	Airflow	Airflow	Airflow	Airflow	Airflow
Number	D	escription	(Btuh)	(Btuh)	(Btuh)	(Btuh)	(Cfm)	(Cfm)	(Cfm)	(⊂£m)	(Cfm)	(Cfm)	(Cfm)
l	BRIGG	S HALL	0	0	0	0	0	0	0	0	0	0	0
Zone	l	Total/Ave.	0	0	0	0	0	0	0	0	0	0	0
Zone	l	Block	0	0	0	- ⁻ 0	. 0	0	0	0	0	0	0
System	l	Total/Ave.	0	0	0	. 0	0	0	0	0	0	0	0
System	l	Block	0	0	0	0	τ́ 0	0	0	0	0	0	0
2	OWEN 1	HALL	0	0	0	0	3,507	0	8,562	0	0	0	8,562
Zone	2	Total/Ave.	0	0	0	0	3,507	0	8,562	0	0	0	8,562
Zone	2	Block	0	0	0	0	3,507	0	8,562	0	0	0	8,562
System	2	Total/Ave.	0	0	0	0	3,507	0	8,562	0	0	0	8,562
System	2	Block	0	0	0	0	3,507	0	8,562	0	0	0	8,562
3	AUDIT	ORIUM	0	0	0	0	2,287	0	4,593	0	0	0	4,593
Zone	3	Total/Ave.	0	0	0	0	2,287	0	4,593	0	0	0	4,593
° ne	з	Block	0	0	0	0	2,287	0	4,593	0	0	0	4,593
,tem	3	Total/Ave.	0	0	0	0	2,287	0	4,593	0	0	0	4,593
System	з	Block	0	0	0	0	2,287	0	4,593	0	0	0	4,593
4	SENIO	R HALL	0	0	0	0	9,134	0	9,134	0	0		9,134
Zone	4	Total/Ave.	0	0	0	0	9,134	0	9,134	0	0	0	9,134
Zone	4	Block	0	0	0	0	9,134	0	9,134	0	0	0	9,134
System	4	Total/Ave.	0	0	0	0	9,134	0	9,134	. 0	0		9,134
System	4	Block	0	0	0	0	9,134	0	9,134	0	0	<u></u> 0	. 9,134
5	SPECI	AL TRAINING	0	0	0	0	0	0	0	0	0	,0	0
Zone	5	Total/Ave.	0	0	0	0	0	0	0	0	0	0	0
Zone	5	Block	0	0	0	0	· 0	0	0	0	0	0	0
System	5	Total/Ave.	0	0	0	0	. 0	0	0	0	0	0	θ
System	5	Block	0	0	0	0	0	0	. 0	0	· 0	·· 0	0 ·
6	GYMNA	SIUM	0	0	0	0	0	0	0	. 0	0	. 0	. 0
Zone	6	Total/Ave.	_ 0	0	0	o	0	0	0	0	0	0	0
Zone	6	Block	0	0	0	0	0	0	0	0	0	0	0
System	6	Total/Ave.	0	0	0	0	0	0	0	0	0	0	0
System	6	Block	0	0	0	0	0	0	0	0	0	0	0
7	OWENS	BASEMENT	o	0	0	0	0	0	0	0	0	0	0
Zone	7	Total/Ave.	0	0	0	0	0	0	0	0	0	o	0
Zone	7	Block	0	0	0	0	0	0	0	0	0	0	0
System	7	Total/Ave.	0	0.	0	o	o	0	0	0	0	0	0
System	7	Block	0	0	0	0	o	0	0	0	o	o	0

and the second second

¹⁰ July 1990 Bolloving Children and Chi

By: C.D.S. MARKETING

.E PSYCHROMETRICS - ALTERNATIVE 1 LOAD CALCULATION

.

----- PSYCHROMETRIC' STATE POINTS ------

Zone 3

	Dry	We	: Relat	. Humid.		Temp.
	Bulb	Bul	o Humić	l. Ratio	Enthalpy	Diff.
	(F)	(F) (१	;) (GR)	(Btu/Lb)	(F)
Space	76.0	64.	5 54.	4 73.4	29.7	
Main System						
Return Air Heat Pickup						0.0
Return Fan					<u> </u>	0.0
Return Air	76.0	64.	5 54.	4 73.4	29.7	
Outdoor Air	83.5	71.	5 56.	6 98.0	35.4	,
Return/Outdoor Air Mix	79.5	68.	55.	9 84.8	32.4	~
Blow through Fan						0.0
Entering Coil	79.5	68.	D 55.	9 84.8	32.4	
Leaving Coil	57.2	56.	1 93.	5 65.6	23.9	
Draw Through Fan						0.3
Duct Frictional Heat						0.5
Supply Duct Heat Gain						0.0
Cold Deck Supply Air	58.0	56.	1 90.	8 65.6	24.1	
Supply Air	58.0	56.	¥ 90.	8 65.6	24.1	
Percent Outside Air		46.44	(%)			
Sensible Heat Ratio (SHR)		0.772				
Percent Supply Air Bypassing Coil		0.00	(왕)			

Coil Airflow

4,307 (Cfm)

•.

FEM PSYCHROMETRICS - ALTERNATIVE 1

LOAD CALCULATION

----- PSYCHROMETRIC STATE POINTS -----

System 2

	Dry	We	et F	Relat.	Humid.		Temp.	
	Bulb	Bu	lb F	Aumid.	Ratio	Enthalpy	Diff.	
	(F)	(1	7)	(%)	(GR)	(Btu/Lb)	(F)	
Space	76.0	61	.4	43.3	58.2	27.3		
Main System								
Return Air Heat Pickup							0.0	
Return Fan							0.0	
Return Air	76.0	61	. 4	43.3	58.2	27.3		
Outdoor Air .	82.2	71	. 2	59.0	98.0	35.1		
Return/Outdoor Air Mix	76.5	62	. 3	45.0	61.6	28.0 -		
Blow through Fan							0.0	
Entering Coil	76.5	62	. 3	45.0	61.6	28.0		
Leaving Coil	55.4	53	. 2	86.8	57.0	22.1		
Draw Through Fan							1.1	
Duct Frictional Heat							1.4	
Supply Duct Heat Gain							0.0	
Cold Deck Supply Air	58.0	54	. 3	79.1	57.0	22.8	· · ·	-
Supply Air	58.0	54	. 3	79.1	57.0	22.8		
Percent Outside Air		8.50	(%)					
Sensible Heat Ratio (SHR)		0.949						
Percent Supply Air Bypassing Coil		0.00	(%)					·
Coil Airflow	2	3,519	(Cfm)					

-

·

....

PAGE 31

.

By: C.D.S. MARKETING

.

ILDING U-VALUES - ALTERNATIVE 1 LOAD CALCULATION

.

.

-----BUILDING U-VALUES-----

					Room	Room							
						(Btu	/hr/sqf	t/F)				Mass	Capac.
Room					Summr	Wintr		Summr	Wintr			(15/	(Btu/
Number	Desc	ription	Part.	ExFlr	Skylt	Skylt	Roof	Windo	Windo	Wall	Ceil.	sqft)	sqft/F)
1	BRIGG	S HALL	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.200	0.000	49.6	10.14
Zone	1	Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.200	0.000	49.6	10.14
System	1	Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.200	0.000	49.6	10.14
2	OWEN	HALL	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.200	0.000	54.6	11.21
Zone	2	Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.600	0.674	10.200	0.000	54.6	11.21
System	2	Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.600	0.674	ó.200	0.000	54.6	11.21
3	AUDIT	ORIUM	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.200	0.000	80.3	19.42
Zone	3	Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.200	0.000	80.3	19.42
System	3	Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.200	0.000	80.3	19.42
4	SENIO	R HALL	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.200	0.000	52,8	10.79
Zone	4	Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.200	0.000	52.8	10.79
System	4	Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.200	0.000	52.8	10.79
5	SPECI	AL TRAINING	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.050	0.000	66.4	13.90
ıe	5	Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.050	0.000	66.4	13.90
System	5	Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.050	0.000	66.4	13.90
6	GYMNA	SIUM	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.200	0.000	71.5	15.21
Zone	6	Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.200	0.000	71.5	15.21
System	6	Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.200	0.000	71.5	15.21
7	OWENS	BASEMENT	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	23.3	4.67
Zone	7	Total/Ave.	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	23.3	4.67
System	7	Total/Ave.	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	23.3	4.67
Building			0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.173	0.000	53.2	11.01

PAGE 32

••••

By: C.D.S. MARKETING

LDING U-VALUES - ALTERNATIVE 1 LOAD CALCULATION

• •

•

.

-----BUILDING U-VALUES-----

			Room U-Values									Room	Room
						(Btu	/hr/sqf	t/F)				Mass	Capac.
Room					Summr	Wintr		Summr	Wintr			(lb/	(Btu/
Number	Desc:	ription	Part.	ExFlr	Skylt	Skylt	Roof	Windo	Windo	Wall	Ceil.	sqft)	sqft/F)
						-							
l	BRIGG	S HALL	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.200	0.000	49.6	10.14
Zone	l	Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.200	0.000	49.6	10.14
System	1	Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.200	0.000	49.6	10.14
2	OWEN 1	HALL	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.200	0.000	54.6	11.21
Zone	2	Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.600	6 0.674	0.200	0.000	54.6	11.21
System	2	Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.600	0.674	ó.200	0.000	54.6	11.21
3	AUDITO	ORIUM	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.200	0.000	80.3	19.42
Zone	3	Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.200	0.000	80.3	19.42
System	3	Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.200	0.000	80.3	19.42
4	SENIO	R HALL	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.200	0.000	52.8	10.79
Zone	4	Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.200	0.000	52.8	10.79
System	4	Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.200-	0.000	52.8	10.79
5	SPECI.	AL TRAINING	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.050	0.000	66.4	13.90
3	5	Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.050	0.000	66.4	13.90
system	5	Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.050	0.000	66.4	13.90
6	GYMNA.	SIUM	0.000	0.000	0.000	0.000	0.050	0.600-	-0.674	0.200	0:000	71.5	15.21
Zone	6	Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.600	0.674	_0.200	-0.000	71.5	15.21
System	6	Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.200	0.000	71.5	15.21
7	OWENS	BASEMENT	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	23.3	4.67
Zone	7	Total/Ave.	0.000	0.000	0.000	0.000	0.000	0_000	0.000	0000	0_000_	23.3	4.67
System	7	Total/Ave.	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	23.3	4.67
Buildin	g		0.000	0.000	0.000	0.000	0.050	0.600	0.674	0.173	0.000	53.2	11.01

····-·

.

PAGE 32

۰.

.

By: C.D.S. MARKETING

.LDING AREAS - ALTERNATIVE 1 LOAD CALCULATION

							•	•						
					Floor	Total		Exposed			*			
			Numbe	≘r of	Area/Dupl	Floor	Partition	Floor	Skylight	Skl	Net Roof	Window	Win	Net Wall
Room			Dupl	icate	Room	Area	Area	Area	Area	/Rf	Area	Area	/w1	Area
Number	Descri	lption	Flr	Rm	(sqft)	(sqft)	(sqft)	(sqft)	(sqft)	(*)	(sqft)	(sqft)	(%)	(sqft)
1	BRIGGS	S HALL	1	1	29,112	29,112	0	0	0	0	7,278	1,778	14	11,214
Zone	1	Total/Ave.				29,112	0-	0	0	0	7,278	1,778	14	11,214
System	1	Total/Ave.				29,112	0	0	0	0	7,278	1,778	14	11,214
2	OWEN H	IALL .	1	1	36,562	36,562	0	0	0	0	11,683	3,554	18	16,538
Zone	2	Total/Ave.				36,562	. 0	0	0	0	11,683	3,554	18	16,538
System	2	Total/Ave.				36,562	0	í o	0	0	11,683	3,554	18	15,538
. 3	AUDITO	DRIUM	1	1	3,344	3,344	0	0	0	0	3,344	495	13	3,329
Zone	з	Total/Ave.				3,344	0	0	0	0	3,344	495	13	3,329
System	з	Total/Ave.				3,344	0	0	0	0	3,344	495	13	3,329
4	SENIOF	R HALL	1	1	29,897	29,897	0	0	0	0	7,648	1,972	13	13,154
Zone	4	Total/Ave.				29,897	0	0	0	0	7,648	1,972	13	13,154
System	. 4	Total/Ave.				29,897	0	0	0	0	7,648	1,972	13	13,154
5	SPECIA	L TRAINING	1	1	19,138	19,138	0	0	0	0	13,438	13	0	10,323
3	5	Total/Ave.				19,138	0	0	0	0	13,438	13	0	10,323
System	5	Total/Ave.				19,138	0	0	0	0	13,438	13	0	10,323
6	GYMNAS	SIUM	l .	1	3,648	3,648	0	0	0	0	3,648	840	30	1,960
Zone	6	Total/Ave.				3,648	0	0	0	0	3,648	840	30	1,960
System	6	Total/Ave.				3,648	0	0	0	0	3,648	840	30	1,960
7	OWENS	BASEMENT	1	1	11,683	11,683	0	0	0	0	0	0	0	0
Zone	7	Total/Ave.				11,683	0	0	0	0	0	0	. 0	0
System	7	Total/Ave.				11,683	0	0	0	0	0	0	. 0	0
Buildin	a					133,384	0	0	0	0	47,039	8,552	13	56,518

BUILDING AREAS

PAGE 33

ASHRAE 90 ANALYSIS - ALTERNATIVE 1

LOAD CALCULATION

----- ASHRAE 90 ANALYSIS -----

Overall Roof U-Value=0.050 (Btu/Hr/Sq Ft/F)Overall Wall U-Value=0.229 (Btu/Hr/Sq Ft/F)Overall Building U-Value0.154 (Btu/Hr/Sq Ft/F)

Roof Overall Thermal Transfer Value (OTTVr) = 2.55 (Btu/Hr/Sq Ft) Wall Overall Thermal Transfer Value (OTTVw) = 15.59 (Btu/Hr/Sq Ft)

TACE 600 input file J:\CDS\TULTRA\24081.TM by C.D.S. MARKETING

Alternative #1

Page #1

11 Card - Job Information

roject: MAINE CRIMINAL JUSTICE ACADEMY
.ocation: VASSALBORO, ME
:lient: PDT ARCHITECTS
'rogram User: SP DOEL
'omments: FILE 24081

ard 10------ Load Simulation Parameters -----cooling Heating Airflow Airflow Room Put Wall oad Load Ventilation Input Output Circulation RA Load '--hod Method Method Units Units Rate to Room -CLF

----- Load Section Alternative #1 -----

ard 19- Load Alternative umber Description

LOAD CALCULATION

ard 20				Gener		Paramete	79				
	Zone			001122		1 41 4116 6 6	Acoustic	Floor to	Duplicate	Duplicate	Perimeter
oom	Reference	Room	Floor	Floor	Const	Plenum	Ceiling	Floor	Floors	Rooms per	Depth
umber	Number	Descrip	Length	Width	Type	Height	Resistance	Height	Multiplier	Zone	
	1	BRIGGS HALL	29112	1	6	0	0	11			
	2	OWEN HALL	36562	1	6	0	0	11			
	3	AUDITORIUM	3344	1	1	0	0	11			
	4	SENIOR HALL	29897	1	6	0	0	11			
	5	SPECIAL TRAINING	19138	1	6	0	0	11			
	6	GYMNASIUM	3548	1	6	0	0	11			
	7	OWENS BASEMENT	11683	1	6	0	с	11			

ACE 600 input file J:\CDS\TULTRA\24081.TM by C.D.S. MARKETING

Alternative #1

......

Page #2

erd 21----- Thermostat Parameters -----Cooling Room Cooling Cooling Heating Heating T'stat Mass / Carpet Heating Room Design T'stat T'stat Room T'stat T'stat Location No. Hrs On 'nOm mber Design DB RH Driftpoint Schedule Design DB Driftpoint Schedule Flag Average Floor 76 50 50 50 72

rd	22	Roof	Parameters	

		Roof							
om	Roof	Equal to	Roof	Roof	Roof	Const	Roof	Roof	Roof
.mber	Number	Floor?	Length	Width	U-Value	Туре	Direction	Tilt	Alpha
	1	NO	7278	1	.05		ا ماند آمزم		
	1	NO	7278	1	.05		10		
	1.	NO	11683	1	.05				
	1	NO	3344	1	.05				
	1	NO	7648	1	.05				
	1	NO	13438	1	.05				
	1	1	3648	1	.05				

-1 24	·			Wall H	arameters				
					Wall				Ground
om	Wall	Wall	Wall	Wall	Constuc	Wall	Wall	Wall	Reflectance
umber	Number	Length	Height	U-Value	Туре	Direction	Tilt	Alpha	Multiplier
	1	1	1	.2	94	0			
	1	4960	1	.2	94	0			
•	2 *	4960	1	.2	94	180			
	3	1408	1	. 2	94	90			
	4	1664	1	. 2	94	270			
	1	5591	1	.2	94	90			
	2	6745	1	.2	94	270			
	3	3600	1	.2	94	0			
24.3	<u>م</u> ندوند	4156	1	. 2	94	180		•	
	1	1896	1	.2	94	0			
	2	800	1	.2	94	270			
	3	1128	l	.2	94	90			
	1 .	3348	i , '	.2	94	0			
	2.2	4124	1	.2	94	180			
	3	3726	1	. 2	94	90			
	4	3928	1	. 2	94	270			
	1	2684	1	.05	94	90			
	2	2376	1	.05	94	0			
، وتكويني	- 3€	2684	1	.05	94	180			
	4	2592	1	.05	94	270			
	ı.	1840	1	. 2	94	180			
	2	960	1	. 2	94	90			

.RACE 600 input file J:\CDS\TULTRA\24081.TM by C.D.S. MARKETING

20

CFM-P

20

CFM-P

CFM-P

CFM-P

.075

CFM-SF

Alternative #1

Page #3

'ard of						Wall/Glass Pa	rametere -				
				Pct Glass			External	Internal	Percent		Inside
loom	Wall	Glass	Glass	or No. of	Glass	Shading	Shading	Shading	Solar to	Visible	Visible
umber	Number	Lèngth	Height	Windows	U-Value	Coefficient	Туре	Туре	Ret. Air	Transmittance	Reflectance
1	1	1	1	1	.6	.6					
•	1	679									
	2	2739								•	
	3	182									
•	4	178						A .			
	1	931	1					04	No		
	2	1205	1	1			L.S.	- ()	NG		
	3	540	1			. (\mathcal{A} \mathcal{N}	1 A	, .		
	4	878 ?	1			715		K.			
	1	460	1			v	XX	·			
	2	25	1			40	V.L	1			
	3	10	1			1	1 IA	1			
	1	460	1				(AV				
	2	468	1				0				
	3	531	1								
	4	513	1	1							
	1	10									
	1	768									
	2	72	1	1							
ard 27					Peopl	e and Lights.					
						Li	ghting	Pero	cent	Daylighting	
DOM	People	People	People	People	Lighting	Lighting Fi	xture Ba	llast Lig	hts to Ref	erence Referen	ice
umber	Value	Units	Sensible	Latent	Value	Units Ty	pe Fa 	ctor Ret	. Air Poi	nt l Point 2	•
	200	SF-PERS	255	255	2.0	WATT-SF AS	HRAE2				,
	100			000010							
	100	PEOPLE	ROATE	PEOPLE	1						
	100	PEOPLE				2					
			-								
'and 20								-		•	
aru 23	Nice					MISCEIIANEOU	S Equipmen	Dowgont	Domeont	Domaone	
207	Fauirra	at Emin	mant	Conc	gy Ener	a a a	Managy	of Lood	Mine Leo	d Migg Song	Padiant Optiona
Join .	France	nc Equip	ment	Cons	ump Cons	ump Schedule	Meter	Or Load	MISC. LOA	to Pot Nim	Radiane Operona
imper	Number	Descr	-1p	varu			Lode	Sensible	CO ROOM	to Ret, Air	Fraction Air Pat.
L	1	MISCA	LLANEOUS	T	BIOH	-SF CLGONLY					
	т Т										
	1										
ard 29						Room Airflows					
		Ve	ntilation				-Infiltrat	ion			
moc	Co	oling		Heating-		Cooling-		Heating		Reheat Minimu	m
umber	Value	Unit	.s Valı	ie Ui	nits	Value U	nits Va	alue	Units	Value Un	its

CFM

.

··· ·

~

• • .

`.

.

. . .

. .

VACE 6	00 input f	file J:\CDS	\TULTRA\24	1081.TM by	C.D.S. MARKE	FING		Alte	ernative #1		Page
rd 29		· · · · · · · · · · · · · · · ·			Room Air	flows					
		Venti	lation			Infilt	ration				
noo	Cool	ling	He	eating	Coo	oling	Hea	ting	Reheat	Minimum	
umber	Value	Units	Value	Unit	ts Value	Units	Value	Units	Value	Units	
	8000	CEM	8000	CEM					*		
	5	5	3000	CEM							
	6	6	1000	CFM							
		Syste	m Section	Alternat	tive #1						
						;u	.1.5				
						· (
	Custon 1	Nikowachiwa				<u></u>	-				
ra 39 mbor	- System 1	ALCETHALIVE									
	De	000 m m m m m m m m m m m m m m m m m m									
	RJ	escription AD	Susta								
rd 40	RJ	escription AD	System	n Type AL VENTIL	ATION SYSTEM						
rd 40 em	RJ	AD Ventil	System	n Type AL VENTIL	ATION SYSTEM	Fan					
rd 40 em	RJ System	AD Ventil Deck	System OPTION Cooling	n Type AL VENTIL Heating	ATION SYSTEM Cooling Hea	Fan ting Static					
em em	RJ System Type	Ventil Deck Location	System OPTION Cooling SADBVh	n Type AL VENTILI Heating SADBVh	ATION SYSTEM Cooling Hea Schedule Sch	Fan ting Static edule Pressu	 : ire				
rd 40 em mber	System Type RAD	AD Ventil Deck Location	System OPTION Cooling SADBVh	n Type AL VENTIL Heating SADBVh	ATION SYSTEM Cooling Hea Schedule Sch	Fan ting Static edule Pressu	 ire			-	
rd 40 em 	RJ System Type RAD VRH SZ	AD AD Ventil Deck Location	System OPTIONA Cooling SADBVh	n Type AL VENTILL Heating SADBVh	ATION SYSTEM Cooling Hea Schedule Sch	Fan ting Static edule Pressu			<u>-</u>	-	
rd 40 em	System Type RAD VRH SZ RAD	AD Ventil Deck Location	System OPTIONA Cooling SADBVh	n Type AL VENTIL Heating SADBVh	ATION SYSTEM Cooling Hea Schedule Sch	Fan ting Static edule Pressu	 ire	··· · · ··· · · · · · · · · · · · · ·		-	
rd 40 em u	System Type RAD VRH SZ RAD RAD RAD	AD Ventil Deck Location	System OPTION Cooling SADBVh	n Type AL VENTIL Heating SADBVh	ATION SYSTEM Cooling Hea Schedule Sch	Fan ting Static edule Pressu	 ire			-	_• .
rd 40 em u	System Type RAD VRH SZ RAD RAD RAD RAD	Ventil Deck Location	System OPTION Cooling SADBVh	n Type AL VENTIL Heating SADBVh	ATION SYSTEM Cooling Hea Schedule Sch	Fan ting Static edule Pressu	 ire			-	- ` .
urd 40 em uu mber	System Type RAD VRH SZ RAD RAD RAD RAD RAD	Ventil Deck Location	System OPTION Cooling SADBVh	n Type AL VENTIL Heating SADBVh	ATION SYSTEM Cooling Hea Schedule Sch	Fan ting Static edule Pressu	 ire				_•.
rd 40 em 	System Type RAD VRH SZ RAD RAD RAD RAD RAD	AD Ventil Deck Location	System OPTIONA Cooling SADBVh	n Type AL VENTIL Heating SADBVh	ATION SYSTEM Cooling Hea Schedule Sch	Fan ting Static edule Pressu	 : :: :: :: :: ::	··· · · · · · · · · · · · · · · · · ·	·· _ · · · · · · · · · · · · · · · · ·	-	
rd 40 em mber	System Type RAD VRH SZ RAD RAD RAD RAD RAD RAD	AD Ventil Deck Location	System OPTIONA Cooling SADBVh	n Type AL VENTIL Heating SADBVh	ATION SYSTEM Cooling Hea Schedule Sch	Fan ting Static edule Pressu	 ire			-	
rd 40 em mber	System Type RAD VRH SZ RAD RAD RAD RAD RAD	escription AD Ventil Deck Location	System Cooling SADBVh	n Type AL VENTIL Heating SADBVh	ATION SYSTEM Cooling Hea Schedule Sch	Fan ting Static edule Pressu	 ire			-	` .
rd 40 em mber rd 41	System Type RAD VRH SZ RAD RAD RAD RAD RAD	Ventil Deck Location	System OPTION Cooling SADBVh	n Type AL VENTIL Heating SADBVh	ATION SYSTEM Cooling Hea Schedule Sch	Fan ting Static edule Pressu	 ire				
rd 40 em mber rd 41 stem	System Type RAD VRH SZ RAD RAD RAD RAD RAD	escription AD Ventil Deck Location	System OPTIONA Cooling SADBVh	n Type AL VENTILI Heating SADBVh	ATION SYSTEM Cooling Hea Schedule Sch	Fan ting Static edule Pressu					`.
rd 40 em mber rd 41 stem t	RJ System Type RAD VRH SZ RAD RAD RAD RAD RAD RAD RAD	escription AD Ventil Deck Location	System OPTIONA Cooling SADBVh	Type AL VENTIL Heating SADBVh	ATION SYSTEM Cooling Hea Schedule Sch Schedule Sch Zone Assig Ref #3	Fan ting Static edule Pressu	 : :: :: :: :: :: : : : : : : : : :	Ref #5		Ref #6	
rd 40 em mber rd 41 stem t mber	System Type RAD VRH SZ RAD RAD RAD RAD RAD RAD RAD RAD RAD RAD	escription AD Ventil Deck Location ef #1 n End	System OPTIONA Cooling SADBVh SADBVh Ref Begin	Type AL VENTIL Heating SADBVh #2 End	ATION SYSTEM Cooling Hea Schedule Sch Schedule Sch Zone Assig Ref #3 Begin En	Fan ting Static edule Pressu nment Ref d Begin	 ire 	Ref #5 Begin	End Be	Ref #6 gin End	_•.
rd 40 em mber rd 41 stem t mber	RJ System Type RAD VRH SZ RAD RAD RAD RAD RAD RAD RAD RAD RAD RAD	escription AD Ventil Deck Location ef #1 n End 1 2	System Cooling SADBVh Ref Begin	n Type AL VENTIL Heating SADBVh #2 End	ATION SYSTEM Cooling Hea Schedule Sch Schedule Sch Zone Assig Ref #3 Begin En	Fan ting Static edule Pressu nment Ref d Begin	 ire 	Ref #5 Begin 1	End Be	Ref #6 gin End	` .
rd 40 em mber rd 41 stem t mber	RJ System Type RAD VRH SZ RAD RAD RAD RAD RAD RAD RAD 1 2 3	escription AD Ventil Deck Location Location	System Cooling SADBVh Ref Begin	Type AL VENTIL Heating SADBVh #2 End	ATION SYSTEM Cooling Hea Schedule Sch Schedule Sch Zone Assig Ref #3 Begin En	Fan ting Static edule Pressu nment Ref d Begin	 ire 	Ref #5 Begin 1	End Be	Ref #6 gin End	`.
rd 40 em mber rd 41 stem t mber	System Type RAD VRH SZ RAD RAD RAD RAD RAD RAD RAD 1 2 3 4	escription AD Ventil Deck Location ef #1 n End 1 2 3 4	System OPTION Cooling SADBVh SADBVh Ref Begin	n Type AL VENTIL Heating SADBVh #2 End	ATION SYSTEM Cooling Hea Schedule Sch Zone Assig Ref #3 Begin En	Fan ting Static edule Pressu nment Ref d Begin	 ire 	Ref #5 Begin		Ref #6 gin End	`. ·
rd 40 em mber rd 41 stem t mber	System Type RAD VRH SZ RAD RAD RAD RAD RAD RAD RAD RAD RAD 1 2 3 4 5	escription AD Ventil Deck Location ef #1 n End 1 2 3 4 5	System OPTIONA Cooling SADBVh SADBVh Ref Begin	# Type AL VENTIL Heating SADBVh #2 End	ATION SYSTEM Cooling Hea Schedule Sch Schedule Sch Zone Assig Ref #3 Begin En	Fan ting Static edule Pressu	 ire 	Ref #5 Begin 1	End Be	Ref #6 gin End	
urd 40 em mber stem et	RJ System Type RAD VRH SZ RAD RAD RAD RAD RAD RAD RAD RAD RAD RAD	escription AD Ventil Deck Location Location ef #1 n End 1 2 3 4 5 5	System OPTIONA Cooling SADBVh SADBVh Ref Begin	# Type AL VENTIL Heating SADBVh #2 End	ATION SYSTEM Cooling Hea Schedule Sch Zone Assig Ref #3 Begin En	Fan ting Static edule Pressu nment Ref d Begin	 ire 	Ref #5 Begin		Ref #6 gin End	

RACE 600 input file J:\CDS\TULTRA\24081.TM by C.D.S. MARKETING

.

Alternative #1

Page #5

,

ard 42	rd 42 Fan SP and Duct Parameters													
ystem	Cool	Heat	Return	Mn Exh	Aux	Rm Exh	Cool	Return	Supply	Supply	Return			
et	Fan	Fan	Fan	Fan	Fan	Fan	Fan Mtr	Fan Mtr	Duct	Duct	Air			
umber	SP	SP	SP	SP	SP	SP	Loc	Loc	Ht Gn	Loc	Path			
	1	1	1	1	1	1	1	1	1	1	DUCTED			
	4	4	4	4	4	4	4	4	4	4	DUCTED			
	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	DUCTED			
	4	4	4	4	4	4	4	4	4	4	DUCTED			
	5	5	5	5	5	5	5	5	5	5	DUCTED			
	6	6	6	6	6	6	6	6	6	6	DUCTED			

.

ard 43				Airf	low Desig	n Tempera	tures				
ystem	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum	Design	Sys Lvl
ət	Cooling	Cooling	Heating	Heating	Cooling	Cooling	Preheat	Preheat	Room	Ht Rec	Vent
umber	SADB	SADB	SADB	SADB	Lv DB	Lv DB	Lv DB	Lv DB	RH	Diff	Flag
	58	58	120	120							
	58	58									

.

-

ard 4	1 44 System Options												
ýstem	Econ	Econ	Max Pct	Direct	Indirect	1st Stage			Ex	haust Air H	eat Recov	ery	
et	Туре	On	Outside	Evap	Evap	Evap	Fan	Effectiv	eness	Control	Туре	Exh-Side	Deck
umber	Flag	Point	Air	Cooling	Cooling	Cooling	Cycling	Stage 1	Stage 2	Stage 1	Stage 2	Stage 1	Stage 2

ard	47					j	Fan Overr	ides				
ys	Clg	Htg	Ret	Mn Exh	Aux	Rm Exh	Opt Vnt			-MAIN COC	LING FAN	
ət	Fan	Fan	Fan	Fan	Fan	Fan	Sys Fan	Mech	Air	Air	Size	
лш	Eff	Eff	Eff	Eff	Eff	Eff	Eff	Eff	Value	Units	Meth	Confg
	90	90										
	90	90										

RACE 600 input file J:\CDS\TULTRA\24081.TM by C.D.S. MARKETING

tility Description Reference Table

Schedules:

50 (Utility file not found)

CLGONLY COOLING ONLY (DESIGN)

System:

RAD RADIATION HEATING SYSTEM

SZ SINGLE ZONE SYSTEM

VRH VARIABLE VOLUME WITH REHEAT

1

.

Page #6

المراجع والجي متعوم معتد فالمتعاف والجار

.

TRACE 600 input file J:\CDS\TULTRA\24081.TM by C.D.S. MARKETING

Schedule Name: CLGONLY Project: COOLING ONLY (DESIGN) Location: Client: Program User: Comments: COOLING ONLY SCHEDULE

Starting Month: JAN Ending Month: DEC Starting Day Type: DSGN Ending Day Type: SUN

Hour Util Percent

0 100

24

Starting Monch: HTG Ending Month: HTG Starting Day Type: DSGN Ending Day Type: SUN

Hour Util Percent

0 0 24

. _____

.

....

(* : : :

Page #7

.

.

------. .

·

PREPARED BY: BENNETT ENGINEERING, INC.

FORM "LCA-1"

B.2.0 Required Energy Items

State of Maine

Energy Conservation in Buildings

Building Name/Use: Madison Elementary School Location: Madison, Maine

Date: 6MAR00

- 1. Average Number of Occupants:
- 2. Degree Days: 8000/year (estimate)
- 3. Inside Design Temperature: 72°F, Outside Design Temperature: -20°F
- 4. Building Area: 42,300 SQ. FT. (Heated Area)

Energy/Point of Use Per Year

5.	Lighting:	116,920 KWH	(100% Efficiency)	399,281 MBTU
6.	Heating:	14,165 Gal #2 Oil	11	1,983,034 MBTU
7.	Cooling:	5,000 KWH	11	17,075 MBTU
8.	Water Hear	ting: 639 Gal #2 Oil	11	89,400 MBTU
9.	Equipment	: 164,412 KWH	11	561,466 MBTU
10.	Other:*	500 GAL Propane	11	4,578 MBTU
11.	Total Energ	gy:	11	3,054,834 MBTU

- 12. Yearly Energy UsagePer Building SquareFoot Area: 72.18 BTU/SQ. FT./YR.
- * Kitchen Range, dryer

FORM "LCA-2"

DATE: 6MAR00

D 3.0 Life Cycle Cost-Benefit Analysis

PREPARED BY BENNETT ENGINEERING

STATE OF MAINE PROJECT Madison Elementary School DISCOUNT RATE: 10%									
Item	Estimated First Cost P	Life	Est. Factor	UCR (P-A) (1st Cost X UCR) = A^*					
Site Development			· <u>·····························</u> ···	······································					
Building Structure (All items exclusive of those listed below).									
Roofing									
Mechanical	549,9	00	30						
Fire Protection	76,14	0	30						
Electrical	296,100)	30						
Equipment Built-In			30						
Miscellaneous			30						
*Salvage value is assumed to be 0.									
TOTAL ESTIMATED SUBTOTALS COL. E CONSTRUCTION COST									
ENERGY USAGE				COL. F					
AMOUNT TYPE	5			ANNUAL COST					
14,804 Gal #2 Oil HEA	ency) \$18,505								
281,332 KWHELECTRICITY (Except for Heating)\$22,506									
500 Gal Propane GAS	\$9 00								

SEWER

INSURANCE @ \$.25/SF TAXES (Or Loss of Taxes) MAINTENANCE AND REPAIR @ \$.50/SF MAINTENANCE CONTRACTS OTHER TOTAL UNIFORM ANNUAL SUM UNIFORM ANNUAL SUM/SQ. FT. (New Only) AIA GROSS SQ. FT. 42,300

D.3.0 Life Cycle Cost-Benefit Analysis

PREPARED BY: STEPHEN BLATT ARCHITECTS

STATE OF MAINE

Project: MSAD#59, Madison Elementary School, Madison, ME

Discount Rate: 10%

Column Identification:		A	B C D		D	E
Item		Estimated 1 st Cost P	Est. Life	UCR (P-A) Factor	Salvage	(1 st Cost x UCR)=A
Site Dev.		\$490,100	30	0.1061	0	\$52,000
Building Structure (All items exclusive of those listed below)		\$2,116,500	30	0.1061	0	\$224,560
Roofing		\$173,500	30	0.1061	0	\$18,400
Mechanical (PBG & HVAC)		\$549,900	30	0.1061	0	\$58,340
Fire Protection (SPKLR)		\$76,100	30	0.1061	0	\$8,100
Electrical		\$296,100	30	0.1061	0	\$31,400
Equipment Built-In		\$282,800	30	0.1061	0	\$30,000
Conveying System		\$0	30	0.1061	0	\$0
Construction Cost =	\$3,985,000		TOTAL ESTIMATED SUBTOTAL			\$422,800
	ENERGY AMOUNT	USAGE		TYPE		ANNUAL COST
14,8		GAL	#2 Oil H	18,500		
	5,000	КWH	Electrici	Electricity for heating & cooling \$0.080/kwh		
	500	GAL	Propane Gas (Kitchen Use) \$1.80/gal		900	
,	281,332	KWH	Electricity Non-Heating \$0.080/kwh			22,500
					Total	\$42,300
	Water and sewer	r .	•			7,200
Insurance @ \$.1		8/sf				7,600
Taxes (or loss of		taxes)				0
Maintenance & R		Repair @ \$1.95/sf				82,500
	Maintenance Co	e Contracts				0
	Other			·	-	0
			т	OTAL UNIFORM A	NNUAL SUM	562,400
			٩U	NFORM ANNUAL S	SUM/ SQ. FT.	\$13.29
	AIA Gross Sq. Ft	. 42,300				

Note: 1. Bennett Engineering supplied mechanical and utility costs.

2. Cost projection for water, sewer, insurance and maintenance.

Current Energy Management Processes

The Building Control Center monitors security, proximity access, temperatures, HVAC Equipment, lighting, and fire safety in State Buildings which have been equipped with the controls and interface to allow this to happen. The BCC is manned 24 hours a day/ 7 days a week. Examples of the ability of the system are: all overhead lighting on each floor of the MDOT Building are turned on and off at specific times. Temperature readings along with fan and valve controls can be used to adjust temperatures in the Tyson Building. Proximity card access to the Cultural Building allows control of who enters the building and when they do. It, also, provides a record of when areas were opened.

The Property Management Division along with the Professional Service Division have partnered, in the past, to do lighting and oil conservation projects. The most recent major project was bid in 1997, but not completed until late 1999. It focused on buildings that the State managed on the East Campus. This project included lighting conservation, building tune-up, HVAC Load Reduction, Improved Fans and Air Handling Systems, and Improved Heating and Cooling Plants. Bid selection was made on the project and estimated cost savings. Other major projects have been reviewed and audited such as the shutting down of the Central East Campus Heat Plant for the summer. It has been determined that we use over \$29,000 just to heat Hot water in those months. Conversion to electric hot water heaters would enable us to shut down and service the Central Heat Boilers, use the 24/7 staffing for other maintenance, and provide direct energy savings.

Internal Energy Improvements by the Bureau of General Services are ongoing. Over the last year, energy efficient thermopane replacement windows have been installed at the State Police Barracks, the Baker Building (Marine Resources), and the Hayden House (Hallowell). The Central Heat Plant at the Hallowell Campus, which burned #6 oil, was eliminated and replaced by individual boilers in each of the buildings. Energy efficient lighting and controls are installed on an ongoing basis, most recently old surface mounted fluorescent lighting was replaced at the Maine Arts Commission at the Daschlager House.

The Bureau of General Services, also, proactively consolidates and bids utilities for State Facilities. The #2 Oil Bid not only includes quantities projected to be used in Augusta Facilities, but includes quantities from across the State such as the Baxter School for the Deaf. This enables BGS to acquiring pricing leverage for over 2 million gallons of #2 oil. Electric pricing can be acquired the same way, however, the State is currently using the Standard offer price for electricity.

Currently, the Bureau of General Services has two initiatives in progress. The first is a review of the Building Control Center. The review is being done by Ames and Hewitt Engineers from Winthrop. The purpose of this study is to determine the feasibility of alternate and/or competing building control systems so that overall equipment purchase and maintenance costs can be minimized while meeting operational needs for standardization. This will help us expand our controls at a quicker pace than we are now able to by having open interface at the Building Control Center with all systems rather than just priority interface with our current Honeywell System. We received a draft report in early December, 2000. We met and reviewed and, currently, Ames and Hewitt are

making report changes. We will reconvene with our vendor to insure we are all on board with equipment and direction for open interface.

Our second initiative has been the installation of the Powerlogic Power Management System. It was determined that with the State's potential increase in electric energy consumption, it is increasingly necessary that we are able to monitor and control electric consumption. This system, when fully installed will enable the State to do:

- Bill Analysis: onsite identification of power being used, optimize efficiency, and take advantage of lower rates.
- Power Factor Improvement: Identify system capacity limits and identify advantages.
- Equipment Utilization: identify equipment electric use and cost, determine extra system capacity or over-stressed equipment, and load balancing.
- Peak Avoidance/Demand Management: Control non-critical load, predict realtime demand monitoring, control staggered start of equipment, and be able to target demand avoidance areas.
- Utility Bill Reconciliation: the ability to distribute costs to the tenant and control on and off peak energy use.

The goal of these two initiatives is to help the Bureau of General Services control and optimize energy use. These systems will enable us to identify the impact, determine whether we have sufficient resources to allow departments to add equipment, and best service the customer.

FIVE EXISTING PROJECTS FOCUSING ON ENERGY CONSERVATION

- 1. Tyson Center, East Campus
- 2. Marquardt Building, East Campus
- 3. Burton M. Cross Building
- 4. Maine Criminal Justice Academy, Vassalboro
- 5. Psychiatric Treatment Center, East Campus

Maine Governmental Facilities Authority Projects Project Summaries

<u>Tyson Center, AMHI Campus</u> Augusta

Project Description

This project consisted of the complete renovation of a hospital building built in the early nineteen hundreds converting it into a modern office space for State Government in compliance with current life safety and accessibility codes.

The renovation of the existing 35,000 square foot building consisted of:

- asbestos and lead abatement,
- structural repairs to the roof,
- complete replacement and upgrade to the electrical and heating systems
- addition of an air conditioning system
- new data/communications systems
- new fire suppression sprinkler system
- new elevator
- new stair case
- new ADA Compliant rest rooms
- new interior finishes throughout including acoustical ceilings, flooring and wall finishes
- creation of 28 private offices, 3 conference rooms, 15 utility/mechanical rooms and 11 work areas housing 97 work stations
- The exterior of the building was repaired in keeping with it's historical significance
- A new main entry was added as well as pedestrian pathways and site lighting.

The Tyson Center is now the new home to the following departments:

- Departments of Corrections 38 employees
 Division of Financial & Personnel Services (DAFS) 33 employees
 Treasurer's Office 17 employees
- Bureau of Accounts & Control 35 employees

Project Schedule

The Project is now substantially complete with all agencies moved in. Punch list is in progress.

Project Budget

The Project has been brought in on budget.

Maine Governmental Facilities Authority Projects Project Summaries

<u>Marquardt – Second Floor, AMHI Campus</u> <u>Augusta</u>

This project consisted of partial renovation of existing office space on the AMHI Campus. This work upgraded the existing space to bring it into compliance with current life safety and accessibility codes.

The renovation of the existing 20,000 square foot space consisted of:

- asbestos abatement
- structural upgrades to support new air conditioning units
- upgrades to the electrical and heating systems
- addition of an air conditioning system on the second floor
- upgrades to the data/communications systems
- modifications to fire suppression sprinkler system
- upgrades to the existing elevator
- ADA Compliant rest rooms
- new interior finishes throughout including acoustical ceilings, flooring and wall finishes
- the renovated second floor has 22 private offices and 62 work stations

The Second Floor Marquardt Building is now the home to the following departments:

• Department of Mental Health, Mental Retardation & Substance Abuse Services with 82 people on the second floor

Project Schedule

The Project is now substantially complete with all agencies moved in. Punch list is in progress.

Project Budget

The Project has been brought in on budget.

State Office Building Renovation Augusta Maine

A Brief Sample of Building Improvements:

- New East Entry
- New Legislative Hearing Rooms and Offices on the Second Floor
- New Electrical Distribution Systems
- New Data and Communications Systems
- New Air Conditioning Systems
- New Energy Efficient Exterior Glazing
- Structural Repairs to Roof Decks
- New Roofs and Insulation Over the Entire Building
- Structural Repairs of Parapets
- New Energy Efficient Lighting
- Upgrade of all Elevators
- New Kitchen and Cafeteria
- New Ergonomic Modular Furniture Systems
- Improved Life Safety Systems and Egress Routes
- Upgraded Security Systems
- Improved ADA Access between the State Office Building and the State House

· · ·

Maine Criminal Justice Academy Vassalboro, Maine

Completion Schedule:

- December 2000
 - Building A Dormitory
 - Building B Class Rooms and Administration
 - Building C Food Service.
- Spring 2001
 - Building D Training Center
 - Building C Stair Tower

The Project Team:

•

- Owner: State of Maine, Bureau of General Services
 - Owner's Representative: Alliance Construction Scarborough, Maine
- Architect: PDT Portland, Maine
- General Contractor: Wright Ryan Construction Portland, Maine

A Brief Sample of Building Improvements:

- New Training Building
- New Stair Towers and Elevators for Fire Egress and ADA Access
- New Electrical Distribution Systems
- New Data and Communications Systems
- New Air Conditioning Systems in Building B
- New Energy Efficient Windows and Exterior Glazing Through Out
- New Energy Efficient Heating System
- Structural Repairs to Building A and Building B
- New Roofs and Insulation Over the Entire Building
- Structural Repairs of Parapets on Building A
- New Energy Efficient Lighting
- Upgrade of Existing Elevator
- New Kitchen and Cafeteria
- Improved Life Safety Systems and Egress Routes
- New Security Systems
- Improved ADA Access Between Buildings
- Exterior Masonry Repairs Through Out
- New Septic System
- New Water Supply System
- New Fire Suppression System

FIVE PROPOSED PILOT PROGRAM BUILDINGS

- 1. Harlow Building, East Campus
- 2. CETA Building, East Campus
- 3. DHS Building, State Street
- 4. Greenlaw Building, East Campus
- 5. Stone Buildings, East Campus (Current AMHI), available Fall 2003

Development of Rules and Process

The BGS is authorized to produce rules and procedures to establish a formal competitive procedure to award performance based contracts to accomplish a comprehensive approach to the achievement of energy savings. The BGS already has detailed rules governing the award of contracts and grants under other authorizing language⁴ in other sections of law. These rules were promulgated under the Administrative Procedures Act.

There are two rules which have been determined to be appropriate to meet the necessary procedures. The first, Chapter 110 (included as Appendix X), allows the statement of award criteria, establishes a component related to cost of a proposal and establishes clear process requirements such as advertising, minimum response guidelines and notifications. The process outlined in this rule has been used for over 10 years, covering contract awards as large as \$200,000,000. The second rule, Chapter 120 (included as Appendix X+1), establishes a formal appeal process. This allows an aggrieved party to challenge an award in a formal and defined mechanism.

A process is now established that all performance based contracts to achieve energy savings shall be awarded by a request for proposal process under Chapter 110 of the BGS rules. Each RFP shall contain, in addition to the basic requirements of the rules, a specific requirement must be included that each proposal include a feasibility analysis and commitment of energy savings to be achieved. A life cycle analysis must be included within the feasibility analysis. The type and form of contract shall be determined by the Director of the BGS.

•

18-123

DEFARTMENT OF ADMINISTRATION BUREAU OF FURCHASES

FEB 0 6 1991

CHAPTER 110 RULES FOR THE FURCHASE OF SERVICES AND AWARDS

Summary: This chapter outlines the procedures to be used in the purchase of services and the awarding of grants and contracts pursuant to 5 M.R.S.A. 1825-C.

Section 1. DEFINITIONS

A. <u>REQUEST FOR PROFOSAL</u>: Means a document listing the scope of work, requirements of the state and all evaluation criteria for a service needed by the state. This document is also known by the initials "RFF".

B. <u>CONTRACT REVIEW COMMITTEE:</u> Means the committee established by Executive Order which reviews agency documents and actions related to contracts for special services.

C. <u>CONTRACT</u>: Means the agreement between a vendor and the State of Maine, describing the service to be performed, the terms and conditions agreed to by the parties, the cost of the service and how payment will be made.

D. <u>GRANT</u>: Means an agreement between a group organization or other recipient and the state which describes terms and conditions and scope of performance or action which is expected of the recipient.

Section 2. REQUEST FOR PROPOSAL PROCEDURE

A. All contracts issued under the review of the Contract Review Committee which do not qualify as sole source or emergency procurements must be competitively bid using the Request for Proposal.

i. The request for proposal must contain at a minimum a clear definition (scope) of the project, the evaluation criteria and relative scoring weights to be applied, the proposal opening date and time, and agency contact person.

aa. Cost of the contract must be included in the evaluation criteria and must receive a minimum of 25% of the total weight of all criteria.

bb. All proposals shall be opened publicly at the Bureau of Furchases, main office. Proposals received at the Bureau of Purchases main office after the advertised opening time shall be rejected, unless the advertised opening date and time have been extended by the State Furchasing Agent due to circumstances requiring such an extension of time.

ii. Request for proposals must be submitted to the Contract Review Committee for review prior to release. Review includes, but is not limited to appropriateness of scope and clearly defined evaluation criteria with cost at a minimum of 25%. Agencies will be notified of approval.

iii. Request for proposals must be advertised for a minimum of three consecutive days in the <u>Kennebec Journal</u> of Augusta, allowing a minimum of fifteen (15) calendar days from the final day of advertising to the proposal opening date. This section does not limit advertising in any other publication, trade publication or other media.

> aa. Advertisements must include at a minimum a brief description of the service requirements of the state, the name of the department and division issuing the RFF, the name of the contact person and address where copies of the RFF can be obtained, the opening date, the opening time and the opening location: Bureau of Furchases, Room 119 State Office Building, State House Station #9, Augusta, Maine 04333.

iv. Pre-Bidders conferences are allowed, but are not required. These conferences are used to be certain that all bidders have an equal understanding of the state requirements.

> aa. Pre-Bidders conferences must be advertised within the RFP advertisement, including location, day and time. Conference must be scheduled a minimum of seven calendar days from the final day of advertising and a minimum of two weeks prior to proposal opening date. The State Purchasing Agent may authorize a pre-bidders conference on shorter notice that has not been advertised in the RFP. The contracting agency shall notify all prospective bidders who requested the RFF of the date and time of the conference under these circumstances.

bb. Conferences must be open to the public, questions raised must be documented in writing and responses must be written and

forwarded to each prospective bidder who received an RFF, whether in attendance or not.

cc. No alterations or changes to any requirement or specification within the original RFF can be made without notifying all bidders in writing a minimum of seven (7) calendar days before opening date.

v. Proposals shall be opened publicly at the Bureau of Furchases or a nearby appropriate facility at the discretion of the Bureau of Furchases. The opening of proposals shall be open to public attendance. The name of the respondent will be read aloud. No other information will be made available prior to evaluation and award notification. All proposals shall be sequestered from this time until notification of award by the contracting agency after which time they become public record.

Froposals received at the Bureau of Furchases later than the date and time specified will not be accepted and will be returned unopened or held at the Bureau to be picked up by the respondent. Late proposals not picked up within seven (7) calendar days will be destroyed.

vi. All opened proposals shall be turned over to the contracting agency's representative after the opening. A written record of the vendor names, date and time received, cost/price and agency representative shall be kept at the Eureau of Furchases.

Section 3. AWARD

r

a. The contracting agency is responsible for reviewing all RFF's based on the criteria established within the original Request for Proposal document. The agency shall document the scoring, substantive information that supports the scoring, and make the award decision which shall be subject to the Contract Review Committee approval.

i. Interviews/Fresentations: Interviews and/or presentations may be considered within the review for information and scoring, if that provision was included within the original RFP documentation.

ii. Pricing/Negotiations: Pricing changes, alterations or negotiations are not allowed prior to the award decision and must not be used in

scoring. Minor negotiations after notice of award are allowed and if agreement cannot be reached, the proposal may be rejected and the award made to the next highest rated bidder who was in compliance with all terms, conditions and requirements.

iii. Documentation: Written records must be kept by each person reviewing or ranking proposals. These records must be made available upon request.

iv. Award: Award must be made to the highest rated proposal which conforms to the requirements of the state as contained in the RFF.

v. Proposed Award Decision Notification: Contracting agency must notify all bidders responding to an RFP of the award decision in writing, postmarked or delivered a minimum of fourteen (14) calendar days prior to contract effective date. This notice must include a statement that the award is conditional pending Contract Review Committee approval.

The award decision, a copy of the award notification to bidders, supporting justification of award, individual and summarized scoring and a minimum of four contracts with the state agency head and vendor authorized original signatures must be sent to the Contract Review Committee for final review and approval a minimum of fourteen (14) calendar days prior to contract effective date.

B: Upon final approval by the Contract Review Committee, the Chairman shall affix an original signature to the contracts, keep one copy, and forward to Accounts and Control for final approval of encumbrance, terms, and account coding. The Controller will keep one copy and the remaining copies shall be returned to the contracting agency for distribution to vendor.

i. Contracts are not considered fully executed and valid before completing final approval of encumbrance. No contract will be approved based on an RFP which has an effective date less than fourteen (14) calendar days after award notification to bidders.

ii. Attorney General approval is not required unless changes have been made to existing boilerplate or at the request of the Contract Review Committee. Nothing within this paragraph

prevents agency requests for Attorney General review of any contract.

۱.

· ·

.
DEPARTMENT OF ADMINISTRATIVE & FINANCIAL SERVICES

BUREAU OF GENERAL SERVICES

CHAPTER 120 RULES FOR APPEAL OF CONTRACT AND GRANT AWARDS

Summary: This chapter defines the procedures and criteria to be used in the appeal of contract or grant awards, outlines the appointment of an Appeal Committee, describes procedures to be used in hearing an appeal and how appellants will be notified of final agency action pursuant to 5 M.R.S.A. 1825-(C) (D) (E) (F).

Section 1. DEFINITIONS

1. <u>REQUEST FOR PROPOSAL</u>: Means a document listing the scope of work, requirements of the State and all evaluation criteria for a service needed by the State. This document is also known by the initials "RFP".

.....

2. <u>STATE PURCHASES REVIEW COMMITTEE:</u> Means the committee established by Executive Order which reviews agency documents and actions related to contracts for special services.

3. <u>CONTRACT</u>: Means the agreement between a vendor/provider and the State of Maine, describing the service to be performed, the terms and conditions agreed to by the parties, the cost of the service and how payment will be made.

4. <u>GRANT:</u> Means an agreement between a group, organization or other recipient and the State which describes terms and conditions and scope of performance or action which is expected of the recipient.

5. <u>STAY OF AWARD:</u> Means an order issued by the Director of the Bureau of General Services which halts action on a contract or grant pending an appeal hearing.

6. <u>APPEAL COMMITTEE:</u> Means a committee of three (3) people, two members are appointed by the Commissioner of Administrative & Financial Services and must not have direct or indirect personal, professional or financial conflict of interest in the appeal and cannot be employees of the department affected by the contract. The third member is the Director of the Bureau of General Services or his designee.

1

7. <u>AGGRIEVED PERSON:</u> Means any person who bids on a contract and who is adversely affected financially, professionally or personally by that contract award decision.

Section 2. APPEALS PROCEDURE

1. STAY: The Director of the Bureau of General Services must insure that aggrieved persons have an opportunity to appeal a contract award decision. An aggrieved person may request a stay of contract award within ten (10) calendar days of notification of contract award by the contracting agency.

A. Requests for stay of contract award must be written and addressed to the Director of the Bureau of General Services and must state clearly the specific nature of the grievance, demonstrate irreparable injury to the petitioner, a reasonable likelihood of success on the merits of the appeal, and no substantial harm to adverse parties or to the general public.

B. The Director of the Bureau of General Services shall notify the petitioner in writing of the decision regarding the issuance of a stay within seven (7) days of receipt of request.

C. Failure of the petitioner, to obtain a stay does not affect the petitioner's right to a hearing of appeal as provided by statute and within these rules.

2. APPEAL: An aggrieved person may request a hearing of award decision from the Director of the Bureau of General Services in writing within fifteen (15) days of notification of contract award. A written request for appeal hearing must contain at a minimum the specific nature of the grievance, including the Appeal Criteria as defined in Section 3 Paragraph B of this rule and must demonstrate the conditions that make the petitioner an aggrieved person. The Director of the Bureau of General Services shall grant an appeal hearing unless it is determined that:

- A. The petitioner is not an aggrieved person
- B. A prior request by the same petitioner relating to the same contract award has been granted
- C. The request was made more than fifteen (15) days after notification of award; or
- D. The request is capricious, frivolous or without merit

A hearing will not be granted if the contract awari is not approved by the State Purchases Review Committee.

1. NOTIFICATION: The Director of the Bureau of General Services shall notify the petitioner in writing of the decision regarding a request for a hearing of appeal

2

within fifteen (15) calendar days of receipt of the request. If a request for a hearing is granted, notification must be made at least ten (10) calendar days before the hearing date. The notification must include the date and location of the hearing and the names of the Appeal Committee members.

2. In the event the request for hearing is denied, the notification shall constitute final agency action. The notification shall include an explanation of the petitioners right to judicial review of final agency action under 5 M.R.S.A. 11001 et seq.

Section 3. APPEAL HEARINGS

1. APPEAL COMMITTEE: The Appeal Committee shall consist of three (3) people, two appointed by the Commissioner of Administrative & Financial Services. The third person is the Director of the Division of Purchases or other designee of the Director of the Bureau of General Services. This Committee shall appoint a person to serve as presiding officer over the hearing. This person may be one of the Committee members or any other person who has no direct or indirect personal, professional or financial conflict of interest in the appeal. This person cannot be an employee of any department affected by the contract. The presiding officer, if not from the ranks of the Appeal Committee shall have no vote in the decision but may provide advice, information or research at the request of the Committee.

The presiding officer shall control all aspects of the hearing, rule on points of order, rule on all objections and may question witnesses.

A recording secretary shall be furnished by the Division of Purchases to record by audio tape or other media the hearing of appeal. This person shall be responsible for scheduling additional hearing days and locations at the request of the Appeal Committee.

2. APPEAL CRITERIA: The burden of proof within the hearing of appeal lies with the petitioner. The evidence presented must specifically address and be limited to one or more of the following:

- A. Violation of law;
- B. Irregularities creating fundamental unfairness; or
- C. Arbitrary or capricious award

Evidence of any type that cannot be related to this criteria may be ruled inadmissible by the presiding officer.

In the event multiple appeal hearing requests are granted on a single contract award, the Director of the Bureau of General Services may assign the Appeal Committee to hear all petitioners within the same hearing as a combined appeal.

3. PARTICIPANTS: The petitioners may participate alone or be presented by Counsel or other agent. The State shall be represented by the contracting agency and/or its Counsel.

Other parties of interest may petition to intervene. Such petition shall be presented in writing to the Director of the Division of Purchases who shall determine and allow or disallow participation in writing within seven (7) calendar days of receipt of the request to intervene. Copies of this notification shall be sent to all Appeal Committee members, the presiding officer, the Appellant and the contracting State agency.

4. PRESENTATION OF EVIDENCE: The petitioner must present evidence to substantiate the specific grievances stated in the appeal. Brief opening statements directed to the Appeal Committee may be made by the petitioner, the contracting State agency and any intervenors, in that order.

A. The petitioner shall present evidence first, using witnesses and exhibits who may be cross examined by the State and the intervenors. Re-direct questioning related to issues raised during cross examination only may be done by the petitioner, followed by re-cross examination by the State and intervenors.

B. Witnesses may be called who can present factual information related directly to the appeal. All witnesses shall be sworn. To expedite the proceeding, testimony of any witness may be pre-filed in written form. If used, pre-filed testimony must be made available to the State, the Appeal Committee, presiding officer and all intervenors on the preceding work day, a minimum of twenty-four (24) hours prior to the hearing. Every such witness shall be subject to cross examination.

C. EXHIBITS: Exhibits relating to any issue of fact in the proceeding may be presented. Documentary evidence may be incorporated into the record by reference when the materials so incorporated are made available for examination by the parties before being received in evidence.

(1) COPIES: petitioner must furnish copies of all documentary evidence to the presiding officer, Appeal Committee, contracting State agency and all intervenors. Any costs associated with this subparagraph are the responsibility of the petitioner and shall not be recovered by any judgement of the Committee.

4

5. STATE/INTERVENOR EVIDENCE: The contracting State agency and all intervenors shall have the opportunity to submit evidence relevant to the appeal through witnesses and exhibits. The procedures for presenting this evidence are the same as those for the petitioner, substituting the words "contracting State agency" or "intervenor" for petitioner.

A. The order of examination and cross examination when the State presents evidence is state, all intervenors, and the petitioner.

B. The order of the examination and cross examination when an intervenor presents evidence shall be remaining intervenors (if any), the State and the petitioner.

6. SUBPOENA OF WITNESSES: In the event a witness is not willing to voluntarily testify, the Appeal Committee, subject to the approval of the Attorney General, shall issue a subpoena to require attendance, testimony and the production of any evidence relating to any issue of fact in the proceeding.

A. EXPENSES: Any expenses incurred by witnesses called by any party or intervenor shall be sole responsibility of the petitioner and shall not be recovered by any judgement of the Committee.

7. APPEAL COMMITTEE: The Appeal Committee may ask questions for clarification at any point throughout the direct and cross examinations. In addition, the Appeal Committee may ask questions after the direct and cross examination, may request additional witnesses, and may recall any witness for additional questioning.

8. RECORD: All evidence received or considered shall be part of the record. Evidence shall be admitted if it is the kind of evidence upon which reasonable persons are accustomed to rely in the conduct of serious affairs. The presiding officer may exclude irrelevant or unduly repetitious evidence. No sworn written evidence shall be admitted unless the author is available for cross examination or subject to subpoena, except for good cause shown.

Section 4. APPEAL DECISIONS AND ACTIONS

1. APPEAL COMMITTEE DECISION: The Appeal Committee shall consider all evidence entered into the record and shall look for clear and convincing evidence that one or more of the standards set forth in Section 3, subsection B, of these rules has been proven by the petitioner. The actions of the Committee are limited to one of the following:

A. Validate the contract award decision under appeal

B. Invalidate the contract award decision under appeal

: 1 33400 M

4.7

A written decision and the reasons that support the decision must be submitted to the Director of the Bureau of General Services within fifteen (15) calendar days following the final day of the hearing of appeal.

2. NOTIFICATION OF FINAL AGENCY ACTION: The Director of the Bureau of General Services shall notify the petitioner, the contracting State agency, and all intervenors of this decision within ten (10) calendar days of receipt from the Appeal Committee. Such notification shall include the decision, an explanation of the reasons for the decision and an explanation of the petitioners right to judicial review of final agency action.

A. This notification is considered final agency action. In the event the decision of the Appeal Committee в. is to invalidate the contract under these rules, the contract immediately becomes void and of no legal effect. 1886 - RO

Effective Date:

February 11, 1991

Amended:

May 9, 1995