Maine State Legislature

The following document is provided by the Law and Legislative Digital Library at the Maine State Law and Legislative Reference Library http://legislature.maine.gov/lawlib

Reproduced from scanned originals with text recognition applied (searchable text may contain some errors and/or omissions)

Public Documents of Maine:

BEING THE

ANNUAL REPORTS

OF THE VARIOUS

Public Officers and Insitutions

FOR THE YEAR
$-188^{\frac{3}{7}}$

VOLUMEII.

AUGUSTA:
BURLEIGH \& FLYNT, PRINTERS TO THE STATE.
1889 .

THIRTY-FOURTH ANNUAL REPORT
 OF THE

 STATE SUPERINTENDENT

 STATE SUPERINTENDENT
 or

 COMMON SCHOOLS.

 COMMON SCHOOLS.}

STATE OF MAINE.

\author{

- 1887
}

AUGUSTA:
burleigh \& flynt, PRINTERS TO the state. 1888.

State of Maine.

Educational Department, $\}$
 Augusta, Dec. 31, 1887.

To Governor Sebastian S. Marble, and the Honorable Executive Council:

Gentlemen :-In accordance with the requirements of law, I respectfully submit the following Report of the condition, progress and needs of the Public Schools of Maine.

Very respectfully,
Your obedient servant,
N. A. LUCE, State Supt. of Common Schools.

REPORT.

INTRODUCTORY.

This Report will be briefer than usual. No session of the Legislature occurring this coming winter, such conditions and needs of the schools as can be amended and improved by legislative enactments alone, will properly be eliminated from its discussions. The papers inserted in the appendix deal so fully and wisely with many of the principles and methods of school-room work, as to make it unnecessary to enter generally and largely into consideration of the subjects covered by them. It remains, therefore, only to consider briefly the condition of our several departments of public instruction as shown by the usual statistics relating to the Common, Free High and Normal schools, to consider two or three special topics of special and immediate importance, and to call attention of school officials to such lines of effort as seem to promise improvement in the schools under existing conditions.

COMMON SCHOOLS.

The usual detailed statistics will be found in the appendix, showing the local condition of our common schools. More than usual care has been taken to make these statistics complete and accurate; and less than the usual number of towns have failed to make the returns from which these statistics are derived.

To show as succinctly and definitely as practicable the condition of these schools as a whole, so far as their condition can be represented numerically, the statistics, corrected

to the closest possible approximation to exactness, are collated and grouped in the following

Comparative Summaries.

I. Scholars and School Attendance.

1886.7. 1885-6.

Whole number of scholars in State $\ldots \ldots . .212,621 \quad 213,571$
Decrease. 950
Number of different scholars attending school during the year. 145,761 145,317

Increase................ . 444
Number registered in summer and fall schools $126,019 \quad 124,212$
Increase 1,807
Average daily attendance in summer and
fall schools
104,694 102,850
Increase 1,844
Number registered in winter and spring schools

118,662
117,347
Increase
1,315
Average daily attendance in winter and spring schools. 97,950 97,318
Increase 632
Per cent of whole number attending to whole number in State. 68 68
Per cent of average daily attendance in sum- mer and fall schools to whole number in State....................................... . . . 49 48
Increase 01
Per cent of average daily attendance in win- ter and spring schools to whole number in State 46 $.45 \frac{1}{2}$
Increase $.00 \frac{1}{2}$
Per cent of average daily to registered at- tendance in summer and fall schools 84 83Increase. 01
Per cent of average daily to registered at- tendance in winter and spring schools $.82 \frac{1}{2}$ 82
Increase $.00 \frac{1}{2}$

II. Length of Schools.

1888.7.

Average length of summer and fall schools, $11 \mathrm{w} .1 \mathrm{~d} . \quad 10 \mathrm{w} .0 \mathrm{~d}$.
Increase. 1w. 1 d .
Average length of winter and spring schools, $11 \mathrm{w} .1 \mathrm{~d} . \quad 10 \mathrm{w} .4 \mathrm{~d}$. Increase $2 d$.
Average length for year
22w. 2d. 20w. 4d.

Increase. 1w. 3 d .
Aggregate number of weeks of summer and fall schools 58,425 57,742
Increase 683
Aggregate number of weeks of winter and spring schools 49,773 51,292

Decrease
1,519

Aggregate number of weeks for year. $108,198 \quad 109,034$
Decrease 836
III. Number and Character of Schools.

Whole number of different schools 4,759 4,878
Decrease 119
Whole number graded schools 834.875
Decrease 41
Whole number of ungraded schools 3,925 4,003
Decrease 78
Number of ungraded schools having classes in history

Decrease
62
Number of same having classes in Physiology
and Hygiene.
2,821
2,625
Increase 196
Number of same having classes in Book- keeping

1,600

1,545

Increase 55
Number having classes in studies otber than those prescribed by law.................. 1,255 1,229
Increase 26
IV. Text-Books and Other School Appliances.

Number of towns reporting schools well sup. plied with text-books.
Decrease 15
1886.7. 1885-6.
Number reporting schools not well supplied 52 38
Increase 14
Number reporting uniformity in text-books, 389 391
Decrease 2
Number reporting lack of uniformity 104 103
Increase 1
Number in which there have been changes in text-books during year. 251
Number of ungraded schools furnished with globes 450 498
Decrease 48
Number furnished with wall maps 1,464 1,741
Decrease 277
Number furnished with charts of any sort 402 411
Decrease 9
V. Teachers.
Number of male teachers in summer and fall schools 418 420
Decrease 2
Number in winter and spring schools 1,592 1,640
Decrease 48
Number of female teachers in summer and fall schools 5,218 5,043
Increase 175
Number in winter and spring schools 3,059 3,023
Increase 36
Total number of teachers in summer and fall schools 5,636 5,463
Increase 173
Total number in winter and spring schools 4,651 4,663
Decrease 12
Number of different teachers employed dur- ing year. 7,585 7,596
Decrease 11
Number who had had previous experience. 6,474 6,431
Increase 43
Number who had graduated from Normal schools 657 567
Increase 90
Average wages of male teachers per month, excluding board $\$ 33.82$ $\$ 34.15$
Decrease $\$ 0.33$
Average wages of female teachers per month, excluding board $\$ 16.56$ $\$ 16.68$
Decrease \$0.12
VI. School Districts and School-Houses.
Number of towns and plantations having unit or town system 101 92
Increase 9
Number of school districts in State 3,539 3,628
Decrease 89
Number of parts of districts 249
Decrease 26
Number of school-houses 4,318 4,320
Decrease 2
Number of school-houses reported in good condition 3,144 3,237
Decrease. 93
Number built during year 64
Decrease. 5
Cost of same $\$ 160,861$ $\$ 53,143$
Increase \$107,718
Estimated value of school property in State, $3,309,017$ $3,109,745$
Increase 199,272
VII. School Supervision.
Number of towns electing supervisors 303 313
Decrease 10
Number electing school committees 196 186
Increase 10
Number of school officers who failed to make returns according to law 6 5
Increase 1
Number of terms of school not visited as re- quired by law 839 950
Decrease 111
Amount paid by towns for supervision. $\$ 32,532$ $\$ 31,693$
Increase \$839

VIII. Resources and Expenditures.

Analysis of Statistics.

The foregoing statistics indicate the actual condition of the schools for the year, and also their condition as compared with that of the year preceding. They show an actual condition far from the best-the most efficient to which they can and ought to be brought; but they show, nevertheless, that they have made substantial progress toward such condi-
tion. From a careful study of these figures the following conclusions may fairly be deduced:
I. As to Attendance.-As shown by the figures, 56,860 , or almost one in four of all the persons in the State entitled to their privileges, were not in these schools during the year. Making all necessary deductions for those too young to enter them, for those who had finished their school life by passing in acquirements beyond the ordinary limits of common school instruction, and for those who had passed from them into the higher grades, there is still shown by far too large an army of absentees. It is to be hoped that when the new compulsory law of last winter shall have generally taken effect, this army of absentees will be very considerably diminished.

It will be noticed, however, that with 950 less persons of school age in the State than in the preceding year, there were 444 more in attendance; that the registered attendance in summer and fall terms increased by 1,807 , and the average daily attendance by 1,844 ; and that the registered and average daily attendance upon winter and spring terms increased respectively by the numbers 1,315 and 632 . In other words the statistics show improvement in the schools in this matter of attendance in the directions of actual, continuous and regular attendance.
II. As to Length of Schools.-In this regard the actual condition shown by the statistics, is not what it should be. Our common schools, to do efficiently the work set for them, should all of them be open for at least 30 weeks in the year. In fact few of them are open so long, and the great majority of them are open for less than the average $212-5$ weeks. Not till we are rid of that iniquitous product of educational folly and democracy run mad-the school district systemcan all of our schools be brought up to full efficiency in the annual amount of schooling which they should offer to every child in the State.

But here again it will be noticed that the condition shown is one of improvement. The increase of $13-5$ weeks in average length, taken in connection with the small decrease in the aggregate length in weeks of all the schools, indicates a reduction in the number of small and short schools, and a consequent increase larger than the average, in the length of those falling below the average in length. There was thus secured also with the general increase in length of all the schools, a nearer approach to that equality in length, the lack of which is characteristic of the district system.
III. As to Number and Character of Schools.-The conclusions reached immediately above relating to increase in average length of schools are substantiated by the statistics grouped under the present head. The decrease here shown of 78 in the number of ungraded schools, means the merging of these in others, thus giving those others greater efficiency and adding to their length. The decrease of 41 in the number of graded schools probably indicates a similar merging of these in others, adding in like manner to their efficiency. This process of consolidation was probably more extensive than is shown by the statistics, since it is certain that in our newly settled towns and plantations new schools were established during the year.

This consolidation resulting in larger and more efficient schools, was probably in considerable degree the cause of the higher grade of work done in them, as indicated by the increase in the number of those in which the higher branches, Physiology, Book-keeping, and others not among the statute studies, were taught. It is, however, noticeable that the largest increase in this direction was in the teaching of Physiology and Hygiene, an increase due in part, also, to the special emphasis which our law places upon the importance of that subject.
IV. As to Text-books and Other School Appliances.-In the particulars grouped under this head the statistics show conditions, both actual and comparative, far from satisfactory. No improvement is indicated in those conditions of the best
school work, which require that every pupil shall be supplied with necessary text-books; that these shall be uniform in the same school at least; and that every school-room shall be furnished with such appliances as globes, maps, charts, \&c., as aids to instruction. Possibly, nay probably, any very greatly and permanently improved condition of affairs in these regards, can hardly be expected under our present system of furnishing text-books and school apparatus.
V. Teachers.-The one important factor determining the character of the work done in the schools, a factor more potent than all others combined, is the character of the teachers employed. Hence the comparative condition shown by the group of statistics under this head, should be deemed especially satisfactory. Owing to the fact that for the doing of equally good work, females command far less pay than males, other things being equal an increase in the number of female as compared with male teachers employed, indicates improvement in the character of school work done. For a series of years, to which this is evidently no exception, there have been constant and marked increases in this regard.

Again, permanence in employment of teachers is indicative of improved school work; for, other things being equal, change of teachers means waste of time and force for both teacher and pupils. Here, also, the statistics are in line with those of several preceding years in indicating that there have been more teachers continued in the same school for consecutive terms.

In line with these evidences of improvement in the character of teachers employed, are the increases in the number of those who have acquired skill by previous experience, and of those who have had the benefits of systematic and wise training for their work in our Normal schools.

Taken together, then, notwithstanding the slight decrease shown of less than one per cent in wages paid, this group of statistics evidences substantial improvement in the schools, and improvement in one of the directions most needed and most vital to their efficiency.

But while as regards teachers employed the statistics indicate substantial improvement, there is yet, as indicated by the same statistics, large room for further improvement. While 7,585 are employed to teach 4,759 schools, there is too little permanence of teachers in the schools. While one in seven of these is wholly inexperienced, and presumably without any special preparation, much of the teaching must be crude and inefficient if not worse. While only one in a dozen has been systematically prepared for the work, the schools whose instruction is as wisely planned and ordered as it ought to be, must be largely in the minority. While, finally, teachers are paid such wretchedly meagre salaries as they are, salaries less on the average than are paid to any other class of workers in the State, as is shown by the lately issued Report of Industrial and Labor Statistics, we can hardly expect any radical improvement in the teaching of our common schools.
VI. School Districts and School-Houses.-At the annual meetings held within the school year, fifteen towns abolished the school district system. One of these, Phillips, at a subsequent special meeting, voted to rescind such action, though expressly forbidden to do so by the provision of liw that, "whenever any town shall have abolished its school districts, such districts shall not be re-established within the three years next thereafter," and, it is reported, has managed its schools illegally during the current year, as if the school districts were still existing. One town, Milo, which had managed its schools for three years under the town system, after refusing by a very large majority to vote at its annual meeting to reestablish its districts, did so vote subsequently at a special meeting. Four plantations which had hitherto had but one district, and so had managed their schools practically under the town system, organized one or more other districts, thus establishing a district system. The net improvement in the condition of the schools, therefore, consequent upon bringing them under more efficient management, is indicated by a gain of nine in the number of towns having the town plan, and as
the immediate result thereof, a reduction of 89 in the number of school districts and of 26 in the number of parts of districts.

The number of school-houses in the State remains practically the same as for the preceding year. The number of these in so-called "good condition" seems to have decreased 93 . In view of the fact, however, that the value of school property increased by the sum of $\$ 199,272$, only $\$ 160,861$ of which was from the building of new houses, it may be questioned whether the seeming decrease may not be merely the result of difference in opinion between those reporting, as to what ought to be considered "good condition." There was, also, a decrease of five in the number of new school-houses erected, though those this year reported were built at an aggregate increased cost of $\$ 107,718$.

Taken in their entirety, then, the group of statistics now under consideration point in the same direction as others. They show a good measure of improvement, as large, probably, as is to be expected in any one year, till legislation intervenes and by its fiat hastens the better time to be. They show, too, the need of such intervention. While 1,174 out of 4,318 school-houses are too poor to be esteemed in good condition by local officers, they must be anything but an honor to the communities in which they exist. These poor houses will be found, nine-tenths of them, in towns which are lovingly clinging to the school district system, and are legitimate fruits of that system. Where that system continues to hold its grip, and while it continues, there will always be a large percentage of school-houses unfit for the purposes to which they are devoted.
VII. School Supervision.-Next to the proper instruction of the school in importance as a factor in its efficiency, is its fit supervision. Indeed, fit instruction is largely dependent upon fit supervision, especially when, as under the town plan of management, all the functions of supervision are unified and most efficient. The most efficient form of supervision in
towns having the district system, because the most responsible, is that exercised by the supervisor. On the other hand, under the town plan, the school committee with one of its members acting as inspector, gives the best results. If, then, as is probably the case, the increase shown in the number of towns electing committees instead of supervisors, is wholly or in large part in towns which have abolished districts, it indicates a movement in the right direction.

That the supervision for the year was more careful, vigilant and efficient than in the year preceding, is evidenced by a large decrease in the number of terms not visited, and increase in amounts paid for supervision. That it was more intelligent is evidenced by the character of reports made to the towns, copies of which are on file in this department.
VIII. Resources and Expenditures.-It will be noticed under this head that the school resources show increases in two of the three sources from which such resources are derived, and a small decrease in the other. The aggregate of this increase is $\$ 48,161$. The increase in current expenditures which include those for wages and board of teachers, for fuel, for incidental repairs-ten per cent of the whole resources being usable for this purpose-and for other incidental expenses, was $\$ 44,420, \$ 3,741$ less than the increase in resources. This balance comes over to the resources of the current year. The explanation of this large increase in expenditures without corresponding increase in the aggregate amount of schooling had for the year, or in wages of teachers, is that it must have gone to make up the increase in value of school property over and above that made by the substituting of new for old buildings, which is shown in the statistics relating to school-houses. In other words it must have been expended in repairs. Under the town system these repairs would have been made largely from special appropriations therefor, and this sum of $\$ 44,420$, or a large part of it, would have gone to increase the length and efficiency of schools.

This illustrates one of the ways in which the district system robs the children of their rights.

The increase of $\$ 47,043$ in the amount of school money voted by towns for schools for the ensuing year-usable for the current year-is indicative of a popular recognition of their needs, and an evidence of growing interest in their well-being. But I can but believe that popular interest here manifests itself in not the wisest way. While there is undoubtedly need of larger expenditures ultimately, the pressing need of the present is for such management as will utilize our funds to the best advantage-such a change in system as will stop the wicked wastes charactexistic of their present management. The raising of more money to be expended through the agency of the school district system, is but making more unequal the inequalities of privilege, and increasing the waste and opportunities for petty stealing, which are inherent in that system. It would be better to put our schools under such conditions that for every dollar spent for them would be realized a dollar's worth of good to every child, betore attempting to improve them by taxing ourselves more heavily.
IX. Summary.-To state broadly and briefly the results shown in the statistics for the year it may be faidy asserted:

1. That in comparison with those of the preceding year there has been substantial improvement in our common schools, in that more pupils have attended more constantly and regularly for a longer average time; that they have been larger, more equal in length and quality, and of higher grade; that they have been better tanght, better housed and under better supervision; and that public opinion bas grown in intelligence as to reforms needed, and in interest in their improvement.
2. That their actual condition is yet fur from what it should be, and can be made, in that attendance upon them is considerably less than it should be, and is too little constant and regular; that they are too short as a whole, and too unequal in length; that too many of them are too small for proft to
those attending, and are of too low a grade; that they are too much wanting in uniformity and supply of text-books, and are in lamentable need of other helps to instruction ; that by far too many of their teachers are wanting in scholarship, and in that skill which comes from experience and special training, and are subject to too frequent change ; that in four-fifths of the towns they are under a radically wrong system of management characterized by inquality in privileges conferred and burdens imposed, wasteful of resources, productive of local feuds detrimental to the schools, responsible for poor schoolhouses and poor teachers, and destructive to efficiency in supervision; and that their supervision lacks unity, force, wigilance and, too often, intelligence.

FREE HIGH SCHOOLS.

The usual detailed statistics of this department of our public school system, will be found as usual in the appendix. They have been summarized and grouped to show actual and comparative condition in the following

Comparative Statement.

I. Number and Length.

1888.7. 1885.6.

Number of towns in which supported $161 \quad 160$
Increase 1
Number supported by towns.............. 93.90
Increase................. 3
Number of terms........................... $383 \quad 358$
Increase...... 25
Aggregate number of weeks 4, 4,047 3,868
Increase 179

II. Of Attendance.

Number of pupils registered $11,420 \quad 11,174$
Increase................. 246
Average attendance....................... $10,374 \quad 9,403$
Increase................. 971

III. Character of Instruction.

Number of pupils in reading classes 7,330 7,198
Increase................. 132
Number in arithmetic 7,621 7,443
Increase................. 177
Number in English grammar............... 6,234 5,838
Increase................. 396
Number in geography..................... $3,502 \quad 3,515$
Decrease................ 13

Number in U. S. history..		$\begin{gathered} 1886-7 . \\ 2,245 \end{gathered}$	$\begin{aligned} & 1885.6 . \\ & 2,154 \end{aligned}$
Increase....	91		
Number in natural sciences.		4,017	4,102
Decrease.	85		
Number in higher mathematics		4,564	4,879
Decrease.	315		
Number in book-keeping.		2,340	1,929
Increase...	411		
Number in ancient languages..		2,654	2,358
Increase..	296		
Number in modern languages.		1,449	1,160
Increase.......	289		

IV. Fiscal.		
Whole amount expended.	\$117,859	\$110,247
Increase \$7,612		
Amount provided by towns and districts..	89,357	84,205
Increase 5,152		
Amount paid from State Treasury...	28,502	23,542
Increase... 4,960		

Since the detailed statistics from which the above are compiled were tabulated and printed, information has been received that two other towns supported schools of this grade during the year.
Analyzing the statistics as they stand it will be noticed that, while there was an increase of but one in the number of towns in which these schools were supported, there was an increase of 25 in the number of terms, and of 179 in the number of weeks of school. It will be further noticed that the number of pupils attending them was larger by 246 , and that the average attendance increased by 971 . While these figures do not show the remarkable growth which has been almost annually constant since 1879 , they nevertheless show that these schools are losing nothing in their hold upon popular favor.

The statistics showing the character of the work done indicate that, on the whole, it was of higher character than that
in the schools of the preceding year. There seems, indeed, to have been an advance in the character of work done here similar to that indicated in the corresponding statistics of the common schools; and the causes would probably be found to be the same in both cases-pupils instead of dropping out of the schools after reaching a certain stage of advancement or attaining a certain age, have continued in attendance and taken up more advanced work.

The increases in the amounts expended for these schools closely agree with the increase shown in the number of terms. They indicate, therefore, no material change in the character of the teachers employed as measured by wages paid.

The condition as here shown is an advance on that of any year since our high schools were established. They appear to have more than fully recovered from the set-back resulting from their suspension in 1878. Their growth and improvement in character and efficiency, has been constant since 1879 when they were re-established. They are now evidently permanently fixed in our public school system beyond peradventure of further suspension or of abolition. And it is to be hoped, and may be confidently expected, that they will continue to grow steadily in public favor till at last they shall be made compulsory in every town in the State whose population will warrant their maintenance.

NORMAL SCHOOLS.

The condition of our three State Normal Schools at Farmington, Castine and Gorham, as regards attendance and number graduating, is shown in the following table :

School.	Year Ending.	Number Entering	Number Graduating.	Largest Attendance.	
				Number.	Term.
Farmington..	June 10, '86	111	31	151	Fall.
Castine	" 3, "	113	18	142	Spring.
Gorham................	July 1, "	76	25	105	*
Totals...........	.	300	74	398	
Farmington...........	June 16, '87	113	39	165	Fall.
Castine...............	" 2, "	107	34	141	Spring.
Gorham	" 23, "	79	37	93	Fall.
Totals............		299	110	399	

The condition here shown as to number of students entering and maximum attendance, is practically the same as that of the preceding year. In the two older schools, Farmington and Castine, the attendance was very nearly if not quite up to their full working capacity with the school accommodations as they were. For the Gorham School it should be said that it is organized on the two term, instead of three term plan, on which the others are, and admits pupils but twice instead of tbree times a year; if, therefore, comparison be instituted between it and the others, this difference in organization should be taken into account.

In the amount of work done as measured by numbers graduating, the three schools stand nearly in line.

The work done in all these schools has been of excellent quality, and superior in some respects to that of former years. As the quality of the material upon which they are to work improves in maturity and capacity, as it does from year to year, it is possible to do more thorough work, especially upon the strictly professional side. The somewhat searching closing public examinations of graduating classes upon this side of their work, which have been practiced for several years, have made it evident that those who complete the course, go out year by year better prepared to do intelligent teaching, instead of routine school-keeping. The classes graduating during the last year appeared to have been especially well trained in this direction.

For more detailed and special information relating to these schools, as also to Madawaska Training School, the Normal Department in Maine Central Institute, and Lee Normal Academy, attention is directed to the following:

> Reports of Principals.
> State Normal School, Farmington, Maine, June 16, 1887. $\}$

To the Trustees of the Normal Schools.

Gentlemen :-I have the honor to make the following report of the Farmington State Normal School for the year 1886-7:

The attendance both in the total number attending by terms and the number of different pupils registered, is the largest in the history of the school, and is as follows :

Fall term.................................. . . . 165
Winter term............................... . . 138
Spring ، 163
Total attendance......................... . . . 466
Number of different pupils.............. . 250
"، pupils beginning the course.. 113
" graduates, regular "، .. 39
"، connected with adv. "، .. 11
" graduates, "، "، .. 7

Owing to inadequate accommodations the work of the year has been difficult, but thanks to the generosity of the last Legislature, we shall have a new building sufficient for our present needs.

The teachers for the year have been Geo. C. Purington, Chas. F. Warner, Hortense M. Merrill, Lillian I. Lincoln, Lutie F. Luques, Harriet P. Young, Marion L. Warner. Special teachers, Ardelle M. Tozier of the graduating class, regular course, and for the spring term Mary E. Eaton of the graduating class, advanced course.

At the close of last year we supposed we should lose Miss Luce, but at my earnest solicitation she consented to remain, as Mrs. Warner, in the model school for another year. She feels that she cannot in justice to herself remain there longer and hence resigns. I wish to take this opportunity to express my high appreciation of the work she has done and my regrets that she can remain in the school no longer.

The graduating classes are growing so large that we very much need another model school. The next graduating class ought to number fifty, and it will be a very difficult task to give all of them the requisite number of lessons in primary work in one school.

Very respectfully subimitted.
Geo. C. Purington.

$$
\left.\begin{array}{c}
\text { State Normal School, } \\
\text { Castine, Maine, June 2, 1887. }
\end{array}\right\}
$$

To the Trustees of State Normal Schools.

Gentlemen : In accordance with the requirements of law, I respectfully submit the following report of the State Normal School at Castine for the year ending June 2, 1887.

ATTENDANCE.

Number of pupils entering the school during the year 107, 26 young men and 81 young women.

Number graduating 34, 13 young men and 21 young women. Every member of the class has had experience in the public schools of Maine, their experience varying between one and eighteen terms, and averaging forty-nine weeks.

Attendance by Terms :

Fall term,	120	g	77	
Winter term,	105-24	"	81	'،
Spring "	141-49	"	92	"
Totals,	366116		250	

LIBRARY AND APPARATUS.

Two hundred volumes of worn out text-books have been replaced by new books, and some additions have been made in the number of volumes on hand at the begianing of the year, so that we have now in

General library 575 volumes.
Text-book " 500 "
Reference ، 110 ،
Professional، 110 ،
Worn out maps have been replaced and new maps purchased, and apparatus purchased for the classes in Physiology and Chemistry. The new books used during the year are White's Pedagogy, Raub's School Management, and Greenleaf's New Inductive Arithmetic.

TEACHERS.

The following were elected at the close of last year and have been at work during the year: Roliston Woodbury, Mary E. Hughes, Fred W. Foster, Edward E. Philbrook, Fannie A. Comstock; Mabel Simmons, Training School. Helen F. Emerson was obtained for the spring term, an additional teacher being made necessary by the size of the school and the number of classes.

Miss Haskell who had been in charge of the Training School over four years wishing to leave the State declined a re-election much to the regret of all concerned.

I cannot speak too highly of the faithful work done by those whom you have associated with me in the instruction of the school. I need say nothing to you who know them so well of the perfect harmony which has prevailed and of their loyalty to the school, but it gives me great pleasure to bear testimony to the same.

NEEDS.

The needs of the school are the same as when I made my last report and need not be renewed, except that the furnace has been fixed so we have no trouble in keeping up steam, and three of the blackboards have been re-built.

This school was organized twenty years ago. It graduates to-day its ninetcenth class. We have obtained data regarding those who have been connected with the school as teachers, and those who have graduated which I make a part of my report. According to the records, 31 have been connected with the school as teachers, all of whom, as far as we can learn, are still living. Four hundred and twenty-three have graduated from the school, counting in the class which graduates to-day; 157 young men and 266 young women; 29 have died; 163 of the 389 of a year's standing and over are still teaching, 124 of them in Maine. The remaning 39 are in ten States and territories, 17 of them being in Massachusetts and 11 in California.

That we might know whether the State gets the service to which it is entitled, each graduate was asked to report the time he had taught in Maine since he entered this school. Three hundred forty-three of the 360 living graduates of one year's standing and over, from whom we heard directly, reported an average of 3.87 years, which is nearly twice the time pledged to the State. As nearly one-third the whole number are still teaching, the record is constantly improving.

We have among our graduates, one city superintendent of schools, one county superintendent of schools, ten clergymen, fourteen physicians, eight lawyers and two dentists.
SUMMARY.
Graduates, men 157
6 women 266
Living 394423
Deceased 29
Teaching 197423
" in Maine
In other professions 34Respectfully submitted.R. Woodbury.
State Normal School, Gorham, July 1, 1887.

To the Trustees of State Normal Schools.
Messrs :-According to custom and your requirements I submit the following report of the State Normal School at Gorham for the year ending July $1,1887$.

Whole number of pupils entering school during the year 79, (seventy nine).

Number graduating during the year 37, (thirty-seven).
Number of different pupils in school during the year 147, (one hundred forty-seven).

Number of teachers in the regular work of the Normal School, 5.

Number of teachers in the regular work of the Model Schools, 2.

Number special teachers, 1.
Pupils in Model Schools, Primary, 31 ; Intermediate, 39.

воокя.
Of general literature, an increase of 86 volumes, 1,629 Vols.
Books of reference............................. 53 "
Text-books 1,092 ،
"، for Model Schools 350 "
Apparatus.................................... . 650 pieces.
Maps, charts, globes, \&c 75 "

TEACHERS.
W. J. Corthell, H. M. Estabrook, Bessie A. Read, Grace J. Haynes, Angie M. Brooks; in the Model Department, Jennie M. Colby, Flora Barton ; vocal music, W. L. Fitch.

The course of study is as last year, with such minor changes as added experience and careful experiment show to be advisable. The work of the teachers has been very harmonious, in ends, methods, and general plans, and is believed to be fairly efficient. Order, devotion to work, and good degree of earnestness have characterized the pupils.

The suggestion of last year is renewed that the range of the course of study in the three schools, should be made the same, leaving the order of studies to each faculty.

NEEDS.

1. One hundred dollars each year for apparatus for the department of Natural Science.
2. New blackboards.

The school is happy in the anticipation of entering its next year with such sanitary repairs in the school building as shall make it more pleasant, and such changes in the boarding hall as shall secure to pupils residing there a very pleasant home.

Respectfully submitted.
W. J. Corthell

$\left.\begin{array}{c}\text { Madawaska, Training School, } \\ \text { Fort Kent, Mane, July 3, 1887. }\end{array}\right\}$

To the Honorable Trustees of State Normal School.
Gentlemen :-I submit the following report of the Madawaska Training School for the year ending July 3, 1887.

The school year commenced September 14, 1886, and continued forty weeks; twenty-seven of which were held at Fort Kent, in two terms, and thirteen weeks at Grand Isle.

The whole number in attendance at Fort Kent was 50 ; 38 young women and 12 young men. At Grand Isle, the whole number registered was twenty.

No change has been made in the text-books in use. The studies pursued have been reading (English and French), grammar (English and French), language and composition, arithmetic, geography, book-keeping, penmanship and free-hand drawing, civil government, school laws of Maine, ' physiology and natural philosophy. At Fort Kent the interest on the part of the pupils was never better. The daily attendance has been good. The deep snows during the whole winter had little effect in keeping pupils out of school.

Miss Nowland was granted leave of absence from Grand Isle, and the school continued under one teacher.

By the erection of the new school building at Fort Kent, the present usefulness of the training school cannot fail of being greatly increased. It is hoped that the present course of study may be examined into to see what changes may profitably be made.

Very respectfully submitted.
Vexal Cyr, Principal.

Maine Central Institute, Pittsfield, Maine, December 9, 1887. $\}$

To the Trustees of State Normal Schools.
Gentlemen:-In accordance with the requirements of law I make the following report of the Normal Department of Maine Central Institute:

The school year now consists of thirty-seven weeks and for the past year began December 13, 1886, and ended November 25, 1887.

At the close of the summer term, Mr. O. II. Drake, who has so efficiently filled the position of principal of this department, severed his connection with the school to enter upon a post graduate course at Yale College. Mr. L. W. Taylor was elected to fill the position made vacant by Mr. Drake's resignation.

The total attendance for the year has been 89 (eighty-nine), number of different pupils 56 (fifty-six), graduates from the regular course 4 (four). There is great need of more and better philosophical apparatus in connection with this department.

Our library which is constantly being improved and enlarged, has recently been made far more valuable by the addition of a fine lot of standard books of reference and these with several sets of cyclopædia are accessible to the students for daily use.

There have been some changes in our text-books. Colburn's Mental Arithmetic has been introduced for general use. Mahan's Mental Philosophy takes the place of Hopkin's Outline Study of Man, Haven's Moral Philosophy takes the place of Fairchild's, Huston's Physical Geography is exchanged for Guyot's, as is also Meservey's Book-Keeping for Nichol's.
L. W. Taylor, Principal.

Lee Normal Academy, Lee, Me., Nov. 21, 1887.

To Hon. N. A. Luce, State Superintendent of Public Schools.
Sir :-In compliance with your requirements, I herewith submit a report of the condition and progress of Lee Normal Academy for the school year ending Nov. 18, 1887.

The past year gave a much larger attendance than any other year in the history of the school. The highest number registered was 117 , while the average number for the year was about 100 .

No change of teachers has been made from the last year, but the increasing wants of the school made it necessary to add another teacher to the board of instruction, which was done by the election to the place, of Parker B. Davis of the class of ' 82 .

The teachers have been united in their efforts to do faithful work, making such improvements as circumstances seemed to permit. The teachers during the year, have been: L. H. Moulton, Eleanor L. Moulton, Julia F. Reed, and Parker B. Davis; Penmanship, William H. Wallace and Arthur •J. Bradbury ; Music, Mabel Burke.

No change of text-books has been made.
During the year the school has furnished a large number of teachers to the common schools in this section of the State, and, in general, they bave done good work.

Harmony has prevailed between teachers and pupils and no pains have been spared to effectually carry out the design of the school "to prepare teachers for their professional work." Very respectfully,

L. H. Moulton, Principal

Fiscal.

- While the school year of all these schools under the entire control of the State ends in the early summer, the fiscal year corresponds with that of the State, ending December 31.

For the last fiscal year, in addition to the regular annual appropriations fixed by statutes, the following special appropriations were made:

For enlarging school building at Farmington, \$8000; for providing a system of sewerage for boarding-house and school building, and for repairs of boarding-house, \&e., at Gorham, $\$ 4000$; for water-closets and sewerage at Castine, $\$ 500$.

By vote of the Board of Trustees the expenditure of these special appropriations was put under the immediate and direct supervision of the local members, Messrs. Merrill of Farmington, Hinkley of Gorham and Philbrook of Castine, to whose carefulness and wise management is solely due the eminently satisfactory results secured.

At Farmington, in place of the old wooden L. to the main building, has been erected a building of brick, in dimensions, 75 by 55 feet and of two stories, with slated roof. It is finished throughout-except two rooms-in hard wood; floors of birch and maple, door casings, window casings and dado of native brown ash. On the first floor are the ladies' dress-ing-room, in size 22 by 23 feet; gentlemen's dressing-room, 22 by 14 ; model school room, 22 by 36 ; and two recitation rooms, in dimensions, respectively, 22 by 36 and 19 by 29. On the second floor are the principal's office, 22 by 12; teachers' room and library, 22 by 25; labratory, 22 by 36 ; and two recitation rooms, 22 by 36 and 19 by 29 , respectively. Through the center, on both floors, run corridors seven feet wide, that on the lower floor connecting with a similar corridor through the center of the main building. Special pains have been taken to secure the best of ventilation both in corridors and rooms. In connecting this new part with the main building, the ventilation of the main school-room
has been improved by putting in two fire-places. The general architectural appearance of the whole, while not in the highest degree pleasing, is still much better than was to have been expected. All the work has been done under the constant personal supervision of the resident trustee and the principal of the school, and faithfully done from foundation to finish. In this case the State has received full value for expenditure made.

At Gorham expenditures were made as follows:
For repairs, boarding-house and out-buildings... \$1,739 96
" sanitary improvements of boarding house... 1,662 06
"، ، ، at Normal School
building 59798
$\$ 4,000 \quad 00$
The repairs of the boarding house and out-buildings include supports for the entire building; new dining hall, rearrangement of kitchen, and of dining room stairs ; plastering and papering throughout the building wherever needed and painting as much as the money would allow ; new gutters and temporary repairs of the piazzes; general repairs of the twostory outbuilding, including laying entire new floor, the removal of the old privies and the substitute therefor of new earth closets on each floor.

The sanitary improvements of the boarding house, in which the recommendations of the State Board of Health have been fully carried out, include the sub-soil drainage and general cleansing of the cellar; the plumbing of the bath room, kitchen and wash room; and the sewerage, for which it was necessary to lay pipes to a cess-pool nearly a quarter of a mile distant.

The sanitary improvements of the Normal building, made also in accordance with the recommendations of the State Board of Health, include the removal of the old urinals and water-closets, and the substitution therefor of an enameled urinal, and eight water-closets, provided with the Weeden Short Hopper and traps.

These expenditures have been as faithfully and wisely made as those at Farmington, and the results secured are equally creditable to those having them in charge. The sanitary improvements were imperatively needed; and now that they are made, those who were acquainted with the condition of affairs before they were made, may well feel that a great danger to the well being of the school and to the credit of the State, has been happily averted. Not less were needed the repairs and renovation made in the boarding house to render it a fit home for those who occupy it. It is now clean, and tasty, and cheerful, which could not be said of it in its former condition.

For the work to be done at Castine the trustees asked for $\$ 800$, and the appropriation made was for $\$ 500$. This was found wholly inadequate for the purposes for which asked. As it would have been waste of money to have done a part of the work contemplated and not the whole, a part of the appropriation has been applied to other needed repairs and improvements, and the rest reserved for other like uses hereafter.

As showing succinctly the Normal School resources and expenditures for the year, I submit the following :

Fiscal Statemfnt.

RESOURCES.

Regular annual appropriation $\$ 19,00000$
Appropriation for Madawaska Training School... 1,300 00
Special appropriation for Farmington 8,00000
"، "، Gorham.............. 4,000 00
"، ، " Castine 50000
$\$ 32,800 \quad 00$

EXPENDITURES.
For salaries, Normal Schools $\$ 17,27032$
"، ${ }^{6}$ Madawaska Training School 1,175 00
For repairs and improvements, special $. \$ 12,50000$
" 6 incidental 11494
6 fuel 1,054 64
"6 diplomas 5900
"6 incidental expenses 23790
" balance, M. T. S. carried to new year 12500
66 " N. S. 6 ، ، 6 26320$\$ 32,80000$

EDUCATIONAL ASSOCIATIONS.

State Pedagogical Society.

At the date of this report this society is holding the final session of its regular annual meeting in Augusta. While, owing to the inopportune visit of a "cold wave" of special severity, the attendance has not been so large as was anticipated, the meeting has, nevertheless, been one of special interest and profit.

The work of the meeting has been conducted under the following:

PROGRAMME.

Thursday Evening, December 29th, 7.30 P. M.

1. Organization.
2. Welcome-Extended by Judge W. P. Whitehouse.
3. President's Address-Mission of the Teacher.
4. Report on Language,

Prof. Henry L. Cbapman, Bowdoin College. Discussion-Opened by State Supt. N. A. Luce, Augusta.

Friday, December 30th, 9 A. M.

1. Paper-(40 minutes) Scientific Temperance Instruction, with Illustrative Experiments, C. F. Warner, Farmington. Discussion-Opened by Chas. R. Crandall, M. D., Portland.
2. Report on History-(20 minutes)

Prin. Geo. C. Purington, Farmington. Discussion-Opened by Prof. A. W. Small, Colby University.
3. Paper-(20 minutes) Our Grammar School Arithmetic,
C. A. Byram, Prin. Grammar School, Bangor. Discussion-Opened by
I. M. Norcross, Prin. Grammar School, Lewiston.

2 P. M.

1. Paper-(20 minutes) The Aim of Our Primary Schools, Miss M. L. E. Shaw, Lewiston. Discussion-Opened by Supt. W. W. Stetson, Auburn.
2. Report on Professional Reading, Prin. W. J. Corthell, Gorham. Discussion-Opened by A. L. Lane, Waterville.
3. Paper--(20 minutes) What and How Much Science Teaching in Common School, Prof. F. L. Harvey, State College. Discussion-by
H. M. Estabrooke, Gorham, and A. R. Sweetser, Bucksport.
4. Paper-(20 minutes) Educational Science in Teaching Music, Prof. A. E. Holt, Boston.
Exercises in Singing by Pupils of Augusta Grammar School, conducted by Miss L. Estelle Parke, Augusta.

Friday Evening, 7.30 P. M.
Lecture-Expression as a Means of Culture,
C. W. Emerson, M. D., President of the Monroe College of Oratory, Boston.

Saturday, December 31, 9 A. M.

1. Paper- (20 minutes) Value, Amount and Character of Instruction in Modern Languages in High Schools, H. E. Cole, Prin. High School, Bath.
Discussion-Opened by
G. A. Stuart, Prin. High School, Gardiner.
2. Paper-(20 minutes) Educational Advantages of the Study of Latin, W. R. Whittle, Prin. High School, Ellsworth. Discussion-Opened by J. M. Hill, Prin. High School, Bangor. 3. Paper-(20 minutes) Place and Work of Seminary in Our System of Education, J. H. Parsons, Priu. Maine Central Institute.
Discussion-Opened by
Rev. E. M Smith, Pres. Me. Wesleyan Seminary.
3. Report on Civics, L. G. Jordan, Prin. High School, Lewiston. Discussion-Opened by Supt. Thomas Tash, Portland. Reports of committees, and unfinished business.

Arrangements have been made whereby the formal papers presented at this meeting may be published in full in the appendix to this report. Though they will occupy considerable space, their value as contributions to current educational literature, and their practical suggestiveness, would seem to warrant the bringing of them thus widely to the attention of school officers and teachers.

County Associations.

These agencies for improving our schools by improving their teachers, are in one sense State institutions, since they are organizations formed under provisions of statute, are supported by a State appropriation, and teachers have by law the right to suspend their schools under proper restrictions during their meetings and attend them without forfeiture of pay during such attendance. They are, nevertheless, wholly voluntary organizations, managed by the teachers themselves under a general supervision of the State Superintendent, who are expected to conduct their meetings for their own mutual benefit. They are organizations, in short, for mutual help through free discussion by working teachers, of timely topics touching the work of the schools.

There are now nineteen of these associations in the State alive and active, one new one having been organized during the year. Twenty-two meetings have been held within the year, in fourteen counties, each of two days, nineteen of which I have attended through all their sessions. Nearly 2000 teachers have been in attendance, some of the meetings having had an attendance of nearly 200 .

The interest and zeal with which teachers have taken hold of the work of these meetings, the intelligence and thoughtfulness they have shown in the papers presented and discussions held, and the enthusiasm awakened, have surpassed those of any previous year in their history.

To indicate the general scope of the work done by these associations in their annual fall meetings, I subjoin the general program from which their special programs have been made up.

General Programme and Syllabus of Subjects

FOR

MEETINGS OF CO. EDUCATIONAL ASsOCIATIONS.

FALL OF 1887.

I. Temperance Instruction: 1, Reports of Teachers-(1) of work done ; (2) of methods employed; (3) of difficulties met; (4) of results attained.
2. Discussion of reports.
II. Teaching Exercises in Reading, Arithmetic, Language and Geograpiry: (1) Classes chosen from members, or from pupils in town ; (2) Brief statement, oral or written, of purposes of the exercise ; (3) Exercise given; (4) General discussion and criticisms of the exercise.
III. Professional Reading: (1) Reports of Supervisors of; (2) Reports of members ; (3) Discussion of future plans.
IV. Queries-Discussion of: (1) What can teachers do to increase school attendance? (2) How can school rooms, as we find them, be best ventilated? (3) How shall English grammar be taught in order best to train pupils to speak and write correctly? (4) What results other than knowledge of the suject are to be sought in teaching arithmetic? (5) What oral lessons in science can be given in mixed schools, and how and when given? (6) How can small pupils in mixed schools be kept busy?
V. Essays-Subjects: (1) Characteristics of the good teacher. (2) Teaching by example. (3) Character the best result of education. (4) Place and influence of the teacher in society. (5) How shall the teacher grow in efficiency.

MISCELLANEOUS TOPICS.

Temperange Instruction.

The Legislature of 1885 enacted a law that the proper school authorities should make provision "for instructing all pupils in all schools, supported by public money, or under State control, in physiology and hygiene, with special reference to the effects of alcoholic drinks, stimulants and nareotics upon the human system;" and that no certificate should be granted to any person to teach in the public schools of this State after the fourth day of July in that year, who had not "passed a satisfactory examination in physiology and hygiene, with special reference to the effects of alcoholic drinks, stimulants and narcotics upon the human system." If it be true that what it is desirable to have appear in the life of a people should be made a part of that preparation for life which it is the purpose of the public school to give, no more important work has been imposed upon our schools than that contemplated in this law. To attend to its wise and proper enforcement has, therefore, been and is the official and moral duty of all school officers, and the private and moral duty of all good citizens. In reporting the condition of our public schools for the second school year in which this law has been operative, it can but be proper to inquire particularly to what extent it has been enforced, and to make such suggestions as to its future enforcement, as experience has proved to be desirable.

If there are those, as undoubtedly there are, who have expected that, as the result of this law, all pupils in all public schools would be at once given the instruction contemplated by its letter and spirit, such persons have built their expectations not upon an intelligent understanding of existing school conditions. Intelligent educators knew that such result was impracticable.

To a large majority of our teachers the subject matter of the instruction required, was practically unknown ground, and ground which could not be sufficiently thoroughly explored in the time allowed by the law. To make such instruction practicable, moreover, to teach 'all pupils in all schools," was a demand for methods of instruction of which a large majority knew nothing. These teachers could assign lessons from text-books and ask the set questions connected with such lessons, but the law demanded more than this. Children who can not read understandingly, can not be taught from text-books such subjects as were here required. And so in all mixed schools, and in all primary grades, there was demanded oral instruction, work requiring an exactness in knowledge of the subject taught, powers of analysis and systematic statement, and a fund of illustrative teaching power, if any efficient work was to be done, superior to that required in text-book teaching. To suppose that teachers who had never seen an oral lesson given, who had never even heard of such a thing, and who knew nothing or next to nothing of what must be so taught, could enter efficiently upon such work at once, was absurd.

But lack of qualified teachers was not the only obstacle to immediate general and efficient execution of the law. Physiology and hygiene had for many years been among the statute studies of the common schools, and text-books upon the subject were to be found in some 1,400 of the more advanced ungraded, and in all of the highest grades of the graded schools. Few of these treated the subject with that "special reference to the effects of alcoholic drinks, stimulants and narcotics," which the new law emphasized and demanded. Textbooks had, therefore, to be changed in almost every town in which the subject had been taught, and new text-books introduced in all the other towns in the State. Had it been the policy of the State to furnish text-books free, as is done in Massachusetts, this general change and introduction would not have been so much of a hindrance to the securing of immediate instruction in the required subject. As it was, school
officers were harrassed by book-agents, and perplexed to choose among a multiplicity of books; and when selection had been made, and introduction into the schools began, they were met with anything but votes of thanks from the parents who had to purchase. Indeed, in not a few instances, parents would not supply their children with the books; and in some schools the best that could be done in the beginning was to put a book into the hands of the teacher to be read, at stated intervals, to that class of pupils who ought to have studied it, the reading to be followed by questions upon what had been read.

Again there were found some people, and communities even, prejudiced to the extent of full opposition to having the subject taught at all in the schools. Among these were those who think that the ability to read, write and cypher, includes all that is of value in an education; those who believe that the quack nostrums peddled at the corner grocery, are panaceas for all the ills to which flesh is heir ; those who put greater confidence in the jargon of the pretended spirit of an Indian speaking through a clairvoyant's lips, than in the most thoroughly educated physician ; and those who, afflicted with the latest of modern crazes, -christian scientists, mind curers, et id genus omne-would cure a compound fracture by miraculous healing or by making the patient believe he had no limbs to be fractured.

All of these obstacles in the way of a general and efficient carrying out of the letter and spirit of the law, were foreseen by intelligent educators, and they have been working as wisely as they might to overcome them. In the work of local, county and State meetings of teachers, the what and how of temperance instruction have been made specially prominent, and teachers have shown themselves earnest to learn how to do the most efficient work in this branch. So too, school officers in the matter of changing and introducing text-books, have exercised a wise conservatism that has done much to disarm opposition. By not foreing books upon
pupils, but waiting till an interest in the study had been awakened such that the child's own influence could be brought to bear upon the unwilling parent, books have found their way into the hands in which they properly belong, and classes have been easily formed. And the results of instruction going through the pupil into the family, the practical knowledge gained in the school and carried into the home, have naturally done something to disarm the prejudice of ignorance. So the teaching of this subject in the schools, instead of taking on a forced and unhealthy growth, is in a natural and healthy way taking its proper place among the other subjects of instruction.
But more definitely stated, what has been done in this regard in the past two years during which the law has been in operation? To this question only an approximate answer is practicable.

During the year before the law took effect, there were 1,388 ungraded schools in which there were classes in physiology and hygiene. During the second year following its enactment, the school year of which this is the report, there were 2,821 such schools. In the State this same year there were 3,925 ungraded schools and, therefore, 1,104 in which such classes were not taught. But these figures are for schools only in which there were classes studying the subject in text-books, and there are, according to the best information attainable, in the neighborhood of 1,000 ungraded schools in the State so small and backward that the formation of such classes is impracticable. Besides these ungraded schools, there were in the State during the year herein reported, 834 graded schools. In the highest grade of these almost without exception the subject was taught from the text-book as part of the regular course. In the next lower grade, ordinarily the grammar school, it was taught in similar manner, though not so generally, from text-books of a lower grade. There were, moreover, at least 125 different free high schools not included in graded systems, and in these almost generally the subject
was taught in the same way. It would seem, therefore, that so far as text-book instruction is concerned, larger results have been attained than were to have been anticipated.

As regards the extent to which the subject has been taught orally in primary grades, to the less advanced pupils in mixed schools in which text-book classes have been formed, and to all pupils in the smaller and more backward ungraded schools, the data are less easily obtainable. Something of evidence however is at hand. In every county association meeting held during the past fall, which I have attended, and in which nearly 2000 teachers have been met, this subject has been under consideration, generally having the prominent place on the program of exercises. In all those meetings a "showing of hands" was had with the following results: (1) In answer to the question, "How many have taught physiology and hygiene with special reference to the effects of stimulants and narcotics upon the human system in some form during the year?" the showing was almost unammous, less than one hundred out of the 2,000 indicating that they had not taught it. Of these a considerable number stated that it had been taught by other teachers in the grade in which they were employed. (2) To the question, "How many have taught from text-books only?" a minority responded, as also to the question, "How many have taught orally only?" (3) To the question, "How many have taught both from text-books and orally?" at least seventy-five per cent. responded. Were the facts thus obtained indicative of what has been done by all teachers in the State, we might conclude that temperance instruction in some form was practically universal in all our schools. But allowance must be made for the fact that the teachers whose evidence is here adduced, were generally of the better class. Comparatively few of them were from the small and backward schools. The poor apology for a teacher, who "keeps school" for two to three dollars a week, is rarely found attending teachers' meetings.

The foregoing facts give no indication of the efficiency of the instruction given. Probably as a rule it stands somewhat
below that given in other branches which have been longer and more generally taught. In this regard the character of the teacher, his or her interest in the subject, and tact and skill in statement and illustration of facts and principles, have made it in some schools a subject of intense interest to the pupils, in others one to which little or no interest has attached.

From a careful analysis of all the information at hand, in fine, the following conclusion would seem to be fairly deducible : That instruction in some form in this subject nearly equal in quality to that given in other subjects, is now given in almost or quite all of our better schools, graded and ungraded, and in many of the poorer, to such extent that between eighty and ninety per cent of "all pupils in all schools supported by public money," are getting some practical and useful knowledge of the subject. The results thus reached in two years, it would seem, ought to be satisfactory to every reasonable friend of the law, and full of encouragement to work for better future results.

What, now, in the light of experience should be our aims as regards the scope and methods of temperance teaching in the future? The end of such instruction should evidently be such a fore-arming of the child that he will be able successfully to resist all temptations to the forming of intemperate habits whether in the use of stimulants or narcotics. The law whose results have just been considered, looks to such fore-arming by giving him knowledge solely of the effects of such habits upon his physical system. Is knowledge alone an all-efficient means of salvation in this as in any other direction? All human experience negatives such an assumption. Conscience, feeling, and will must take hold of knowledge and mould it into fixed purpose as an element of character, before it becomes a potent saving agency. Is the knowledge required by this law all that is necessary as a basis for the fixed purpose which shall make for his salvation from the drink habit? There is other knowledge upon which conscience, and feeling, and will, will take as strong if not stronger hold, and which will at least broaden and make firmer the
basis upon which purpose must be built. Such is a knowledge of the social, economic and moral evils-the suffering in ruined homes, the poverty and crime that grow out of intemperance. We need, then, to broaden the scope of our instruction beyond the requirements of the law of 1885 . A proper interpretation of that law will allow this, if it be considered as but emphasizing and specializing that far older provision of law which requires that all teachers "shall use their best endeavors to impress on the minds of the children and youth commited to their care and instruction, the principles of ${ }^{*} \quad{ }^{*} \quad{ }^{*}$ sobriety, industry, and frugality ; chastity, moderation, and temperance; * ${ }^{*} \quad{ }^{*} \quad{ }^{*}$ and to lead those under their care, as their ages and capacities admit, into a particular understanding of the tendency of such virtues to preserve and perfect a republican constitution, secure the blessing of liberty, and promote their future happiness; and the tendency of the opposite vices, to slavery, degradation, and ruin."

Upon the effects, then, of stimulants and narcotics upon the human system as a foundation, should be built a system of temperance instruction so broad as to include a knowledge of all the evils that follow their habitual use, and by such methods as will so call into lively activity the consciences and feelings of our pupils that there will grow up in them as a part of their characters, an indomitable purpose to forever abstain from the first steps in the path that leads down to "slavery, degradation and ruin."

The methods which should be employed in making such a course of instruction efficient, should be such as to appeal strongly to the perceptions, the imagination, the conscience, and the will of the pupil. Such methods will demand that:

1. The teacher should be intensely in earnest, and hence thoroughly a believer in the importance of what is taught. Real earnestness, enthusiasm and faith in one's work, are especially contagious in the school. Pupils are strongly inclined to accept things at the value which the teacher places upon them; and in the work of the school they unconsciously
measure that value by the earnestness and enthusiasm which the teacher manifests. Nor should it be difficult for any one fit to teach to become thoroughly alive to the importance of this work, and full of enthusiasm and faith in it.
2. The teacher should be fuli of a knowledge of the subject; not alone a knowledge of the facts to be impressed upon the minds of the pupils, but of such additional facts, and such incidents, anecdotes, and pat illustrations as will serve to give life, force and interest to those facts. These incidents, anecdotes and illustrations, however, should never be such as to connect with the personal experiences of the pupils, especially when relating to the social and moral side of the subject.
3. Instruction in all classes should have much of the oral in it, and should be as much objective in form as practicable. It should never, however, take the form of lectures to, but rather of conversation with, pupils, drawing out their own knowledge, thoughts and opinions, and supplementing these by such additional statements, corrections and illustrations as may be needed. With pupils who cannot intelligently read the textbook on the subject used in the school, the instruction should be wholly oral. In teaching the physiological and hygienic side of the subject, whether from text-book or orally, simple experiments like those outlined in the papers by Messrs. Estabrooke and Warner in the appendix, should be largely employed.
4. There should be a set time and place in the school program for this instruction, as much so as for that in any other subject. The very fact of giving it such place will emphasize its importance in the minds of pupils. Moreover, the mind unconsciously takes on a condition of receptivity for instruction regularly recurring, and hence profits by it more than when coming at unexpected times. How frequently these set times should recur, will depend somewhat upon the other work of the school. The subject should have its fair share of time with others. Wherever the conditions will allow, the instruction should be given daily.

In conclusion I would most earnestly urge upon school officers and teachers the importance of this part of our public school work. If in any of the schools little or nothing has been efficiently done in this direction, let measures be taken at once to do such work. Where a good beginning has been made, let the work be pushed on to higher efficiency. If the schools of our State can be made to send out into active life men and women who shall believe thoroughly, what science and all human experience join in teaching, that the drink habit and narcotism are sins-sins against the body because destructive of its health, sins against the moral nature because they blunt and deaden the keenness of moral perception, sins against the State because they are productive of poverty and crime, 一and who, because so believing, shall abhor even the first steps that lead to these sins, they will have done a work whose worth no dollars can measure. To help toward such a work is the high and holy privilege of all who have to do with the schools, and let us deem it such.

Compulsory School Attendance.

In 1875 an act was passed requiring the attendance at school, either public or private, of every child between the ages of nine and fifteen years, for at least twelve weeks in each year, unless excused from such attendance by the officers of the town for physical or mental disability, or because of living more than a mile and a half by the shortest travelled road from any school. The penalty affixed to non-attendance as thus required was a fine not to exceed five dollars. The duty of enforcing this act was imposed upon school committees and supervisors. I am not aware that the provisions of this act were ever anywhere enforced. I know that its enforcement was generally found to be impracticable, whenever any supervisor who sought to enforce it in some aggravated case of absentecism, came to the question of ways and means. In view of the defective character of this law, therefore, the last Legislature enacted the following substitute :

An Act to compel children under fifteen years of age to attend the public schools.

Be it enacted by the Senute and House of Representatives in Legislature assembled, as follows:

Section 1. Every person having under his control a child between the ages of eight and fifteen years, shall annually cause such child to attend, for at least sixteen weeks, some public school, which time shall be divided, so far as the arrangement of school terms will allow, into two terms each of eight consecutive weeks, and for every neglect of such duty, the person offending shall forfeit a sum not exceeding twenty-five dollars to the treasurer of the city or town for the use of the public schools in such city or town; but if such child has been otherwise furnished for a like period of time with the means of education, equal to that taught in the common schools of the State, or if his physical or mental condition is such as to prevent attendance at school or application to study, such penalty shall not be incurred.

Sect. 2. Children living remote from any public school in the town in which they reside may be allowed to attend the public schools in an adjoining town under such regulations and on such terms as the school committees of said towns agree upon and prescribe, and the school committee of the town in which such children reside shall pay the sum agreed upon out of the appropriations of money raised in said town for school purposes.

Sect. 3. Cities and towns shall annually elect one or more persons, to be designated truant officers, who shall inquire into all cases of neglect of the duty prescribed in section one, and ascertain the reasons therefor, and such truant officers or any one of them, shall, when so directed by the school committee or supervisor in writing, prosecute in the name of the city or town any person liable to the penalty provided in said section.

Sect. 4. Every city or town neglecting to elect truant officers, and truant officers neglecting to prosecute when directed, as required by law, shall forfeit not less than ten nor more than fifty dollars to the use of the public schools in the city or town neglecting as aforesaid, or to the use of the public schools in the city or town where such truant officer resides.

Sect. 5. The municipal officers shall fix the compensation of the truant officers elected as prescribed in section three.

Sect. 6. Every boy between the ages of ten and fifteen years who refuses to attend school as required in section one and who may be found wandering about the streets or public places of any city or town during the school hours of the school day, while the school of which he is legally a scholar is in session, on complaint of the truant officers as provided in section three, shall be committed to the State Reform School ; provided, however, that it shall be the duty of every truant officer previous to making complaint under this section, to notify the truant or absentee from school, also the person having him under control, of the offence committed and the penalty therefor, and if the truant officer can obtain satisfactory pledges that the child will conform to section one of this act, he shall forbear to prosecute so long as such pledges are faithfully kept.

Sect. 7. Police or municipal courts and trial justices shall have jurisdiction of the offences described in sections one, three, four and six.

This act was approved February 15th. Unfortunately the enacting section, which was in the bill as reported from the Committee of Education, was stricken out during its passage through the House, and it did not, therefore, become law till April 16, thirty days after the adjournment of the legislative session. As at that time every town in the State had held its annual meeting, the law has been inoperative during the year, save in the few towns which, at special meetings held after the above date, elected the truant officers required by its provisions.

The provisions of this act are not to be confounded with those of another passed at the same session, relating to the employment of children in manufactories, without annually attending school. This, wbile in perfect harmony with that, applies everywhere and to all children of the ages named.

It is expected that, as the result of the general enforcement of these new provisions of law, the attendance upon our public schools will be very considerably increased. Indeed, evidence is not wanting that the schools have already felt the effects of the law, even where no steps have been taken for its enforcement. Whether or not its effects shall be as marked as is to
he desired, will depend in large measure upon the wise choice of truant officers, and in large measure, also, upon the hearty co-operation of these officers and school committees and supervisors. In order to secure such co-operation I make the following suggestions:

1. That when more than one truant officer is elected, such officers and the school committee shall divide the town into sections, giving to each truant officer charge of the execution of the law in one of these sections.
2. That, as soon as the school census for the year is completed, school committees make duplicate lists of all children between the ages of eight and fifteen, resident in each school district, one copy of which shall be furnished to the truant officer in whose section such district is embraced, and the other to the teacher or teachers of the school.
3. That every teacher be instructed to make duplicate returns, at the end of the first three days of every term, of the names of all pupils between such ages who have not been enrolled as attending the school under his or her charge, one copy to the school committee and the other to the truant officer in whose section the school lies.
4. The truant officer on receipt of such return, should at once visit the homes of all children named therein, ascertain the reason for their non-attendance and other essential facts relating thereto, and report the same to the school committee.
5. If the reasons for the non-attendance of any child assigned by parents or guardians, as reported by the truant officer, be such as are recognized in the law as valid, they should notify the teacher of the school in which such child belongs, of such fact, and the teacher should make note thereof by writing "excused" against the child's name. If such reasons are not so valid, they should direct the truant officer to notify the parent or guardian to send such child to school, and to inform him of the penalty incurred by failure so to do.
6. At the end of each term in any district, the teacher should be required to make returns again to the truant officer
of the names of such children coming under the requirements of the law, as have not attended school during such term for eight consecutive weeks; and if the terms of school in such district are so arranged that within the school year there can not be subsequent compliance of such children with the requirements of law, the truant officer should report such names to the school committee and ask their directions as to prosecution of the persons having such children under control.
7. The ultimate efficiency of any law depends largely upon the promptness and vigor of its execution in the beginning. Such will prove especially the case in this matter. Those whom the law is intended to reach, once having felt its grip, will hardly need any further admonitions as to their duty in the premises. Finally, therefore, promptness and vigor should characterize the action of truant officers and school committees in this first year of its general execution. Let there be no temporizing, no compromising with offenders this year, and offenders will be few next year.

Courses of Study for Ungraded Schools.

No one carefully and intelligently studying the condition and needs of our ungraded schools, can fail to notice the waste of time and effort, both of teachers and pupils, which characterizes their instruction, and results from want of systematic and orderly plans of work. In the order in which subjects are taught, there is little heed taken to adaptation to the pupil's mental status, and in methods of teaching quite as little. There is no recognition of the order in which his mental faculties unfold naturally; indeed, little recognition of the fact that he has other faculties than memory. And so he is found trying to master the principles of arithmetical science, or of technical grammar, while the faculties required to grasp and comprehend those principles, are infantile in power, and he is perforce compelled to hold in memory simply the words in which these principles are formulated, getting neither mental
growth in the process, nor real knowledge as the result. Nor in the hap-hazard work done are the consecutive steps takeu once and for all. With constant change of teachers from term to term, there is constant going over and over again work done in previous terms that ought to have been done once and for all in those terms. Out of this grows a habit of superficial work, of half doing what should be well and thoroughly done.

The superiority of the graded to the ungraded school lies chiefly in the fact that its work is done in accordance with a plan which is, or ought to be, based upon the laws governing mental activity and growth ; and that, in the carrying out of such plan, the work of each term and year is a finality. It maps out for the pupil a well and wisely chosen path, sets mile-stones along the way by which to mark his progress, and places before him a definite end to be reached in the form of graduation. In short, the graded is superior to the ungraded school chiefly because of its definite course of study. But there is nothing in the inherent nature of the ungraded, or, to use a better term, the mixed school, standing as an insuperable obstacle to the mapping out of its work in a similar way, and to the fixing of a definite ending of that work in graduation. Given a system of mixed schools of equal length and of proximate equality in the character of instruction, and it is entirely practicable to make out a course of study for those schools. Given a system of such schools of varying lengths and considerably differing character of instruction, and only a partial course is practicable. In short, under the town system of school management, the work of the mixed schools can be as definitely outlined in a complete course of study, as can the work of graded schools. Under the district plan, with its wide disparity in length of schools in different sections, experience has shown that such courses are only partially practicable. In both cases it is practicable to fix a limit to the work done, and when pupils have reached that limit, to graduate them in like manner as they graduate from graded schools or seminaries. Experience has further
shown, that in such courses of study complete or partial, and graduation therefrom, in addition to other advantages, is to be found an incentive and spur to good work by pupils in the schools, and by parents for them, of very great value.

An appreciation of the need of this reform in school work has been growing upon those having local charge of our schools in Maine, as in other States. During the current year frequent calls have come from school committees for information and suggestion regarding it. I am glad, therefore, to be able to insert here the course of study planned by Dr. J. O. Webster, Supervisor of Schools in Augusta, for the mixed schools of his city.

COURSE OF STUDIES FOR UNGRADED SCHOOLS.

PRIMER GRADE.

Reading--To be taught from the blackboard, charts, Monroe's Primer, etc.

Spelling-By sounds and letters, the words in the reading lessons.
Numbers-Develop the idea of numbers from 1 to 10 , counting with real objects.

Writing-On slates, small letters, short words and sentences.
Oral instruction in language, color, form and size. Calkin's Primary Object lessons will indicate the kind and amount of work to be done under this head.

FIRST READER GRADE.

Reading-Monroe's First Reader and supplementary reading. Spelling-By sounds and letters, words in reading lessons
Numbers-One to twenty. Teach all the combinations possible, using no number larger than twenty.

Writing-Capitals ; copying a part of the reading lesson daily.
Oral Lessons-Language ; talks about the five senses, their organs and use.

SECOND READER GRADE.

Reading-Monroe's Second Reader; supplementary reading.
Spelling-Both oral and written; words from reading lessons. Spelling book-Harrington's-Part I, to page 40.

Numbers-Reading and writing numbers to 1,000 ; Roman numerals to LXX ; Colburn's first lessons to page 45.

Writing-Words and sentences from reading lessons. Primary writing, Book No. 1.

Language--Taught orally; lessons from reader.
Oral Instruction-Geography of school yard, points of compass, parallel lines, map of the town

Third Reader Grade.
Reading-Monroe's third reader; supplementary reading.
Spelling-Harrington's spelling book; Part 1 to page 65.
Numbers-Colburn's first lessons, completed.
Writing-Primary writing books, Nos. 2 and 3.

Fuurth Reader Grade.

Reading-Monroe's fourth reader ; Child's Book of Nature; supplementary reading.

Spelling-Harrington's spelling book ; Part 1 completed and Part 2 to page 20.

Arithmetic-Greenleaf's complete arithmetic to page 116 or brief course ; Colburn's for mental arithmetic.

Geography-Warren's primary completed and reviewed; map drawing.

Language-How to Speak and Write ; oral teaching.
Writing-Books Nos. 1, 2, 3 and 4.
Oral Instruction in physiology and zoology.

Fifti Reader Grade.

Reading-Monroe's fifth reader; Young People's History of Maine ; supplementary.

Spelling-Spelling book completed and reviewed.
Arithmetic-Greenleaf's complete completed, omiting 'metric system," "six per cent method" in interest, true discount and "present worth, cube root and all of the appendix except government lands, longitude and time and taxes.

Geography-Warren's Brief Course ; map drawing. Grammar-Sill's lessons in English.
History—Higginson's Young Folks' United States.
Physiology and Hygiene-Our Bodies and How we Live.
Writing-Books Nos. 5, 6 and 7.
Book Keeping-Single entry,
Civil Government-U. S. Constitution; oral instruction.

The foregoing course is based upon recognized educational principles, both in order of subjects to be taught and in methods of instruction suggested. In adapting it, therefore, as it would have to be adapted, to the schools of another locality, this order of subjects should be preserved, as should also the methods suggested so far as practicable.

In conclusion, I most earnestly urge upon the school committes and supervisors of all towns which have abolished the district system, that they take steps toward the inauguration of this reform in the work of their schools as soon as practicable ; and I suggest that as soon as the reform is decided upon, and a satisfactory course of study arranged, especial attention should be given to searching out in every school as many of the most advanced scholars as can be found competent to complete the course during the year, and that such should be organized into a graduating class ; for the early graduation of a class with appropriate public exercises, will do much toward bringing the reform into public favor, and securing parental co-operation in carrying it forward to ultimate and permanent success.

CONCLUSION.

What Can Be Done?

Whatever improvement in the condition of our public schools has been secured in the past, has been secured chiefly, almost wholly, through the efforts of those having them locally in charge. Supervision has been the lever which has lifted them into higher efficiency under the district system ; supervision has been the force back of popular action, which has made possible the bringing of them to their best estate under the better town system of management. If. school attendance has increased, that increase is largely due directly or indirectly to the school committeeman. If better teachers have been employed, and more permanently employed, his wise advice to agents, or his decided stand against admitting incompetents into the schools, has been the principal factor in securing the result. If greater thoroughness, and less waste of time and force have anywhere been brought into school work, it has been largely due to his intelligent planning of such work and his vigilant insistance upon it. His earnest and sometimes sharp arraignment in his annual report, of districts for failure to provide proper school-houses, has often borne good fruit. His reiterated arguments in their favor have led to the establishing of high schools. And his kindly and wise advise to young teachers showing special aptitude for their work, has sent many a one into our Normal Schools.

But though there has been real and substantial improvement made along all these lines, the limits of needed and practicable improvement have not been reached. Effort of the same kind, more earnest if possible and more persistent, is still needed, and is still certain to bear good fruit. The answer, then, to the question, What can be done? may properly take the form of the following

Recommendations.

1. That school committees and supervisors earnestly endeavor to increase school attendance by the use of all legitimate means, and especially 'y a prompt and vigorous enforcement of the new compuisory law.
2. That they guard the schools from the admission of unfit teachers by demanding evidence of moral character, and by searching examination not only into their scholastic qualifications, but into their ability to govern and instruct ; and that they use their influence to secure the retention of satisfactory teachers in the same schools for a series of terms.
3. That in towns in which the district system has been abolished, they take necessary steps toward the introduction of courses of study in the ungraded schools from which pupils may graduate in like manner as from graded schools.
4. That they use their influence in favor of the abolition of the district system, the adoption of the free text-book plan, and the establishing of Free High Schools.
5. That they urge upon teachers the importance of attending educational meetings, and that they themselves, when practicable, attend and take part in such meetings.
6. That they strongly advise all young teachers who show natural aptitude for the work, to enter upon a course of professional training at one of our Normal Schools.
7. That, in short, they seek to elevate the public schools of their towns by vigilant, earnest, persistent and aggressive action, as leaders in all educational reforms.

APPENDIX.

COMMON SCHOOL STATISTICS,

Compiled from Annual Returns of S. S. Committees and Fiscal Returns of Muntcipal Officers, For the Year Ending April 1, 1887.

ANDROSCOGGIN COUNTY.

Towns.								W.															
Auburn	3205	1426	1157	2816	2229	1765	. 35	12		660	24		1320				32			78,000		15	49
Durham	380	232	190	241	206	302	. 52	8	2	128	11	3	124	11	1	12	9	-	-	4,500	2	4	10
East Live	381	227	180	260	220	300	. 52	8			7	2	52	7	-	7	6	-		7,000	2	6	
Greene.	258	136	113	153	121	168	. 45	8	4		10	3	117	11	-	10	10			2,500	1	2	9
Leeds	339	212	174	241	190	267	. 54	9		178	10	2	124	12	-	12	11			4,300	-	${ }^{0}$	15
Lewis	6388	2213	1898	2519	1950	2600	. 30	12		720	25	3	1560	-	-	29	27	1	21,000	200,000	4	4_{4}^{4}	60
Lisbo	1012	473	409	532	417	570	. 41	9		162			418	-		12	12	-	-	22,000	2	3	16
Liverm	350	269	222	219	179	252	. 57	8	1	148	9	3	134	17	2	17	11	-		4,800		5	20
Mino	493	358	272	328	285	372	. 56	9	4	186	10	1	102	6	5	9	7	-	-	8,000	1	4	14
Poland	688	222	186	280	236	295	. 31			135	9		151	-	-	17	12			12,000		6	15
Turn	596	364	316	402	350	440	. 56	9		180			220	-	-	19	17	1	1623	5,000	-	11	20
Wales	139	100	88	120	104	131	. 69	6	4	72		4	77	8	-					2,200	-	6 3	11
Webster	327	196	175	180	153	207	. 50	10		150	8	3	60			10	2	-	-	2,100	1	3	9
														72	8	194	161		22,623	5	19	74	25

ANDROSCOGGIN COUNTY－CONCZLUDED．

Towns．							Not le 80 cts. inha 品 ${ }^{\circ} \mathrm{B}$弟四						－soonnosey looqos［870			
Auburn．	95	611200	600	250	36000	14，500	6856	－	453	14，500 00	5，269 77	－	19，769 77	18，866 81	90296	
Durham	6	1 2175	390	180	8300	1，200	198	－	316	1，257 01	63700		1，894 01	1，705 45	18856	
East Live	4	3200	360	± 01	5700	864	－	－	$1 \begin{array}{ll}2 & 27\end{array}$	1，462 78	56917	$210 \quad 26$	2，242 21	2，117 62	12459	
Green	9	2350	348	170	4710	799	－	－	281	1，103 72	46989		1，573 61	1，32208	25153	
Leeds	5	$1 \begin{aligned} & 1 \\ & 2100\end{aligned}$	317	156	5225	1，000	45	－	279	1，070 36	59234	－	1，662 70	1，557 09	10561	
Lewiston	61	213390	865	350	150000	24，000	8734	－	33 63	24，000 001	10，925 06	3938	34，964 44	35，187 40	－	22296
Lisbon	16	36000	$5{ }_{5}^{5} 50$	250	15100	2，600	487	－	287	2，682 03	1，497 37	2602	4，205 42	4，175 18	$30 \quad 24$	
Liverm	8	24.00	$3 \begin{array}{ll}3 & 17\end{array}$	167	6775	1，025	15	－	$3 \begin{array}{ll}3 & 00 \\ 3\end{array}$	1，148 73	56751	5443	1，770 67	1，689 07	8160	
Minot	13	4.3941	434	262	8500	1，410	－	－	335	1，692 34	69657	－	2，388 91	2，334 14	5477	
Poland	11	2483	395	196	10000	2，500	546	－	360	2，319 99	1,14827	－	3，468 26	3，378 69	8957	
Turner	9	1 3750	525	200	11900	2，500	672	－	412	2，573 30	1，004 32	2700	3，604 62	3，267 84	33678	
Wales	4	1.2000	300	200	3925	600	196	－	429	74220	23164	－	97384	96198	1186	
Webster	4	2333	318	158	5000	784	－	－	243	98022	53442	－	1，514 64	1，396 17	11847	

AROOSTOOK COUNTY.

Masardis.	105	72	55	69	60	79	. 5511		3310		30	31	-	3	2			900	-	2	3
Monticello	432	268	206	252	191	308	.4910	1	9212	2	75	8	-	8	3	1	350	1,900	-		9
New Limerick	266	173	137	152	111	197	.4712	4	8913	4	55	6		5	5	-	-	1,650	- 1	2	7
Orient.	80	68	52	-	-	68	. 6513	4	55	-	-	3	-	3	3	,	1000	1,200	1		21
Presque Isle	1015	632	510	563	456	778	. 4810	2	23610	2	226		-	21	15	2	1000	8,000	2	4	21
Sherman...	338	221	217	208	168	225	. 5711	1	7911	1	67	6	-	6	3	\rightarrow	-	2,000	1	3	6
Smyrna....	113	61	42	61	52	83	.4110	2	3210		30	4	-	4	1	1	175	800	-	1	3
Van Buren.	526	278	242	243	198	327	. 4212		1329		54	9	-	8	7	-	315	1,800	3	2	8
Washburn	421	245	206	331	243	343	. 538	4	9610	4	108	9	-	10	8	1	315	1,800	-	3	10
Weston	178	121	91	69	59	125	. 4211	2	4513	3	27	4	1	4	2	-	-	925	-	2	8
Woodland. . .	348	162	129	199	145	248	. 398	4	70,13		104	8	-	8	4	-	-	2,000	-	3	8

AROOS'IOOK COUN'TY-CONTINUED.

AROOSTOOK COUNTY-CONTINUED.
∞

Towns.							Not les 80 cts.fo	ss than itant. © . 艮 . 								
Amity	1		2750	4891192	1700	350	4		228	50283	26537	27130	103950	88611	15339	
Ashland	1	-	3194	241218	1500	450	46	-	$2 \begin{array}{ll}2 & 24 \\ 1\end{array}$	43685	32256	-	75941	80543	-	4602
Benedicta	2	-	2500	400150	2975	250	8	-	192	32609	21510	5850	59969	58025	1944	
Blaine	2	-	2600	350165	1500	517	-	-	175	54649	48809	-	103458	103458		
Bridgewater	-	-	2850	4641173	3500	574	-	4	165	95423	57750	13000	166173	146443	18730	
Curibou.	12	2	2500	$5 \quad 20212$	10000	2905	-	-	180	294017	202849	-	496866	458005	38861	
Easton	8	2	2800	490166	7700	668	-	-	173	72707	63864	5391	141962	139131	2831	
Fort Fairfield	9	3	2682	468190	16500	2800	554	-	242	245547	191599	$96 \quad 29$	446775	481776	-	35001
Fort Kent	-	4	-	567164	2000	350	-	-	-	44050	113324	2568	159942	180348	-	20406
Frenchville	-	1	1465	271199	1800	375	-	-	-	62453	179334	753	242540	226870	15670	
Grand Isle	-	-	2250	326130	1500	250	-	-	-	108054	67129	10132	185315	863 25	98990	
Haynesville	-	1	2300	3 17 1 78	450	190	11	-	207	$185 \quad 23$	15222	7700	41445	41183	262	
Hersey.	2	-	1600	2851183	600	135	8	-	172	18522	12906	8400	39828	37633	2195	
Hodgdon	3	1	2260		$33 \quad 25$	1000	129	-	1225	124173	73462	5510	203145	178549	24596	
Houlton..	13	2	2400	532244	28000	2584	2	-	218	299215	196893	-	496108	437001	59107	
Island Falls	1	1	2600	460165	1100	200	11	-	220	22878	15056	14400	52334	36820	15514	
Limestone	6	-	2800	440195	2500	524	-	-	186	64711	46638	16466	127815	125715	2100	
Linneus	2	-	3125	432162	2475	855	121	-	213	97815	66347	1575	165737	156855	8882	
Littleton	1	1	2700	$\begin{array}{lllllll}3 & 83 & 1 & 51\end{array}$	2500	No	Fiscal	Retur	ns.							
Ludlow.	-	-	2600	322168	2200	374	-	-	195	51089	31768	5950	88807	81589	7218	
Madawask	5	5	1700	289138	2500	350	25	-	-	67709	100299	4287	172295	154786	17509	
Mapleton	5	-	2400		3600	564	-	-	180	55049	51954	4749	111752	115786		4034
Mars Hill. . . .	4	-	2220	3 39/1 49	3000	573	-	-	1165	61213	57579	5000	123792	106405	17387	

Masardis	1		3000	3001175	300	175	5	(1900	$222 \begin{array}{ll}29\end{array}$	15222	3700	41151	41482		331
Monticello	2	-	3080	430203	5500	771	-	1173	91173	73627	9100	173900	123775	50125	
New Limerick	2	-	2700	440168	3500	672	200	276	67460	40205	4620	112285	94787	17498	
Orient.		-	2800	400163	700	180	1	194	42185	15387	$85 \quad 29$	66101	55751	10350	
Presque Isle	18	5	2400	480200	18500	2000	43	207	177700	159499	10000	347199	424836	-	77637
Sherman	3	-	3375	458180	2400	785	247	${ }_{2} 30$	101414	56420	750	158584	147949	10635	
Smyrna	2	-	1600	3301148	900	220	30	$\left[\begin{array}{ll}2 & 22 \\ 1\end{array}\right.$	2127	16380	-	37652	37914	-	262
Van Buren	4	2	2200	4161131	1000	888	-	168	167386	83355	- ${ }^{-}$	250741	166124	84617	
Washburn	8	-	2200	342170	9000	666	19	162	59831	68002	15266	143099	120355	22744	
Weston	-	-	2500	409151	1200	334	-	2196	38466	28128	5587	72181	69213	2968	
Woodland.	5	1)	2667	434.171	41.00	550	7	- 1160	55927	51634	18400	125961	115258	10703	

AROOSTOOK COUN＇TY－Concluded．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Plantations． \& \& \& \& \& \& \& \& Not le 80 cts． inhab
\(\qquad\) \begin{tabular}{l}
9.0 \\
0.0 \\
0. \\
\hline
\end{tabular}荡荡 © 으영空聂 \& oss than for each bitant． \& \& \& \& \& \& \& \& \\
\hline Allagash \& \& \& \& \& \& 1873 \& 50 \& \& 12 \& \& 5000 \& 17373 \& －\({ }^{-}\) \& 22373. \& 22373 \& \& \\
\hline Bancroft \& 1 \& 3 \& － \& 400 \& 190 \& 2000 \& 225 \& 49 \& 9 \& 214 \& 23850 \& 16757 \& 22500 \& 63107 \& 61283 \& 1824 \& \\
\hline Cary \& 1 \& － \& 2125 \& 410 \& 157 \& 1000 \& 330 \& － \& － \& 194 \& 51709 \& 33730 \& 1085 \& \(865 \quad 24\) \& 820 35 \& 4489 \& \\
\hline Castle Hi \& 5 \& － \& 2200 \& 373 \& 148 \& 2500 \& 399 \& 64 \& 4 \& 204 \& 53003 \& 32430 \& － \& 85433 \& 77568 \& 7865 \& \\
\hline Caswell \& － \& － \& － \& 475 \& 160 \& 1200 \& 172 \& － \& 89 \& 158 \& \(\begin{array}{lll}330 \& 84 \\ 207\end{array}\) \& 18035 \& \& 51119 \& 50831 \& 288 \& \\
\hline Chapman \& 1 \& 1 \& － \& 340 \& 135 \& 1850 \& 135 \& \& 2 \& 177 \& 22704 \& 12575 \& \& 35279 \& \& \& \\
\hline Connor \& 4 \& － \& － \& 325 \& 150 \& 1500 \& 100 \& － \& \& \& 10000 \& 37552 \& \& 47552 \& 30525 \& 170

19 \&

\hline Crystal \& 3 \& － \& － \& 277 \& 138 \& 850 \& 240 \& 20 \& 0 \& 207 \& 26887 \& 19194 \& $\begin{array}{lll}55 & 50\end{array}$ \& 51631 \& 49707 \& 1924 \&

\hline Cyr．． \& － \& － \& 1400 \& 275 \& 125 \& 900 \& 75 \& － \& － \& \& $95 \quad 16$ \& 36952 \& $20 \quad 79$ \& 48547 \& 46906 \& 1641 \&

\hline Dyer Brook \& 4 \& － \& ， \& 331 \& 122 \& 3600 \& 217 \& 79 \& 9 \& 265 \& 24155 \& 13567
208 \& 9020 \& 46742 \& 46297 \& \&

\hline Eagle Lak \& － \& － \& － \& 425 \& 125 \& 2350 \& 60 \& － \& － \& － \& 8085 \& 20815 \& 780
689 \& 29680 \& \& \&

\hline Garfield ．． \& 1 \& 1 \& － \& 421 \& 180 \& 150 \& 64 \& － \& － \& 178 \& 14495 \& 5957 \& 68
80

80 \& 27342 \& | 235 |
| :--- |
| 320 |
| 75 | \& $\begin{array}{ll}37 & 67 \\ 34 & 33\end{array}$ \&

\hline Glenwood \& － \& － \& 2000 \& 363 \& 172 \& 600 \& 152 \& － \& \& 241 \& 16681 \& 10423 \& 8256 \& 354

850 \& | 320 |
| :--- |
| 758 | \& 34

94
94 \&

\hline Hamlin \& － \& 1 \& 1800 \& 375 \& 144 \& 1200 \& 150 \& － \& － \& －1 \& 7954 \& 39936 \& 37334 \& 85224 \& 75809 \& 9410 \&

\hline Hammond \& New \& Pl． \& \& \& \& \& \& \& \& \& \& \& \& \& 32145 \& 1288 \&

\hline Madwahoc \& \& 1 \& － \& 489 \& 194 \& $\begin{array}{rr}300 \\ 10 & 0\end{array}$ \& 200 \& 50 \& 0 \& $\begin{array}{ll}2 & 22 \\ 1 & 42\end{array}$ \& 20164 \& 13269

191 \& 6000 \& $\begin{array}{lll}334 & 33 \\ 403 & 65\end{array}$ \& | 321 |
| :--- |
| 385 |
| 79 | \& 1786 \&

\hline Merrill ． \& 1 \& － \& 2200 \& 400 \& 160 \& 1000 \& 165 \& － \& － \& 142 \& 16171 \& 19194 \& 5000 \& 40365 \& 38579 \& 1786 \&

\hline Molunkus \& － \& － \& － \& 300 \& 200 \& \& \& \& \& \& \& \& － \& 31049 \& 29970 \& \&

\hline Moro \& － \& － \& － \& 345 \& 150 \& 1000 \& 181 \& 44 \& 4 \& 221 \& 17482 \& | 135 |
| :--- |
| 193 |
| 1 | \& － \& \& 28095 \& 1473 \&

\hline New Canada． \& － \& － \& － \& 337 \& 130 \& 2000 \& 100 \& － \& － \& 1 76 \& | 10043 |
| :--- |
| 553 | \& | 195 |
| :--- |
| 388 |
| 82 | \& － \& | 295 |
| :--- |
| 942 |
| 12 | \& 280

843
09 \& 9903 \&

\hline New Sweden \& 4 \& 1 \& 2060 \& 469 \& 164 \& 2000 \& 414 \& － \& － \& | 1 | |
| :--- | :--- |
| 1 | |
| 1 | 76 |
| 1 | | \& 100330

80941 \& 38882

43845 \& 5668 \& $$
\begin{array}{rr}
942 & 12 \\
1304 & 54
\end{array}
$$ \& $\begin{array}{ll}843 & 09 \\ 965 & 28\end{array}$ \& $\begin{array}{r}339 \\ \hline 9\end{array}$ \&

\hline Oakfield． \& 4 \& － \& 2250 \& 325 \& 175 \& 2600 \& 510
110 \& 8 \& 8 \& $\begin{array}{ll}1 & 92 \\ 1 & 83\end{array}$ \& 809
110 \& 438
99

99 \& 56 68 \& \[
$$
\begin{array}{r}
1304 \\
54 \\
209 \\
27
\end{array}
$$

\] \& | 960 |
| :--- |
| 110 |
| 10 | \& 339

98
47 \&

\hline
\end{tabular}

CUMBERLAND COUNTY.

Towns.						$\begin{aligned} & \text { Number of different } \\ & \text { Pupils Hegistered. } \end{aligned}$																
Baldwin	329	172	166	210	174	239	. 52	13	143			134	12		12	10	-	-	4,700		15	13
Bridgton	803	457	388	404	381	512	. 48	10	126	10	3	272	-	-	20	17	-	-	16,737	3	3	12
Brunswiok	1,764	741	617	711	592	833	- 35	20	504			268		-	23	20	1	6000	36,500	1	3	28
C. Elizabeth.	1,859	1021	903	1053	876	1110	. 48	19	379			231	14	-	15	15	-	-	34,000	3	6	22
Casco...	299	234	190	163	133	199	. 54	9	94	12	2	99	8	-	8	6	-	-	4,000	,	3	9
Cumberland.	542	332	279	256	196	420	. 44	8	153	10	4	108	10	3	9	7	-	-	5,000		4	17
Deering.....	1,299	862	714	729	690	862	. 54	22	418			209	-	-	15	14	-	-	61,000	1	1	23
Falmouth . . .	496	443	376	268	222	333	. 60	9	172			133	12	-	12	9	-	-	8,500	4	4	10
Freeport	657	422	333	399	311	503	. 50	11	188			353	17	1	18	15	-	-	15,000	3	7	16
Gorham	887	724	614	601	506	745	. 63	9	328	10	4	228	18	-	18	14	-	-	13,500	5	9	25
Gray	554	297	245	262	212	323	. 41	8	160			119	12	-	12	6	1	45000	50,000	-	5	16
Harpswell	615	315	266	328	278	423	. 44	8	216	10		160	18	-	17	15	-	-	5,000	1	9	12
Harrison	356	267	231	216	191	292	. 59	9	161	8	3	77	-	-	10	5		-	2,900	1	4	18
Naples..	250	150	140	205	192	205	. 66	10	100			121	-	-	11	9	-	-	4,200	-	4	10
New Glouc'r,	414	196	163	205	170	250	. 40	10	120	11		132	-	-	12	12	1	1000	10,500	1	1 -	11
N. Yarmouth	234	110	84	122	96	132	. 38	7	76	12	4	85	7	2	7	2	-	-	2,000	-	2	8
Otisfield.	272	161	130	173	149	200	. 51	9	104			124	12	1	12	10	-	-	3,000	-	,	12
Portland	11,834	6200	4865	6494	4869	7449	. 41	22	506			368	-	-	17	16	1	1600	356,440	11	11	141
Pownal.	272	181	127	154	123	230	. 46	9	99	11	1	190	9	2	11	9	-	-	4,500	-	2	13
Kaymond.	339	188	149	139	123	263	. 40	9	171	12	1.	61	10	-	10	8	-	-	3,500	1	13	11

Scarborough	572	369	324	387	364	428	. 60	9		991		4	152	11	1	11	9	-	-	7,000	-	7	11
Sebago	264	174	136	112	88	241	. 42	9					50	9		9	8	-	-	2,100	-	5	16
Standish ...	555	326	274	327	266	388	. 49	8		178		3	152	13	-	13	13	-	-	8,000	4	15	18
Westbrook ..	1,958	969	800	983	744	1118	. 39	24		432			180	-	-	12.	10		26000	80,000	3	3	20
Windham ..	681	406	349	414	341	446	. 51	12		218		2	205	19	-	19	17	1	2660	10,200	1	8.	18
Yarmouth	628	431	379	392	319	483	. 56	9	2	951	11		116	9	3	10	7			5,575		1	12
	28,733	, 148	,242	,707	12,606	8,627	. 45	11	4	5385	11	1	4327	220	13	343	283		82260	753,852	46	128	522

CUMBERLAND COUNTY-CONCLUDED.

Towns.									ss than for each itant. 号 등 돌 								$\begin{aligned} & \text { Balance Over-expended } \\ & \text { April } 1,1887 \text {. } \end{aligned}$
Baldwin	7		3168	395	179	6620	1,400	502		439	1,609 62	55310	7200	2,234 72	2,053 53	18119	
Bridgton	13	3	8400	474	193	17000	4,300	2,010	-	567	3,921 91	1,346 01	45298	5,720 90	5,565 68	2	
Brunswick	26	3	7633	650	200	27500	6,000	1,693	-	302	8,194 55	2,955 79	185676	13,007 10	12,404 02	60308	
Cape Elizabeth.	21	3	$60 \quad 00$	750	400	25000	4,300	58	-	$\begin{array}{ll}2 & 28 \\ 2 & 7\end{array}$	6,891 64	3,118 84	20862	10,21910	7,310 92	290818	
Casco..	5	-	2733	416	157	3500	800	74		277	80055	47816	12000	1,398 71	1,401 56		
Cumberla	7	1	2900	480	237	5780	1,295	-	-	223	1,675 39	96295	11587	2,754 21	2,386 05	36816	
Deering	24	15	12200	900	400	17500	7,400	3,841	-	535	9,911 05	2,289 91	${ }^{-}$	12,200 96	10,151 73	204923	
Falmout	8	-	4000	733	225	7500	2,000	702	-	411	2,145 90	80411	7765	3,027 66	2,899 03	12863	
Freeport	28		1960	376	225	15000	2,500	677	-	412	2,551 68	1,024 69	1501	3,591 38	3,717 95		12657
Gorham	11	16	5564	715	$2 \begin{aligned} & 2 \\ & 2\end{aligned}$	15000	3,300	714	-	$\begin{array}{ll}3 & 59 \\ 2 & 81\end{array}$	3,785 63	1,518 89	14000	5,444 28 892	5,244 05	$\begin{array}{lll}200 & 47 \\ 275 & 68\end{array}$	
Gray	7		3404	381	210	6000	1,500	62	-	$1 \begin{array}{ll}2 & 81 \\ 2\end{array}$	1,950 28	88354	6390	2,897 72	2,622 04	$\begin{array}{lll}275 & 68 \\ 311 & 18\end{array}$	
Harpswell	19	-	3362	388	250	9167	1,600	172	-	263	1,794 26	1,005 25	0	2,799 51	2,488 33	31118	
Harris	5	4	3000	450	225	4650	1,000	66	-	265	1,018 72	62543	111 00	1,755 15	1,707 1,989 1	4737	
Naples	7	-	3200	4.25	250	4500	1,200	394	-	421	1,488 20	47154	- ${ }^{-}$	1,959 74	1,959 74		
New Gloucester	12	7	2000	$4^{*} 75$	234	7500	2,000	894	-	489	2,787 83	620	288 65	3,696 73	3,214 73	48200	
North Yarmouth	5	2	3400	335	$\begin{array}{ll}2 & 16\end{array}$	3500	800	138	-	$\begin{array}{ll}3 & 43 \\ 3\end{array}$	79903	$\begin{array}{lll}385 & 51 \\ 4\end{array}$	250 120	1,435 1,676 18	1,436 77 1,581 56	9596	24
Otisfield	8	-	2500	325	186	5000	1,000	258	-	352	1,086 93	46989	12000	1,676 82	1,58156	$95 \quad 26$	
Portland	141		12000	900	450	225000	84,615	57,567	-	715	84,615 47	19,58317	-	104,198 84	104,19884		
Pownal..	18		3300	375	212	5491.	1,200	501	-	444	1,200 00	44673	-	1,646 73	1,643 73	300	
Raymond...	2	1	3600	500	256	4000	907	1	,	\| 245	1,041 88	61385	14428	1,800 01]	1,715 40)	84 61)	

FRANKLIN COUNTY.

0

Franklin coun'iy-Concluded.

Towns.							Not less 80 cts . inhabi 	s than or each itant.								
Avon	13			3771151	3225	500	43	-	255	57382	32430	1828	91640	86233	5407	
Carthage	1	1	2600	300125	2425	456	50	-	310	54577	24332	-	78909	67937	10972	
Chesterville	5	2	2200	2871150	4250	859	95	-	$\begin{array}{ll}3 & 38\end{array}$	97768	42026	$\begin{array}{ll}38 & 03\end{array}$	143597	1278 79	15718	
Eustis	1	-	-	372175	1165	350	108	-	393	36308	14993	1473	52774	50303	2471	
Farmingto	20	15	4077	3621198	11470	3000	318	-	3 21	398398	154701	8652	561751	498259	63492	
Freeman	3	1	$20 \quad 20$	2861141	3000	500	61	-	278	63440	29782	-	93222	74193	19029	
Industry	6	3	2300	$3{ }^{3} 291158$	3650	572	-	-	252	61991	37558	-	99549	98857	692	
Jay	13	5	2400	280200	7300	1200	167	-	301	136299	66017	7816	210132	186089	24043	
Kingfield	1	-	3350	$\begin{array}{lllll}5 & 59 & 15\end{array}$	1500	364	-	-	196	40273	27975	6474	74722	71910	2812	
Madrid	2	2	2650	272126	2200	360	10	-	250	40240	23826	3247	67313	63186	4127	
New Sharon	8	5	2303	3491147	9000	1160	115	-	466	124083	57389	3620	185092	178138	6954	
New Vineyard	6	3	2000		4300	630	-	-	236	68164	44176	-	112340	110309	2031	
Phillips..	6	3	2640	3 24 166	8500	1470	320	-	293	189690	82893	-	272583	223699	48884	
Rangeley]	1	2433	$355 \mid 209$	2300	452	2	-	213	64797	35077	5033	104907	87577	17330	
Salem. .	-	-	2950	363162	650	224	6	-	249	29590	14891	-	44481	38164	6317	
Strong.	5	3	1400		2750	500	23	-	267	51066	30940	8400	90406	85098	5308	
Temple	6	1	2200	2 3 1 1 51 3 0	2300	464	-	-	$\left\lvert\, \begin{array}{ll}2 & 67 \\ 2 & 9\end{array}\right.$	61043	28790	-	89833	78415	11418	
Weld.	6	1	2334		5700	870	38	-	291	92075	49470	-	141545	134136	7409	
Wilton	7	3	3800	414.168	8200	1391	-	-	269	161441	85707	12892	260040	227877	32163	

HANCOCK COUNTY.

HANCOCK COUN＇IY－CONCLUDED．

Towns．						Not Ies inhabi \qquad 9\％ \qquad on －窃汗	ss than for each bitant． 								
Amher	4.	3500	394 160	2350	320			227	55673	23339	7127	86139	77931	8208	
Auror	1	3000	275150	1500	170			230	46844	12244	6000	65088	33490	31598	
Bluehill	5	3200	450200	9500	1800	30		254	196046	117143	15000	328189	319924	8265	
Brooklin．	5	1.3500	350270	$55 \quad 50$	1000	218	－	275	107420	60226		167646	162031	$56 \quad 15$	
Brooksvill	7	3243	424190	4875	1140	5		202	122353	93482	－	215835	209651	6184	
Buckspor	12	3350	400233	13900	2500	62	－	275	294927	150234	$79 \quad 29$	453090	420522	32568	
Castine	5	23200	655250	6225	1200	228	－	351	131452	56586	4500	192538	178259	14279	
Cranberry Isles	3	3000	3501190	2345	274	－	－	239	31376	19028	－ 77	50404	47781	$26 \quad 23$	
Deer Islo．．	4	13600	438209	5000	2650	37	－	200	278654	219064	2277	499995	478433	21562	
Dedham	4	3000	$\begin{array}{ll}3 & 18 \\ 2 & 00\end{array}$	2500	400	75		269	58274	24653	13228	96155	788 27	17328	
Eastbrook	1.	22867		900	300	69	－	$2 \quad 29$	33400	18384	2352	54136	53905	231	
Eden	6	14500	5 50 70	29771	2500	1197	－	417	286215	99275	13874	399364	467375		
Ellsworth	48	131138	472.31	25000	4200	158	－	237	682716	286735	1828	971279	912040	59239	
Franklin．	2	$2{ }^{2} 25050$	350250	2500	882	－	－	231	157268	63204	－	220472	1663	54145	
Gouldsborough	1	$3{ }^{3} 6588$	410253	6950	1459	－	1	255	150586	94475	3172	248233	243552	$\begin{array}{lll}46 & 81 \\ 54 & 71\end{array}$	
Hancock ．．．．	1	$4{ }^{4} 3850$	528250	7200	874	－	－	2111	98076	68199	07	166575	161103	54 72 1693	
Isle－au－Ha	4	1	430274	1000	222	3	－	$\begin{array}{lll}2 & 67\end{array}$	28995	13732	07	42734	41041 99958	16 63 6	
Lamoine．	1	3412	431250	2500	601	2	－	241	$\begin{array}{lll}651 & 07\end{array}$	41198	－ 0	106305 564	999 535 18	63 68 8	
Mariaville	－－	－		1000	325	19	，	2 2	$\begin{array}{lll}326 & 16 \\ 877 & 68\end{array}$	$198 \quad 22$	4000	56438 152124	53543 143849	28 82 82	
Mount Des	4	4 3 6 85 3 3	3 68 1 84 3 87 2 02	$\begin{array}{ll}60 & 00 \\ 65 & 00\end{array}$	814 1360	9	－	$\begin{array}{lll}2 & 09 \\ 2 & 81\end{array}$	87762 163666	64362 800 80	13500	152124 257246	1438 2437 4	8275 13492	
Orland．	8	$3{ }^{3} 250$		$\begin{array}{ll}65 & 00 \\ 18 & 25\end{array}$	1360	9	－	$\begin{array}{ll}2 & 81 \\ 2 & 47\end{array}$	163666 28126	80080 16712	135 33 33	257246 48198	143754 45795	134 24 4 24	
Otis	2	3500		1825	250	7 48		$\begin{array}{ll}2 & 47 \\ 2 & 55\end{array}$	28126 119630	16712 724 70	3360	48198 192100	45795 169921	24 221 219	
Penobscot	3	133200		3298 60	1115	42 98		$\begin{array}{ll}2 & 55 \\ 2 & 65\end{array}$	119630 107196	724 609 06	$54{ }^{-} 18$	192100 173520	1699 1693 99	221 41 41	
Sedgwick	6	2 （3000）	497196	6075	1000	98	）	1265	107196	60906	5418	1735 20，	169399	4121	

Towns.						$\begin{aligned} & \text { Number of different } \\ & \text { Pupils Registered. } \end{aligned}$					(Cost of the same.				
Albi	335	185	162	216	178	261		9		144		4	114	12	-	12	8		-	3000	1	6	15
Augusta	2542	1293	964	1133	891	1547	. 37	20	3	5 5]	11	1	292	-	-	27	25	1	1843	49500	2	3	34
Belgrade	359	206	177	240	214	260	. 54	8	4	116	10	4	194	18	-	18	10	-	-	3500	1	6	12
Benton	337	187	155	179	125	277	. 42	7	3	165	8	3	86	10	-	10	7	-	-	3800	-	2	20
Chelsea	269	158	131	122	104	190	44	9	2	123	9		45	9	-	9	7	-		3700		-	16
China	455	360	295	252	218	360	. 56	8		186	11		171	21	1	20	14	-	-	3000	-	5	23
Clinton	475	298	255	316	269	348	. 55	9		117	10	3	137	13	-	13	10	-	-	4100	1	5	12
Farmingd	235	99	85	199	165	163	. 53	11	3	46	9	2	76	4	-	4	2	-	-	5500	1	3	3
Fayette.	242	125	102	130	110	169	. 44	7	2	66	9	2	93	9	4	9	4	-	- ${ }^{-1}$	2500	-	3	9
Gardiner	1421	839	788	776	661	871	. 51	24		356	12		178	-	-	12	11	1	10,000	60000	2	2	18
Hallowell	854	509	453	463	428	661	. 52	12		132	24		264	-	-	11	11	-	-	25000	-	-	1
Litchfield	345	234	191	278	230	311	. 61	9	3	144	10	3	159	15	-	15	9	-	\rightarrow	3500	1	6	- 14
Manchester	154	79	70	90	75	120	. 47	10		60	10	3	63	-		6		-		2500	-	3	- 6
Monmouth	333	172	147	227	18.5	227	. 56	19		204	10	4	124	-	-	12	7	1	700	4500	-	2	22
Mt. Vernon	253	171	140	188	141	226	. 56	7	2	73	10	3	118	-	-	11	6	-		3300	-	6	- 9
Oakland	592	407	332	415	359	433	. 58	9	3	130	12	4	300	-	-	12	9	1	600	8000	-	2	13
Pittston	403	364	315	338	299	451	. 42	17	3	106	9		117	-	-	10	5	-	-	2875		4	11
Randolph	335	-	-	-	-	-				-			-	-	-	3	2	-	-	5000			
Readfield	267	135	107	176	127	213	. 44	8		81	12	3	127	9	-	10	3	-		3500	-	1	10
Rome	165	108	92	138	212	138	. 62	9	2	75	13	3	68	5	3	6	4	-	-	1200	1	2	7
Sidney	396	252	219	277	225	295	. 56	8	3	200	11		178	19	-	19	8			1900	-	1	23
Vassalborou	736	398	315	457	377	411	. 47	10	3	209	11	2	208	20	-	22	20	1	200	10600	2	4	25
Vienna	187	127	93	134)	102	152	. 52	9	I	65	9		82	10	-	10	7	,	-	1100	-	3	- 8

Waterville.....	2461	851	715	832	672	1075	. 281			324			344	-		10	9		-	35000	2	$1]$	19
Wayne........	248	140	124	187	156	199		9		72			100		-	9	8			5500	-	5	8
West Gardiner.	278	207	178	185	161	213	. 61	9	1	91		1	92	9	-	9	6	-	-	3500	1	5	8
Windsor........	283	242	203	135	117	269	. 57	8	3	140	9	1	55	13	1	13	5	-	-	2500	2	3	13
Winslow	595	270	211	295	241	311	. 38	9		2121			129 ,	16	-	15	10	-	-	2500	-	2	20
Winthrop.......	570	287	246	246	214	362	. 40			20011			99	-		10	5	-	-	14200	-	3	10
Unity Pl........	22	16	15	17	14	17	. 66	8		8		1	9	1		1				200			1
	14	719	80	8641	170	530			2	401		1	022)	213	9	348	236		3,343	4,975	23	88	400

KENNEBEC COUNTY－CONCLUDED．

Towns．								Not les 80 cts fo inhab \qquad Φ \％ 花 조 ส						'sөoxnos2y Iooqos Ib7ol			
Albion	5		2271	310	149	7035	954	1		286	111595	55759	－	167354	161695	$\begin{array}{lll}56 & 59\end{array}$	
Augusta	34	2	8063	775	350	37500	11661	4729	－	492	1235482	391634	－	1627116	1597321	29795	
Belgrade	13	1	$\begin{array}{lll}24 & 17\end{array}$	378	165	7500	1600	543	－	469	168146	56420	－	224566	196508	28058	
Benton	6	－	2700	377	136	5925	1200	262	－	327	151297	60722		212019	170896	41123	
Chelsea	6	2	－	325	170	3700	750	75	－	275	87638	45169	－	132807	120241	12566	
China	11	1	2560	329	155	$\begin{array}{ll}95 & 00\end{array}$	1415	－	－	$\left\lvert\, \begin{array}{ll}3 & 12 \\ 2 & 72\end{array}\right.$	151358	75117		226475	217070	$\begin{array}{ll}94 & 05 \\ 63 & 67\end{array}$	
Clinton	8	－	3268	415	170	8100	1500	168	－	272	149255	91166	－	240421	234054	6367	
Farmingda	5	2	2700	492	315	5000	1000	369	－	444	122657	37227		159884	142083	17801	
Fayette	6	－	2683	310	191	3775	800	188	－	328	85706	40372		125478	110669	14809	
Gardiner．	18	5	9722	820	350	20000	4600	1049	－	334	525000	241823	9876	776699	776587	112	
Hallowell	11	－	－	563	300	15000	2800	277	－	346	280000	139404	$40 \quad 00$	423404	420610	$\begin{array}{r}27 \\ \hline 24 \\ \hline 1\end{array}$	
Litchfield	9	－	$\begin{array}{ll}23 & 83\end{array}$	356	188	6175	1048	－	－	1276	137367	78373	－	2159 972	183006	327 34 29	
Manchester	3	1	2900	330	219	3500	600	102	－	3 64	60923	27300	9000	97223	94284	2939	
Monmouth．	11	－	2350	400	200	$\begin{array}{lll}93 & 15\end{array}$	1800	584		$1 \begin{array}{ll}5 & 55 \\ 3 & \end{array}$	177222	53608	－	230830	228658 1365	$\begin{array}{r}21 \\ 238 \\ \hline 17\end{array}$	
Mt．Vern	5	－	2100	384	175	5000	936	－	－	$\left[\begin{array}{ll}3 & 07 \\ 4 & 9\end{array}\right.$	111607	48756	－	160363	136536	$\begin{array}{ll}238 & 27 \\ 154\end{array}$	
Oakland	12	1	7185	504	256	25000	3000	1683	－	499	295157	99108	－	394265	378846	$\begin{array}{r}154 \\ \hline\end{array}$	
Pittston	11	1	3600	400	200	13000	1958	－		285	214268	113503	－	3277 71	317784	9987	
Randolph														197222	161468	35754	
Readfield．	9	1	4200	363	180	$\begin{array}{lll}50 & 00\end{array}$	1000	6		$\begin{array}{ll}3 & 69 \\ 3 & 09\end{array}$	152384 498 74	44838 259 77	－	197222 75851	$\begin{array}{r}1614 \\ 745 \\ \hline 63\end{array}$	1288 12	
Rome	3	1	2140	292	154	2500	485	－	－	$\begin{array}{ll}3 & 09 \\ 3 & 66\end{array}$	49874 166678	25977 69059		15851 2357	74563 209818	$\begin{array}{r}12 \\ 259 \\ \hline 19\end{array}$	
Sidney	15	－	2000	394	L 40	$68 \quad 25$	1500	383		366	166678	69059	－	235737	209818	25919	
Vassalborough	20	－	3580	365	210	12000	2097	－	－	280	258674	124092	15087	397853	3534． 06	44447	

KNOX COUNTY.

Towns.																							
Appleton	415	245	220	365	315	365	. 64	8	2	101	9	3	111	12	1	11	8			5000	1	7	12
Camden	1331	825	795	774	758	836	. 58	8	4	378	10		230	14	-	16	10	-	-	15000	4	10	22
Cushing.	275	160	126	161	128	190	. 46	9	2	931	11		66	6	1	6	4	-	-	1600	-	3	7
Friendship	320	$15]$	118	180	143	315	. 41	9		72	12		96	7	2	7	6	-	-	2000	1	4	7
Hope	234	145	127	144	121	175	. 53	12	4	921	10		69	7	1	7	4		-	1400		2	9
Hurricane Isle	66	35	33	40	25	5 57	. 44	11		112	21		21	1	-	1	1	-	-	1500	-	1	2
North Haven	232	150	132	156	134	4201	. 57	7	3	67	9		54	6	-	6	5			1350	-	5	9
Rockland	22751	1333	1157	1366	1134	1366	. 50	12		312	19		494	-	-	12	8	-	-	43500	3	3	30
South Thomas	562	362	311	289	250	458	. 50	8	1	133	9	4	160	12	-	14	10	-	-	4200	3	7	12
St. George	892	593	527	574	486	698	. 57	12	1	229	12	1	220	19	4	17	14	-	-	5700	3	14	17
Thomaston	847	628	501	608	499	938	. 58	21		2521	11		132	-	-	10	8	-	-	19000	3	3	12
Union	434	267	227	292	254	4310	. 55	10	4	139	9	1	129	14	-	14	13	-	-	9000	-	6	13
Vinalhaven	871	461	410	587	502	700	. 52	13		144	12		132	11	-	13	10	-	-	8500	1	3	17
Warren	719	506	431	608	530	608	. 67	8	3	206	9	3	249	19	2	19	16	-	-	9700	1	6	12
Washington	402	244	212	245	215) 306	. 53	9	3	1231	10	2	139	13	2	10	8	-	-	1750	-	6	12
Matinicus Isle Pl...	64	27	23	39		139	. 42	16		16	12		12	1		1	1	-	-	700	-	1	1
	9939/6	6132	. 350	6428	5515	7162	. 54	11	1	2368	11	3	2314	142	13	164	126	-	-	129,900	20	81	194

KNOX COUNTY-CONClUDED.

LINCOLN COUNTY.

Towns.					$\begin{aligned} & \text { Number of different } \\ & \text { Pupils Registered. } \end{aligned}$																	
Alna	183149	130	168	154	180	. 83	10		60	9		54	6		6	4			2500	1	4	5
Boothbay	1355807	700	769	622	915	. 49	8	3	3271	10	1	224	-	-	18	11		3400	20500	4	12	31
Bremen	259162	135	120	104	190	. 46	8		88	9	2	65	9	1	9	5	-	-	3800	1	5	12
Bristol .	1024601	547	715	617	715	. 57	9		206	9		202	20	1	21	12	-	-	13000	3	11	22
Damarisco	315136	122	170	134	205	. 41	8		991	10	3	84	6	-	7	6	-	-	3500	1	6	13
Dresden.	343165	138	184	131	220	. 39	8	1	661	12	1	110	9	1	9	5	-	-	2500	-	5	9
Edgecomb	281202	171	212	178	216	. 62	10	4	751	11	3	80	7	-	5	7	-	-	4500	1	5	5
Jefferson.	477296	228	340	244	356	. 49	9		130	8	3	127	15		15	8	1	400	5000	$1)$	10	15
Newcastle	410 251	211	189	152	263	. 44	9		178	8	4	89	14	1	14	8	-	-	2800	1	3	14
Nobleborough	331225	194	222	192	260	. 58	9		1081	10	2	125	12	-	12	6	-	-	2500	2	6	10
Somerville	203103	85	76	55	121	. 34	9	3	571	10	4	44	6	1	4	4	-	-	1200	-	2	7
Southport	226145	116	142	123	187	. 53	8		561	10	2	52	6	-	5	5	-	-	2100	-	3	7
Waldoborough	1097674	563	716	617	754	. 54	10	3	3211	11		316	31	-	30	21	-	-	13000	1	12	30
Westport.	18196	79	117	88	134	. 46	8	3	341	11	2	46	4	-	5	3	-	-	1800	-	-	4
Whitefield	472.262	218	330	312	332	. 56	8	3	1371	10	2	162	16	-	15	9	-	-	4050	3	10	15
Wiscasset.	627363	299	397	339	405	. 51	10		1001	17	2	174	6	-	7	5	-	-	7500	1	5	12
Monhegan P	$30 \quad 22$	18	27	23	27	. 68	10		10	9		9		1	1	1	-	-	300	-	-	1
	7814,4659,	3954	4894	4085	5480	. 51	9	1	2052]	10	$3)$	1963	\|68	7	184	120	4	3800	90,550	20	99	212

LINCOLN COUNTY－CONCLUDED．

Towns．								Not le 80 cts inha 8 을 品安官 花范	ess than for each bitant．								
Alna．	2	4	2000	525	210	3000	600	50	0	311	81888	31932	－	113820	98889	14931	
Boothbay	9	8	3680	436	350	13465	3600	739	9	261	372013	227999	30000	630012	642239	－	$122 \quad 27$
Bremen．		－	$24 \quad 75$	352	187	$25 \quad 50$	678		7	260	70876	43183	2949	117008	108926	$80 \quad 82$	
Bristol	14	1	3800	406	250	11500	2600	43	3	246	352317	174887	－	527204	404042	123162	
Damarisco	2	－	1921	604	250	6500	1000	86	6	317	113777	66843	－	180620	160517	20103	
Dresden	4	1	2800	438	222	3000	1000	174	4	305	107251	54270	－	161521	139184	22337	
Edgecomb	2	－	3350	372	252	4000	800	102	2	267	93149	49471		142620	129727	12893	
Jefferson．．	4	－	2300	300	140	5875	1272	－	－	272	159181	76267		2354 48	218250	17198	
Newcastle	6	1	3233	349	208	9500	1227	－	－	${ }^{2} 89$	124355	70153	－	194508	182058	12450	
Nobleboroug	6	－	3000	323	190	5000	914	－	－	266	109467	56751		166218	145506	20712	
Somerville	2	2	3000	304	150	1600	432	1	1	204	49294	34200	－	83494	78104	5390	
Southport	2	2	3533	511	258	3000	679	136	6	274	71736	41034	－	112770	106289	6481	
Waldoborough	13	1	3600	384	200	18000	3050	44	4	275	334395	183491	－	517886	471216	46670	
Westport	4	1	－	450	262	800	490	－	－	1282	58560	27797	－	86357	80807	$55 \quad 50$	
Whitefield	4	2	$28 \quad 40$	370	170	9430	1400	191	1	302	178282	76771	－	255053	233202	21851	
Wiscasset	10	－	4150	481	269	6000	1500	22	2	246	145470	100929	－	2463 99	249198	－	2799
Monhegan Pl．．．．．．				400	300	－	105			276	14016	6288		20304	16635	3669	
	85	23	3045	412	228	103220	21，347	1595	）	279	$4,360 \quad 27$	3，222 66	32949	91242	4，647 89	41479	15026

OXFORD COUNTY.

Towns.																					
Albany.	220	146	117	139	109	154	. 51	$8 \quad 2$	851	$10 \quad 2$	92	10		10	,		-	2200	-	4	10
Andover	261	202	178	139	126	169	. 58	9	821	12	84	7	-	6	6		1500	3500	1	2	7
Bethel.	607	295	251	344	278	374	. 44	$8 \quad 2$	192	93	221	23	3	22	22	--	-	6000	2	7	27
Brownfield	392	376	310	133	101	282	. 52	$8 \quad 4$	178	91	56	-	-	14	10	-	-	4500	2	6	18
Buckfield	386	224	202	245	215	275	. 54	10	1201	10	120	-	-	12	5	-	-	3535	-	8	14
Byron	77	88	87	55	45	102	. 85	$7 \quad 1$	431	$10 \quad 2$	52	7	-	3	3	-	-	500	1	1	4
Canton	437	208	166	284	243	319	. 47	8	8011	$10 \quad 4$	108	11	-	10	9	-	-	4000	1	5	9
Denmark	284	206	168	202	17%	169	. 60	9	167	9	108	12	-	11	11	-	-	3200	1	3	19
Dixfield	286	240	157.	255	191	196	. 61	$8 \quad 2$	1011	12	108	11	2	11	8	-	-	4000		6	11
Fryeburg	460	357	300	276	236	296	. 58	$9 \quad 3$	1811	$11 \quad 2$	162	16	1	16	8	-	-	4200		3	18
Gilead	93	68	56	47	38	72	. 50	11	66	$9 \quad 2$	19	6	- 1	6	6	-	-	700	-	-	8
Grafton	35	22	19	27	24	30	. 61	6	18	9	28	2	1	2	1	-		700	-	1	3
Greenwood	270	169	138	157	124	208	. 49	12	961	$11 \quad 2$	91	13	-	11	3		-	1800		4	8
llanover	53	29	26	38	33	36	. 56	16	32	20	40	2	,	3	2	-		1800	-		2
Hartfor	216	179	149	155	137	194	. 66	9	124	92	123	14	1	14	11			2100	-	5	16
Hebron	174	88	80	104	91	117	. 50	$8 \quad 2$	591	$10 \quad 4$	65	7	2	7	7	-	-	1800	-	2	7
Hiram	385	245	210	249	219	320	. 56	8	981	12	145	12	1	12	9	-	-	5500	1	4	14
Lovel	284	196	144	199	166	207	. 55	$10 \quad 3$	1291	$10 \quad 2$	123	12	-	12	10	-	-	5000	-	5	16
Mason	37	18	16	19	13	26	. 40	11	111	10	10	1	-	1		-		400	-	1	1
Mexico	128	113	102	70	60	92	. 63	$10 \quad 4$	65	$9 \quad 1$	37	6	-	5	3	-	-	1000	1	2	6
Newry	107	67	57	80	67	91	. 58	$11 \quad 1$	67	$9 \quad 1$	55	6	-	6	4	,	100	850	1	5	6
Norway	874	471	423	493	435	545	. 49	9	181		260	15	3	17	17	1	500	9000		7	20
Uxford	470	284	238	316	273	356	. 54	$9 \quad 3$	971	$11 \quad 3$	103	11	1	11	8	-	-	10000		4	13
Paris	923	470	405,	569	495	662	. 50	10	2021	102	208	20	-	20	18		-	10000)	1	12	26

OXFORD COUN'TY-CONCLUDED.

Towns.						$\begin{aligned} & \text { Amount paid for School } \\ & \text { Supervision. } \end{aligned}$		Not less 80 cts . fo inhabi	than reach tant. 					'soo.nosey looyos [bqoL			
Albany.	5		2075	300	142	3700	555			247	$\begin{array}{lll}550 & 29\end{array}$	37227	2306	94562	$945 \quad 27$	35	
Andover	5	1.	3300	340	189	2500	700	76	-	229	67684	50630	2100	120414	$1123 \quad 32$	8082	
Bethel	14	1	2300	378	132	12600	1662	-	-	268	174264	102418	3000	279682	269358	10324	
Brownfiel		1.	$30 \quad 22$	341	165	2500	1095	112	-	314	112247	61866	-	173113	170067	3046	
Buckfield	6	2	3400	500	172	7137	1103	-	-	289	131197	63204	18197	2125 98	$1995 \quad 57$	13041	
Byron	5	-	1600	247	150	1650	244	91	-	211	42735	19194	3132	65061	40888	24173	
Canton	5	-	$\begin{array}{ll}37 & 19\end{array}$	360	200	5200	1000	177	-	234	102061	70815	10113	182989	152371	31618	
Denmark	9	1	3100	365	142	5000	1000	277	-	$\left\lvert\, \begin{array}{ll}3 & 37\end{array}\right.$	117317	49140	3280	169737	148710	21027	
Dixfield	6	1	3600	321	167	4000	730	-	-	262	75902	46160	-	122062	125260	-	3198
Fryeburg	11	1	$25 \quad 75$	378	142	T5 00	1400	94	-	304	173520	76274	-	249794	228720	21074	
Gilead.	2	-	-	348	98	2036	235	1	-	277	23805	14063	1500	39368	39368		
Grafton	2	-	2600	312	175	400	100	8	-	270	12879	6122	10000	29001	27701	1300	
Greenwood	4	-	2433	332	132	4500	700	30	-	245	82059	46040	2898	130997	117902	13095	
Hanove	2			538	165	1000	250	88	-	500	23932	8273	1200	33405	31150	2255	
Hartfor	8	-	2100	349	147	4250	800	110	-	352	92752	37558	2400	132710	123241	9469	
Hebron	5	-	$20 \quad 00$	406	175	3000	481	-	-	253	61813	31437	-	93250	85877	7373	
Hiram	9	3	2600	484	210	7000	1500	338	-	404	160019	61550	-	221569	204016	17553	
Lovel	7	-	$24 \quad 20$	348	135	5000	900	38	-	332	105976	44838]	21679	172493	164260	8233	
Mason	-	-	3000	350	175	-	100	25	-	278	10000	5957	-	15957	15957		
Mexico	2	1	2300	278	156	2100	366	44	-	273	37784	22172	-	59956	54597	5359	
Newry		-	2000	317	91	1575	332	62		291	35359	18863	4518	58740	55581	3159	
Norway	19	-	3950	425	200	10000	2500	485	-	309	269767	133832	-	403599	389070	$145 \quad 29$	
Uxford	12	-	2880	431	199	6600	1500	176		325	1593 54	76440	- ${ }^{-}$	235994	223267	12727	
Paris	16	1	2586	356	190	12000	2344	-		, 263	234680	147256	21765	4037 01	4057 27	-	2026

Peru......	5	$1)$	2440	328	152	4000	800	140	-	1348	844 26	38055	3438	125919	121237	4682	
Porter.............	-	-	2500	375	210	5100	876	-		252	100256	57579	10000	167835	159273	$85 \quad 62$	
Roxbury	1	-	1400	260	140	950	200	60	-	$\left\lvert\, \begin{array}{ll}3 & 45 \\ 2\end{array}\right.$	25434	$\begin{array}{lll}95 & 97\end{array}$	4556	39587	30885	8702	
Rumford...........	6	1	2083	343	180	4700	805	-	-	250	95818	53277	11720	160815	149848	10967	
Stoneham	-	-	2500	394	190	2000	380	-	,	273	41829	22999	-	64828	61803	3025	
Stow.	4	-	1542	296	137	1600	400	79	-	301	42798	22006	-	64804	65954	-	1150
Sumner	9	-	2500	294	167	6868	811	-	-	237	97436	56586	1049	155071	145927	9144	
Sweden	5	-	1900	346	153	$25 \quad 50$	500	121	-	397	54803	20848	10000	S56 51	82874	$27 \quad 77$	
Upton	1	1	2750	308	179	300	196	4	-	218	19963	14891	12500	47354	47354		
Waterford	8	1	2750	409	170	8300.	1200	271	-	399	168151	49802	2666	220619	193763	26856	
Woodstock.	2	-	2110	255	168	2625	800	38	-	225	81818	54831	-	136649	129567	7082	
Plantations. Franklin..........	2	1	-	305	137	500	127	-	-	249	13003	8138	300	21741	21615	126	
Lincoln.	-	-	-	350	200	650	100	58	-	400	18251	3517	-	21768	10715	11053	
Magalloway.......	-	-	-	350	1150	700	100	64	-	$\begin{array}{ll}5 & 00 \\ 2\end{array}$	12000	-	-	12000	5600	6400	
Milton	-	-	2500	367	112	600	216	-	-	225	21600	15884	-	37484	37484		
	197	19	2545	340	1571	152691	29,108	3068		1,2923	2,389 211	$16,596 \quad 391$	1643175	0,628 77	7,434 03,	25848	6374

PENOBSCOT COUNTY.

Towns.							rovurpuenty ospient fo ospıuөo.19														
Alton	130	74	63	79	66	85	. 50	91	461	$13 \quad 4$	55		-*	4				1000	-	1	15
Argyle	71	43	30	24	20	44	. 35	14	981	12	24	4	-	4	4			2000	2	1	15
Bangor	5288	3019	2687	3019	2687	3019	. 51	26	1768	10	680	-	-	36	36		-	125000	5	5	5 97
Bradford	508	308	255	287	235	382	. 48	$13 \quad 1$	195	9	100	15	-	15	14	1	325	6650	1	6	6.22
Biadley	253	133	102	122	97	168	. 39	$17 \quad 3$	891	$12 \quad 1$	61	3	-	4	1		-	800	-	-	10
Brewer.. .	1030	662	570	642	544	740	. 54	20	$300 \cdot 2$	20	300	-	-	11	8	-	-	17500	-	1	115
Burlington...	179	158	128	91	79	135	. 58	14	8.1	111	45	6	-	6	6	-	-	2200	1	3	5
Carmel	386	323	263	330	248	319	. 66	$10 \quad 4$	1391	$11 \quad 2$	149	11	-	11	8	-	-	3500	1	6	615
Carioil	223	157	126	81	69	168	. 44	$10 \quad 4$	751	$10 \quad 2$	42	7	1	7	4	-	-	1700	-	4	4
Charlesto	381	251	207	210	177	277	. 50	93	105	93	96	10	1	10	8	-	-	4000	-	5	11
Chester	131	86	72	85	71	94	. 55	8 3	51	9	44	6	-	5	2	-	-	2200	-	1	16
Clifton	112	58	46	71	54	72	. 45	8	40.	112	57	5	-	5	4.	-		1500		1	15
Corinna	387	283	230	191	139	298	. 48	12	1431	11	141	13	2	14	12	-	-	5000	-	2	218
Corinth	390	262	155	186	160	278	. 40	12	1081	11	109	13	-	12	10	-	-	8000	-	5	13
Dexter	744	527	459	497	405	561	. 58	$\begin{array}{ll}9 & 4\end{array}$	176.1	10	180	-1	-	15	15		6000	15000	2	2	27
Dixmont	334	224	188	244	19.5	312	. 57	$9 \quad 3$	1351	10	140	13	2	13	12		-	5200	-	8	814
Eddington	243	198	164	154	125	198	. 59	$11 \quad 2$	801	$10 \quad 1$	72	7	-	7	3	1	850	2200	1	3	38
Edinburg . . .	20	20	15	15	13	20	. 70	10	201	10	20	2	-	2	2	-	-	1500	-	-	1
Enfield	181	115	89	33	31	131	. 33	$15 \quad 2$	108		8	7	-	7	5	-		850	1	1	12
Etna..	261	149	123	177	136	184	. 50	$9 \quad 3$	761	131	106	8	-	8	8			3000		4	4
Exeter	296	233	185	229	189	245	. 63	10	1291	111	146	13	1	13	10	-		46.50	-	11	15
Garland	311	158	133	133	112	241	. 39	15	165	93	77	11	2	11	7			5000	-	3	13
Glenburn	207	152	127	133	107	169	. 57	9	631	$14 \quad 1$	100	7	-	7	6		-	700	-	2	8
Greenbush	259	173	163	184	153	189	. 61	14	131			8	-	8	8		-	3000	1	1	11
Greenfield....	99	72	71	39	35	81	. 53	12	$60 \mid 1$	14	14	5	-	5	5		-	1300	-	$1]$	1) 5

Hampdon	792	6531	623	415	329	512	. 6014	2	265			358	18	-	18	8	1	600	6800	1	13	32
Hermon	428	254	$20 \div$	264	211	348	. 499	4	129		2	148	14	-	13	9	1	656	3000		6	16
Holden	214	162	132	123	96	163	. 5310		7410	10	3	8.5	8	-	8	6	-	-	2200			9
Howland	44	41	34	30	10	43	. 509	3		9		27.	5	_	3	1	-	-	600			6
Hudson	187	131	$10{ }^{\circ}$	120	102	147	. 568			9	3	67.	7	-	7	5	-		2200		4	10
Kenduskeag..	168	110	93	110	93	124	. 5512		481	18		72	4	1	4	4	-	-	1000	1	2	3
Kingman....	227	136	114	-127	87	189	. 4413	3	6×10	10	2	52	-	-	3	3	1	200	1400			5
Lagrange....	237	145	126	127	102	177	. 4813			11	1	56	5	-	5	5	-	-	2400	-	2	7
Lee	361	208	173	261	239	270	. 5712		961	13		103	8	1.	9	6	-	-	2200		7	12
Levant	329	190	153	229	186^{\prime}	256	. 5210		120	9	2	113	12	1	12	10	-		3600	1	6	14
Lincoln	554	286	242	308	2.31	426	. 4317		179	13	1	14.5	10	-	9	9	-		5300		3	18
Lowell. .	176	118	88	-	- 1	118	. 5018	2	119			14	6	-	6	1	-	-	200	-	3	13
Mat'misc'ntis	17	12	8	11	9	12	. 5014		14			-	1	-	1	1	-		400			2
Mattaw'mk'g	185	131	101	64	$55^{\prime \prime}$	140	. 4516		112	9		18	5	-	4	-	-		1200			7
Maxfield. ..	46	32	28	8	8	40	. 4010	2	32	3		3	4	-	2	2	-		300	1	-	2
Medway .	24.4	172	139	45	40	174	.3616	3	116	5		5	7	-	6	4	-		2800	2	-	13
Milford .	$24 *$	169	136	156	141^{\prime}	1.) 0	. 5711		22	11		22	4	-	4	4	-	-	5500		1	5
Mt Chase..	125	81	63	21	15	88	. 3113	2	541	12		12	5	1	5	1	1	165	675	1		4
Newburg	301	216	180	175	133	238	. 5210		10.1	11	3	105	12	1	11	10	1	16.	3150		6	11
Newport	400	225	184	237	196	349	. 4818	2	18, 1	11	4	119	10	3	10	8	-		7600	1	1	21
Oldtown.	1237	661	587	540	476	723	. 4319		3531	10	1	165	-	-	13	9	-		10000	2	3	19
Orono	739	459	364	389	343	556	. 4813	1	132	10	4	$10 \times$	-	-	10	8	-		youe		2	12
Orrington	412	308	263	254	201	330	. 5711	1	12.31	11		121	11	-	12	9			4800	-	4	14
Passadumk'g.	87	69	51.	36	30	83	. 4710	3	5.3	8		8	4	-	4	1	-		1800			5
Patten...	290	137	116	137	111	177	. 3910	2	12410	10	4	64	6	-	6	5			2.500		2	6
Plymouth	228	134	114	142	111	193	. 4912	2	961	10	3	9.5	8	-	9	4			2100		2	7
Prentiss.	149	73	0.)	67	56	10.	.3710		501	12		48	5	1	5	3			1500		4	5
Springfield	265	230	190	212	178	245	. 7010	2	6.3	8	3	35	6	3	6	6			4000	1	3	7
Stetson...	207	143	119	115	97	180	. 529	4	681	11	3	70	7	-	7	6	-		3800	1	2	6
Veazis.	189	97	76	102	82	134	.428		241	12	4	38	-	-	3	3	-		2000			2
Winn.	345	245	202	154	116	211	. 4618	2	1481	11		66	-		6	6			2500		1	8
Drew PI	49	41	34	38	33	41	. 688	1	2.1	11		33	3		,	1			300		1	3
Lakeville Pl..	56	23	17	38	23	31	. 3615	2	311	11	2	23	2	1	2	2	-		700	1	1	
No. 2 G'nd F'ls	35	24	15	-	-	24	. 438		16			-	1	-	1	-	-		100	,		
Stacyville Pl.	68	o3	42	37	25	42	. 5014		56	10		20	4	-	4	2	-		500	1		
Webster P1..	58	39	34	13	11	52	. 4011			10		10	4		3	-	-		12.5		1	3
Woodville Pl	98	42	31	29	29	48	. 3011		411	13		13	4		2	1	-		22.	-	1	3 3
	,23	103	201	390	352	,549:	. 5012	3	7619 /1	11		5196	389	21	473	363	7	8796	21,925	32	155	663

PENOBSCOT COUN＇TY－CoNClUdEd．

Towns．		1 3 3 0 0 00 0 0 0 0 0 0 0 0 0			$\begin{aligned} & \text { B } \\ & \text { B } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		Not le 80 cts inhab O 응 シ － 경	ess than for each bitant．								
Alton	，		3300	66152	00	0			303	1947	21841	－	73788	58736	15052	
Argyle	1	－	2300	300200	1115	329	101		401	37938	13568	－	51506	53459	－	1953
Bangor	97	4	8486	863350	121000	30000	16514	4 －	570	3000000	871125	41200	3912325	3478564	433761	
Bradford	6	2	2800	382164	8500	1200	32	－	244	138913	81404	9256	229573	216536	13037	
Bradley	5	－	－－	531250	$\begin{array}{lll}23 & 83\end{array}$	66,		－	246	72913	44673	4900	1224.86	115854	6632	
Brewer	14	2	4300	5121200	20800	3150	614	4 －	1313	321188	166283	5816	493287	458389	34698	
Burlingto	1	1	2650	364182	2400	429	－	－	242	54078	29286	24000	107364	$988 \quad 20$	8544	
Carmel	9	－	3150	336162	5400	976	－	－－	230	101537	64902	8195	174634	155881	18753	
Carroll	－	1	2400	$\begin{array}{llll}3 & 25 & 45\end{array}$	2900	500		－	224	58653	34689	7179	100521	87398	13123	
Charlesto	5	－	2760	342160	6600	890	10	－	275	99346	53608	9750	162704	153584	$\begin{array}{lll}91 & 20\end{array}$	
Ches	4	］	2600	$\begin{array}{lllll}3 & 93 & 58\end{array}$	$2+00$	290	－	－	218	37509	22006	12000	71515	65695	$58 \quad 20$	
Clifton	4	－	2600	325130	1500	280	－		262	29771	17704	15500	62975	55754	$72{ }_{7} 21$	
Corinna	10	－	3000	3 54 1 57	$10688{ }^{1}$	1273	71	1 －	313	145643	67175		212818	197470	15348	
Coriuth	6	2	$26 \quad 67$	$\begin{array}{llllll}3 & 43 & 1 & 71\end{array}$	$5800{ }^{\prime}$	1066	－	－	273	$1090 \quad 27$	64694	6302	180023	173918	6105	
Dexter．	17	5	6600	4 75 250	150 00＇	2700	650		348	270000	128228	18049	416277	4466 174	－	30350
Dixmont	6	－	2300	335166	6625	1000	94		290	103736	57082	15400	176218	174154	2064	
Eddington	4	－	3733	$400 \mid 10$	2275	700	103		268	81916	43184	－	125100	118050	7050	
Edinburg	1	－	－	300200	300	50	14		192	5000	4302	1198	10500	10500		
Enfield．	－	1	2750	3501178	2000	450	59		225	$475 \quad 74$	33091	$\begin{array}{ll}55 & 20\end{array}$	86185	78655	7530	
Etna	4	－	$27 \quad 25$	$325 \mid 145$	3000	716	－	－	272	72169	43514	5200	120883	118341	2.542	
Ex	3	－	2718		5000	1200	181		325	175962	61053	20395	257410	200109	57301	
Garland	5	－	3400	3171172	6225	1000	31		306	121539	54104	9204	184847	169229	15618	
Glenb	7	－	2500	377194	4000	600	76		275	63939	36700	18000	118639	1160 11	2628	
Greenbush			2700		3000	523	－		201	54446	43184	－	97630	92340	5290	
Greenfield．	－	1	3000	300200	1200	275	5	）－	1281	27154	16215	－	43369	43369		

PISCATAQUIS COUNTY-CONCluded.

SAGADAHOC COUNTY.

$\underset{N}{N}$

Towns.											\%					菏								
Arrow				30	26			9	3		9										00			
Bath	2583	1695	1462	1854	1536	2125		13		429	21	2	710		-			15		12500	112500	- 4		
Bowdo	研	178	137	222	185	234	. 53	9		108	11		154	-	-		4	7	1	600	4200	1		
Buwdoin	502	240	219	241	202	375	. 42	20		261		2	161	-	-		2	10		-	4000	-		
Georgeto	329	277	224	167	138	236	. 55	8	4	93	1	1	74	10	-		9	8			2000			
Perkins	25			15	12	10	. 48		-		14		14	12			1				400			
Phipsburg	500	344	301	376	315	417	. 61	8	3	119	8	2	113	12			3	12			1000			
Kichmond	881	523	443	534	448	599	. 51	9		170	18		250	11			5	15			14100 3500			
Topsham	354	240	197	242	173	242		120			10		$\begin{array}{r} 140 \\ 40 \end{array}$				4				3500 2500	-	- ${ }^{1}$	
West Bath	375	294	240	56 247	157	263	. 54	8	3	77	11		88	-8			8	8	-		400		4	4
	6021									1655			1753	48,				92		3,400	148,900	(9,	31	1 125

SAGADAHOC COUNITYCONClUDED.

SOMERSET COUNTY－CONCLUDED．

Towns．						Not less than 80 cts for each inhabitant． \qquad 登运运边主 					Total School Resources．			
Anson．	14	1762	$\begin{array}{lllll}3 & 38 & 19\end{array}$	5000	1394	150	287	164763	78650	－	243413	214635	28778	
Athen	9	2400	400150	$55 \quad 50$	1130	82	309	115748	69059	7963	192770	186399	$\begin{array}{lll}63 & 71\end{array}$	
Bingham	1	2000	235100	4800	663	1 －	3044	68252	36070	10357	114670	110681	3998	
Brighton	6	2150	334125	2500	480	12	210	54996	37889	－	92885	23	362	
Cambridg	2	2200	396165	1950	378	－－	252	43294	24819	$30 \quad 12$	71125	67159	3966	
Canaan	$9 \quad 2$	$28 \quad 27$	3 9 31151	7200	1067	4.2	281	113290	62708	7593	183591	168918	14673	
Concord	4	2000	$\begin{array}{llll}2 & 12 & 92\end{array}$	1900	325	－－	237	37914	22540		60454	54719	5785	
Cornville．	11	1325	$3{ }^{3} 488181$	6325	800	54	314	94330	42191	10675	147196	130784	16412	
Detroit	4	2300	$\begin{array}{lllll}3 & 25 & 1 & 53\end{array}$	2400	530	－－	277	54055	31602	$60 \quad 20$	91677	83036	8641	
Embden	5	2200	3201311	1000	539	－－	254	56134	37567		93706	90466	3240	
Fairfield	198	$57 \quad 50$	498230	46900	3500	1065	406	4229 21	142457	－	565381	509665	55716	
Harmony	8	1700	349126	2500	705	－－	283	105768	41198	10000	156966	142916	14050	
Hartland．	8	2500	400200	7500	850	15	252	92927	55759	－	148686	135260	134． 26	
Madison	9	3000	352150	$76 \quad 25$	1052	－－	218	120427	79749	10400	210576	206541	4035	
Mercer	5	2833	3 38 1 49	2500	604	－－	282	64289	35408	－	$\begin{array}{ll}996 & 97\end{array}$	89231	10466	
Moscow	1	$25 \quad 20$		1400	420	2	207	48039	33587	3344	84970	78125	6845	
New Portland	10	2900		7500	1200	183	$\begin{array}{lll}3 & 41\end{array}$	145611	58241	3459	207311	183099	242 97 97	
Norridgew	6	5340	$\begin{array}{llllll}3 & 41 & 1 & 65\end{array}$	6500	1200	7	$\begin{array}{lll}2 & 5 & 4 \\ 3 & 4\end{array}$	130886	767 71 544 1	6980	207657 1697	197867	$\begin{array}{r}97 \\ 210 \\ \hline 10\end{array}$	
Palmyra	10	2800		6500	1017	－－	3 09	108370	54435	6980	169785	148741	210 1274 18	
Pittsfield．	$10 \quad 2$	3650	500195	8175	1530	3	${ }^{2} \mathrm{C} 61$	168808	$\begin{array}{llll}971 & 2 \\ 29\end{array}$	324	2659 772 39	253147 7729	12783	
Ripley	1	2250	3 77 1 43	2000	440	225	$\|$2 86 3 0	48515	254 721 7	$\begin{array}{lll}32 & 43 \\ 71 & 40\end{array}$	$\begin{array}{r}772 \\ 2235 \\ \hline 24\end{array}$	77291 206388	171－16	52
St．Albans	5 5 4	2400	470155	10750	1340	225	$\begin{array}{lll}3 & 07\end{array}$	144225	72139 5013	$\begin{array}{r}71 \\ 40 \\ \hline 104\end{array}$	2235 1467	206388 1337	$\begin{array}{lll}171 & 16 \\ 129 & 63\end{array}$	
Solon．．．	2 －	25 28	3231175	3450	810	－－	$\left\lvert\, \begin{aligned} & 267\end{aligned}\right.$	86147	50133	10472	146752	133789	12963	

WALDO COUNTY.

WALDO COUNTY-Concluded.

Towns.								Not les 80 cts fo inhabi 	s than bitant.					$\dot{0}$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
Belfast	13	2	6475	628	250	15000	5000	754	-	371	$67 \mathrm{C2} 33$	222704	260000	1158937	1119975	38962	
Belwont	1	4	2700	275	185	1125	416	,		$\left[\begin{array}{ll}2 & 41\end{array}\right.$	-44108	28124		72232	68283	3949	
Brooks	2	-	3140	313	158	3000	700			279	81884	$415 \quad 29$	-	123413	114059	9354	
Burnham	5	-	$24 \quad 75$	3507	215	3500	774	-	-	243	91056	52616	5644	149316	138850	10466	
Frankfort	6	3	2806	435	188	5000	926	-	-	201	99808	76274	-	176082	151662	24420	
Freedom.	6	1	2600	300	153	3000	525	3	-	279	58992	31106	2505	92603	89070	3533	
Islesborou	1	2	3150	365	265	2700	970	4	-	262	104930	61216	1200	167346	164713	2633	
Jackson	5	-	2900	272	124	3500	566	20	-	273	69764	34249	-	$1040 \quad 13$	97026	6987	
Knox	1	-	2650	287	137	3800	700	18	-	247	75693	46823	1000	123516	115246	8270	
Liberty	5	1	2688	368	160	3600	776		-	263	79946	48809		128755	126414	2341	
Lincolnville	8	3	$25 \quad 25$	295	188	2995	1383	19	-	254	140127	87442	-	227569	223049	$45 \quad 20$	
Monroe	7	3	3100	335	166	4500	1200	107	-	322	124171	61715	-	185886	174180	11706	
Montville	6	5	2500	341	151	4600	1015	11	-	220	111947	76274	-	187221	173131	14090	
Morrill	2	-	3167	329	$1 \begin{array}{ll}181\end{array}$	1800	395	$1]$	-	257	43898	25481	-	$693 \quad 79$	66719	2660	
Northport	3	1	$\begin{array}{lll}25 & 33\end{array}$	282	200	3100	698	,	-	281	70007	41404	-	111411	109749	1662	
Palermo	4	-	2232	321	146	4000	894	-	-	281	52200	52616	-	144816	139313	5503	
Prospect	2	2	3060	300	1199	. 3500	616		-	242	64087	42191	4377	110650	105732	4923	
Searsmont	3		$\begin{array}{lll}26 & 53\end{array}$	315	$\begin{array}{ll}1 & 69\end{array}$	3775	1064	,		261	117530	67340		184870	175273	9597	
Searsport	7	4	$55 \quad 75$	486	2 3i	8450	2000	142		3 42	$2123 \quad 21$	94315	-	306636	294646	11990	
Stockton......	4	4.	2850	442	191	6050	1237	-		131	141112	63866	-	204978	182530	22448	

WASHINGTON COUNTY.

WASHINGTON COUNTY－CONCLUDED．

Towns．				$\begin{aligned} & \text { Amount paid for School } \\ & \text { Supervision. } \end{aligned}$		Not les 80 cts．f inhab 	sthan or each itant． \qquad ．9．0．镸高 き品					Seo.nosey looups Ieqo L			
Addison	9	$5{ }_{5}^{5} 2250$	5 34 1 84	4500	993	3		263	103218	63463	－	166681	159349	7332	
Alexander	－	1.2933	4081160	3800	351	－	－	195	36630	29782	$113 \quad 27$	77739	62343	15396	
Baileyville	4	－ 2500	$\begin{array}{lllll}3 & 25 & 1 & 88\end{array}$	1250	325	24	－	260	47833	20682	－	68515	56154	12361	
Baring．	1	－ 4300	$\begin{array}{lllllll}3 & 75 & 2001\end{array}$	2800	307	65	－	3 37	30700	15056	1807	47563	45990	1573	
Beddingto	－	12700	450.225	2075	260	157	－	371	28362	11582	－	39944	35078	4866	
Brookton	1	－ 3000	300275	1050	400	132	－	280	47183	23660	11200	82043	70309	11734	
Calais	21	$\begin{array}{llll}4 & 88 & 25\end{array}$	800300	30000	5875	937	－	239	587500	407021	－	994521	996043	－	1522
Centervill	－	－ 2969	200	150	115	5	－	189	9678	10092	4000	23770	240 35	－	265
Charlotte．	－	－ 2900	$\begin{array}{ll}383 & 166\end{array}$	33001	400	9	－	218	36165	30278	5000	71443	69272	2171	
Cherryfield	3	$\begin{array}{lllll}2 & 47 & 87\end{array}$	482200	10000	1500	66	－	221	155863	112180	3501	271544	269940	1604	
Columbia．	－	1.2350		1500	610	96	－	237	64936	42686	1968	109590	109711	－	121
Columbia Falls	－	$3 \quad 4050$	770261	2500	610	62	－	221	59636	45666	6000	111302	111944	－	642
Cooper	－	－ 2400	330146	1700	300	23	－	240	31517	21262	3000	55779	51622	4157	
Crawford	－	134407	4501182	775	200	35	－	282	20000	11747	4900	36647	38999	－	$23 \quad 52$
Cutler	－	－ 3000	415275	2000	750	87	－	244	95076	50961	11200	157237	133074	24163	
Danforth	1	－ 3444	439215	3000	800	310	－	278	80980	47651	22.50	130881	128633	2248	
Deblois	－	． 2000	450200	200	90	6	－	192	9731	7776	2400	19907	18469	1438	
Dennysville	2	35000	650303	2500	418	－	－	216	36002	31933	－	67935	83532	－	15597
East Machia	4	1.3750	366250	7833	1500	－	－	250	177223	97034	－	274257	257686	16571	
Eastport	14	1.6600	600300	2500	4100	895	－	241	410000	285491	－	693491	702263	－	6772
Eaton．	4	－ 3500	193207	2100	328	77	－	211	26756	25646	－	52402	50709	1693	
Edmunds	1	1 －	600278	500	356	－		197	$445 \quad 17$	29947	13300	87764	76076	11688	
Harrington．．．	3	3 3925	400.275	40 U0	1250	218	－	｜ 282	128464	73462	－	2019 26	198605	33 21）	

YORK COUNTY.

Towns.																						
Acton	292	200	173	193	153	211	. 56	(9 1 1	101	10	3	107	14	-	14	9		1000	4000	1	3	10
Alfred	353	224	172	197	150	260	. 46	1112	103	14		112	7	-	7	7	-	-	4500	1	3	8
Berwick	657	386	319	313	262	440	. 44	$18 \quad 1$	274	12	4	116	12	-	14	10	-	-	13500	2	4	14
Biddeford	4396	1543	1332	1482	1245	1769	. 29	23	966	11	2	483	12	2	23	20	-	-	103500	7	7	37
Buxton.	627	355	301	368	302	408	. 48	12	228	12	2	181	16	-	15	10	-	-	6000	4	11	15
Cornish	338	215	178	208	154	212	. 50	$20 \quad 3$	134	10		30	6		6	3	-	-	2000	2	1	13
Dayton.	147	67	62	82	65	95	. 43	$\begin{array}{ll}9 & 3\end{array}$	39	11	3	46	4	2	4.	3	-	-	2000	-	2	4
Eliot	427	242	190	255	193	365	. 45	$14 \quad 2$	131	14	1	128	8	-	8	6	-	-	8000	1	8	8
Hollis	392	261	211	298	278	310	. 62	8 8	129	10	3	161	13	1	14	13	-	-	5000	3	7	19
Kennebunk.	823	463	377	538	515	582	. 54	$10 \quad 4$	173	21	3	372	10	-	14	11	-	-	15000	1	2	15
Kennebunkport,	646	394	337	537	432	625	. 59	10	150	11	2	171	12	$1)$	12	$1]$	-	-	7300	-	1	14
Kittery	834	472	387	384	284	495	. 40	9	153	13		169	10	-	11	11	-	-	15000	2	9	15
Lebanon.	460	347	209	255	221	370	.47	9	156	15		150	19	2	19	12	1	1000	6000	1	4	17
Limerick.	278	146	126	220	185	225	. 56	8 1	74.	10	3	95	9	-	10	10	-	-	2500	-	3	9
Limington	369	236	208	201	176	322	. 52	$10 \quad 3$	171	9	3	86	15	-	15	11	-	-	2500	-	8	16
Lyman.	277	202	175	176	150	225	. 59	9	92	10	3	74	10	1	9	9	-	-	5000	-	2	10
Newfield..	231	155	129	143	120	168	. 54	12	99	10		50	7	1	7	7	-	-	5000	1	3	7 18
North Berwick..	533	394	339	328	268	373	. 57	7 9	172	14		246	-	-	18	18	-	-	10500	1	3	18
Old Orchard	167	83	56	55.	44	89	. 30	24	24	12		12	-		1.	1	-	-	4000	-	-	2
Parsonsfield. . .	453	263	218	254	196	293	. 45	- 9	109	9	3	136	17	3	17	10	-	-	7000	2	8	10

Saco	1662	912	806	893	743	970	. 472		1	478		2	285	8	-	15	13		-	44000	2	6	- 25
Sanford	1096	825	631	288	256	902	. 431	18	3	316	9		63	14	3	15	8	-	-	10000	1	2	2 16
Shapleigh	305	137	115	192	169	207	. 47	22	1	1111	10	3	84	10	2	9	7	-	-	4500	-	5	5
South Berwick.	1014	515	401	661	533	593	. 461	12	3	1871	11	2	169	13	2	14	8	-	-	12000	2	2	14
Waterborough...	403	331	288	246	264	390	. 68	9	1	1111	10		120	13	-	13	11	-	-	6000	1	6	12
Wells...	752	4:0	359	307	241	598	. 40	16		271	11	3	124	17	-	17	16	-	-	11500	3	6	25
York	512	354	246	359	287	359	. 651	17	1	240	11	3	149	14		14	14			7500		7	9
	18,444	, 130.8	00.	9436	7886	856	.44	13	3]	51921	12		3919	290	24.	335.	269		2000	3,800	38	123	367

YORK COUNTY－CONCLUDED．

Towns．						Not less 80 cts fo inhabi —— 8. 을等㤩辰 즞ㅇ	than reach tant． 					seosnosey looyos [b7o			
Acton	7	3200	3681163	3000	840			1285	86230	48917	3000	138147	137288	$8 \quad 59$	
Alfred	6	4631	485259	60 00	1300	419	－	361	133123	60956	－	194079	178439	15640	
Berwick	8	3900	431200	13000	2500	281	－	393	263110	105231		368341	343018	25323	
Biddeford	37	7471	900350	140000	18000	7878	－	406	1280850	732473	364	2013687	2493967	－	480280
Buxton．	5	2600	450246	12445	2.500	716	－	396	399390	104569	－	443959	3641 38	79821	
Cornish	2	3500	450225	5325	935	－	－	289	118320	53608	2703	174631	168501	6130	
Dayton	2	2875	444219	1000	600	126	－	387	71628	25646	－	97274	85817	11457	
Eliot	1	3200	350300	6000	1800	488	－	402	208320	74124	－	282444	275373	$70 \quad 71$	
Hollis	2	2436	$3 \mathrm{9} \mid 203$	4350	1500	266	－	1355	156016	69987	－	226003	198140	27863	
Kennebunk	16	17300	450200	15000	2600	318	－	$\left(\begin{array}{ll}3 & 15\end{array}\right]$	280925	137319	－	418244	422731	－	4487
Kennebunkport	14	4000	500275	9600	2000	76	－	$\begin{array}{ll}3 & 11\end{array}$	225805	106223	－	3320 28	298793	33235	
Kittery	4	4000	5 50，3 00	17000	2700	116	－	315	295501	141962	－	437463	432596	4867	
Lebanon．	6	$28 \quad 00$	472200	5675	1281	－	\cdots	278	132503	76274	$\overline{5}$	208777	194405	14372	
Limerick．	8	2250	414198	6000	1002	－	－	309	137365	53608	550	1915 23	164861	$\begin{array}{llll}266 & 62\end{array}$	
Limington	3	2714	352176	5000	1200	56	－	303	143269	64788	－	208057	152976	55081	
Lyman．	5	2800	416.200	4350	804	1	－	291	96583	45666	840	143089	134970	81 19 24	
Newfield．	2	2540	443221	3800	797	－	－	354	82120	37728	－ 7	119848	117424	$\begin{array}{lll}24 & 24\end{array}$	
North Berwick	14	5200	425200	10000	2000	559	－	386	200000	92447	7578	300025	289668	10357	
Old Orchard	2	－	550.200	4000	600	200	－	353	51306	28128	－	79434	80320	－	886
Parsonsfield	6 －	2650	$44_{4} 02210$	10250	1300	10	－	$\mid 292$	217480	73627	10000	301107	279580	21527	

Counties.													
Androscoggi	14,656	6,428	5,380	8,291	6,640	7,669	. 41	91	2,863	13	4,459	72	8
A roostook ..	18,843	10,700	8,150	7,022	5,539	11,786	.36	$14 \quad 1$	5,809	11	2,954	324	19
Cumberland	28,733	16,148	13,242	15,707	12,606	18,627	. 45	$11 \quad 4$	5,385	111	4,327	220	13
Franklin	5,536	3,733	3,101	3,516	2,852	4,422	. 54	$9 \quad 4$	2,075	$10 \quad 1$	1,856	187	19
Hancock	13,057	8,364	7,017	7,981	6,803	9,995	. 53	$11 \quad 2$	3,690	$10 \quad 1$	2,825	261	9
Konnebec	16,147	8,719	7,280	8,641	7,170	10,530	. 45	$11 \quad 2$	4,401	$11 \quad 1$	4,022	213	9
Knox	9,939	6,132	5,350	6,428	5,515	7,162	. 54	$11 \quad 1$	2,368	$11 \quad 3$	2,314	142	13
Lincoln	7,814	4,659	3,954	4,894	4,085	5,480	. 51	$9 \quad 1$	2,052	$10 \quad 3$	1,963	168	7
Oxford	10,066	6,535	5,575	6,074	5,232	7,270	. 54.	93	3,569	$10 \quad 1$	3,352	335	24
Penobscot	22,223	14,105	11,920	12,390	10,352	15,549	. 50	$12 \quad 3$	7,649	11	5,196	389	21
Piscataquis.	4,936	3,018	2,460	3,082	2,548	3,617	. 51	10	1,372	$10 \quad 4$	1,470	110	9
Sagadahoc..	6,021	3,919	3,318	3,984	3,240	4,639	.54	124	1,655	12 l	1,753	48	
Sumerset.	10,143	7,071	5,896	6,086	5,062	7,432	. 54	$9 \quad 4$	3,359	$10 \quad 4$	3,193	268	27
Waldo	9,481	6,177	5,109	6,530	5,381	7,775	. 55	$9 \quad 4$	2,762	$10 \quad 3$	2,883	246	33
Washington	16,635	9,978	8,364	8,536	6,986	11,721	.47	131	4,172	$12 \quad 1$	3,265	266	17
York	18,444	10,130	8,400	9,436	7,886	11,856	. 44	$13 \quad 3$	5,192	12	3,919	290	21
	212,574	125,816	104,516	118,598	97,897	145,530.	. 48	111	58,373	111	49,681	2,539	249

SUMMARY-Continued.

Counties.														
Androscoggin	194	161	2	22,623	352,400	19	74	257	265	29	$44 \quad 10$	440	211	2,69135
Aroostook . .	354	229	15	4,460	103,825	34	10.5	395	163	44	$24 \quad 04$	384	167	1,925 86
Cumberland	343	283	7	82,260	753,852	46	128	522	420	100	$45 \quad 26$	5 5	245	4,67191
Franklin	194	125	3	2,400	74,645	10	68	247	113	53	2568	331	162	84885
Hancock	274	194	6	3,517	154,750	33	119	351	155	42	3348	413	213	1,845 09
Kennebec	348	236	5	13,343	274,975	23	88	400	278	28	3478	421	213	3,266 05
Knox.	164	126	-	-	129,900	20	81	194	130	61	4023	469	234	1,099 63
Lincoln	184	120	4	3,800	90,550	20	99	212	85	23	3045	4.12	228	1,032 20
Oxford	348	261	3	2,100	125,090	24	142	390	197	19	2545	340	157	1,526 91
Penobscot	473	363	7	8,796	321,925	32	155	663	380	58	3192	389	190	3,91506
Piscataquis	138	92	-		57,050	8	45	163	96	21	2890	384	191	65605
Sagadahoc	106	92	3	13,400	148,900	9	31	125	107	19	$46 \quad 25$	$\begin{array}{ll}5 & 18\end{array}$	239	88536
Somerset	326	219	1	150	118,490	17	76	356	206	24	$25 \quad 97$	362	159	1,842 25
Waldo	261	178	2	747	-99,250	15	157	275	118	40	2904	330	173	1,098 20
Washington	268	196	3	1,145	176,965	70	101	301	131	62	3463	426	$\begin{array}{lll}2 & 19 \\ 2 & 3\end{array}$	1,57698
York.	335	269	2	2,000	323,800	38	123	367	215	34	4092	474	230	3,650 45
	4310	3144	63	160,741	3,306,367	418	1592	5218	3059	657	3382	414	203	32,532 20

SUMMARY-CONCLUDED.

SPECIAL COMMON SCHOOL STATISTICS．

Counties．			$\cdot s \text { [ooчos pepeд足 уо }{ }^{\circ} \mathrm{N}$	No．of ungraded schools．							
Androscoggin	13	230	67	163	． 29	101	115	56	59	13	
Aroostook．．．．	64	403	12	391	． 03	221	215	146	82	45	19
Cumberland	26	371	104	267	． 28	182	216	127	89	25	1
Franklin	24	211	18	193	． $08 \frac{1}{2}$	108	160	56	58	21	3
Hancock	34	295	34	261	.12	179	227	110	91	28	6
Kennebec	29	360	68	292	． 19	180	215	115	102	28	1
Knox．	16	184	46	138	． 25	81	108	63	24	16	
Lincoln	17	202	24	178	.12	110	131	86	64	16	1
Oxford．．	39	362	21	$3+1$	． 06	215	235	137	146	37	2
Penobscot．	62	545	134	411	.25	265	302	177	155	57	5
Piscataquis．．	19	151	15	136	． 10	94	102	64	40	17	2
Sagadahoc．．	11	131	49	82	.37	54	62	31	23	9	2
Somerset．．	36	3 ± 4	33	311	.10	164	214	123	87	33	3
Waldo	26	279	24	255	． 09	135	182	122	85	25	1
Washington	50	306	90	226	． 26	136	159	73	66	44	6
York．．．．．．．．．	27	385	105	280	． 27	146	178	114	84	27	
	493	4，759	834	3，925	． 18	2，371	2，821	1，600	1，255	441	52

SPECIAL COMMON SCHOOL STATISTICS－Concluded．

Counties．						$\begin{aligned} & \text { No. of different teachers } \\ & \text { employed. } \end{aligned}$							
Androscoggin	9	4	15	66	19	358	124	313	45	． 87	1	20	6
A roostook．．	44	20	26	151	29	537	159	435	102	． 81	4	88	8
Cumberland	4	2	50	38	42	704	212	$63 y$	65	． 91	1	28	8
Franklin	18	6	29	96	23	349	33	280	69	． 80	2	47	4
Hancock	26	8	40	119	34	476	89	409	67	． 86	7	50	4
Kennebec	19	10	36	121	55	569	156	477	92	． 84	12	56	12
Knox．	15	1	13	41	15	336	81	286	50	． 85	7	47	4
Lincoln	13	4	25	68	23	323	45	269	54	． 83	9	30	2
Oxford	32	7	17	121	10	591	91	485	106	． 82	23	98	4
Penobscot．	52	10	49	154	23	907	207	785	122	． 87	15	104	12
Piscataquis．	18	1	17	56	12	249	34	213	36	． 81	5	31	5
Sagadahoc ．	9	2	3	33	1	188	60	173	15	． 92	－	8	5
Somerset	22	14	32	83	48	51.2	106	436	76	． 85	10	158	8
Waldo	21	5	10	53	10	479	67	414	65	． 86	17	88	
Washington	42	8	22	97	22	459	130	403	56	． 88	3	49	14
York．．．．．．．．	25	2	66	107	36	548	208	457	91	． 83	8	37	2
	389	104	450	1，464	402	7，585	1，862	6，474	1，111	． $85 \frac{1}{3}$	124	839	98

COMPARATIVE STATEMENT-I.

Items.	1886.	1887.	Increase.	Decrease.
Whole number of scholars between four and twenty-one \qquad	212,782	212,574	-	208
Number registered in summer and fall schouls. .	123,821	125,816	1,995	
Average attendance in summer and fall schools	102,513	104,516	2,003	
Number registered in winter and spring schools	117,286	118,598	1,312	
Average attendance in winter and spring schools	97,277	97,897	620	
Per cent of average attendance to whole number.	. 47	. 48	. 01	
Per cent of average attendance to number registered in summer and fall 81	. 80		. 0
Per cent of average attendance to number registered during the year 68	.70	. 02	
Whole number different scholars registered during the year.	146,08j	145,530	-	555
Average length of summer schools in weeks and days	10w.	11w. ld.	1w. ld.	
Average length of winter schools in weeks and days	10w. 4d.	11w. 1d.	- 2d.	
Average length of schools for the year,	20w. 4d.	22w. 2d.	1w. 3d.	
Number of school districts in the State,	3,628	2,539	-	89
" parts of districts	275	249		26
"، school-houses	4,312	4,310	-	
" school-houses reported in good condition....... . .	3,273	3,144	-	129
" school-houses built during the year \qquad	69	63		
Cost of the same......................	\$53,143	\$160,741	\$107,598	
Estimated value of school property in the state	\$3,109,745	\$3,306,367	\$196,622	
Number of male teachers employed in summer..	420	418	-	
Number of male teachers employed in winter....	1,640	1,592	-	48
Number of female taachers employed in summer. \qquad	5,043	5,218	175	
Number of female teachers employed in winter.	3,023	3,059	36	
Nuinber of teachers graduates of normal schools	567	657	90	
Average wages of male teachers per month (excluding board).......	\$34 15	\$33 82	-	. 33
Average wages of female teachers per week (excluding buard)	417	414		. 03
Average cost of teachers' board per week,	201	203	. 0 ?	
Amount of money voted by towns for common schools	630,223	676,916	\$46,693	
Excess above amount required by law..	133,249	168,546	35,297	
A verage amount per scholar.	294	314	. 20	
Amount available from town treasuries for school year	703,717	746,253	42,536	
Amount available from State treasury for school year \qquad	342,491	3.51,293	8,802	
Amount derived from local funds	30,303	26,131		\$4,172
Total school resources	1,076,511	1,123,669	47,158	
Amount expended for common schools	1,013,741	1,057,513	43,772	
Net balance unexpended......	62,770	66,157	3,387	
Amonnt paid for school supervision...	31,693	32,532	839	

COMPARATIVE STATEMENT-II.

| Items. | | |
| :---: | ---: | ---: | ---: | ---: |
| | | |

STATEMENT.

Showing the Amount of $\boldsymbol{S c h o o l ~ M o n e y ~ a p p o r t i o n e d ~ b y ~ t h e ~ S t a t e ~}$ Treasurer to the Several Towns and Plantations in the State and available for school purposes for the school year ending April 1, 1888.

ANDROSCOGGIN COUNTY.

Towns.			Towns.		
Auburn	3,205	\$5,462 91	Minot.	493	\$840 31
Durham	380	64771	Poland.	688	1,172 70
East Livermore	381	64941	Turner	596	1,015 88
Greene	258	43976	Wales.	139	23693
Leeds ..	339	57783	Webster	327	55737
Lewiston	6,388	10,888 33			
Lisbon..	1,012	1,724 95.	Totals.	14,556	24,810 66
Livermore ..	350	$59657 \mid$			

AROOSTOOK COUNTY.

152	- 25908	PLANTA		
186	31704	Allegash	112	19090
134	22840	Bancroft	96	16364
282	48067	Cary	186	31704
361	61532	Castle H	210	35794
1,391	2,370 95	Caswell	120	20454
395	67327	Chapman	94.	16023
1,208	2,059 04	Connor.	279	47555
784	1,336 33	Crystal	121	20624
1,193	2,033 46	Cyr...	229	39033
436	74317	Dyer Brook	89	15170
84	14318	Eagle Lake.	149	25397
65	11079	Garfield.	41	6988
414	70566	Glenwood	69	11761
1,185	2,019 83	Hamlin.	294	50113
93	15851	Hammond	43	7329
312	53180	Macwatoc	93	15852
412	70225	Merrill	108	18409
329	56078	Molunku	27	4602
184	31363	Moro	83	14147
632	1,077 25	New Canada.	118	20113
331	56419	New Sweden.	241	41078
354	60339	Oakfield	289	49260
105	17897	Oxbow	54	9205
432	73635	Perham	163	27783
266	45340	Portage Lake	61	10397
80	13636	Reed.	67	11420
1,015	1,730 06	St. Francis.	139	23693
338	57613	St. John.	89	15170
113	19260	Silver Ridge	80	13636
526	89657	Wade	43	7329
421	71759	Wallagrass.	223	38010
178	30340	Westfield..	54	9205
348	59317	Winterville.	41	6888
,844 32,119 55				

CUMBERLAND COUNTY.

Towns.			Towns.		
Baldwin	329	¢56) 78	New Gloucester	414	\$705 66
Bridgton	803	1,368 71	North Yarmouth....	234	39886
Brunswick	1,764	3,006 74	Otisfield.	272	46362
Cape Elizabeth	1,959	3,168 66	Portland	11,834	20,171 03
Casco.	299	50964	Pownal	272	46362
Cumberland	542	92384	Raymond	339	57783
Deering.	1,299	2,214 14	Scarboro'.	572	97497
Falmouth	496	84543	Sebago	264	44999
Freeport	657	1,11985	Standish	555	94599
Gorbam	887	1,51189	Westbrook	1,958	3,337 41
Gray .	554	94429	Windham	681	1,160 76
Harpswell.	615	1,048 26	Yarmouth	628	1,070 43
Harrison..	356	60680			
Naples	250	42612	Totals	28.733	48,975 32

FRANKLIN COUNTY.

HANCOCK COUNTY.

Amherst	129	21988	Orland	503	85737
Aurora.	73	12443	Otis...	96	16363
Bluehill	715	1,218 71	Penobscot	434	73975
Brooklin	369	62896	Sedgewick	377	64259
Brooksville.	559	$9)^{2} 81$	Sullivan	366	62385
Bucksport	866	1,476 10	Surry	390	66475
Castine .	347	59146	Tremont	695	1,184 62
Cranberry Isles	114	19432	Trenton	118	28636
Dedham	121	20624	Verona	112	19090
Deer Isle.	1,320	2,249 94	Waltham	95	16192
Eastbrook	126	21477			
Eden	654	1,114 74	PLANTATIONS.		
Ellsworth	1,736	2,959 02	Long Island.........	59	10056
Franklin	437	-744 96		21	3579
Gouldsboro...........	582	99202	No. 21.	20	3409
Hancock	414	70566	No. 33.	71	12102
Isle au Haut	92	15682	Swan's Island	243	41420
Lamoine..	253	43124	Swan's Island		414
Mariaville	131	22328	Totals	13,078	22,29141
Mount Desert .	390	66475			

KENNEBEC COUNTY.

Towns.			Towns.		
Albion..	335	\$571 01	Pittston	403	\$686 91
Augusta	2,542	4,332 83	Randolph	335	57101
Belgrade.	359	61192	Readfield	267	45510
Benton	337	57442	Kome	16.5	28124
Chelsea	269	4.5851	sidney	396	67498
China	455	77554	Vassalboro'..........	736	1,254 52
Clinton	475	80963	Vienna	187	31874
Farmingdale	235	40056	Watervil	2,461	4,194 77
Fayette.	242	41249	Wayne	248	42272
Gardiner	1,421	2,422 09	West Gardiner.	278	47385
Hallowel!	854	1,455 64	Windsor	283	48237
Litchfield	345	58805	Winslow	595	1,014 17
Manchester	154	26249	Winthrop	570	97156
Monmouth	333	56760	Unity Plantation....	22	3750
Mt. Vernon	253	43124			
Oakland....	592	1,009 06	Totals	16,147	27,522 52

KNOX COUNTY.

Appleton.	415	70736	George	892	1,52041
Camden.	1,331	2,268 69	Thomaston	847	1,443 71
Cushing	275	46873	Union	434	73976
Friendship	320	54544	Vinalhav	871	1,484 61
Hope	234	39886	Warren	719	1,225 53
Hurricane Isle	66	112 \%n	Washington.	402	68521
North Haven	232	39545	Matinicus Isle Pl	64	10909
Rockland	2,275	3,877 72			
South Thomaston	562	957 93)	Totals.	9,939.	16,941 00

LINCOLN COUNTY.

Alna	183	31192	Somerville	203	34601
Boothbay	1,355	2,309 60	Southport...........	226	38522
Bremen	259	44147	Waldoboro'	1,097	1,869 84
Bristol	1,024	1,745 41	Westport.	181	30851
Damariscotta	315	53691	Whitefield.	472	80452
Dresden	343	58464	W iscasset	627	1,068 72
Edgecomb	281	47896	Monhegan Pl........	30	5114
Jefferson..	477	81304			
Newcastle	410	69884	Totals	7,814	13,318 94
Nobleboro'	331	56419			

OXFORD COUNTY.

Towns.			Towns.		
Albany .	220	\$374 99	Oxford.	470	\$801 11
Andover	261	44487	Paris	860	1,465 87
Bethel..	607	1,034 63	Pera	253	43123
Brownfield	392	66816	Porter	326	55567
Buckfield	386	65794	Roxbury	62	10568
Byron	77	13124	Rumford	332	56590
Canton.	437	74487	Stoneham	148	25227
Denmark	284	48408	Stow.	120	20454
Dixfield.	286	48749	Sumne	335	57101
Fryeburg	460	78407	Sweden	124	21136
Gilead.	93	15851	Upton	90	15340
Grafton.	35	5966	Waterford.	310	52839
Greenwood	270	46021	Woodstock	325	55396
Hanover	53	9034			
Hartford	216	36817	PLANTATIONS.		
Hebron.	174	29658	Franklin	55	
Hiram	385	65623	Lincoln	22	3750
Lovell	284	48408	Magalloway	20	3409
Mason	37	6307	Milton	85	14488
Mexico.	128	21818			
Newry.	107	18238	Totals	10,003	17,050 09
Norway..... . .	874	1,489 73			17,050 05

PENOBSCO'T COUN'TY.

130	\$221 59	Lee ...	361	61532
71	12101	Levant.	329	56078
5,288	9,013 39	Lincoln	554	94429
508	86389	Lowell.	176	29999
253	43123	Mattamiscontis	17	2897
1,030	1,755 64	Mattawamkeag	185	31533
179	30510	Maxfield.	46	7841
386	65794	Medway	249	42442
223	38010	Milford	244	41590
381	64941	Mt. Chase	128	21818
131	22329	Newburg	301	51305
112	19090	Newport	400	68180
387	65964	Oldtow	1,237	2,108 47
390	66475	Orono.	738	1,257 93
744	1,268 15	Orrington.	412	70225
334	56931	Passadumkeag	87	14829
243	41419	Patten.......	290	49430
20	3409	Plymouth	228	38863
181	30851	Prentiss.	149	25397
261	44487	Springfield	265	45169
296	50453	Stetson	207	35283
311	53009	Veazie	189	32215
207	35283	Winn.	345	58805
259	44146			
99	16874	PLANTATIONS.		
792	1,349 96	Drew	49	8353
428	72953	Lakeville	56	9545
214	36476	No. 2, Grand Falls...	35	5966
44	7500	stacyville.	68	11591
187	31874	Webster	58	9886
168	28636	Woodville	98	16704
227	38692			
237	40397	Totals	22,222	37,877 34

PISCATAQUIS COUN'TY.

Towns.		Money Ap. portioned.	Towns.		
Abbot	220	\$374 99	Sangerville.........	339	\$577 83
Atkinson.	244	41590	Sebec.	224	38181
Blanchard.	57	9715	Shirley	78	13295
Brownville	353	60168	Wellington	235	40056
Dover	506	86248	Williamsburg	67	11420
Foxeroft	431	73464	Willimantic..... . . .	127	21647
Greenville	203	34601			
Guilford	320	54544	PLANTATIONS.		
Medford	138	23523	Elliottsville	16	2727
Milo. .	340	57953	Kingsbury	83	14147
Monson.	398	67839			
Orneville.	219	37328	Totals	4,945	8,428 74
Parkman..	347	59146			

SAGADAHOC COUNTY.

SOMERSEI' COUNTY.

Anson	461	78577	St. Albans	443	75509
Athens.	412	70225	Skowhegan	1,305	2,224 37
Bingham	225	38351	Smithfield	156	26590
Brighton	222	37840	Solon	284	48408
Cambridge	136	23182	Starks	275	46873
Canaan	387	65964			
Concord	134	22841	PLANTATIONS.		
Cornville.	264	44999	Carratunk.	85	14488
Detroit	185	31533	Dead River.	35	5966
Embden.	210	35794	Dennistown	30	5114
Fairfield	1,019	1,736 88	Flagstaff....	35	5966
Harmony	228	38863	Highland	32	5455
Hartland.	330	56249	Jackman.	51	8692
Madison	536	91362	Lexington	76	12954
Mercer .	201	34260	Moose River	56	9546
Moscow.	199	33919	No. 1, R. 2, W.K.R.	32	5455
New Portland	353	60168	The Forks	65	
Norridgewock	474	80793	West Forks.	52	88
Palnyra.	345	58805			
Pittsfield.	664	1,13179	Totals	10,138	17,280 19
Ripley...	151	25737			

WALDO COUNTY.

Towns.			Towns.		
Belfast	1,331	\$2,268 69	Northport	254	\$432 94
Belmont	173	29487	Palermo.	314	53521
Brooks	234	39886	Prospect	259	44146
Burnham	320	54544	Searsmont	414	70566
Frankfort	419	71418	searsport	564	96134
Freedom	184	31363	Stockton	377	64259
Islesboro'	376	64089	Swanville.	244	41590
Jackson	207	35383	Thorndike.	237	40397
Knox. .	278	47385	Troy.	299	50965
Liberty	281	47896	Unity.	312	53180
Lincolnville	518	88293	Waldo	269	45851
Monroe	365	62214	Winterport	654	1,114 74
Montville	458	78066			
Morrill .	150	25567	Totals	9,491	16,177 37

WASHINGTON COUNTY.

Addison..	365	62214	Machiaspo	528	89998
Alexander	160	27272	Mari	42	7159
Baileyville	113	19260	Marshfield	135	23011
Baring..	105	17897	Meddy bemps	60	10227
Beddington	83	14147	Millbridge	598	1,019 30
Broukton..	147	25056	Northfield	57	9716
Calais	2,462	4,196 47	Pembroke	719	1,225 53
Centrevill	60	10227	Perry	375	63918
Charlotte	187	31874	Princeton	380	64771
Cherryfield	683	1,164 17	Kobbinston	323	55055
Columbia.	268	45681	Steuben	401	68350
Columbia Fa	273	46532	Talmadge	53	9034
Cooper.	124	21136	Topsfield	147	25056
Crawfor	65	11079	Tressott	203	34601
Cutler	313	53350	Vanceboro'	240	40908
Danforth	374	63748	Waite .	90	15341
Deblois	31	5284	Wesley	91	15511
Dennysville	182	31022	Whiting	144	24545
East Machias	578	98520	Whitneyv	172	29317
Eastport.	1,750	2,982 88			
Edmunds	181	30851	Plantations.		
Forest City	100	17045	Codyville	34	5796
Harrington	441	75168	No. 14.	59	10057
Jonesburo'	221	37669	No. 18	12	2045
Jonesport	793	1,351 67	No. 21	47	8011
Kossuth.	$\begin{array}{r}37 \\ 752 \\ \hline 85\end{array}$	$\begin{array}{r}63 \\ \hline 1,281 \\ \hline 19\end{array}$			
Machias ...	875	1,49143		6,630	,350 0

YORK COUNTY.

Towns.			Towas.		
Acton.	292	\$49771	Lyman	277	\$472 14
Alfred	353	60168	Newfield	231	39374
Berwick	657	1,119 86	North Berwick	533	90850
Biddeford.	4,396	7,492 97	Old Orchard.	167	28465
Buxton	627	1,068 72	Parsonstield	453	77213
Cornish	338	57613	Saco	1,662	2,832 88
Dayton	147	25056	Sanford.	1,096	1,868 13
Eliot .	427	72782	Shapleigh.	305	51587
Hollis	392	66816	South Berwick	1,014	1,728 36
Kennebunk	823	1,402 80	Wa terboro'.	403	68691
Kennebunkpor	646	1,101 11	Wells	752	1,28178
Kittery.	834	1,421 56	York	512	87270
Lebanon	460	78407			
Limerick.	278	47385	Totals ..	18,444	31,437 75
Limington...	369	62896			

Free High School Statistics.

FREE HIGH SCHOOL STATISTICS.

Returns for the Year Ending June 1st, 1887.

Towns.	Districts.				$\cdot \operatorname{sun} x \theta \neq \text { jo } \operatorname{d\theta quin} N$			Average attendance.											
Alfred		\$505 20	\$255 25	$\$ 25000$	3	30	42	30	42	42	25	11	22		-	30	20	30	2
Anson		51300	36150	15150	1	15	80	75	80	2.3	14	7	32	20	5		35	9	12
Ashland		30000	15150	14850	2	20	40	27	40	40	40	22	2.	-	-	40		17	9
Atkinson	Nos. 8 and 5	16200	8100	8100	2	18	36	32	20	32	18	14	5	-	-	4	4	5	
Auburn		3,533 3?	3,283 33	25000	3	36	522	392	-	-	-	-	-	86	37	97	100	16	18
August		3,250 00	3,00000	25000	3	36	130	89	115	13	10	28	98	91	26	59	81	13	1
Avon	No. 8	8000	4000	4000	1	10	13	11	11	10	7	6	6	-	-	-	1	7	1
Bango		4,138 00	3,888 00	2 20 00	3	36	241	231	-	51	-	6	,	198	82	144	43	-	2
Bath		3,276 00	3,026 00	25000	3	35	231	219	-	73	180	-	-	54	113	200	160	8.	13
Belfast	Central Dis.	1,500 00	1,250 00	25000	4	37	56	48	56	14	-	-	-7	21	-	28	34	12	3
Berwick	Sullivan Dis	60000	35000	25000	2	20	52	44	52	28	39	28	27	-	-	2.4	12	15	4
Biddeford		2,650 00	2,400 00	25000	3	36	127	104	-	-	-	-		70	20	90	68	14	
Bluehill		40000	20000	20000	3	30	94	65	94	90	90	28	40	19	5	12	32	26	23
Boothbay		33000	16500	16500	2	22	96	72	96	96	40	52	28	-	-	31	14	25	2
Bowdoin.		11250	562.5	5625	1	10	38	31	15	15	38	-	15	-	-	21	10	11	5
Bowdoinham		50000	25000	25000	2	23	52	48	30	25	11	-	19	-	6	16	21	9	2
Bradford	No. 10.	15000	7500	7500	1	10	40	35	36	40	36	15	1	2		6	24	6	16
Brewer.		9310.1	65100	25000	3	35	52	31	21	20	11	20	15	-	-	44	29	20	4
Bridgton		1,288 00	1,038 00	25000	3	36	55	47	-	32	13	9	33	25	-	28	19	17	3
Bristol		33200	16600	16600	2	20	91	80	79	78	42	61.	10	-	-	2	11	21	8

Brownv	15500	7750	7750	1	10	66	49	41	51	44	26	16	19	-1	7	9	7	
Brunswick	2,236 00	1,986 00	25000	3	36	63	55	-	9	5	24	1	41	10	26	40	15	3
Buckfield	32000	16900	15100	1	10	117	102	3.3	61	38	43	30	20	-1	8	0		7
Bucksport No. 1	$\begin{array}{ll}727 & 25\end{array}$	47725	25000	3	39	38	31	-	20	8	5	5	26	8	34	26	11	
Burnham No. 10.	15000	7500	7500	1	10	43	30	30	39	27	6	19^{\prime}	$-$	-1	-	3	19 9	1
Calais	1,250 00	1,000 00	25000	3	36	75	65	-	-	,		-	57	8	66	46	25	2
Camden. \{ Megunticook ...	82500	61810	20690	3	30	52	47	29	29	29	29	-	32	-	25	12	10	1
Camden. \{ Rockport	25000	20690	4310	3	32	92	55	60	54	54	26	14	30	6	30	17	14	3
Cape Elizabeth	1,250 00	1,000 00	25000	3	33	105	96	57	16	45	32	47	33	13	76	80	34	
Caribou No. 2.	1,000 00	75000	25000	3	36	90	45	75	50	60	25	15	16	20	30	31	10	20
Castine	1,000 00	75000	25000	3	35	57	50	-	10	10	2	9	20	-	10	12		
Carmel. No. 3	10000	5000	5000	1	10	17	13	17	17.	17	7	11	-	-	3	3	2	2
Casco No. 6	10000	6750	3250	1	10	34	29	29	31	26	24	7	4	-	,	9	6	1
Charleston No. 10 et als	40450	24100	16350	2	20	87	73	70	51	80	20	15	8	-	25	60	15	20
Cherry field	96275	71275	25000	3	35	109	88	77	61	62	8	40	10	4	34	44	15	6
China \{ No 4.	21050	14664	6386	1	10	61	50	51	42	48	12	3	3	-	8	12	20	10
Caina ${ }^{\text {a }}$ No. 14	60375	41761	18614	2	21	55	45	38	30	28	12	10	j	-	30	23	19	18
Columbia Falls	19500	10345	9155	1	12	42	37	39	37	40	i)	-	2	-	5	27	5	3
Corinth $\{$ No. 13	7500	3750	3750	1	10	23	20	13.	18	11	10	4	2	-	14	2	5	3
Corinth......... ${ }^{\text {No. } 2}$	8625	$\begin{array}{lll}43 & 12\end{array}$	4312	2	20	47	39	12	21	14	16	1	-	-	1	6	1	1
Cornville..........	17720	8860	8860	1	11	49	43	49	42	48	48	3	4	-	10	13	3	5
Cumberland	98000	73000	25000	3	33	70	47	24	31	26	15	13	15	-	24	30	9	4
Deering.	1,693 00	1,443 00	25000	3	33	136	127	60	22	-	15	8	72	69	135	66	50	4
Dennysville	51750	27240	24510	3	32	93	86	39	37	19	17	15	4	1	6	10	2	1
Dexter	1,050 00	80000	25000	3	30	68	61	-	31	28	18	1	22	9	35	38	20	10
Dixfield.......... No. 1	23250	13475	9775	1	10	47	42	21	37	13	12	2	4	,	.	11	9	8
i No. 4.	6000	3140	2860	1	10	14	12	5	12	7.	6	3						8
Dixmont........ ${ }^{\text {No. } 6 \text { et als. }}$	15000	8413	$65 \quad 87$	1	10	42	38	34	42	35	12	8	-	-	-	13	1	6
Dixmont........ No. $7 \ldots . .$.	15000	9988	$50 \quad 12$	1	10	39	34	32	35	27	12	8	-	-	- 2	18	3	15
(No. 2	11330	6165	5165	1	10	29	25	25	28	28	5	7	-	-	10	4	8	2
East Livermore....	31350	15825	15525	2	26	111	96	96	83	57	39	13	20	-	19	42	12	
East Machias	22800	11400	11400	3	39	36	19	-	15	13	3	-	12	3	7	14	6	5
Eastport	1,500 00	1,250 00	25000	4	38	104	70	104	56	54	54	54	22	12	33	20	-	2
Eden	43250	2162 F	21625	3	26	77	65	65	65	60	60	50		1	3	12	20	8
Edgecomb No. 1	9750	4875	4875	1	10	29	21	29	28	21	25	-	-	.	8	8	2	
Eliot	6300	3250	3250	$\frac{1}{2}$	4	35	32	32	23	30	15	- 8	-	-	27	13	12	
Ellsworth.	1,587 50	1,337 50	25000	3^{2}	36	83	80	-	14.	-	-	-	58	27	16	47	10	1
	9800	4900	4900	1	10	18	12	13	18	11	8	3	-	-	1	7	2	3
Ena........... Nos. 2 and 6....	10000	6137	3863	1	10	38	32	32	38	22	8	8	-	-	5	11	5	6

Returns for the Year Ending June 1st, 1887-Continued.

Towns.	Districts.							Average attendance.											
	No. 3	\$258 50	\$130 50	\$128 00	1	11	62	57	45	55	45	30	10	-	-	15	35	6	10
Exeter $\{$	No. 6.	24700	12600	12100	2	20	27	23	26	26	14	12	4			1	7	5	+ 4
Fairfield		75000	50000	25000	4	35	72	63	67	21	30	12	18	25	8	52	27	15.	3
Farmington	No.	41790	24915	16875	2	18	30	18	5	6	6	5	7	20	3	32	27	18	10
Fayette.		15350	7850	7500	3	$21 \frac{1}{2}$	63	54	56	62	40	27	10	-	-	1	9	-	4
Fort Fairfiel		53750	287 -0	25000	3	28	155	130	-	155	155	155	90	-	-	70	40	10	20
Foxcroft		50000	25000	25000	2	23	52	50	50	21	24	4	7	27	-	31	25	9	11
Freeport		1,064 00	81400	25000	3	36	52	43	52	19	14	-	15	41	$-$	23	45	10	2
Frenchville		38400	13400	25000	2	25	62	40	20	52	52	52	20	-	52	28	-	20	20
Gardine		1,900 00	1,650 00	25000	3	36	106	98	106	54	30	-	-	34	28	-	44	7	3
Georgetown		13750	6875	$68 \quad 75$	1	10	31	26	31	30	28	7	7	-	-	13	${ }^{6}$	6	
Gorham		1,116 00	86600	25000	3	31	206	169	100	147	78	53	17	63	10	50	47	46	10
Gray		76851	51851	25000	3	29	131	80	45	89	52	18	21	41	-	-	47	5	15
Greenfield		16900	8450	8450		13	19	14	16	15	18	10	4	-	-	-	${ }^{6}$	4	2
Greenville.		27000	13500	13500	2	18	35	26	36	30	26	20	10	3	-	12	10	8	1
Guilford		22000	11310	10690	1	10	95	80	70	40	36	34	22	-	$\overline{2}$		14	-	5
Hallowell		1,500 00	1,250 00	25000	3	37	66	55	-	26	10	47	9	35	22	42	33	10	3
Hancock		15500	7975	$75 \quad 25$	1	10	55	46	55	51	43	23	9	-	-	7	6	10	9
Hartford		20140	10140	10000	1	10	60	48	38	55	35	12	-	4	-	17	15	10	9
Holden		15000	7800	7200	1	10	27	21	8	23	22	9	101	-	-	12	5	20	3
Houlton.		90650	65650	25000	4	40	58	52	40	12	5	-	10	25	10	53	58	20	12
Industry	No.	10240	5120	5120	1	10	39	32	26	35	18	17	1	-	-	-	2	11	
Jackson	No. 4	10750	5975	4775	1	10	40	28	32	30	32	16	-	-	-	14	6	- ${ }^{4}$	1
Jonesport.	No. 2.	16250	8125	8125	1	10	50	38	50	50	50	30	20	-	-	10	3 14	-18	2
Kenduskeag.		454 00,	23863	21537	3	30	44	40	91	42	44	9	-	-	-	12	14	18	- 2

Kennebunk...... $\{$	$\left\|\begin{array}{l}\text { No. } 9 \\ \text { No. } \\ \text { No. }\end{array}\right\|$	165 800 800	124 12 590 88	$\begin{array}{rr}40 & 88 \\ 209 & 12\end{array}$	1	12	17 30	16	$\begin{aligned} & 17 \\ & 30 \end{aligned}$	$\begin{aligned} & 15 \\ & \mathbf{3 0} \end{aligned}$	$\begin{aligned} & 16 \\ & 30 \end{aligned}$	$\begin{array}{r} 4 \\ 19 \end{array}$	${ }^{4}$	$\begin{array}{r} 4 \\ 18 \end{array}$	4	5 9	$\begin{array}{r}7 \\ 24 \\ \hline\end{array}$	- 5	1	,
Kittery		75000	50000	25000	3	36	83	58	83	83	83	35	36	-	-	42	53	24		
Lamoine.		20800	10400	10400	1	12	32	29	32	28	29	16	9	5	2	17	7			
	No. 9.	12500	6650	5850	1	10	32	26.	28	28	20	18	-	-	-	2	10	-	2	
Lebanon	No 3.	23210	11605	11605	4	35	25	10	25	23	16	14	10	1	-	4	10	4	6	-
	No. \quad.	8000	4750	3250	1	10	12	8	10	7	8	5	6	-	-	-	4			
Leөds............	No. 7	7500	4.917	2583	1	10	26.	24	21	22	13	6	11	-	-	-	3	1		
Levant		29125	15020	14105	3	24	110	91	110	102	79	48	5	$\overline{-}$	-	10	56	32	13	
Lewiston		4,30000	4,050 00	25000	2	38	167	156	167	26	86	32	-	89	39	105	116	38	10	
Limerick		50908	26804	24104	3	28	42	35	42	22	34	9	16	20	6.	31	14	10	4	
Limestone		20000	10000	10000	2	20	84	66	48	48	12	15	-	4	-	3	8	-	6	,
Lisbon.		90000	65000	25000	3	30	176	158	50	123	44	48	35	67	14	36	47	48	5	
Livermore.		29800	15363	14437	2	20	35	25	33	23	25	-	11	-	-	12	26	8	3	,
Lubec		34000	17000	17000	1	17	37	29	37	26	15	16	14	-	11	14	24	-	7	
Machias		1,17200	92200	25000	3	34	50	42	-	50	50	-	-	45	5	50	50	50		
Madison	No. 2.	27000	13500	13500	2	18	96	83	96	84	84	60	24	-	-	18	12	10	6	P
Manchester		19250	9625	9625	1	10	41	29	37	41	21	17.	-	-	-	5	5	2		-
Mercer.	No. 2.	11250	5625	5625	1	10	38	32	30	28	25	13	6	-	-	1	11	4	10	0
Milo..		19500	9750	9750	1	10	104	96	55	86	50	60	-	16	-	19	21	3	6	2
Minot and Poland.	Union Dis	99066	74066	25000	3	37	56	43	56	18	18	$-$	-	13	4	15	21	-	1	\bigcirc
Monmouth		68000	43000	25000	3	30	96	83	40	73	67	26	21.	28	-	22	61	34	8	-
Monroe.		40000	21100	18900	4	36	110	61	100	110	92	40	8	-	-	-	40	10	6	-
Monson		50000	25000	25000	3	30	98	77	32	69	73	45	13	8	6	23	24	19	6	
	No. $2 .$.	10000	5000	5000	1	10	28	25	20	18	11	10		-	-	-	7	2	2	
Montville.......	No. 4, 14, 15.	20250	10960	9290	1	10	51	45	43	48	32	33	1	-	-	14	7	5	3	
	No. 8...	10150	6150	4000	1	10	40	32	3.5	38	32	14	-	-	-	-	15	6	12	
Mt. Desert		29400	14700	14700	3	24	76	66	76	75	67	52	3	-	-	43	26	12	6	
	No. 3	10000	5275		1	10	38	33	38	38	35	16	13	-	-	8	12	5	2	
Newburgh	No. 10........	9125	5575	$35 \quad 50$	1	10	23	18	23	22	18	7	10	-	-	4	10	3	3	
Newcastle	No. 1.	15000	7500	7500	1	10	25	21.	21	22	12	9	2	-	-	6	2	2		
Newport . . .		50000	25000	25000	3	30	137	119	85	128	73	110	39	,		$-$	28	17	10	
New Sharon		45400	22700	22700	2	20	69	40	20	39	42	4	6	1	6	10	13	c	11	
Newry....	No. 3	7500	3750	3750	1	10	11.	9	7	11	6	6	-	-	-	3	3	-	2	
New Vineyard		20000	10000	10000	2	20	29	23	29	29	14	20	3	-	-	-	6	11	3	
Norridgewock	No. 8..	23887	11943	11944	1	13	41	36	23	41	19	12	4	6	-	10	19	11	5	
North Berwick		95762	70762	25000	4	42	61	52	35	26	26	-	16	26	4	33	30	-	4	
Norway	No. 7	60000	35000	25000	1	10	145	139	69	130	79	66	25	12	2	81	35	-	3	\cdots
Oakland		1,002 26	75226	25000	3	36	57	43	57	23	22	-	20	28	3	32	251	-	1	e

Returns for the Year Ending June 1st, 1887-Concluded.

Experimental Lessons on Properties and Physiological Effects of Alcohol, by H. M. Estabrooke, State Normal School, Gorham, Maine.

EXPERIMENTAL LESSONS ON ALCOHOL.

The following lessons on Alcohol have been prepared at the suggestion of the State Superintendent of Schools. They are adapted to pupils ranging in age from twelve to fifteen years. They suppose the pupil to be already in possession of the simplest facts of Physio$\log y$, such as the structure and uses of the muscles; the blood, its composition and use; the structure and functions of the nerves, \&c. They do not pretend to treat the subject exhaustively, but they probably give all that can be profitably taught in the average school.

METHOD.

1. So far as possible, present the subject objectively. Much of the information for the class must come from either the text-book or the teacher, but a considerable part of the work may be done experimentally. This method has two advantages; (1) it creates a livelier interest in the class; (2) it makes a more sharply defined impression on the mind of the pupil.
2. Make careful preparation for each lesson. Map out just the points you intend to present; and in teaching do not allow yourself to be drawn aside from these by irrelevant questions.
3. Teach by topics; fully finish one before beginning another.
4. Encourage the fullest and freest discussion of each subject which your time will allow. Require pupils to bring in questions of their own making, as review work. See that each question embodies some principle already taught.
5. Show the close connection between the vice of drinking and vice of other kinds; that a man whose body and mind are weakened by strong drink will more readily yield to temptation than one whose body and mind are in a healthy condition. After teaching the physiological effects of alcohol, teach its moral and social effects.
6. Make much use of the newspapers. Save every scrap bearing upon the subject; they will all come into use sooner or later. Keep a scrap box, and require the pupils to place in it such clippings as they find.
7. Finally, use much common sense. There is no study in our schools demanding a larger share.

The following illustrations will serve to show how an exercise on Alcohol may be conducted. The intelligent teacher will not follow them with "Chinese fidelity," but will take them simply as bints, and develope methods best suited to his or her own conditions and needs.

Suppose the subject of the lesson to be the effects of alcohol on the muscles. Two or three days before the lesson is given, lean meat, sufficient to afford a shred to each member of the class, is put to soak in alcohol. When the lesson is given, each pupil is first handed a shred of perfectly fresh muscle, and after observing its properties, the teacher obtains the following statements :

Fresh muscle is dark red.
It is soft.
It is flexible.
It is elastic.
It is tough.
The class next examines shreds of the alcoholic specimen, and finds that muscle soaked in alcohol changes its color.

It is quite hard.
It is less flexible.
It is inelastic.
It breaks easily when pulled.
The teacher leads the class to see that the only reason for this difference in the two specimens is that the second has been subjected. to the action of alcohol.

The application of the lesson will be made by showing that somewhat similar changes occur in the muscles when alcohol is taken into the body. The teacher will call particular attention to the weakening of the muscular fibers. She will explain that alcohol does not, indeed, harden living muscle, but it causes a change called fatty degeneration, the gradual changing of the muscular fiber into fat, and thus causes it to be less elastic and weaker. She will also explain that the action of the alcohol in the experiment is much more marked than it is when taken into the body, but that the action in each case differs not so much in kind as in degree.

In order to systematize the work, a lesson of this kind may be divided into three parts.
(1) Observation of the tissue in its normal state ;
(2) Observation and comparison of the tissue as affected by alcobol ;
(3) The application of the lesson learned.

Again, suppose the lesson to be the effects of alcohol on the digestion. The materials needed will be the white of an egg, a little scale pepsin, some hydrochloric acid, a half pint of pure water and three or four test-tubes or slender, narrow bottles. The class examines a portion of the albumen (the white of the egg), and notes that albumen is
ropy, transparent, soluble.
The teacher draws from the class the statements that food in order to be readily digested must be easily soluble; that albumen forms a large part of both animal and vegetable food. A little alcohol is then added to some of the albumen, and the class notes that the albumen has become
hard,
opaque,
insoluble.
The class infers that it is now less digestible than it was at first. The application of the lesson is then made by discussing the use of wines at meals, the after dinuer dram, etc.

But this lesson has taught only a part of the effects of alcohol on digestion. To two fluid ounces of water add a few drops of hydrochloric acid. Divide into two portions. The class observes that the liquid is now perfectly clear. To one portion add a little alcohol. The liquid still remains clear. To the other portion add a little scale pepsin previously dissolved in water. The solution remains quite clear. Next add two or three teaspoonfuls of warm alcohol. The class observes that the liquid has now grown turbid; that a little later white flakes make their appearance; that later still the flakes have all settled and the liquid is again clear. The class infers that the alcohol has caused the pepsin to settle-precipitated it, the chemist would say-and, knowing the office of pepsin in digestion, would infer that the digestive fluid had been deprived of its chief ingredient.

The application would be made by combining this lesson with the preceding one. The same alcohol, which changed the nature of the albumen in the food, has also spoiled the digestive fluid, thus doing a double injury.

As before stated, the lesson should be so systematically and thoroughly taught, that at its close each pupil should be able to put the gist of it on the blackboard. Some such form as the following will economize both time and blackboard space :

Alcohol is a liquid;
is colorless;
is transparent;
is lighter than water;
is inflammable;
has a strong odor, etc.
Fresh muscle is dark red;
is soft;
is flexible;
is elastic ;
is tough, etc.
After soaking in alcohol
Muscle changes its color ;
is quite hard;
is less flexible; is inelastic, etc.
These blackboard statements should be copied by the pupil into a note book kept for that purpose, and reviewed again and again until they are firmly fastened upon the memory.

EXPERIMENTS.

I. Properties of Alcohol.

1. Examine for color, taste, smell, etc.
2. To a test-tube half full of water add a drop or two of ink. Next add carefully a half teaspoonful of alcohol, using a pipette if the teacher have one. Notice that the alcohol floats like oil on the darkened water. Alcohol is lighter than water.
3. a. Wrap one end of a thin wire or narrow strip of tin, such as is found at the tinman's, around a fragment of chalk crayon. With this wire as a handle, dip the crayon into alcohol, next touch with a lighted match, and lower the chalk into a wide-mouthed
bottle or tumbler, into which a few spoonfuls of limewater have previously been poured Notice that the alcohol burns briskly. Alcohol is very inflammable.
b. Remove the crayon, close the mouth of the bottle with the hand, and shake vigorously. Notice that the limewater becomes milky. The alcohol, in burning, has produced carbonic acid.
4. a. Fill a test-tube balf full of water; then by means of the pipette,* fill the test-tube quite full of alcohol, taking care that the two liquids do not mix. Next close with the thumb and invert. Notice that the test-tube is no longer full; notice, also, that it has become quite warm. Alcohol unites with water so eagerly as to produce condensation and heat.
b. Fill the test-tube half full of alcohol, and over the mouth of the test-tube tie a piece of fresh bladder, or of dried bladder previously soaked in water. Invert, and mark, by a rubber band, a string, or by pasting on a bit of paper, how high the alcohol fills the tube. Next plunge the test-tube mouth downward into a tumbler of water. Notice that the alcohol rises in the tube. The affinity of alcohol for water caused the water to pass through the membrane into the test-tube.

Note.-The experiment just given is not always satisfactory. Too much time is needed to make it uscful in many schools, and unless the alcohol is very strong, say ninety-five per cent, the experiment may not succeed at all. A new method which may produce better results is given below :
c. Fill the test-tube half full of alcohol, to which add a few drops of potassic dichromate in solution. Over the mouth of the test-tube tie a piece of bladder, and plunge the tube mouth downward into a tumbler of water acidulated with a dozen drops of sulphuric acid. Notice at the end of about a half hour that the liquid in the testtube has turned green; notice, also, that the liquid in the tumbler remains clear. The attraction of the alcohol has caused the acidulated water to pass through the membrane into the tube and produce the green color.

Note.-It will usually be found best to warm both the alcohol and the acidulated water.
5. a. Place a little powdered spruce gum in one test-tube, some powdered resin in a second and a piece of gum camphor in a third.

[^0]Next add water to each, and shake vigorously. Notice that neither gum, resin nor camphor will dissolve in water.
b. Repeat the experiment, using alcohol instead of water. Notice that all the substances have dissolved. Alcohol is much used in the manufacture of varnishes, tinctures, \&c.
6. Add two or three spoonfuls of alcohol to a few drops of castor oil, sweet oil, oil of cloves, oil of lavender, \&c.; shake briskly. Notice that in each case the oils are broken up into exceedingly fine particles, forming an emulsion. Alcohol enters largely into the mannfacture of perfumes, medicines, \&c.
7. Several weeks before the exercise, place a piece of fresh meat in dilute alcohol. Notice that no trace of decomposition appears. Alcohol is an excellent preservative of flesh.

II. Tests for Presence of Alcohol.

8. a. To a half test-tubeful of water acidulated with sulphuric acid add a few drops of potassic dichromate in solution. Next add a half teaspoonful of alcohol, and heat over a lamp. Notice that the liquid immediately becomes green. This green color is the test for the presence of alcohol.
b. Repeat the experiment, using instead of the alcohol an equal quantity of brandy.
c. Repeat the experiment, using whiskey.
d. Repeat the experiment, using gin.
e. Repeat the experiment, using cider, beer, \&c. Conclusion from the above experiments?

III. Physiological Effects of Alcohol.

A. Effect on Albumen.

9. a. Fill a test-tube one-third full albumen (white of egg) ; add a little water, shake till the albumen is wholly dissolved, and boil over a lamp. Notice that the albumen is coagulated. Notice, too, that it is no longer soluble in water. Is it as digestible as it was at first?
b. To another portion of albumen add an equal amount of alcohol. Notice the albumen is again coagulated. The alcohol has coagulated the albumen by depriving it of a part of its water. See $\exp .4, a, b$ and d. Compare with exp. 9, a.
c. Repeat the experiment, using in place of alcohol whiskey, brandy, gin, etc. Coagulation takes place in each case. How has alcohol affected the digestibility of the albumen?
d. Put a piece of boiled white of egg into alcohol; after several days examine, and notice that the egg is of leathery consistency.
10. Cut a piece of fresh lean meat into small pieces, and wash till quite free from blood. Crush thoroughly by rubbing in a bowl, and finally extract the juice by adding water and squeezing through a thin cloth. The expressed juice will consist mainly of albumen dissolved in water. Fill a test-tube half full of this liquid, and add as much alcohol. The albumen is at once coagulated.
11. Soak a handful of catmeal or wheat flour in lukewarm water for a few hours. Strain through a cotton cloth, and let the liquid stand till all the starch has settled. To a portion of the clear liquid add half as much alcohol, and let it stand for ten or fifteen minutes in a warm place. At the end of that time notice that the liquid is filled with a cloudy precipitate. The alcohol has coagulated the vegetable albumen.

B. Effect on Pepsin.

12. a. Wash thoroughly a portion of the stomach of a pig, a calf or a sheep. Scrape the inner surface with a sharp knife, and soak both stomach and scrapings in separate dishes. The water with which they were covered will, in each case, dissolve out the gastric juice. That used to cover the stomach will usually be the best, as it will be the freest from blood. Strain, and to a portion of the liquid add half as much alcohol Notice that in a few minutes a cloudy white precipitate appears. This is the pepsin, which, being composed in part of albumen, has been precipitated by the alcohol.

As the stomach of an aninal is not always obtainable, the experiment may be conducted as follows :
b. To a two ounce bottleful of water add a dozen drops of hydrochloric acid. This will represent the acid fluid of the stomach in which the pepsin is dissolved. Take two portions of this liquid; (1) to the one add a nearly equal quantity of alcohol. The liquid remains clear and transparent. (2) To the other add scale pepsin (Fairchild's is perhaps the best) as much as will lie on a "nickel." The liquid is still clear or but slightly turbid. Next add the same amount of alcohol as in (1), and allow the mixture to stand in a warm place for several hours. Notice that after a time white flakes
make their appearance, and finally that all the pepsin settles to the bottom of the test-tube.

Note.-This experiment should be performed three times in order to make it effective; the first time about ten hours before the exercise, the second about five hours later, and the third during the exercise. The three stages of precipitation can thas be compared.

If the pepsin be previously dissolved in water and allowed to stand till the liquid is clear, the experiment will sometimes be more satisfactory.
c. Fill one test-tube two-thirds full of water and another two-thirds full of equal parts of alcohol and water. To the first add a few scales of pepsin, and shake vigorously. The pepsin dissolves readily. To the other add pepsin and shake as before. The pepsin either does not dissolve at all or dissolves with great difficulty.
d. Mince very finely a little boiled lean meat or boiled white of egg, and divide into two portions. To one portion add a half dozen tablespoonfuls of artificial gastric juice prepared as in exp. 12, b, and to the other an equal amount of digestive fluid and a teaspoonful of alcohol. Place both portions where they will be kept at a temperature of about one hundred degrees for eight or ten hours, occasionally shaking each. Notice that the first part gradually softens and dissolves, while the second part either remains unchanged or grows harder.

C. Effect on Mucous Membrane.

13. Wet the mucous membrane of the mouth with a little alcohol. Notice that the membrane smarts, the saliva at first flows a little more freely, and, finally, that the saliva ceases to flow, and the membrane feels dry and puckery. The alcohol at first inflamed the membrane and caused an increased flow of saliva, then finally checked the flow of the saliva by depriving the membrane of a part of its water. Recall the fact that the continuation of the mucous membrane of the mouth lines the stomach, and infer the action of alcohol on the stomach and on the flow of gastric juice.

Alcohol is said to injure every membrane of the body.

D. Effect on Muscle.

14. a. Examine a fragment of perfectly fresh muscle cut lengthwise of the "grain". Notice that it is of a dark red color, is soft, flexible, somewhat elastic, and very tenacious.
b. Examine another fragment of muscle cut like the first, but which has been soaked in dilute alcohol three or four days. Notice
that the color has faded, that it has grown hard, is less flexible, is not elastic and is quite brittle. The alcohol has coagulated the albumen of the muscle, and thus produced the change in properties.
Note.-In living muscle alcohol produces no hardness, but canses a diseased condition called "fatty degeneration." All the other changes are substantially the same in living and dead muscle.

E. Effect on Blood.

15. a. Place a drop of blood on a piece of thin glass, and, while holding it over a mirror or a sheet of white paper, examine with a magnifying glass. Note the even distribution of the corpuscles, which will show as very small red points.
b. Now touch the drop of blood with a very little alcohol. The blood is at once coagulated. Recall the fact that one of the elements of blood is albumen, and explain the coagulation of blood by alcohol. Note that the alcohol dissolves the red coloring matter of the blood, making it of lighter hue.
c. Get a cupful of blood of the butcher and let it stand till the clot has fully formed. To a portion of the serum add alcohol and note the effect. Of what is the serum composed?
d. Place a drop of blood on a glass slide, and cover with a piece of very thin glass. Examine with the microscope, using the quar-ter-inch objective. Note carefully the shape of the blood corpuscles. Then place under the cover a very small drop of alcohol, and notice that the corpuscles at once shrink and become distorted.
e. Fill two test-tubes half full of perfectly clear limewater. To one add an єqual amount of alcohol, and then place the two testtubes side by side. After a quarter hour, examine and compare. Note that in the test-tube containing alcohol the lime has been precipitated. The blood contains lime in solution, and alcohol deposits it on the walls of the blood vessels, and so causes them to be stiff and brittle.
f. Examine bottles in which wine has been kept a long time. The sides of the bottle will be covered with an earthy crust called the "beeswing."

F. Effect on Nervous System.-On the Brain.

16. a. Examine the brain of a cat, a rat or a squirrel. Note that it is very soft and covered with a network of blood-vessels.
b. Examine a brain that has been soaked in alcohol a few days. Notice that it has grown hard and faded. Keep in mind the fact that albumen forms a large part of the brain, and explain. The membranous coverings of the brain have also grown hard. Alcohol hardens every membrane in the body.

On the Nerves.
17. a. Hang one arm over the back of a chair so that the pressure shall come upon the biceps muscle. Press firmly, and in a little while a sensation of numbness and tingling will be felt. The unwonted pressure has temporarily paralyzed the nerve.
b Etherize a frog by stuffing a wad of cotton soaked in ether into its mouth. With a keen knife lay bare one of the nerves of the hind leg, and irritate by rubbing with the knife. The leg is drawn up with a convulsive movement. Now cover the nerve with alcohol and again irritate. Note that the convulsive motion has either entirely ceased, or is very weak. The alcohol has paralyzed the nerve.

Kill the frog before the effect of the ether passes off.
c. Etherize a frog, and stretch the web of the hind foot over a hole in a thin board or on a strip of clean window glass. Examine with the microscope, using the inch or half inch objective. Notice the capillaries and the corpuscles of the blood as they work their way throngh. Touch the web with a drop of dilute alcohol. The capillaries enlarge, and the blood flows more slowly. Touch the web with strong alcohol. The motion of the blood ceases entirely. The alcohol has paralyzed the nerves of the capillaries.
d. Rub two spots on some part of the arm till they have a ruddy glow. Bathe one with alcohol, and notice which spot loses its color first. What has been the effect of alcohol on the capillaries of the arm?

Note.-Probably it will not be necessary to perform all the experiments given in the preceding list, even if the teacher have the facilities. In two or three cases where the microscope is called for, the experiment may be omitted and still leave a pretty full presentation of the subject.

LIST OF MATERIALS.

The following materials and apparatus will be needed in performing the experiments:

Alcohol (ninety-five per cent if possible), four ounces; whiskey, brandy, gin, wine, beer, cider, \&c., two ounces each; one-half
dozen test-tubes ; piece of thin wire eight inches long ; two or three wide mouthed bottles or tumblers; bottle of limewater; piece of bladder; potassic dichromate in solution, two ounces; sulphuric acid, two ounces, in a bottle with glass or rubber stopper ; spruce gum, resin and gum camphor, a very little; castor oil, sweet oil, oil of cloves, oil of lavender, one dozen drops, each ; scale pepsin, one drachm ; hydrochloric acid, one ounce ; magnifying glass (two or three lenses) ; ether, one ounce ; lamp; tobacco pipe.

TOPICAL OUTLINE TO ACCOMPANY EXPERIMENTS.

In the following Topical Outline references have been made to those text-books most widely used in Maine, which treat the subject of Stimulants and Narcotics. As some of the books have no index and in others the index is of little assistance, it is hoped that the references given will help the teacher to economize time in the preparation of the lesson.

The first number in the reference, unless preceded by the sign \S, denotes the page, and those following, the section and sub-section. All references to Steele's Hygienic Physiology and to Hygiene for Young People are to pages, as in those works the sections are not numbered.

DEFINITIONS.

1. A Stimulant.
M. § 264 ; B. 177, (c) $2 \& 3$; Sm. 88, II., 1; P. P. 67, II., 1; C. § 307 ; Bl. § 138; G. 105.
2. A Narcotic.
M. § 264 ; Sm. 88, II., 1 ; P. P. 67, II., 9 ; H. Y. P. 11; Bl. § 138; G. 105-6; С. § 313.
3. Alcohol both a Stimulant and a Narcotic.
M. § 264,269 ; B. 177 (c); S. 130, note; Sm. 88, II, 1; Bl. § 138 ; C. § 313.

ABBREVIATIONS.
MMills's Physiology and Hygiene.
BBrands's Lessons on the Human Body.
S Steele's Hygienic Physiology.
H. Y. P Hygiene for Young People.

Sm Smith's The Human Body and its Health.
P. PSmith's Primer of Physiology.

Bl Blaisdell's Our Bodies.
HHutchinson's Physiology and Hygiene.
CCutter's Lessons in Hygiene, Physiology, Stimulants and Sedatives.
G Gustafson's Foundation of Death.

ALCOHOL.

I. How Obtained.

M. § 266; B. 174 (d); S. 128, note; H. Y. P. $15-28 ;$ Sm. $92, \S 16,17$; Bl. § 58, 59.

II. Properties of Alcohol.

1. Examination.
2. Weight (Exp. 2).
3. Inflammability ($\operatorname{Exp} .3, a, b$).
4. Affinity for water (Exp. 4, $a, b, c, d)$.
5. Solvent Power (Exp. 5, a, b).
6. Effect on Oils (Exp. 6).
7. Antiseptic Power (Exp. 7).
M. § 268 ; B, 176 (b), 185, note; S. 129, note; H. Y. P. 9,12 ; Bl. § 58 ; H. $98, \S 43$.

III. Forms of Alcohol.

[Exp. $8, a, b, c, d, e$.
M. § 267 ; B. 176 (a) ; S. 129 , note; H. Y. P. 28 ; Sm. $93, \S 17$; B1. § 59 ; H. $98, \S 42 ;$ P. P. $72, \S 16$.

IV. Effects of Alcohol.

1. On Albumen.

$$
[\operatorname{Exp} .9, a, b, c, d, 10,11 .]
$$

2. On Pepsin.
[Exp. 12, a, b, c, a.
M. § 287, 288 ; B. 179 (b); S. 166 ; H. Y. P. 101-2; Sm. 117, §4; B1. § 80 .
3. On Digestion.
M. § 287 , 288; B. 179 (b), (c) ; S. 166; H. Y. P. 100-2; Sm. 116, V.1-4;

Bl. § 79,$80 ;$ H. $125, \S 47$ and note $10 ;$ C. § $327(f) \&(g)$.
4. On the Stomach.
[Exp. 13.]
M. § 287 ; B. 179 (a), (b), 2, (c) ; S. 166, 131, 197, note (e) \& (j); H. Y. P, 100; Sm. 116, V. 1-3; P. P. 91, IV. 5-8; Bl. § 80 ; H. 125, § 47; C. § 327, (b), (f).
5. On the Muscles (Fatty Degeneration).

[Exp. 14.]

M. § 275 ; B. 182, §4; S. 169, note, 131, note, 197, note (i); H. Y. P. 61-2; Sm. 74, § 3; 48, V. 1; P. P. 31, III. 1; H. 151, § 49 ; C. § 317, 324.
6. On the Blood.
[Exp. 1г , a, b, c, d, e.
B. 185, note; 183, (b), 2-4, (c), 1-3; 208, (d), 1-3; S. 133, note, 132, 197, note (d) ; P. P. $57, \S 20$; H. 151, § 49 ; C. § 327, (i); G. 83, 87, note.
7. On the Blood Vessels.
[Exp. 15, f, g.
H. Y. P. 183 ; Sm. 74, § 4; P. P. 47, § 22, 23 ; C. § 317 ; G. 86.
8. On the Nervous System.

a. On the Brain and its Membranes.

[Exp. 16, a, b.]
M. § 277 ; B. 186 (a), 1-3; S. 195, 2d par.; Bl. § 139 ; H. 210, § 62 ; C. § 327 (o), § 286, § 306, a.
b. On the Nerves.
$[\operatorname{Exp} .17, a, b, c, d$.
M. § 278,279 ; B. 189 (a), 1,2 ; 182, (c) ; S. 193, § 1-4 and note; H. Y. P. 182-7; Sm. 151, V. 1-6; P. P. 124, V. 1-5; Bl. § 139-41; H. 210, note 13; C. § 327 (k).
c. On the Mind.
M. § 274,$278 ;$ B. 187 , (c) $1-6 ; 196$, (a)-(d) ; S. 194, § $3 ; 196 ;$ H. Y. P 188; sm. 151, V. 1-3; C. § 305; H. 211, § 63, 64 and notes $14 \& 15$.
d. On Muscular Movements.
M. § 278 , (1), (2), (4) ; B. 189, (b), 1-3; S. 193, § 1, 2, 4; 197, note; Sm. $151, \S 2 ;$ Bl. § $140 ;$ H. 210, note 13 ; C. § 320 .
9. On the Liver.
M. § 284 ; B. 207, (b) , 1-4; S. 167, 197, note (g) ; H. Y. P. 105 ; Sm. $118, \S 6 ; \mathrm{Bl} . \S 81$; H. 126, § 48 ; C. § 327 , (h).
10. On the Kidneys.
M. § 290 ; S. 167, 197, note (h) ; H. Y. P. 106; Sm. 118, §8; Bl. § 177 ; H. $127, \S 49$; C. § 327 , (n).
11. On the Heart.
M. § 283 ; B. 181, (b) 1-4; S. 130, 197, note (c); H. Y. P. 138; Sm. $74, \S 3 ;$ P. P. $46, \S 21,22$; E1. § $98 ;$ H. $150, \S 46,47$; C. § 327, (j).
12. On the Lungs.
M. § 289 ; B. 207, (c), 1, 2; S. 133, 197, note (b) ; H. Y. P. 122; Bl. § 109 and note; C. § 327 (m).
13. On Bodily Heat.
M. § 270 ; B. 191 (b), (c) ; S. 168; H. Y. P. 154; Bl. § 110; H. 99, § 4649.

PAPERS READ BEFORE

STATE PEDAGOGICAL SOCIETY,

ANNUAL MEETING OF 1887.

PRESIDENT'S ADDRESS.

MISSION OF THE TEACHER.

GEO. B. FILES.
As teachers, it is no unimportant part of our mission to discover, from a careful study of the tendencies of the times, what the highest welfare of the country demands. What the people really need and what public sentiment demands are not always identical. For example, national and social vices show that the more urgent needs are clearness of moral perception and deepening of conviction, but the public have been calling for intellectual acquirements, for methods of winning money and power.

Now our moral weakness, if not our culpable ignorance, is manifest in that we have yielded to the popular cry and have been cultivating the brain at the expense of the heart.

As educators, we ought to remember that this mode of procedure antagonizes true progress; for we fail to attain the highest intellectual results when the moral faculties lie dormant.

As a plant is feeble when deprived or the sunlight, so intellectual forces fall short of their grandest exhibition when deprived of the divine illumination of conscientious conduct.

As the highest happiness cannot be gained by making it an end, but is the result of devotion to others, so power finds its highest stimulus in upright principles.

I propose, in what I have to say, to briefly call attention to some of the more important subjects which must claim our thought and study, if, as teachers, we meet the requirements of our mission.

The first is manual training. Manual training has a threefold value, namely, industrial, intellectual and moral. The industrid. value is apparent from the fact that technical training not only qualifies a person to get a living, -an indispensable condition of self-respect, honor and happiness, but also contributes to national supremacy

The industrial value to a nation of technical instruction is forcibly demonstrated by the history of Germany for the past ten years. Her marvelous strides in manufactures, by which she is outstripping France, are due to the number and excellence of her technical schools. Every branch relating to a livelihood is taught in these schools, of which there are two hundred and fifty in operation. From this it is evident that manual training has much to do with material prosperity.

Second, as to the intellectual value of manual training. It calls into exercise thought, judgment and reason. Physical labor stimulates mental activity, brings to intellectual exertion that resolution and zest which can scarcely be derived from any other source. Power thus developed is just as good as that obtained from the study of dialectics or differential calculus, and is equally valuable to carpenter and lawyer, and is, therefore, independent of the question of vocation.

The compulsory gymnastic training in our best colleges is a recognition of the important truth that the highest development of mind cannot be attained without a corresponding training of the body. On the contrary, such is the mysterious interdependence of mind and body, that muscles under the direction of an active brain will do more and better work.

Therefore the trained hand and eye are by no means the most important results which come from industrial education.

Thirdly, as to the moral value of manual training. It tends to give correct views of life and personal responsibility. It is a safeguard against a horde of enervating and demoralizing forces which are begotten of idleness. Facts bear out the assertion that high moral excellence is rarely, if ever, attained without manual exertion
during the educational period of life. Read biography and then tell me why a large majority of our great men are born and bred in the country. I venture the answer that it is found in the fact that the country boy is obliged to work. The industrial training of the farm more than compensates for the sometimes inferior educational advantages of the country school.

This morning I noticed a remark recent'y made by Mr. Blaine in Paris to a reporter. The remark was this :-"I think I never felt better in my life. I ascribe my vigorous health to two causes. I was born with a good body, and worked on a Pennsylvania farm in my younger days. Life on a farm in boyhood makes for vigor of days in manhood."

Hence, we see the necessity of having in our higher schools, especially in villages and cities, some industrial training, which shall, at least, be equivalent to that furnished on the farm.

The history of education in this country for the past two years makes clearly evident that there is a rapidly growing sentiment in favor of industrial training, and what has been so successfully accomplished in some of our larger cities, has effectually demolished many theories of the opposition.

It is our duty as teachers, to carefully study this question; for, otherwise, we shall not meet the requirements of our mission.

The discussion of manual and mental education shows a widespread impression that one must be purchased at the price of the other, that the trained hand and eye are not combined with the trained mind. Now, an unprejudiced examination of this subject will reveal the fact that not only is there no necessary antagonism between physical and mental training but rather a reciprocal stimulus. While it may be interesting to understand the relative value of each department of that training which makes a perfect man, yet it is far more important to have the knowledge and skill to direct the various kinds of activity and discipline, so as to secure not only the trained hand and eye, but also the trained mind and heart.

If what has been said be true, it follows that the harmonious development of all the faculties and powers cannot be reasonably looked for without manual training. What has been done by the Superintendent of Public Instruction in Philadelphia, James McAlister, has deepened the conviction that the educational system of the near future must train the body as well as the mind and heart.

Right here I wish to mention two important results which will attend the introduction of manual training into our schools-first, the number of pupils will be increased and many will remain in school for a longer time, because the demand for what is called a "practical education" will be satisfied. The second result will be the elevation of manual labor. In spite of all the fine things which have been said by orator, essayist and poet, about the dignity and nobility of labor, there still rests upon it a stigma. This finds expression in social distinctions, the prolific source of much evil.

Therefore we can easily account for the prevalence of the mischievous notion that ideal happiness consists in getting beyond the necessity of labor; when, in fact, the keenest and purest enjoyment in life flows from activity.

Now, if in our public schools manual skill and intellectual achievements can be associated, then in active life it will be no easy task to divorce them. Then, in the good time coming, on the farm, in the shop, in the manufactory, as well as on the bench, in the editorial chair, in the pulpit, we shall find intelligence and scholarship.

EVILS.

In view of the evils of the country, what is the mission of the teacher? Our method of dealing with the evils of the day is unphilosophical and irrational. We are attempting to effect by legislative enactments alone that which cannot be accomplished without Christian education. We are stupidly floundering among results, instead of wisely dealing with causes. We are cutting shoots from a vigorous upas tree, while its roots remain in the fertile soil. Legislators are hopelessly puzzled with problems which the teachers of this country ought to assist in solving. For example, in New York alone are 70,000 destitute children. In our numerous other cities, they aggregate hundreds of thousands. The children of to-day are to be the men and women of to-morrow. In these great moral sewers are thousands, who, festering in filth and brutalized by passion and villainous example, will in the near future be blear-eyed drunkards, safe-cracking burglars, and bomb-throwing anarchists; who will be black-masked highwaymen, ballot-box stuffers, and hard knuckled roughs; who will crowd our almshouses, penitentiaries, and prisons with physical and moral wrecks; who will swarm about grog-shops, brothels, and gambling-hells.

What is to be done for this abandoned street population which is increasing at such an alarming rate? Chas. C. Pinckney said, "Millions for defence, but not one cent for tribute." Our policy in this country is millions for taking care of criminals, but not one cent for educating destitute children, out of whom criminals are made. Is this common sense? Is it economy, to say nothing of humanity? As teachers we have no business to say that this is a problem for statesmen and philanthropists, and composedly wash our hands of all responsibility.

In this question are involved not only the perpetuity of this great nation, but also the cause of representative governments and the dearest interests of humanity. This momentous question calls for the combined patriotism, knowledge and wisdom of all good men, and especially the united and vigorous action of teachers. What is the remedy for ballot-box stuffing and false election returns? Not sheriffs, constables and state militia; but moral education. Let the teachers brand it upon the consciences of the school boys that fraud brings only temporary advantage, which must sooner or later terminate in bitter and inconsolable failure.

What is the most effectual means of staying the drink traffic with its voluminous and dark history of crime and suffering? Not organizations, license and prohibitory legislation alone, although they have done much ; but universal temperance instruction. Teach the boy so he will have an intelligent horror of the wine cup. Thus shall we solve this long-standing question and, at the same time, eradicate countless miseries which blast this broad land.

Who is to check and counteract the insane theories of anarchist and communist? The teacher with sound theories of politics and government. In many of our common schools, especially in cities, are pupils representing different nationalities. To Americanize this heterogeneous mass and thus produce intelligent, thoughtful, loyal, and upright citizens is a task of no ordinary magnitude and one the burden of which must rest on the teacher.

How are we to reconcile the clashing interests of labor and capital? What is to end this unreasonable and selfish strife? Not secret organizations, strikes, and boycotts; but sound education which dignifies labor and stigmatizes that heartless greed which gloats over the fruits of half-requited toil.

What is to cool this burning fever to be rich, which is the prolific source of trickery, forgery, oppression, neglect, and a thousand other nameless wrongs which embroil society and ignite combustible
passion? Let the Christian teacher anchor deep in the souls of his pupils the indelible conviction that man's life consisteth not in the abundance of the things which he possesseth; that true success is not founded on bank stocks and mortgages; that anything short of mental and moral worth is a fatal delusion. The pupil should be made to believe in every fiber of his being that character is the one priceless gem, which it is supreme madness to barter for any and all other values.

Now, the solution of these great moral problems, political corruption, intemperance, communism, labor and capital, theft, and dishonesty-to which reference has been made-as well as many others of kindred nature, which fill good men with apprehension: I repeat, the solution of all these is involved in the solution of the educational problem. If such vast and far-reaching consequences hinge on right education, such education should be the paramount business of the present time, and if responsibility rests on one man more than another, that man is the teacher.

So we are brought to the conclusion that it is the peculiar prerogative as well as the exalted mission of the school master to take the initiative in educational matters.

If we are loyal to our mission, it must be under the inspiration of the profound conviction that education must not only be universal, but also such as to develop character. If boys and girls leave school with high ideals, with an unshaken belief that it is far nobler to live uprightly than to fare sumptuously, the national and social questions which have so long baffled our wisdom will not much longer be left to stagger us, and the gathering clouds of ignorance, greed and passion which threaten the perpetuity of this great republic will gradually, but surely, be dispelled by the ever increasing brightness of virtuous education.

CONDITIONS NECESSARY TO MEET THE REQUIREMENTS OF OUR MISSION.

1. The teacher should study the history of pedagogy, for it contains solutions for difficulties and courage for struggles. A revelation of the grand work already accomplished can but inspire one with energy, devotion and faith.
2. The teacher should heי"e broad scholarship-a knowledge not only of subjects to be taught, but also kindred subjects. He should have such an acquaintance with standard authors and such a taste for pure literature as will qualify him to direct his pupils in the choice of books.

Just here a word about books and what we, as.teachers, should do. This country, as we all are painfully aware, is flooded with sensational literature which is adapted with Satanic ingenuity to produce the worst effects on mind and heart. It throws about life a glamour of unreality. It gives an unhealthful stimulus to the imagination, creates distaste for exertion and an abhorrence of stern facts and duties. It blunts the moral perceptions, befogs the reason, inflames the baser passions, and poisons the springs from which issue tender charities and sympathies. In short, no evil is more hydra-headed. It is more wrecking than Scylla, more voracious than Charybdis.

The most effectual way to fight this evil is found in the cultivation of a taste for good books. The teacher should suggest to the pupil what to read and how to read. He should bring about an intimate relation between the school and public library by assigning topics for investigation and subjects for compositions and essays which require the consultation of books.
3. The teacher should have such a knowledge of human nature and such skill as will enable him to adapt his methods to different stages of growth, to the natural demands of observation, memory, imagination, and reason. The training should be so comprehensive as to develop the whole man-his physical, intellectual, æsthetic, social, and religious nature.
4. The teacher should have a definite purpose. I once heard of a man who made a bob-sled without rule or judgment. This has reminded me of much of our teaching. I seriously doubt if muscular activity alone can culminate even in a bob-sled, and so place little confidence in undirected effort. A ship, a house, an engine, is the product of a plan. Can we reasonably expect that intellectual power and moral excellence, the grandest culmination of human thought and volition, can result from anything short of a plan wrought out with the utmost skill and painstaking?

5 . Another condition of success is ability on the part of the teacher to awaken such an interest and inspire such a love of study as will insure spontaneous activity. If the pupil does only what he is compelled to do and cannot be brought to experience the exhilaraticn and enthusiasm resulting from voluntary exertion, you will look in vain for anything remarkable in scholarship. The teacher should aid the pupil to apprehend the objects of study and thas beget in him an intense longing which cannot be satisfied with anything short of a life of self-education.
6. The teacher must bave a young heart, that he may appreciate the pupil's difficulties, motives, desires, feelings and ambitions. He must have the broadest sympathy and most forbearing love. Some one says, "All this sounds very fine, but it is hard to meet the conditions. With bad ventilation, physical exhaustion, jaded nerves, home anxieties, with dullness, carelessness, inattention and mischievousness, it is impossible for a human being to be uniformly patient, kind and gentle." So it is, unless one keeps in mind the transcendent interests involved, unless the tremendous truth is burned into the soul that a priceless destiny may be wrecked by ignorance, thoughtlessness and ill-temper, unless one is ever drinking from that perennial fountain of divine wisdom and goodness, unless he comprehends the relation of the material and the spiritual.

In Grecian story the giant Antæus, wrestling with Hercules, doubled his strength every time he touched the ground. So do we increase our moral power when we come in contact with Jesus Christ, the Great Teacher.

Difficulties numerous and great never dishearten the man of sublime faith and heroic mold. Such is the true teacher, whose faith springs from trath, and whose heroism is derived from a clear conception of the needs and tendencies of the times.

Superintendent Richard Edwards said:—"There never was a heroic exercise undertaken that did not involve antagonisms as great. The soldier who is discouraged because the enemy is numerous may as well lay down his arms; and the teacher whose efforts are enfeebled by the thought of obstacles in his way may as well drop to the idea that he has no reward but his salary. The truth is that, in all these conflicts, the teacher's faith must sustain him; herein is for him the source of his strength."

What has been said emphasizes the fact that our work should not cease with physical and mental training ; but should, by all means, embrace moral instruction. Education, as commonly used, does not necessarily imply a right heart. Rev. Emery Haynes said last September in Tremont Temple, "The best educated man I knew spoke six languages and was a liar in all six."

Talmage once said, "Educate only a man's head and you make him an infidel, educate only a man's heart and you make him a fanatic, educate them both together and you have the noblest work of God."

It may be a grand thing to make a good reader, or mathematician, or scientist, or linguist; it may be a grander thing to graduate a boy with such an amount of knowledge and intellectual discipline as will insure success in business or a learned profession; but it is the grandest of all to send him forth with such a deathless love for truth and virtue as will make his life resplendent with noble deeds.

Superintendent E. E. White of Cincinnati said:-"The highest efficiency of the public school is tested by its results in moral character; and hence the central aim of the public school is effective moral training."

Every observing teacher knows that, in many cases, the church and home cannot be relied on for moral instruction, and, therefore, such instruction should have a place in school.

Our New England fathers recognized the fact that education and religion should go hand in hand. We may know more about base ball, yacht racing, and applied science; we may look wise as we discourse on protoplasm, law, force and matter; yet it is very doubtful if we can boast of superior wisdom in character-building.

SELF-RELIANCE.

We must appreciate the value of self-reliance. There has been a vast deal of discussion on the comparative disciplinary value of the classics, modern language, science and mathematics. I am satisfied that the secret of mental development does not so much exist in the superiority of one subject to another, as in the method of teaching and study. Greek and Latin, properly studied, wonderfully enlarge and stimulate the mind, and, at the same time, afford the keenest intellectual enjoyment; but, as frequently taught, they fall short of the best results and too often produce only weariness and disgust. The great bane of the teaching of the present day is excessive simplification and doing too much for the pupil. Hence he is a stranger to the delightful experience of an intellectual victory. His triumphs are associated with athletic sports and muscular feats in the gymnasium ; not with the nobler achievements of mind. He seems never to have dreamed that the mental gymnastics of a hard and determined struggle are a scurce of enjoyment, or that there is any fascination in a hard linguistic or mathematical tournament.

If one wants muscular strength, let him build stone walls or wield a blacksmith's sledge. If he wants mental power, let him write out in choice language a difficult page of Greek or Latin, or study out a
theorem of geometry, or the reaction of a chemical experiment. Now, what is the result, as seen in society, of easy-going methods which do not demand the most strenuous effort on the part of the pupil? By mitigating hard tasks we are raising a pack of noodles who fumble but do not skilfully manipulate the conditions of success. We have a large class of kid-gloved, milk-and-water fellows who are lazily looking after a soft job and thus bringing reproach on the public school. This reminds one of the comment of a Pennsylvania paper on an advertisement for "a boy to do heavy work." The comment was this: "Boys who would be caught by an advertisement like that are very scarce in this section."

The following, which I cut from a Boston paper, suggests an opening for these delicate hands and weak heads of modern education and it is possible that Yankee ingenuity can devise a similarly exhilarating occupation for another batch. "Two young men in Philadelphia earn a living by operating as window gazers. By standing and gazing into shop windows they attract a crowd, which operates as an advertisement, and they are regularly employed for this purpose." It is to be hoped that our modern methods could fit a boy for a position like that, yet it may be doubted whether we train the attention sufficiently to meet the requirements.

However, I think that, as teachers, we are not quite ready to expose ourselves to the charge of selfishness by assuming all the responsibility for the existence of these soft-handed and high-collared dudes ; but will leave a generous share to the mistaken indulgence and lax discipline of parents.

Now, what is the remedy so far as the school-room is concerned? Whatever the subject taught, make the largest demands for selfreliant effort. If such demands are wisely and kindly made, the pupil will respond, and increased interest and pleasure will ensure harder and more persistent endeavor. Remember that scholarship is measured not by subjects in the curriculum nor by years in the school-room, but by individual research and independent thought.

Writers, as well as teachers, are guilty of making things too easy. By yielding to the popular demand to bring everything within the comprehension of children, they make a serious mistake. They thus remove one of the most powerful stimuli to thought.

Sir Walter Scott said: "Indeed I rather suspect that children derive impulses of a powerful kind from reading things which they do not comprehend and, therefore, that to write down to children's
understanding is a mistake. Set them on the scent and let them puzzle it out."

This more than suggests to the teacher an important rule. Make it a point to simplify as little as possible.

SELF-FORGETFULNESS.

As teachers we are not true to our exalted mission, if we fail to do our utmost to impress upon our pupils the truth that the noblest, grandest, and best in life is secured in giving, not by receiving ; by serving, not by being served. The possession on the part of the teacher of a genuine interest in the welfare of the pupil is indispensable in teaching the lesson of benevolence; for such interest, of necessity, finds expression in the countenance and in numerous acts of helpfulness and words of encouragement and sympathy. Virtue in action makes the deepest impression and is, therefore, most lasting. Inevitable will be the failure of a teacher whose character does not measure up to the precepts he attempts to inculcate. Rules not illustrated by acts are obliterated like foot-prints in the sand by the incoming tide. Therefore the teacher must be prepared to prove by living as well as by history that the prominent trait of the grandest heroes, God's noblemen, is unselfishness. Socrates, not for his genius and military fame is the brightest name in Grecian history. We honor him for his devotion to the welfare of Athenian youth. His conspicuous adherence to truth and virtue was an unseen yet mighty moral force which every generous soul leaves as a priceless legacy to mankind.

While selfishness may stimulate industrial and intellectual activity and, therefore, be to a large extent a promoter of civilization, still, in many of its manifestations, it is destructive and even repulsive. It finds expression not only in the hardened visage of the miser, in the pitiless grip of the rumseller, in the merciless lash of the slavedriver, and the hideous hoot of the anarchist, but also unkind words in the home, jealousies in the church, and enmities in society spring from the same prolific root. The atmosphere of the school-room should be pervaded by the ennobling and soul-inspiring thought that the pupil, by gaining wealth of mind and heart, is making himself debtor to others who do not possess his invaluable riches. Truly great men are generous. Benevolence embodied in asylums, in hospitals, in homes for poor and friendless, in missions, in education, is the just pride of this great nation.

Again, it is an important part of our mission to watch over the interests of the common school.

Last ¡Thursday evening at Boston Highlands, Rev. F. T. McCarthy delivered a lecture in which he advocated the maintenance of sectarian schools and claimed that the state has no right to become an educator. Speaking of the public school system he said: "They will talk about this being an American and national institution. It is a national fraud." Further on he said: "It must cease to exist, and the day will come when it will cease to exist. There are some eight millions of Catholics in the United States now. They protest against this institution."

Here we have an authoritative statement of the attitude of the Catholics to the public schools. Those who claim that there is no "public school question," and that those who are calling attention to this question are alarmists have here food for contemplation and an opportunity to discover, that we have on our hands an issue of quite respectable dimensions. The encroachments of the Roman Catholic church upon our school system should awaken the unanimous and decided protestation of all true patriots, especially of teachers. From New York city treasury $\$ 800,000$ are drawn annually for the special purposes of that church. When efforts are made, as at Lowell and Malden, to use public property to support parochial schools, there is general cause of alarm.

Parochial schools supported by public funds are a thrust at the free institutions of America. Therefore, all teachers with loyalty to their mission should, by writing, discussion, and resolve, so persistently endeavor to enlighten public opinion as to the priceless value of the common school, that no religious sect or organization can find it possible to secure public money to support peculiar institutions or propagate religious beliefs. It is an outrageous and unbearable violation of the genius of American society and tends to the subversion of popular government. It is our duty to guard at every point our schools and defend them against the Roman hieraţchy or other sectarian organization which is in great danger of being used by scheming demagogues as a cat's-paw to gain partisan or selfish ends.

George F. Hoar, in an article in the Boston Journal of October 27, said: "We should strain all our resources to the utmost that the education to be got in our common schools should be better than any other, and keep them open to all the children of the State and
free from partisan and sectarian control. Those who are side by side in the school-house will not long keep far asunder in the town house. The mighty life of the nation of whose bone and sinew and blood and nerves the State is but a part, will have its constant and irresistible influence. There need be little fear that as the memories and fashions which are peculiar to each recede, common institutions, common memories, and interests, and hopes will blend these races together, if not in the old Massachusetts, yet, in a State better than the old."

COMPULSORY EDUCATION.

If Christian education, as we must all admit, is essential to our existence as a nation, to say nothing of our grandest possibilities, it necessarily follows that such education should, by all means, be compulsory. Luther's irresistible argument was this: "It is my opinion that the authorities are bound to force their subjects to send their children to school. If they can oblige able-bodied subjects to carry the lance and the arquebuse, to mount ramparts, and to do complete military service, for a much better reason may they, and ought they, to force their subjects to send their children to school, for here it is the question of a much more terrible war with the devil."

Illiteracy is on the increase in this country. In 1880 two million voters-one fifth of the whole-could not write. Of the school population, there are seven million who do not know the English alphabet.

What does this suggest as to the wisdom of compulsory education? What does it suggest as to federal aid?

Tbe dangers which threaten us as a nation are apparent to every thoughtful citizen who is at all conversant with the social and political condition of our large cities, like New York, Chicago, and San Francisco. Not chimerical, but real are the dangers.

What is the sovereign remedy? Christian education. How can it be brought about? Apply the surplus revenues of this great nation which are accumulating at an unprecedented rate to educational purposes. I believe God has given us wealth for this end and we imperil our dearest interests if we prove recreant to the trust.

This is the sure way of dispelling the dangers which impend over us. Our foes are within, not without. They are educational and moral degeneracy, not foreign might.

Let one of the aims of our mission be to hasten the day when shall be placed within the reach of every boy and girl in our broad domain such training as will make intelligent, patriotic and virtuous citizens.

THE IMPORTANCE OF THE TEACHER'S MISSION.

The importance of the teacher's mission is measured by the interests involved.

The interests involved are transcendent. In a political campaign may be involved a railroad scheme. On the reception of a book may depend a literary reputation; on the eloquence of a plea, the life of a human being ; on suspicion or faith, poverty or opulence; but on"a teacher's behavior, on the smile of encouragement or the frown of censure, may tremble the mighty interests of human character, interests not circumscribed by things seen and temporal, but which expand infinitely beyond the reach of thought to things unseen and eternal.

We ought to teach that the highest value is character, not money, not place, not power.

We should hold up to admiration principle which cannot be contaminated by flattery or servility. It was writ of Coriolanus, "He would not flatter Neptune for his trident or Jove for his power to thunder." We need this adherence to the right, the crucial test of character.

All persons, regardless of their occupation, are impressing themselves upon others and either consciously or unconsciously helping to make them what they are; but the results of this personal contact are seen in a more marked degree in the school-room than elsewhere except in the family; first, because the young are susceptible to impressions, and, second, because of the length of time the pupil is under the influence of the teacher.

NOBILITY OF THE TEACHER'S MISSION.

Having called attention to the importance of the teacher's mission, let us now glance at its nobility. This nobility is not measured by public estimate.

It is obvious that the public estimation of any profession or calling suffers because of incompetents. Teaching more than any other profession has been thus affected, because, for mercenary reasons, many have made it a stepping-stone to other professions popularly
considered more honorable. Still no one can present a sound reason why a teacher who has devoted his best thought and energy to his calling should not be esteemed highly for his works' sake. What is the work of the teacher?

James Russell Lowell has said:-"Let it be our hope to make a gentleman of every youth under our charge, -not a conventional gentleman, but a man of culture, a man of intellectual resource, a man of public spirit, a man of refinement, with that good taste which is the conscience of the mind, and that conscience which is the good taste of the soul." Who has a nobler mission? At the risk of being classed among those disagreeable persons who are always whining because they are not appreciated, I wish to protest against the inconsistency and unfairness which, on account of poor teaching, stigmatizes the pedagogical profession. Why should teaching be brought into disrepute because of incompetents, any more than the medical fraternity because of quacks, or the legal profession because of pettifoggers, or the author because of the scribbler, or the divinely commissioned herald of the gospel because of the hireling, or the business man because of the petty schemer.

This discrimination against the teacher is deplorable, not simply because it gives him an uncomfortable consciousness of being the victim of injustice, but especially because it detracts from his influence and hence his efficiency. Pupils inevitably imbibe from the atmosphere of the home circle and from community opinions in regard to the teacher, and in the same degree in which opinions are unfavorable, in just that degree are his burdens augmented and his power lessened.

Again, the public estimate of the teacher has sometimes been revealed by the conduct of school authorities. Self-respect has been crushed out and teachers have been made to feel that they are objects of charity instead of honorable servants, rendering a service by no means measured by their meager salaries. However, this treatment may not prove an unmixed evil. It may open the eyes of teachers themselves to the true dignity of their profession, and lead to a determined and united effort for emancipation.

We must always keep distinctly before our minds that our work is to make men and women in the truest and broadest sense.

The story is told that Daniel Webster and several other statesmen were assembled on one occasion and it came to pass that each presented the peculiar advantages of his own State. One claimed for
his State agricultural supremacy ; another, commercial importance ; a third, educational advantages. And so it went on until, at last, when it came Mr. Webster's turn to speak, it seemed that all the grounds on which a claim for distinction could be based had been surveyed; but the distinguished statesman from the Granite State was equal to the occasion and in substance said:-"When I pass along the streets of a city and see a large watch hung out, it means watches are made here ; or a boat, it means boats are made here. So the Creator hung out in Franconia Notch, the Old Man of the Mountain, thus saying to the world, 'Men are made in New Hampshire.'"

So men and women are the product of every true school. Who can present grander results of thought and energy than the teacher worthy of the name?

He is the greatest man who best serves the interests af mankind. Such was the late Dr. Mark Hopkins of Williams College. At the time of his death there were seventeen hundred and twenty-six living alumni. All these except thirty-one had been taught by him. Five hundred and thirty-four of those who had died had also been under his instruction. So that twenty-two hundred and twenty-nine in all were taught by him. But the work of this great teacher cannot be represented by figures. More potent than class-room instruction was his devoted life. Because of breadth, depth and intensity of feeling, he had a wonderful power of impressing himself upon his pupils.

President Garfield said of him: "I would rather sit on one end of a log with Mark Hopkins on the other than to have the tuition of the greatest university in the land."

In spite of the befogging pretensions of wealth and the assumptions of social life, in the light of his personality, the embodiment of truth and virtue, the student caught a glimpse of real values and felt the power of lofty aims. Who can calculate the reach of that enduring and ever progressive force which has found expression in so many unselfish lives? In what position can one do more for humanity? In the midst of the allurements and fascinations of the age, his students felt that character was the grandest culmination of human endeavor and the sublime result of strict adherence to principle. Others may receive a larger meed of praise from the unappreciative throng, but none deserve greater honor.

We honor the sculptor who gives thought to marble. Shall we not honor the teacher who gives the imprint of nobility to the soul? We eulogize the orator who, for the time, by his mysterious magnetism and impassioned speech sways his audience. Does not as much credit belong to the teacher, patient and faithful, who, in an unostentatious way, day after day, month after month, by kindness and sympathy lifts his pupils to a higher plain of thought and feeling?

We honor the statesman who, in spite of the money of the lobbyist and the glitter of popularity, is loyal to conscience. May we not give equal honor to the teacher who, long ago in the little red schoolhouse, implanted that love of purity which made him incorruptible? We honor the great soldier who marshals his troops to defend the liberties of his country. Why should not we pay greater honor to the teacher who marshals moral forces to defend the soul with all its infinite possibilities against the dominion of evil?

We honor the inventive genius who mitigates the physical burdens of life. Shall we not honor the teacher who enables one to escape the more grievous burden of ignorance and sin? In short, the more we contemplate the teacher's work, the more its nobility grows on us. The conception of its exalted character is attended with, at least, one beneficent result. It lifts us above many annoyances and vexations and gives that courage, serenity and evenness of temper essential to the highest success.

In conclusion, I wish to refer, in a word, to the durability of the teacher's work.

The work of the teacher, as well as of every other person who influences mind and heart, is characterized by durability. The wealth of the millionaire may be squandered by the thriftless heir, the canvas of the painter may fade, the statue of the sculptor may crumble, the stately cathedral may become a shapeless ruin, yea, the very heavens may be rolled together as a scroll, but the work of the teacher is not obliterated by time or change.

The look, the word of the teacher is making an impression which cannot be effaced by the mutations of centuries or the cycles of eternity.

The influence of Thomas Arnold of Rugby fame, whose pure and noble spirit molded the character of so many, still lives and will be a power, ever living, ever progressive, ever cumulative. What is
true in point of permanency and enlargement of influence of a strong man like Arnold is equally true of the humblest teacher who is loyal to his high calling.

If durability is a measure of value, then the teacher's work is as measureless as eternity.

SOME CONSIDERATIONS ON THE STUDY OF LANGUAGE.

Prof H. L. Chapman.

In a previous paper on this subject, which I had the honor to read before this society, attention was called to the fact that the absolute and perfect mastery of the resources of our language is a distant and constantly receding goal ; that it is accordingly wise, in the various stages of instruction and acquisition to set up partial and temporary standards. To do so is likely to give effectiveness to the efforts of teacher and pupil, by placing before them a definite and attainable end in place of one that is vague and vanishing. We are so constituted that, in order to work joyfully and effectively, we need to see clearly what we are aiming at, and to feel the possibility of reaching it, and to be able to perceive our approaches to it. It is well, therefore, in the endless line of effort that stretches before us in the study of language, to establish certain posts which may serve as intermediate goals, and to divide the course into corresponding definite stages.

Four such stages of study and instruction were suggested, and they were named, the glossarial, the grammatical, the rhetorical, and the philological.
The glossarial and grammatical stages were treated at length in my former paper, and consequently only a brief reference will be given to them at this time. In the glossarial stage it should be the aim of the teacher to put the child in possession of words and their meanings, and to teach him to use them correctly and appreciatively. The main business here is to furnish him with a vocabulary, and a vocabulary consisting of words the meaning of which he thoroughly understands. It is necessary, at the very outset, to give him the means of expressing his own thoughts, and of comprehending what is said to him by others. His teacher fulfills for him the office of a glossary, by making clear to him the meaning of terms which he must employ in his intercourse with others, and in the further prose-
cution of his studies. Special care should be taken that the child's vocabulary keep pace with his increasing knowledge of things and his increasing capacity to think, and that it does not outrun this knowledge and capacity. From the beginning he should be taught, not so much by direct precept at first as by careful oversight and guidance in the use of them, that words are precious when they stand for things, and for ideas, and that when they do not stand for things and ideas they are valueless and mischievous.

At the end of this first stage of instruction in language the intelligent child may be expected to be in possession of a vocabulary commensurate with his knowledge and with his present power of thinking; it may be expected that he will know what the word which he uses means; that he will know the correct forms and pronunciation of the words he uses, and the common grammatical concords, without, however, having his mind confused by a grammatical nomenclature and terminology; it may be expected that he will be able to tell what he knows and what he thinks, with reasonable clearness and simplicity, either orally or in writing. In short, to the extent of his mental power and of his knowledge he will have a comnetent use of language both for receiving and for communicating ideas.

Throughout the glossarial stage the child is to look upon language as the instrument employed for conveying and communicating ideas; an instrument that is to be carefully used, with precision and correctness or it will fail of its purpose. But to make this instrument itself the subject of systematic investigation and study requires a power of abstraction, a subtlety and maturity of thought, and a frecdom and familiarity in the uses of language which the child cannot as yet command.

In the second stage, however, the grammatical, the pupil's attention is to be directed to the laws and usages of language itself, and we dissociate the teaching of grammar from the teaching of things. It is, as Bain says, 'one of the advantages of a grammatical course, to make the distinction between these things apparent, and to give an occasion for imparting language lessons pure and simple."

The sentence, which the child has already learned to use, must be analyzed into its elements, and their mutual relations must be traced. The various forms of sentences, alone and in combination, must be subjected to this process. The logical relations of the several members of the sentence, and the logical relations of con-
nected and consecutive sentences, will thus be learned, as well as the characters and functions of the several parts of speech. After these exercises in analysis, and, indeed, in connection with them, the pupil should be required to go through a persistent drill in grammatical parsing, and shonld be employed in frequent but simple exercises in composition.

At the end of the grammatical stage the intelligent pupil may be expected not only to use such a vocabulary as he has with a vivid and accurate apprehension of the meanings of his words, but also to understand the names, characteristics, and functions of the several parts of speech; how the various parts of the sentence are related to each other; how they are combined into complex sentences; and how these sentences are marshalled in connected discourse. He will be able, also, to apply this knowledge correctly in writing such composition as falls within the range of his powers and acquisitions.

Now why is not this sufficient? For many purposes it is sufficient. For the purposes of intercourse and of ordinary business this degree of mastery over the resources of the language will answer the needs of daily life. This is, accordingly, one of the intermediate goals to which reference has been made as serving the interests of common convenience, and pointing out an end that may be aimed at and reached. But the constant recurrence of grave problems in social, political and moral science, the proper settlement of which demands profound and persuasive discussion, and the exactions of literature with its far-reaching and beneficent influence,-these things make it clear that language has other and higber uses than to serve as the medium of social and business intercourse in the ordinary affairs of life.

The next stage, accordingly, in the study of language is the rhetorical. In this stage language is studied with reference to its capabilities for expressing appropriately and effectively for the purpose in hand. We are to assume that previous training has cultivated the habit of using words intelligently as the exact signs of things; that it has also imparted the power of applying, with some degree of freedom and skill, the ordinary laws of grammar to the stucture of sentences, and of connected discourse. This measure of knowledge in the use of language is the necessary starting point for the study of rhetorical usage. Without, for a moment, abandoning the fundamental principle that a sentence must be the plain and perspicuous expression of a clearly conceived thought, the learner's
attention must now be directed to a new and more artistic standard of sentence structure ;-Such a standard, for instance, as Sir Arthur Helps sets up when he says: "A sentence should be powerful in its substantives, choice and discreet in its adjectives, nicely correct in its verbs; not a word that could be added, nor one which the most fastidious would venture to suppress; in order, lucid; in sequence, logical ; in method perspicuous." This is a high standard, but the man who wrote it is himself a living proof that the standard can be reached. Of course where so much nicety is demanded in fashioning the constituent elements of discourse, an equally high standard must be maintained in respect to the lucid order, the logical sequence, and the perspicuous method of the discourse as a whole.

Without disparaging grammatical correctness, therefore, as an end in itself, there is abundant inducement to go a step further, and to seek to add to grammatical correctness, rhetorical charm and power. It may be said, however, with regard to the sphere of rhetorical training, that there seems to be a region of artistic achievement in the use of language, that is beyond the reach of formal instruction. It is so with every art. There are pianists who seem to be born with that peculiarly delicate touch which is the despair of those who seek to acquire it. There are artists who exhibit a sensitive appreciation of color, and an almost magical power in using it, which they seem never to have learned, and which cannot be taught. In like manner there appears to be such a thing as an innate rhetorical sense. It reveals itself in the deft selection of words, and in the felicitous combination of them ; in the picturesque grouping and delicate balancing of phrases ; in the pervading tone and stimulating freshness of composition. These things cannot be grasped and bound by the heavy links of formal precept. They elude the hand that tries to capture them, but they abide, in a kind of native freedom, in the works of the ever-living masters of speech, and it is well for us to putourselves as often as possible under their influence, and to be wrought upon by their magic. That is a kind of unconscious training which is adapted to develop within us whatever there is that is responsive to their power. "A clear head," says Herbert Spencer, "a quick imagination, and a sensitive ear, will go far towards making all rhetorical precepts needless. He who daily hears and reads wellframed sentences, will naturally more or less tend to use similar ones. And where there exists any mental idiosyncrasy-where there is a deficient verbal memory, or an inadequate sense of logical depen-
dence, or but little perception of order, or a lack of constructive ingenuity ; no amount of instruction will remedy the defect."

But even within the admitted range of rhetorical training one or two things deserve to be specially emphasized. At the very outset of this stage in the study of language the elementary principles of formal logic may, with great advantage to the pupil, be taught. These elementary principles of logic deal with the form, the import and the relations of propositions, and with the inferences that may legitimately be drawn from propositions standing alone or in combination. It may be a question with some if this study does not belong to the grammatical rather than the rhetorical stage; but it is to be observed that the facts of logic, so far as they are concerned with language, have reference to the meaning and force of propositions rather than to their grammatical form and correctness. The proposition is estimated and weighed in view of its content rather than its structure. It belongs to the art that puts things aptly, and combines them justly and effectively, rather than to the art that is content with stating things correctly.

It is to be regretted that logic is regarded with disfavor by some, perhaps by many, on account of the unfortunate misconceptions that exist about it. To these people it conveys the idea of "something subtle, metaphysical, difficult, sophistical, and the like; something useless or worse than useless; something quite as difficult as profit-able-difficult, at least, to students of an early age and uncultivated understandings."

But even if the difficulty of it be not insisted on, it seems to these objectors to be barren of good, a mere "striving about words to no profit." These misconceptions are venerable and stubborn. They have come down to us as the natural result of the abuse of logic as it was employed in the petty scholastic controversies of the middle ages. But the best things may be abused. As a matter of fact logic, at least in its elementary principles and applications, is not difficult to one who has mastered the laws of grammar. Neither is it unpractical unless it is unpractical to teach the import of propositions, the rules of inference, and the methods of correct reasoning. It is of no slight value to a student entering upon the rhetorical study of language to understand the various changes through which propositions may pass by conversion, opposition and permutation, with the corresponding changes of meaning. It is of interest and of importance for him to know why it is legitimate to transpose the
proposition "some teachers are ladies" into the proposition "some ladies are teachers," and why it is not legitimate to transpose the proposition "all teachers are conscientious persons," into the proposition "all conscientious persons are teachers." It is worth something to him to know that the denial of a general proposition does not necessitate the denial of the particular, while the falsity of the particular proposition does involve the falsity of the general. It may be of very practical advantage to him in estimating the value of an argument, or in conducting a train of reasoning, to know upon what conditions two propositions may be combined to warrant the inference of a third. There is a fact that may seem to oppose the idea that logic is of value in the study of language. It is the fact that unmeaning symbols, such as $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{X}, \mathrm{Y}, \mathrm{Q}, \& \mathrm{c}$., may be employed as well as words to represent and elucidate the pro cesses of logic. It is true that the abstract principles and processes of logic may be so represented, but the application and embodiment of logical principles, with which the pupil will be chiefly concerned, is in living discourse, and this is the material and the product of rhetorical art. It would be as pertinent to forbid the figure painter to spend any time upon the study of the skeleton, because he paints living figures, and not skeletons.

I have dwelt at some length upon this topic because Logic is not usually regarded as constituting any part of the rhetorical study of language. Among the recognized branches of rhetorical training I would lay chief stress upon the principles of Order and Arrangement, and upon Figures of Speech, partly because these things are capable of being taught, and exemplified, and practiced, and partly because I consider them of very great value in all rhetorical discipline. Take for example the principle of order in the structure of a sentence, and consider how much the clearness, the force and the elegance of the sentence depend upon it, and how capable it is of being made a matter of instruction. Let me borrow an example to illustrate this point.

I find this sentence: "He determined on selling all his estates, and, as soon as this was done to quit the country, believing that his honor demanded this sacrifice, and in the hope of satisfying his creditors."

This order of phrases is felt to be awkward and confused; the qualifying adjuncts are widely separated from the words they are
meant to qualify; and the sentence seems to be limp and formless. Let us try a re-arrangement:
"In the hope of satisfying his creditors he determined on selling all his estates, and as soon as this was done, to quit the country, believing that his honor demanded this sacrifice."

In some respects this arrangement is an improvement upon the first, and yet it is not satisfactory, because the two qualifying adjuncts which are closely connected in the logical sequence of thought, namely the adjuncts "In the hope of satisfying his creditors," and "believing that his honor demanded this sacrifice," are separated by the whole of the remaining part of the sentence. Let us bring them together, and try one more arrangement; with a slight change in construction :
"Believing that his honor demanded this sacrifice, and hoping thereby to satisfy his creditors, he determined to sell all his estates and to quit the country."
This is seen to be a great improvement upon the other two arrangements, and it illustrates a great principle of order with which the pupils may be familiarized by numerous examples, the principle namely that qualifying words should always be kept as close as possible to the words meant to be qualified. Now order, which is so important and pervasive an element in rhetorical art, can be taught, as an apt choice of words and some other constituents of good style cannot be taught. You can submit to the judgment of the pupils various schemes of possible arrangement, and can make them see and feel the superiority of some to others. The principle includes such varieties as periodic and loose structure of sentences which is entirely a matter of order, antithesis and climax. And then it may be extended, by the same method of change and comparison, from the single sentence to the group of sentences which compose a paragraph. Finally the principle of order reaches the climax of its dignity and importance in the suitable arrangement of the discourse as a whole. Rhetorical art attains no higher point of excellence than in the orderly and logical arrangement of the parts of a discourse, so as to secure unity and culminating force. Says Pres. John Quincy Adams: "You shall find hundreds of persons able to produce a crowd of good ideas upon any subject, for one that can marshal them to the best advantage. Disposition is to the orator what tactics or the discipline of armies is to the military art. And as the balance of victory has almost always been turned by the superiority of
tactics and of discipline, so the great effects of eloquence are always produced by the excellency of disposition."

We know, indeed, that in all other departments of human activity the organizing power is of the very highest value, and more than anything else contributes to final and complete success. Composition, therefore, which is the expression in language of thought that in other forms of activity and enterprise finds expression in different ways, must depend for its perfection upon the same organizing power. It is not, perhaps, too much to say, that in mental operations and activities the law of order corresponds to the law of correlation or conservation of force in the physical world.

In music, for example, order appears as time and harmony. The due ordering of sounds, that is, with reference both to their melodious succession and to their harmonious combination, is what makes music; without this principle of order it would be nothing but noise.

In painting order appears as perspective, and chiaro-oscuro, the disposition of light and shade. Without the orderly disposition of objects in accordance with these laws, painting could scarcely rise above the level of the flat, uncouth figures upon a tea-chest, or a Japanese fan.

In poetry order appears as rhythm and rhyme. In the absence of both these manifestations of orderly arrangement it ceases to be poetry. It may still exhibit some other qualities of poetical expression, but it is not poetry.

In science order appears as classification, the highest manifestation of scientific method and attainment; without which there may be a confused mass of facts, but no scientific knowledge, no science.

In business order is evident as organization and method. It is the very life and soul of great business enterprises, without which it is impossible to conduct them with success.

And so in composition this principle or order appears as arrangement, by means of which the highest effects of rhetorical art are produced, and which well repays the most scrupulous study and care.

There are various degrees of complexity in the order characteristic of the different arts and sciences, and one's intellectual power, or the mastery he has attained over any particular art or branch of knowledge may be estimated by his ability to discern and appreciate the most complex system of order.

In music, for example, the compositions of the great masters exhibit a system of order so intricate and complex in respect both to time and to harmony that only accomplished musicians can appreciate and enjoy it, while everybody enjoys the musical order which expresses itself in a simple melody. Classical music is not popular, but it gives intense delight to those who are capable of comprehending its involved order. So in composition every one can perceive and enjoy the progress of thought in a simple poem or a brief speech; but it requires considerable intellectual power to comprehend and appreciate the more profound and complex order of Hamlet or Bishop Butler's Analogy. Clearly, then, it is the organizing power in every sphere of life over which intellect holds dominion, that makes men masters in their respective pursuits.

Of course it is more difficult to teach arrangemsnt as it is exemplified in the complete discourse than it is to teach it in the elements of discourse, like the sentence or the paragraph. But it can be done by the study and analysis of poems, speeches, sermons, essays, \&c., and by the preparation of original plans.

Concerning figures of speech I will take time only to say that they constitute the substance of our speech, imparting to it at the same time a force, and a vividness, and a beauty, which we often fail to appreciate. They can be made a fruitful subject of instruction because they can be discriminated, analyzed, compared, and translated into literal speech. By such means the pupil can be taught to perceive on the one hand the defects and misuse of figures, and on the other, their aptness, their force, and their superiority to bare and literal statement.

In conclusion, let me say, although it is perhaps unnecessary, that while the great source of material for rhetorical study should be the mass of good literature that is always at command, that material should be so used in the presence of pupils as to magnify and not belittle its worth. It would be unkind, as well as unwise, to diminish a pupil's respect for a noble poem or its author, only for the sake of pointing a rhetorical precept, or illustrating a rhetorical fault.

SCIENTIFIC TEMPERANCE TEACHING.

C. F. Warner.

There are few subjects, at the present time, of more interest and importance to the teachers of the public schools than the subject of temperance instruction. This is not on account of any change of feeling on the part of the teachers concerning the great question of temperance, for the evils of drinking and other abuses of the appetites have been so long recognized, that no teacher can fail to know what his duty is and he need not hesitate to perform it. Public opinion, at least in some sections of our country, is already intelligent upon the subject, favors temperance and total abstinence, abhors drunkenness and all excesses, and frowns upon moderate indulgences. But, notwithstanding this general sentiment, the law-makers of several States, including our own, have deemed it wise to make the duty of giving temperance instruction a legal obligation upon teachers; and the clause of the statute expressing this requirement, is specific in statement and plain in meaning. "No certiticate shall be granted to any person to teach in the public schools of this State after the fourth day of July, eighteen hundred and eighty-five, who has not passed a satisfactory examination in physiology and hygiene, with special reference to the effects of alchoholic drinks, stimulants and narcotics upon the human system."

Thus, while some instruction upon this subject might be expected from the general moral tone of the teacher's work, following the spirit of the early fathers, who planted side by side, the schoolhouse and the church, and did not neglect to require the teacher to give instruction in the blessings of virtue and the folly and wickedness of all social evils, this law calls for: a particular kind of temperance instruction and makes the obligation upon all school authorities definite and forcible.

It is my purpose, at this time, to suggest to teachers an easy way to meet this new demand upon them. I shall, therefore, confine myself to the physiological and hygienic side of the temperance question ; but I do not forget that there are other considerations of a moral, social, historical or economic nature equally valuable to our lessons and equally available to the teacher. I would urge them in the strongest terms if such were the object of the present paper. But
this is quite another question. I shall only be expected to suggest a practical method of teaching such facts and conclusions pertaining to the subject, as may be taught by simple experiments with a reasonable degree of convenience and with sufficient accuracy, considering the circumstances of the ordinary public school. This being the evident purpose of the so-called "scientific temperance teaching," it is perbaps unfortunate that the word scientific has been used in this connection, for such instruction, in its full sense, is appropriate only to the medical school or college. We are naturally restricted in the public schools to the fundamental and incomplete. The experiments to which I shall invite your attention are, therefore, elementary and unsystematic and devoid of anything that might interest the physician or the scientific student of the question of stimulants and narcotics. They are intended only for teachers who must content themselves with the simple truth and a simple way of teaching it.

From the several substances which may be referred to in the section of the laws quoted, I shall select alcohol as being the chief constituent of the liquors, a narcotic as well as a stimulant and the most convenient to handle in experiments ; and what may be shown of alcohol will be found true, not only of the drinks containing it, but also, in a more or less modified degree, of other stimulants and narcotics.

It would seem a most natural order to begin our lessons by teaching what alcohol is-its most evident properties and its common and proper uses. We will, therefore, examine a specimen of pure alcohol.

Exp. 1. Pour some water into a bottle until it is about half full, add a layer of oil and then pour in upon the oil any convenient amount of alcohol.

It will be observed that alcohol is a colorless, thin, mobile liquid, having a strong but somewhat agreeable odor, and lighter than water or oil.

Exp. 2. Place a little in the hand upon the finger tips and bring a current of air upon it. It will soon evaporate, producing a sensation of cold.

For this reason it is often used to allay or prevent the unnatural heat of inflammation.

Exp. 3. Touch a burning match to a little alcohol held in a spoon or a piece of broken crockery. It takes fire and burns with a nearly
colorless, lambent flame. On account of this property we have the hot and smokeless flame of the spirit lamp. This quality alone may excite the suspicion that alcohol must be quite unlike any liquids we naturally take in or with our food, and wholly unfit to mix with what we drink.

I will not abuse your patience by asking you to follow me through many such simple experiments, the object of which is merely to show the nature and uses of alcohol. But there are several others that ought to be given our pupils. By means of a freezing mixture of ice and salt, we may compare the effect of cold upon water and upon alcohol. As is well known, the water will be frozen while the alcohol will remain liquid ; in fact it has never been known to freeze, even at the extremely low temperature of 169° below zero Fahrenheit, though it then becomes thick and oily in appearance. This quality, which makes possible the spirit-thermometer and the spirit-level, is of great value.

With a little spruce gum or resin and a tin dipper you may easily show. another useful property of alcohol-its solvent power. Thus it may be shown how shellac and camphor are dissolved, how the tincture of iodine is made, how the oil of bay and the oil of bergamot are used by the perfumer, and, with olive oil or sperm oil, how the minute globules are held in suspension, undissolved, forming an emulsion. In this way, alcohol supplies a need which is not met even by Nature's great solvent, water, nor fully by any other of the many special solvents, aiding the painter in the preparation of his varnishes and polishes, and the apothecary in making many useful mixtures.

Another quality of alcohol of untold value to the student of Natural History is its peculiar antiseptic property. You may have witnessed the interest which a child will take in bottling up a small reptile in dilute alcohol. He will observe from week to week, how perfect is the preservation of substance, form and color. Upon a knowledge of this property may be based a few inquiries pertaining more directly to our theme. Alcohol preserves flesh from decomposition. Shall we take it into our bodies and prevent the natural decomposition of our food? Shall we allow its presence in the tissues, where it may interfere with the destruction and removal of those elements which have served the purposes of the living body, but for which the system has no further use? Under such considerations, the ruddy countenance and apparent brawn of the drinker do not
indicate health and strength, but rather a system bloated and stuffed with waste matter. Such conclusions, inferred from the antiseptic quality of alcohol seen in the preserved reptile, may be made more definite and forcible, for they are important and are sustained by the best medical authorities.
But there is one more important use of alchohol which I would not forget to teach. If we heat a little alcohol with sulphuric acid in a test tube we shall obtain the vapor of ether, detected by its odor. Alcohol is the basis of the various ethers and the only substance from which these useful compounds are ever obtained. Besides this it is the starting-point for the formation of a large number of other substances. Organic chemistry would not have become the important science it is, if alcohol had never been known, while medicine, surgery and pharmacy would seem to be hopelessly crippled if the chemist's use of alcohol should suddenly become one of the lost arts. Such is a brief view of the characteristic properties and appropriate uses of alcohol, important, it seems to me, in order to show as much of its real nature as we can, and to make it clear that we, as teachers, wish to interfere only with its use in beverages.

We are now ready to discover and explain that peculiar quality which makes it the great destroyer of life. I refer to its attraction for water.

Exp. Fill a long, slender test-tube or a small bottle about half full of water, and then turn in alcohol until it is completely filled; carefully press the thumb down upon the top of the test-tube to prevent spilling, and quickly invert it. Return the tube to its upright position and note the level of the liquid.

When the tube is inverted the thumb is forcibly drawn towards it, and though none of the liquid has been spilled, the tube is found to be not quite full. The alcohol being lighter than the water, rose, when the tube was inverted, and the two liquids united with such attractive force as to produce a slight condensation of volume. This may also be shown by mixing a pint of alcohol with a pint of water in a bottle accurately measured for a quart and marked with a file. The two pints, one of each liquid, will not come up to the quart mark. And this is not a slight and unimportant change, as might appear at first sight, for if so much water be confined closely in an iron cylinder, the weight of many hundred pounds could not produce that amount of compression. Moreover the temperature has been raised to that of warm water, as may by seen by placing the hand
in the mixture or by the use of the thermometer; so great has been the internal disturbance of the substances caused by bringing them in contact.

Now you are ready to ask what must be the action of alcohol upon substances contaiuing water in their composition. The albumen of the egg is a convenient substance to experiment with in answer to this question, for the white of an egg contains a large proportion of water,- 85 per cent by weight, which gives it its fluid nature.

Exp. Divide the white of an egg into two parts ; shake up one part in alcohol and the other in sulphuric acid.

In both cases the albumen is coagulated. That this change results from the removal of water by the alcohol is made plain by the similar action of sulphuric acid, for a readiness to absorb water is a well known characteristic of the acid.

But it may be asked what harm in removing a little water from a substance? The effect upon the egg is valuable only so far as it shows the effect of alcohol upon albuminous substances, and we should not fail to avail ourselves of its full value. As an article of food the egg may not be injured by alcohol, more than it is by cooking, but it is very evidently and very materially changed by either treatment. Even as a food it is made less digestible, being rendered partially or wholly insoluble, whether by heat or by alcohol, and in either case the possibilities of life in the egg have been destroyed. And, as our concern is nou so much for the egg as for the human system, it must be understood here that the nerves, the muscles and sinews of our bodies are very largely composed of water, and if the water be removed by alcohol, it may result in as important a change as that shown in the case of the egg.

In order to show how great a change may be effected simply by the removal of water, it may be well to notice the result with substances not directly connected with our subject.

Exp. Compare some crystals of copper sulphate with the substance obtained by removing the water from them through the action of heat. The beautiful blue crystals have been changed to a dull, lightbrown powder. This may be done by wasting the crystals over coals, on a piece of broken crockery or earthen ware; or, if one has the convenience, by the method given in almost any chemistry.

Exp. Make a thick syrup of sugar, and, when cold, pour into it strong sulphuric acid, stirring the mixture. A rapid and manifest decomposition of the sugar soon takes place. Charcoal is the pro-
duct and it is made simply by removing water from the sugar by the action of the acid.

These two experiments furnish a parallel to the two ways in which the albumen of the egg is coagulated by being deprived of its water, in the one case by heat, in the other, by the action of a decomposing agent, alcohol or acid.

The effect of alcohol upon the muscles, nerves and blood of the body is similar to all the preceding cases-a decomposition of the tissues, more or less rapid and destructive, according to the amount of alcohol received into them. The solid parts of the body contain more than one-half their weight of water, while the liquid and soft parts have a much larger proportion. To remove such an important constitutent by the introduction of a substance foreign to the food is certainly a dangerous experiment. It must result in a shrinkage of the tissues and in an increased demand for water to make up for what has been unnaturally removed. Hence the thirst of the toper which he too often fails to satisfy by the proper fluid-the water which his system craves. The so-called appetite for strong drink, which sometimes becomes so terrible, may here find an explanation. The water removed from the system by long use of alcohol cannot be easily put back, but the craving for it is painful when the nerves recover from the narcotic effect of the last drink and will not be quieted till another drink is taken. But the relief is transient and the drinker's condition is continually growing worse Each drink simply quiets the pain and makes more water needed. Real recovery is only possible, if ever, after long weeks of suffering, to give the system time to get back what it has lost. It might, therefore, be safely inferred, were it not capable of experimental proof, that alcohol, on account of its affinity for water, must have a destructive and poisonous effect upon the human system. Strong alcohol, injected into the veins, has been known to produce almost sudden death, by coagulating the albumen of the blood.

Exp. Draw two drops of blood from the finger tips upon a glass plate, add alcohol to one and examine both with a microscope.

The blood is immediately clotted by the alcohol and the corpuscles are withered and destroyed. This effect upon the blood results from the coagulation of the albumen and the removal of the coloring matter from the corpuscles, in consequence of which they become shriveled and hardened. This must seriously impede their action as carriers of oxygen. For the coloring matter of the blood, in part
at least, is the medium for those essential activities of the blood resulting from receiving oxygen in the lungs and exchanging it for carbon dioxide in the capillaries. Thus the blood, whose function it is to aid in the building of the tissues and the oxidation and removal of useless matter, loses partly or wholly its power to effect these important changes. It follows that the heat of the body is diminished and the system clogged with waste matter.
Exp. Pour alcohol upon a piece of fresh raw beef. Let it stand several minutes and then examine the meat, pulling it apart, and at the same time comparing it with a piece of the beef not treated with the alcohol. The meat is changed in color, having the appearance of over-cooked beef. The blood is destroyed and the albumen of the flesh hardened.

Exp. Press some of the beef with water in a mortar, and pour the colored liquid into a bottle; add alcohol, and shake.

The color is at once destroyed and a brownish precipitate of the coagulated blood is formed.
Exp. Etherize a frog and dissect sufficiently to lay bare some of the nerves. Excite these by means of a battery or by irritating with a knife blade. Apply alcohol to the nerve and again touch it with the battery wires or kuife.

Before the alcohol is applied, the nerve is easily excited, causing the muscles to contract, but after the application of the alcohol the electric current or any irritation produces little or no effect. The nerve is paralyzed. Alcohol is a narcotic. This results from the attraction of alcohol for water, and the nerve is really destroyed, though perhaps not permanently in the living body. It suggests the effect of alcoholic drinks upon the nerves and brain of any one who indulges in them. It is from this partial paralysis of the nerves that the quickened circulation arises. Soon after the introduction of the alcohol into the system the nerves become less sensitive, and partially lose their control over the blood-vessels, allowing them to become distended. The heart beats faster because the blood finds freer passage through the widened channels. As more alcohol is taken the nerves feel the effect. Pain and feeling depart, muscular action is difficult or impossible, the mental faculties are clouded, paralysis and even death may ensue. It is because of the narcotic effect of alcohol that the stomach does not reject large and dangerous doses of liquor. Inflammation of a most alarming character has been
produced without pain. Thus the drinker is often deprived of the warning which nature ordinarily gives of injury to the system.

Exp. Place a few drops of alcohol upon the tongue and membranes of the mouth and observe the effects.

There is felt a decided burning taste which immediately excites the salivary glands, resulting in an increased flow of the saliva. Since the mucous membrane is continuous throughout the digestive system, and the other glands whose function it is to furnish fluids to act upon the food are very easily called into activity by any exciting cause, it may be inferred that the presence of alcohol in the stomach and other digestive organs produces results similar to those in the mouth.

Exp. Procure from the butcher the fourth stomach of a calf, or better, a pig's stomach; cut it into fine pieces and soak it in a pint of glycerine for a day or two. A solution of pepsin will result, which may be made clear by straining. Mix a portion of the solutiou with alcohol. Soak a little finely minced raw beef in each of these mixtures for ten or twenty hours, keeping the temperature pearly uniform and lukewarm.

The addition of the alcohol to the clear solution of the pepsin soon causes it to become turbid, and in a short time an evident precipitate is formed. This precipitate is pepsin, removed from the natural state of solution.

The meat left in the clear pepsin solution has become soft and, as it were, partially digested, while that put into the alcohol mixture was made hard and lumpy and digested only a very little, if at all. Thus it appears that alcoholic drinks taken into the stomach must impair digestion by coagulating the albumen of the food, i.e., changing it from the soluble to the partially insoluble form ; and by precipitating the pepsin of the gastric juice from its natural state of solution. As the result of incomplete digestion the blood fails to get some of the nutritious materials it should have.

But one of the most important points yet remains to be enforced. There are many poisons that, while they are dangerous if placed in the blood, may be taken into the blood with perfect or comparative safety. The poison of the rattlesnake's bite is a well known example. It is deadly in the veins but it may be sucked from the wound and, if swallowed, is digested and does no harm. This is not the case with alcohol. It is absorbed with remarkable ease by the membranes of the digestive organs and thus finds its way unchanged
into the circulation. The best authorities agree that there is some destruction of alcohol in the body, and yet it is beyond question that a considerable portion may flow freely through the membranes, mingle with the blood, and be carried throughout the system. In this way alcohol may act directly upon the brain, the nerves, and the various tissues of the body.

This, of course, cannot be experimentally shown in the schoolroom, but recourse may be had to the testimony of surgeons, which should always be referred to for its strong confirmation of our inferences. A fluid has been taken from the brain of a drunkard, which not only emitted the odor of spirits but burned with the characteristic blue flame of alcohol.

Let it, therefore, be impressed upon our pupils that alcohol is in no sense a food. It could not have been intended by Him who ordered all things for our good to furnish refreshment and strength for our bodies, as proper food-materials do, for it does not exist in fruits nor does it connect itself, in any permanent way, with the preparation of food. It is altogether artificial in its nature and is made by the decomposition of grape sugar.

Exp. Sweeten a little water with molasses or grape sugar, add a portion of a yeast cake and set the mixture away in a bottle, allowing it to remain several hours in a warm place. Fermentation soon begins; a chemical change takes place in the sugar by which it splits up into two new substances, the gas carbon dioxide, and alcohol, both of which are poisons. The gas may be recognized by conducting it, through a tube, into lime water, which it renders milky. It is the same as the poisonous breath from the lungs, as may be shown by the test. It will, therefore, not be difficult to understand that a poison may be made from so innocent a substance as sweetened water by the mysterious chemical change. The alcohol may be recognized by the odor of the fermented mixture, or, if desired, separated by distillation. This is essentially what takes place when sweet cider is changed to sour, or the juice of the grape, currant, cherry and other fruits, to wine ; for the sweetening principle of nearly all such fruits is grape sugar. They all contain the essentials for this kind of decay.

We must say, therefore, to our pupils that all liquors, brewed and distilled, in addition to other poisons, contain the poisonous alcohol, and that this will act destructively upon the human system, to a degree in proportion to the amount and strength of the alcohol received into it.

It may be well also to teach the meaning of the word intoxicate. We get the word from the poison (toxikon) into which the arrows of the Greeks were dipped. Accordingly when we say "That man is intoxicated" we should mean in fact and word "That man is poisoned."

Other food-substances besides eggs and beef may be experimented with; there is a preparation of pepsin sold by druggists which may be used instead of the solution in glycerine; the use of a microscope is not necessary to an understanding of the effect of alcohol upon the blood, while a mug or a tin dipper, an iron spoon or a piece of a broken saucer may be used in place of the beaker, the test-tube or evaporating dish, which are not always easily obtained. In this as in other teaching something must be left to the ingenuity and skill of the teacher. But it may be fairly claimed for these experiments, I think that no special apparatus is necessary, no substances are required that cannot be easily obtained. No knowledge of chemistry, its processes and manipulations, is essential, either to the teacher or the pupil. It seems to me, that these suggestions, subject to such slight modifications as circumstances may require, may be carried out in any school, if there be the purpose to do so. With all the imperfections and limitations naturally placed upon experimental temperance teaching, the end in view is worthy of every effort that we can make to carry out the spirit and the letter of the law.

TEMPERANCE INSTRUCTION IN THE PUBLIC SCHOOLS.

Dr. Charles E. Crandall.

Mr. President, allow me to say as a basis to start from, that I am earnestly in favor of advancing the great enterprise, the magnificent law, the purpose of which is to impart temperance instruction to children while they are in the public schools. I believe that this latest enterprise in the interest of temperance, morals, Christianity, and life is one of the noblest efforts that ever graced the human race. I believe, moreover, that the demands for implanting in the minds of the young a few essential facts regarding the effects of alcohol and intemperance, have at last come to be constant and imperative.

In the first place, the public sentiment of the State is emphatically in favor of universal temperance. It is the wish of every parent, and the united demand of all classes, that children shall grow up
converts to the sublime doctrine of temperance. In keeping with such wish of the people, all of the old laws of the State have been recast, and all of the new laws have been so framed as to conform to the vast scheme of prohibition and universal temperance. In furtherance of this obvious public demand, the Legislature passed special laws making it obligatory upon every teacher to impart temperance instruction to every child. In view of these facts it becomes evident that the majority of citizens, the welfare of all classes, the laws of the State, and the great doctrine to which the commonwealth is pledged, imperatively demand temperance instruction.

In the second place, the temptations to which children are subjected by alcohol and intemperance render it necessary to protect and restrain them by every good form of instruction, conviction, and warning. Only those who think and investigate ever realize what an immense number of children swarm into ruin and crime, owing to the influence of the temptations of intemperance. A few years ago it came to the knowledge of the Law and Order League in Chicago that nearly twelve thousand children were being arrested annually in that city, and the majority of them for drunkenuess. Last winter the appalling fact came to light in the city of Washington that nearly five thousand children were being arrested yearly, and the most of them for juvenile crimes due directly or indirectly to intemperance. The records of state prisons and other penal and reformatory institutions show that nearly thirty per cent of the criminals are under twenty-five years age, and that most of them reach their degradation by way of intemperance.

In the third place, there is the appalling fact that the millions who are now intemperate men and women were only a few years ago beloved and uncorrupted children. They were young children in the public schools, innocent, full of promise and of splendid possibilities, and could they have been saved to themselves and to the State in their original goodness, they would have grown to be useful and honorable citizens. Alas! they got into the way of temptation, and ignorant of the danger before them, rushed onward into the maelstrom of vice, intemperance, and crime. These facts could be multiplied, going to show that the legions of intemperance are recruited from the ranks of the young, and that the stream of juvenile depravity is deep and broad and mighty.

And, fourthly, the demand for temperance instruction is imperative, because childhood and youth is the receptive age when truth
and good principles can be best acquired, and when they do the most good. It is the time above all others for receiving impressions, for acquiring knowledge, and for forming those habits and characteristics which shape human life. All of the philosophers down through all the ages, have urged the doctrine that life is a unit, and that the ideas and habits and convictions formed in childhood largely shape life's middle and decline. Solomon laid immortal emphasis on the importance of training the child in the way it should go. Juvenal went so far as to claim that a person's character is practically formed by the time he is seven years of age. Bacon asked for the training of the child, and the State might have the man. And Pope declared

These are a few of the imperative demands why temperance instruction should be given in the public schools, and why the stream of intemperance should be checked at the fountain head. Confessing thus to the imperative demand for temperance instruction in the public schools, the question arises, what are the essential and practical facts to be imparted? In reply I would say, in the first place, give to every child as far as possible a practical knowledge of anatomy and physiology. Teach them the location and uses of the great vital organs, and the importance of their being maintained in a healthy state for a lifetime. Then give them an idea of the nervous system, and impress upon them the fact that it presides over every organ, every motion and seusation, and every faculty that makes up the marvelous unit called mind. It is not necessary for children to be taught the infinite minutiæ of the entire system, but rather those gross practical facts and principles which are easil: grasped and long remembered. Indeed, it was not the intention of the law that every child be made a complete anatomist, but that the majority should know where, for instance, the heart is located what its functions are, and that its every motion is essential to healti: and life.

Having thus established a good general idea of the system, I would say that the time has come for impressing the fact that alcohol is a poison of the most insidious, aggressive, and progressive type. This fact I would have imbedded, branded, aye, burned into the intellect of every child in the Republic.

It is time to imbed the fact that no article or agent known to man is such a poison to every organ, to good health, to life, and to char-:
acter, as is this infernal liquid poison. These truths can be supported by the proof afforded by the best chemists, the best physiologists, the best physicians known to the scientific world. They can also be substantiated by the hundreds of instances occurring everywhere, going to show how alcobolic poison ruins and tears down the splendid fabric of body and life. Everywhere, all over the continent are wrecks of manhood, showing to what an awful degree alcoholic liquors tend to produce diseases of the heart, lungs, stomach, liver, and kidneys, and in time to derange them beyond every possibility of redemption. Moreover, and worse still, every hospital and asylum all over the world has furnished overwhelming proof that alcoholic poisons are the most common and powerful of all the causes underlying acute mania, delirium tremens, insanity, melancholia, epilepsy, paralysis, and other dreadful forms of nervous diseases. Children need to know these facts, not alone as a means of self protection. but because society depends for its future existence upon the good health and life of all its citizens.

Next in order I would have children taught that whatever disorganizes the organs and impairs the brain, demoralizes also that jewel of existence named character. By force of some ever acting and inevitable law, the use of alcohol leads to degradation. It excites and arouses the lowest instincts and passions; it blunts all the finer sensibilities of the soul; and it so deadens the moral faculties that after a little its victim does deeds and commits crimes which merit the condemnation of all good men and women. As we have already seen, it degrades children at a frightful rate, so that, ere we realize that they have left the innocence of childhood, they are hardened criminals and have passed under the punishment of the law. Eighttenths of all the criminals bave been first demoralized by alcohol and then goaded on to crime, and saddest of all is the fact that sixty per cent of such vast numbers of criminals are under twentyfive years of age. Hence the necessity for building around every child's character Holland dykes, as it were, against the constant lashings and invasions of this monstrous sea of degrading poison.

Thus I would have every child taught the practical anatomy and physiology of his system, and then alcohol is a poison; that it tends to destroy the organs of the body; that it ruins the nervous system; that it causes disease; that it degrades character ; and that it leads to crime. The child that leaves the public schools with these facts deeply imbedded in his mind has learned his grandest lesson, and
one that will do him more good for a lifetime than geography, arithmetic, or grammar. These are the truths to be imparted, the convictions to be formed, strengthened, and reinforced, until they are as immovable as the granite hills of our own beloved State.

It has been conceded that no other person in the State is able to exert such a powerful influence over the young as can their teachers. It is for them to wield the gigantic powers of education, the gigantic powers of Christianity, and the gigantic powers of personal influence, and with these imbibed truths and principles of evedasting worth. It is for the teacher to warn children against the most deadly foe to their life and character, and to attune mental culture to the sublime law of temperance. And so I appeal to each and all of you, in the name of humanity and God, to give these priceless lessons to all children in the highest, widest, and fullest degree. For my own part, every drop of blood within me burns in sympathy for innocent and helpless children, and if there is anything beneath all the shining stars that will tend to save them from an infinite danger, I say let them have it.

OUR GRAMMAR SCHOOL ARITHMETIC.

C. A. Byram.

I almost feel like asking the pardon of these teachers for presenting as I do, to-day, this oldtime question-one that has received the attention and limit of discussion so many times in like assemblies. And not only has it been thoroughly discussed, but certainly there is no subject, taught in the lower grades, which has received so generous share of space as has this same branch-Arithmetic.

Some who read them and can be induced to give their opinions upon them, say that it is but a periodic warfare against the methods employed. If they see that the best results are not always obtaned in any branch, they are not slow to perceive it and lay the lack at the teacher's door, forgetting that in some instances, many, I might say, the pupil is somewhat incompetent to grapple with the subjects, however plainly they may be presented. "Writers," they say, "have become chronic in this regard, attacking with their criticisms first this branch and then that." It happens to be arithmetic just now. Some even go so far as to say, "that the relics of the middle ages should be exhumed and these used as the bases of all calculation." Indeed, I was told only this month, "that no effective work could
ever be done in this branch, until principles of reckoning had been diluted to the rule of three again."

Others attack the methods employed honestly because their children, who, they think, on the whole, are as smart as any in their class, have not been promoted. To this class I am always ready to listen with attentive ear, but have not been persuaded, as yet, that the methods now employed can be exchanged for the better. But, as I said before, I am inclined to believe this last class honest and to have a perfect right to ascertain the cause of their child's non-promotion. For in our grammar schools last year, over one hundred failed to pass the required test, and of this number, fully one-half failed in Arithmetic only. Not doubting so far as I am concerned but that their non-promotion will, in the end, be beneficial to them, yet it is extremely hard to persuade their parents that we are working for the best as regards their children's welfare. I am aware that this is a large number to fail of promotion, but the two-thirds rank required, together with the fact of proficiency in other studies not helping them, somewhat explains this.

In defense of this somewhat rigid marking, I would say that only about 65 per cent of the pupils who graduate from this grade pursue their studies further, and I think this is above the ratio of scholars who enter the higher grades in our State ; hence it behoves us teachers to fit a large percentage of our pupils for immediate business in life. Practical, business-like examples, then, should be the kind given for the consideration of pupils in any grade. To be sure, it is not practical for them to waste nerve and brain energy upon mathematical enigmas: it is waste, and the two have no medium of exchange.

There is no doubt, however, but that the power of using any of the fundamental branches intellectually is of greater good than any acquaintance with them from a merely practical standpoint; yet so far should we be from under-valuing the latter that we must regard it as the immediate object of their being taught at all in school. Assuming then, and I think that more will disagree with me in the assumption, that practical good is the object to be aimed at, it is our duty to study with care those methods best producing these results.

In the first place we must remember that pupils coming from the intermediate grades take a great step in being led directly into fractions, under the supervision of teachers with whom they are unacquainted, and whose methods seem to them so new. It should be the duty of the teacher at this stage to take up the subject in its
simplest form, for if pupils become confused at this point, there is no telling to what limit it may be carried.

The only written work they should be required to do for some time, should be simply a review of intermediate work, the remainder of the time being spent in oral work on the subjects they have already entered upon. The true conceptions of fractions can best be imparted by means of objects capable of being easily divided into any number of parts in the presence of the pupils, and not only divided but put together again, to be compared with the varions parts and combinations of the varous parts. In this way the pupils will soon become acquainted with the true import of the terms numerator and denominator.

Care should be taken during addition and subtraction of fractions to have nothing to do with compound fractions in either of these, as they should be let well alone until the pupil has a good understanding of multiplication, when they may be taken un with profit. It is a mistake for teachers to suppose they are able to impress a clear distinction of these four principles in a short time. Indeed, after a whole year's drill, the time alloted to their study in our school, it is surprising to see how little they know about them towards the end of their course.

I have taken up and treated to some extent common fractions first, since they are usually taken up in this connection in the grammar grades, but I believe a change could be made here, which would help bridge over the chasm of intermediate and grammar grades to quite an extent, and that change would be to take up decimals first. I say decimals, never telling our pupils we were dealing with fractions in any way. It has been my experience that I have been obliged to drill my pupils, at the beginning of each school year in the fourth class, for nearly a month on intermediate class work, and how could we give them this drill and at the same time be at work on advance topics, better than by putting them directly into decimals? The only change with which they would have to become acquainted would be the decimal point and its peculiarities. It is certain that not so thorough drill could be given at this stage as later in the course, but certainly steps could be taken in this direction with twofold advantages, leaving them to become acquainted further on with the similarity of decimal and common fractions, and of the reduction of the one to the other.

We are told by such a practical instructor as Gen. Walker, and by the way, his scheme has been accepted by the Boston School Board, that compound interest, equation of payments, compound proportion and compound partnership as well as stocks, should not be included in the regular school work in the grammar grades. He goes on to enumerate other subjects, but they need not be taken up in this connection, as we graduate the pupil after giving him a few lessons in cube root without taking up any of the applications. With the above scheme I heartily concur, except compound partnership, interest and proportion. To be sure, no truly practical examples can be given in compound proportion alone, but I can see no practical good of taking up ratio if the equality of ratios is not taught. Scholars will be obliged to learn the technical terms whether they deal with one or more ratios. Why may they not then take up a few simple questions in compound proportion? I see no reason The same reasoning holds true also in partnership, for many times I doubt not that they will be required to apportion gains and losses when the conditions of the question will not admit of its being worked as simple partnership.

I do not, however, agree with what the gentleman suggests in regard to the time to be given this branch. He thinks that on an average three and one-half hours per week are enough. I may be wrong in this idea, but this much I am certain, that I need not occupy your time with remarking in general upon the importance of arithmetic as a study in the schools, a study whose results are of universal application in common life, and the pursuit of which furnishes, in a greater degree than any other one study, an easy and sure means for the discipline of the mind. Its various stages, too, are fitted for every variety of age, and all degrees of mental powers. Arithmetic, therefore, I claim, holds and should hold a prominent place among the studies of the common school. Perhaps it is not too much to say, that on an average one-fourth of the time spent in study in our common schools is occupied with this branch, and besides this liberal share of time uniformly allotted to it in the regular arrangements of the school, this study is a kind of reservoir into which are thrown the fragments of time not taken up with other studies.

But I have not yet explained why so many fail to pass the required tests for promotion. This can be easily assured as regards the fourth or lowest class, since many pupils on account of age or some other reason find their way into this grade, before they have a thorough
knowledge of the four fundamental principles, enumeration, of finding the L. C. M. and H. C. D.-especially these last two : they appear to have no other conception of their good, save as an ingenious way of writing down a number of figures. When permitted to go on further, however, and are not promoted, we must look elsewhere for the defect. First, it may be that too hard problems are given. Too often it happens that a problem is placed on the board, fairly stated, involving no bard principles, in fact, the method of working it may be clearly understood, but yet the working of it may make use of hard fractions, which will greatly hinder the pupil from obtaining the required result. Great care should be taken in this regard, and make use of those problems only, whose results can be obtained without long fractional appendages. And, as I have hinted before, the greatest caution must be exercised in graduating the applied questions and problems in respect to their difficulty, for, though a child may quickly apprehend a principle, he naturally proceeds slowly and hesitatingly in its application.

Again, applied exercises should be introduced under each rule, requiring the pupil only to find the manner in which the rule is applied, afterwards they should be presented miscellaneously so as to embody various principles, giving him no clue whatever to the rule of operation in each case beyond what he derives from his own interpretation of the rule itself The teacher should always bear in mind that each problem is not so much a single exercise as a kind of exercise, and to this end it will often be to the greatest advantage, when a pupil has solved it as a single exercise, to put it before him in other forms of language, the object being to induce him to recognize readily his principles under all the possible forms in which they can be presented.

Again, should the problem admit of more than one solution, the teacher should, as a general rule, in the first instance, leave the pupil to choose one for himself, but when one has been found, he should be encouraged in another. In this way his results will cost him more time, but its propriety will be evident to him who looks upon the obtaining of the mere numerical results as only a means to a far higher moment ; viz., the cultivation of the pupil's power of mind. In other words, he should be master of the rule, and not the rule his master. He should be master, not by dint of memory of what the rule expresses, but master of its ideas, and of its grounds. He should be able to look over and through the rule, and not be a slave
to it. In this way he will be able frequently to substitute a shorter process than the one prescribed, he will invent a new rule, or, best of all, he will work so understandingly that, seeing the end before him, and knowing his means, he will work towards his end without being conscious of the guidance of any rule at all, any more than a practical workman in the arts thinks of a rule while he turns from his hand, one after another, the beautiful specimens of his craft.

Care should be taken also in regard to the selection of problems employed. In no way can the mind of the child be occupied so judiciously as upon the ordinary, practical, business-like examples, in all cases making use of the ordinary business language so common in every-day life. A writer has well said in this connection, "it is not the working with a few numbers well in the millions that give the practice, but rather a long list of small numbers." And perhaps in no stage of the work can practical mental examples be employed to greater advantage than now. How often in the experience of every live, progressive teacher has an hour been well spent in mental arithmetic, and in explaining a list of apparently hard examples, which have accumulated during a few preceding days! I wish to place particular emphasis upon these last two devices, viz., mental arithmetic and explanations, because in slighting either of these, it seems to me, we leave out of consideration two of the most important schemes certainly of giving our pupils the greatest return for their time and energy expended. These will also increase the power to seize at a glance some approximate answer, when numbers are wrought together as the terms of numerical calculation, a power which every pupil should have. I do not mean that such a power ought to be expected of numbers that are vastly large, nor on the other hand do I intend to restrict the numbers to the limits of the multiplication table. I refer to numbers large enough to embrace a majority of the cases that occur in actual business. The pupil should have the power of grasping such numbers so understandingly that he can immediately find an approximate answer, in the case of any ordinary operation upon them.

I feel sure that you will agree with me, that if the pupil has not, to some considerable degree, this ability, however much he has ciphered, his real power in the numbers must be pretty small. Yet there is perhaps no point in which an entire want of power is shown so frequently by students in arithmetic as in this. The pupil seems to have no ability to exercise a censorship over his own method
and the general correctness of his work, by glancing his eye over the numbers, but having wronght, as he thinks, in obedience to his task-master, the rule, and failing to meet the requisitions of the book in his answer, he brings to his teachers, in all innocence, as absurd a thing as can well be written in figures.

In conclusion let me say, that I do not wish to advance the idea that we are to give small pupils examples that would be good discipline for more mature scholars; for if we are to study logic, pray let us call it logic and not attempt to pass it under the pseudonym of arithmetic; nor on the other hand that we should give examples that furnish scarcely no discipline at all, but rather select those problems which will require some thought, giving them plenty of time to do their work, and such assistance as is really needed, and then let us stand, believing we have done our duty as teachers, and if our scholars fail to obtain the required standing, I for one believe we do them no injustice if we require them to do their work over again.

PROFESSIONAL READING.

What is it?

W. J. Corthell.

All reading is of the literature of power, or of the literature of knowledge. The former appeals to man universal. It finds a response in the emotions of each human being who is developed enough to read it. It touches the springs of action in every human soul and so gives power. It never grows old, never dies, because humanity does not grow old or die. It embraces the works of all the masters in all ages and nations.

The literature of knowledge aims to give power ultimately, by giving skill directly to those engaged in some special work in life. It does not appeal to universal man, does not touch the springs of activity. It gives not power directly, but knowledge. It excludes all real literature and includes only technical writings. It treats of the ends, materials, instruments and agencies for the special work which it concerns. Professional reading for the teacher then concerns the ends to be attained by teaching ; the materials with which the teacher deals; the instruments to be used; and the agencies employed. It must treat of the physical, intellectual and moral nature of man ; their condition in childhood, and the means of advancing them towards ideal perfection; of the various subjects
studied as instruments for securing such advancement; of the teacher himself (the agent) ; the characteristics in him which make success.

Professional reading for the teacher must include then, first, physiology, both human and comparative, that he may know the body ; second, psychology, that he may know the intellect, the sensibilities and the will-this complex human nature being the material out of which the teacher must build. No professional reading is of much value unless it secures, or can justly assume, a comprehensive knowledge of body and mind.

It must also include the history of education, that the teacher may know what has been done, what principles have been elaborated, what proposed panaceas for all ills of ignorance have been proved to be empty puff-balls, long since dispersed by the pure air of experimental wisdom.

Professional reading must include the subjects to be taught. These are the instruments of his work. No teacher can succeed who fails to read what has been written by masters, in the craft, about these subjects. But this is not enough. He must read the subjects themselves in text-books of great variety in form and mode of presentation. Only thus can he impart sweet, living truths, as from a full flowing fountain.

Results-I. Negative:
Professional reading cannot fully supply the want of careful professional and scholastic training and experience.

1. First because a large proportion of young teachers have not the needful preparation to enter successfully on a course of professional reading.
2. Because reading will lack that attrition of criticism, that balancing of opinion, that careful weighing of thought, so needful in giving judgment and determining what is really true, or what only seems true because it coincides with one's own opinions.
3. Reading cannot give that skill, gained in its full power only by experience, in determining how much general laws of mind are modified by the circumstances of each pupil, and so wisely adapting conduct to environment.
II. Positive.
4. Professional reading can save the teacher from many mistakes, costly to the pupil, in the development of false or vicious habits, wasteful opportunities weakened intellectual powers, or infinitely
more costly moral ruin, more costly to the teacher in the reflection that by his mistakes he has hurt a life for whom Christ died.
5. It helps materially to lift the work of the teacher out of tha drudgery of the commonplace, and put it into the realm of the creative, therefore the godlike, the glorious.

What shall constitute the course? Books giving details of methods are of very little value, unless the teacher has such knowledge of, mind and body as to understand the principles of teaching, universal in their application and changeless as the nature of mind. The study of any methods without such preliminary knowledge leads to servile imitation, often grotesque in its absurdity. The apparent difficulty lies in the fact that many young teachers, not having had the advantages of thorough high school or professional training, are not prepared to read the works which must lie at the very foundation of a really useful course of professional reading.

This leads to the consideration of the question "What shall this society do?

This suggestion is made. That this society add to the committee on instruction a large committee of young, energetic members, as a committee on professional reading, that such committee endeavor to find in each large town, and in each group of small towns, some one who will voluntarily enter the work of forming reading circles, conducting the correspondence with the central committee of the society, thus securing an active worker in each locality in the State, and realizing the reading of professional works, where now such reading is not the habit of the teachers.

It is suggested that some plan of this kind would be a source of strength to this society and of infinite advantage to teachers and schools.

Were it the province of this paper to suggest books, the writer would have no hesitation in naming as the best book extant for one actually a beginner in the study of psychology, Dr. Champlin's Intellectual Philosophy. Next, Dr. White's Pedagogy, Fitch's Lectures, Payne's Compayre's History of Pedagogy. For good books in methods, the name is legion.

WHAT AND HOW MUCH SCIENCE TEACHING IN COMMON SCHOOLS.

Prof. F. L. Harvey, State College.
Members of the State Pedagogical Society, Ladies and Gentlemen:

The subject chosen by your Committee, and upon which they have requested me to present a paper, is one of great interest.

Will the Natural Sciences interest and instruct the young and give the proper discipline to the dominant faculties of the mind in childhood? If they are adapted, what sciences should be taught? How should the matter be presented? What time should be given to the subject? At what age should science study begin? The above are important questions which to-day engage the earnest attention of our best educators of the young. I am, therefore, not surprised that the question of science teaching in public schools is assigned for discussion here to-day. But a few decades ago it was discussed with great gravity as to whether the Natural Sciences should be admitted into the curricula of our colleges and universities. To study about material things was considered groveling and debasing in its tendencies, resulting in ungodliness and atheism. Science students were regarded as of a lower order of mankind, and lest they and their study contaminate, were relegated to different buildings. The advocates of science persistently urged their claims, and forced a recognition by the people. It was found by experience that the study of God's laws and works did not result in the total depravity expected, and that students of science had neither horns nor the cloven foot. The sciences gradually gained favor. Besides being eminently practical, it was found that God reveals himself in his works as well as in his word. Being the author of both, one must harmonize with the other, and the study of God in his twofold manifestations must result in a closer view of his true nature. Science, therefore, leads to monotheism and must join strength with revelation in exalting the one true God. Slowly and steadily have the sciences gained a foothold in our colleges and universities, both secular and theological, until there is scarcely a purely classical institution in the country and but few courses of study offered composed of wholly subjective sciences.

At the present time we have more or less discussion about the introduction of the sciences in common schools. For the colleges the matter is practically settled. For the common schools the questions stated above from a want of experience are debatable.

The sciences already introduced into the common schools more or less as optional, supplementary or required studies, may be regarded as an experiment.

There must be some good reason why the sciences have and still claim the attention of educators. They must supply some want in disciplining the unfolding faculties of the human mind. They could not have forced their way so prominently into the curricula of our colleges against reason, and in opposition to the tenacious views of the old school men, that the only road to a disciplined mind was through abstract mathematics, ancient languages and metaphysics.

Pres. Elliott, in speaking of the future policy of Harvard College said substantially, "that the tendency of the age is so decidedly toward the sciences pertaining to practical lite, that unless the strictly classical institutions revise their curricula to meet the modern demand, institutions founded upon the modern want will leave them with empty walls." The ologies are now so numerous no one can cover them all in the few years allotted to the college course. Men must select those most to their tastes and liking and which best subserve the ends of their chosen profession in life.

It can no longer be urged that the Oxford courses only represent the amount of culture entitled to the A. B. degree.

The object and end of education should be discipline. All uther considerations are subordinate to it. The faculties should be harmonionsly trained and their actions co-ordinated so as to produce a well balanced mind. Any branch of knowledge that calls into action systematically all the powers of the mind will subserve the ends of discipline.

It is not so much what we study as how that gives the proper discipline, providing the subject matter of the study appeals harmoniously to the faculties of the mind.

Men may acquire traincd faculties and intellectual acumen in many ways entitling them to the appellation of scholar. It matters not in the training of the arm, whether lead or iron dumb bells are used, providing the end sought is reacbed, the healthy stimulus of the muscles that results in symmetry and strength. It matters not the form of the mental food: the more simple the better, if it sup-
plies the nourishment necessary for a healthy development of the mind. Trivial things which occupy the mind may even subserve the purposes of solid discipline. The simple foolish stories of Mother Goose, which are told children and interest them, leave no ideas worth remembering, yet through them activity of the mind is produced which disciplines and elevates to a higher plane.

If the ends of discipline can be reached and at the same time branches studied, the facts of which have a practical bearing upon the intended vocation, all must admit that it would be the best. This seems possible and therefore, if the vocation selected be one hased upon the objective sciences, the child should early begin the study of them. Such subjective studies should be added as have a practical bearing, and be pursued in reference to their application. It would never become necessary in our estimation to pursue collegiate branches for discipline alone. We have no war to wage with classical courses of study. They have their place like sciences in the broad field of the attainable. We would not underrate their disciplinary value. We do not believe in exclusive training in the classics as a basis for a scientific career. The sciences should be first and the classics secondary though to a certain extent necessary. The classics are the essential to those whose life work pertains to literature and metaphysics. Though the Latin is less used than formerly as the language of science, yet it and Greek will always have a practical bearing upon nomenclature of science. It is only when called upon to believe that the classics are the only means of a disciplined mind that issue is taken.

There is great tendency to go to extremes and become blind in our wild enthusiasm over the practical until we lose sight of the importance of classical and suljective studies as a means of harmonious development of the human powers. Our nature is double. There is the objective and the subjective side of it. Both need to be well trained to produce the harmonious mind. The great fault of the old school discipline was, that the subjective faculties were stimulated to observe minute shades of thought and grasp intricate relations about subjective things, while the senses which have as their subject matter the external world were but little trained. The sciences if taught at all were taught subjectively not objectively. They trained the memory, the imagination and abstract reasoning, but not the senses of sight, hearing, touch, taste and smell, the avenues through which our knowledge of the external world is gained.

The tendency now is to the other extreme, sense training to the neglect of discipline of the subjective faculties. The desired ultimatum is the harmonious training of both. It seems from a study of the human mind as it manifests itself in others and by self contemplation, that the subjective and objective powers have different faculties of observation, requiring independent and special training. Sense training will not cultivate the power of imagination and subjective acuteness. We really believe that sense training alone, exclusive dealing with the rigid facts of the external world, will dwarf the powers of poetic imagination, subjective discrimination and abstract reasoning. The cultivation of the subjective alone makes one live above the earth in books and abstract thought. The problems of practical life are approached from a subjective instead of an objective standpoint. The man cultivated only in his subjective faculties theorizes but does not investigate, and when he enters practical life has to train his senses by bitter experience in contact with the external world. He has to unlearn his exact mathematical reasoning and learn circumstantial reasoning.

It is difficult for one trained in subjective observation alone to acquire the habit of objective observation, after he is mature. The training of the subjective and objective faculties should go hand in hand. The natural sciences when carried to their ultimate bring into harmonious action all the powers of the mind and in themselves could subserve all the ends of discipline necessary to the highest scientific career. The other studies found in the scientific curricula are there because of their universal application, or practical bearing, not as necessary disciplinary studies. This one-sided development of the nature to a special calling may not be the most desirable, or the ideal education, but seems forced upon men by our modern civilization, which is possible only by division of labor.

With these general considerations let us pass to notice the nature of the sciences. In the universe of knowledge there are two great worlds. The world without and the world within. The material and the immaterial. The world of matter and the world of mind. The world of matter includes the objects of the mineral, vegetable and animal kingdoms. We become acquainted with them through the senses. The world of mind embraces those considerations that grow out of the manifestations of the spirit and appeal to consciousness.

Corresponding with these two great worlds of knowledge, the sciences are divided into the subjective or metaphysical and objective or natural.

The former deal with thoughts, states of consciousness and their relations, the latter with things that appeal to the eyes, ears and the senses of touch, taste and smell. If you examine the curricula of our colleges you will find the classical courses made up wholly or largely of subjective sciences and the scientific courses largely of objective sciences. Metaphysicians tell us that if the mind existed in a body incapable of receiving impressions from without, it never would think and ever remain unconscious of its own existence. We come into the world with minds as blank as a sheet of paper. The brain has no ideas nor consciousness until stimulated from without through the senses. Logically the external world stands first as a means of education. The senses are the windows of the mansion in which dwells the inner man. They are heavily curtained at first and scarcely a ray of light finds its way into the dark recesses of the home of the soul. Through the stimulus of the objects of nature upon the senses, the curtains gradually roll up and gleams of ever increasing brightness stream in, awakening the sleeping mind to activity, and the work begins of arranging and beautifying the many compartments of the soul. These curtains work with an endless chain and the better our senses are trained, the closer students we become of nature, the higher up will the curtains to the windows of the soul be rolled and the clearer, deeper and purer will become the light and the capabilities of the mind and spirit. Great importance attaches to the cultivation of the senses. All the higher acts of the mind rest upon accurate perception as a foundation. Accurate percepts are essential to just conclusions and true judgment. The higher acts of the mind may be performed ever sologically, yet the value of the conclusions rests upon the validity of the premises, and the premises upon accurate subjective or objective observation. Early life should, therefore, be largely given over to sense training and the acquiring of the habit of accurate observation and the storing of many clear and accurate percepts.

The subject matter of the natural sciences appeals to the senses, the dominant faculties in childhood. The natural sciences are therefore eminently adapted as a means of disciplining the youthful mind. There is a natural unfolding of the faculties of the mind. They are not all developed at once. Mature life is reached before the human
mind is capable of its most perfect action. Metaphysicians tell us that the order of unfolding of the faculties of the mind from childhood to maturity, is the same as the succession of steps in a complete intellection of the mature mind from observation to generalization. The observing faculties are therefore the dominant faculties of childhood, and our attention as educators should be given to the proper training of them. The teaching of science in its broadest sense, appeals to the higher acts of the mind and should be left for maturer years, and pursued where it properly belongs, in the technical schools, colleges and universities. Science in public schools should have as its essential object sense training. The subject should, therefore, be presented so it will appeal strongly to the senses. The objects themselves should be presented to the senses. The child should be brought face to face with nature and his senses trained by using them. To pursue the sciences from text-books alone is to make them dry, meaningless, uninteresting subjective studies, and of no value as a discipline of the senses. The facts of science, which appeal to the memory and the higher acts of the mind, are of minor importance in childhood to the necessity of training the senses tomake exact and close observations, establishing the scientific habit and laying the foundation of an original investigating mind. If the habit of using the senses is established, the facts will take care of themselves. To study from the text-books alone or even to listen to unillustrated lectures by the teacher does not train the senses, werely fills the head with the thoughts of other men and leaves no power of veritying the facts or discovering new. The teacher should, therefore, be a student of nature, be possessed of the scientific hatit-have a love for his work and produce in his pupil, so far as possible, the same condition of mind. The question probably arises in the mind, how a teacher without the trained senses and the scientific habit can manage. Such never ought to undertake science work, unless they become with their pupils students of nature and with them train the senses. The ultimate success in science study depends largely upon the habits formed when the pupil first begins. As in all other branches of learning we need the best teachers for beginners. This is to me one of the gravest difficulties, for those who have spent the time and effort to train themselves for a high order of work command higher salaries than are given in the publice schools.

All the natural sciences appeal to the senses and if property presented would furnish the required discipline. Every teacher likes to labor in his own harness. He would, therefore, do the best work and reach the highest results through the sciences he knows and loves the best. The disciplinary effects of all the sciences being the same, the results of training could be reached through a single branch. We would, therefore, advocate thorough training in one science rather than surface work in many. Laying aside the training or fitness of the teacher, qualifying him to present one science rather than another, there are in the nature of the sciences themselves peculiarities which adapt some more than others for general study in our common schools.

The so-called physical sciences, chemistry, physics and mineralogy, require extensive apparatus and cabinets for illustrating the work. This apparatus has to be manufactured and costs money. Minerals are generally found locally in deposits and have to be purchased for use in many localities. The principles of chemistry and physics are quite abstract and difficult to understand. Much good work may be done in these sciences to train the senses at little expense by an ingenious teacher. The biological sciences, zoology and botany, require no purchased apparatus, nor extensive cabinets for illustration. The plants and animals, plentiful and universally distributed on every hand, are the apparatus, and can be had for the taking. So plentiful are they that each student can have as many specimens as are needed for personal study. Children like flowers and animal life much better than the inanimate minerals and rocks. The principles of the biological sciences are more easily understood. Between the two biological sciences there would not be much choice, though some children have an antipathy to animals and especially to dissections, that cannot be overcome, while the love for plant forms is almost universal. The study of special zoology in the form of human anatomy, physiology and hygiene without manikins, models, charts, and dissections of lower forms of life does not discipline the senses or form habits of observation to any extent, though the facts taught are of great value. The subject can with appliances be presented so as to subserve the ends of discipline.

Sense training may begin in the cradle and the scientific habit be formed before the child is old enough to enter the public schools. All children are not so fortunate as to have parents who see the importance of sense training, or if they do see it, have the time,
patience or knowledge necessary to give the guidance. From our earliest existence it is nature's method to appeal to the senses through natural objects. The child by contact with the external world picks up a great deal of knowledge of the things about him before he comes under the guidance of the common school teacher, but he has done it without method. Frequently he is no better off and often worse off after he enters the schools. The true teacher perceives nature's methods of appealing to the faculties of the mind, and makes them more efficient by proper direction. The Kindergarten schools for children, though perhaps too machine-like in methods, are doing a good work in sense training. The sciences as usually taught in our public schools are deferred until the senior year, but experience proves that lessons of Natural History can be introduced from the first with good results. They detract nothing from the other routine work and serve to make the children alive and quick in their perceptions.

The study of the sciences should be pursued until the teacher feels that the habit of using the senses to unravel the mysteries of the external world has been established, and some degree of accuracy in making observations acquired. This will depend upon the teacher and the pupil. No principles can be laid down. Naturalists, like poets, are born, not made. Some children are born with the scientific habit and need no guide to sense training. Most children are susceptible of more or less sense training by proper instruction and discipline, and most need careful guidance. The methods often adopted in our public schools, of teaching sciences from text-books without illustrations, hinders the subsequent acquirement of a proper use of the senses. The study of science for a time from text-books by memory and the imagination makes it hard to change the subjective to the objective habit, and is apt to create a disgust and force the student, when he enters college, to other courses of study.

College students so taught in our public schools cling to the lazy subjective method of study. It is hard to break it up. They acquire with much greater difficulty than novices the habit of using the senses and the hands in the study of nature. It would be much better that the sciences remain unconsidered in our public schools if so presented that they tend to stupify, instead of stimulate, the senses. It would be a desirable ultimatum and a source of gratification to the teachers of higher science in our colleges and universities, if students could come to them from the common school for the study of science in its
higher aspects, as it appeals to and so fully and systematically unfolds the higher powers of the mind, with the senses somewhat trained and the scientific habit formed. With this substantial training, at least, a year's time of the college course in science would be saved, and the standard of science study in our colleges correspondingly raised. Let us hope for a partial realization of this desirable end, and in conclusion, let me say that it will give me more pleasure than any words can express, to aid the teachers of the public schools of Maine in their science work, by answering questions or by the examination of specimens.

EDUCATIONAL SCIENCE IN TEACHING MUSIC.

By Prof. H. E. Holt, Boston.

gS A PRACTICAL KNOWLEDGE OF EDUCATIONAL SCIENCE ESSENTIAL IN TEACHING MUSIC IN SCHOOLS?

If we ask the professional teacher and expert in educational matters whether or not a knowledge of educational principles and their application is essential in teaching arithmetic, reading, writing, and other branches taught in schools, he will tell us that no one is qualified to do the best work in teaching these branches who does not understand the principles of educational science, and their general application to the subjects taught. We have progressed far enough in the study of educational principles and their application in teaching, to believe that there is but one true educational method of teaching any subject, and that this true educational method is applied educational science. While every teacher should have his own manner, ways, and means of teaching any subject, he is a good or poor teacher to just the extent that his manner, ways, and means are made to conform to the natural laws which underlie the growth and development of the mind. The person who knows nothing of these mental laws and their application in teaching a subject, cannot be considered in any sense a teacher of that, subject, however learned he may be in it. Little children in our primary schools can be taught tones and semitones, major and minor thirds, perfect and augmented fourths, perfect and diminished fifths, etc., as mental objects, just as readily as they can be taught simple numbers and their combinations. But no person, however proficient he may be as a musician, can obtain these results without a knowledge of edu-
cational science and its practical application in teaching music. Great improvements have been made in teaching all languages in all countries by a closer application of educational principles.

Music is a "universal language." No other language is so generally recognized and taught in all countries. Such is the simplicity of the elements upon which the language of music is based, that educational principles can be more easily and successfully applied in teaching it than in teaching any other language. Notwithstanding this fact, there is no other language in the teaching of which true educational principles are so utterly ignored and disregarded. When we give more attention to the study of educational science and its application in teaching music, many of the foolish ways and means (sometimes called methods) now in use will disappear, and music will be well taught more universally than any other subject, because the elements are more simple and educational principles. can be more easily and successfully applied. The science of music is a most profound mathematical science. The notation of music as it is usually taught is a mathematical puzzle; when we take up the study of the value of notes and their corresponding rests from the standpoint of their fractional names, the study becomes a mathematical puzzle, and if we succeed in working out the puzzle we are still no nearer a knowledge of the real concepts represented than when we commenced, but fortunately neither the mathematical science underlying the arrangement of the pitch of sounds, nor the fractional names of the notes and their corresponding rests used in representing the pitch and duration of sounds, are at all necessary in order to sing intelligently by note. There is no true elementary teaching which does not hold the mind in constant contact with the real oljects of thought until they are known. Constant presentations and repetitions must be made until an impression of the fact is clearly established in the mind. The real objects of thought in music are not signs. The names of the signs or characters used in representing the pitch and duration of musical sounds are of no. more practical value in reading music or singing intelligently by note than the names of the Chinese alphabet. The names of these characters are only useful as they are convenient in talking about the subject, and they should be learned incidentally in this way.

The amount of time wasted in teaching music, and devoted to the teaching of mathematics and drawing by the average music teacher in schools, is appalling. All the time spent in working out the
mathematical transposition of the scale, and combining notes and rests of different values into measures, is just so much time spent in working out mathematical puzzles which have nothing whatever to do with the teaching of music and which are of no value in learning to sing intelligently by note. All of the time devoted to drawing the staff, clef, notes, rests, and all cbaracters used in representing music, is just so much time devoted to practice in drawing, pure and simple, and not to the teaching of music. This kind of training may be well enough if proof reading and written examinations upon the notation are the objects in view. There should be no written examinations in questions and answers to ascertain what children know about music. A written examination in singing is an absurdity. All such examinations are tests upon the written signs only, and are no indication that the pupil has any knowledge of the invisible concepts represented. And yet these written examinations in music are more frequently given than any others. In teaching this subject in schools the mathematical science of music and the study of signs used in representing music should give place to Art. Children should be taught the art of singing intelligently by note. We might as well say that a child should not see and enjoy the variety in color and fragrance of beautiful flowers until they can understand the mystery which causes this variety in color and fragrance, as to say that children shall not hear and make with their own voices and enjoy the succession and combination, of sounds, of which the most elevating and inspiring music is composed, until they can understand the mathematical science which underlies the arrangement of these sounds and their combinations, and the names of the signs used in their representation. The application of educational science in teaching music is to us as educators the great and important question of the hour. The same underlying principle should be applied in all departments of musical instruction. Upon the proper understanding of this question depends not only the employment of different devices used as notations, and the confusion which must inevitably follow their use, but the success or failure of music in our schools. We have no hesitation in saying that a knowledge of educational science in its practical application in teaching music in schools is not only indispensable to good work, but that all failures in teaching this subject can be traced directly to a want of this knowledge and its application. Teachers are successful in teaching this subject just in proportion as they understand the natural laws.
which underlie the growth and development of the mind, and are skillful in presenting the subject in accordance with these mental laws. From this we shall see that music is not the first and most important thing to study as a preparation for teaching this subject, we must first study the mind and the laws which govern its growth, we must then learn to make the presentation of music to the mind in such a way as to awaken mental activity and secure growth and development through this activity, and in this way give the mind command of its musical powers. No matter how good a musician a person may be, no matter how well he may be able to sing, no matter how well he may be able to play upon musical instruments,-a person may have all of these accomplishments and still be utterly unfitted to teach this subject in schools, or any where else for that matter. No person is qualified to teach in the best manner who cannot make a clear analysis of the mental processes involved. No person can be successful in teaching children to think in music, who has not made the mind and the laws of its growth a careful study.

The time has come when, if the musicians of this country are to exert an influence upon the teaching of music in the public schools, they must study this subject very carefully from the standpoint of the professional educator and teacher of other branches, rather than simply from the standpoint of the professional musician. If we are to regard all persons as eminently qualified to take charge of the instruction in music in the public schools when they can pass successfully the examination required by the M. T. N. A. in this department of musical instruction, the time will soon come when the certificates of qualification from that Association will not be worth the paper upon which they are written. I am aware that this statement will be regarded by some as rank treason, but I believe it will prove true, nevertheless. The most favorable indication of a genuine reform in the teaching of music in public schools, at present, is the intelligent criticisms made by educators and the teaching profession generally upon the methods employed by the professional music teachers in their work. Our methods of teaching music must conform to and embody the principles of educational science as applied in teaching all other subjects. In no other way can the teaching of music in schools be placed upon an educational basis and be generally and successfully taught by the regular teachers in the same manner as other branches. The teaching of music by the regular teachers in schools is just as practicable and can be made
just as successful as the teaching of any other subject. In the first place, very litule is yet known of the ability of the mass of children to learn music. While children will vary in this as in all other natural endowments, I believe there is no one faculty or gift which has been so generally and lavishingly bestowed upon the human race as that of music or tone perception. But what has been done in the past to develop this natural gift which contributes so much to the elevation and happiness of mankind? When we look at all of the inventions in the way of notations and the mechanical devices invented and intended to make the study of music easy and bring it within the reach of the masses of the people, we find that all of these inventions and devices are only means for making it easy to acquire a knowledge of the signs of musical ideas, not music itself. This is study and effort in the wrong direction, it is dealing with the mathematical science and visible signs and not with the invisible things. But when we take for our guide the principles of psychology and apply the infallible laws of educational science, and confine our operations to the real things to be taught in music, the whole subject assumes an entirely different aspect and we go from the study of the science and signs of music to the study of the mind and the laws which govern its growth, and observe these laws in our teaching. All other studies have for a foundation this basis in principle, and music must be no exception to the general law. This must be the standpoint from which to study this subject if we would be successful in teaching it. The general truism in teaching all subjects, "The thing before the sign of the thing and one thing at a time," has been repeated times enough in connection with the teaching of music; but has a practical application of this general truism and fundamental principle been made in teaching music? Have we gone down to the bottom rock foundation and ascertained what the real things in music are? If we have not, then there has been no intelligent beginning made. "All mental action comes at first to the brain through the senses." The senses of hearing and physical touch are the only senses through which to reach the brain with the real concepts in music. The sense of hearing is our only avenue to the brain in teaching the pitch of sounds. In teaching rhythm we can add to the sense of hearing the sense of physical touch. The real things or objects of thought in teaching music must therefore be things not visible to the eye. Before any intelligent beginning can be made in the application of educational science in training the mind to think
in music, we must decide what constitutes the real units or objects of thonght to be presented to the mind. Music is composed of two separate and distinct subjects each of which must have a unit or object of thought upon which the study of the subject can be based. When we consider the teaching of music from this educational standpoint and these fundamental truths are comprehended and understood, as they are in teaching other subjects, there can be no question regarding the proper basis from which to work. With the question settled of what constitutes the whole thing in Tune and Time throngh which to study these subjects, we have a common ground upon which all can stand and from which this whole problem can be very easily solved. Fortunately for the cause of music these questions are not mere matters of opinion to be decided by this or that person's whim or previous habits of thinking in music, they are facts that can be demonstrated beyond the shadow of a doubt. They are truths which have a foundation as firmly established as the eternal hills, and all intelligent musicians and teachers will accept them.

The major scale is the series of sounds upon which the whole superstructure of music is constructed. It contains everything there is in music, and furnishes the true basis from which to work. It is the key through the use of which the great and intricate problem of intervals can be very easily solved. This series of sounds must therefore be regarded as the unit or object of thonght to be presented to the mind in studying the pitch of sounds. This fact established, and we have an infallible law in educational science for our guide. This law requires that an object of thought shall be first presented to the mind as a whole thing, after which we are to analyze and study its parts. In no other study will the application of this law unfold the intricacies of the whole subject, and open up the way to a more beautiful and systematic development of the mind regarding the subject. The results following a skillful application of this law in training the mind in musical sounds are truly wonderful, but they are very easily accounted for when the simplicity of the mental processes is understood. These are the processes in sense perception training, pure and simple, doing away with a study of the complicated signs entirely. Viewed from this educational standpoint all the inherent effects of music itself are brought to our aid in teaching the subject. The impression made upon the mind by the characteristic quality of each sound in its relation to the unit or whole thing is the all important factor in training the mind to think
intelligently in music. This applies as forcibly in the study of time as in the study of tune We must make no mistake regarding what constitutes the real units or objects of thought to be presented to the mind in studying the two subjects (Tune and Time) upon which the whole superstructure of music is based. An error here at the very foundation of our work in training the mind in music, and our whole building will topple and fall. But with a solid foundation resting upon the whole things in these two subjects upon which to rear our superstructure of mind training in musical thought, we have a building that can never be shaken, because it is founded upon the unchanging laws of nature which underlie mental development. The development of tone perception in music from the standpoint of educational science is an unexplored field, in which the virgin soil is as deep and fertile as the capacity of the human mind ; it will vield a most bountiful harvest in musical development when properly cultivated. But no novice in nature's laws can till this field: he must know what, when, aud how to plant and cultivate. Nature will be as true to herself and adhere as persistently to her own laws in mental growth and development as in vegetable growth and development like will produce like. The farmer who would sow a field with tares and expect to reap an abundant harvest of beautiful golden wheat would be called a very foolish farmer. The teacher who sows the positive pitch seeds of flats, sharps, and naturals mixed up with whole, half, quarter, eighth and sixteenth notes, and all of their corresponding rests, and expects to reap an abundant harvest, in a knowledge of the beautiful combinations of sounds, and a vigorous growth in musical intelligence generally, is no less foolish, and is doomed to disappointment. In the vegetable kingdom the mistakes of the ignorant farmer can be corrected by his own experiments and observation; for him Nature is very indulgent, she remains in the same receptive condition. It is not so with the virgin soil of sense perception in the field of our operations in mental growth and development. If the soil of sense perception remains uncultivated, its fertility "runs out." If the first year of school life is wasted, the most favorable time for securing a luxuriant growth of the musical nature is lost. The great value of the analytic principle in teaching is nowhere shown to greater advantage than in teaching the two subjects of tune and time in music. The laws of association and the relationship of the different parts of the unit or whole to the whole thing can be illustrated and used to greater advantage in the
study of the pitch of sounds than in almost any other subject. The importance of this mental training in music through this process in early childhood cannot be overestimated. The value of proper instruction in the public schools as a foundation for all subsequent training in all departments of musical education can hardly be appreciated. But to be of any practical value this instruction must be of the right sort. The child must be put in the same relation to the subject of music as to all other studies. The major scale as a whole is the ouly thing to be taught by imitation. Rote singing as a means of mental training in music from the educational standpoint is an absurdity. It is a positive hindrance to thorough work and should only be used as a means of recreation with very small children. The idea that a teacher must sing or play in order to assist the pupils in working out their problems in music must be abandoned before we shall secure any appreciable intelligence in music in our public school work. The use of musical instruments as a means of instruction must also be abandoned. 'To take any other position would be simply a confession of weakness as a teacher. The teacher's office is to awaken mental activity, stimulate thought and develop musical power through the pupil's own efforts. If we would have tuneful singers we must first establish clearly in the mind, in their proper relation to each other, the succession of sounds known as the major scale, upon which all music is constructed. This can never be done by imitating an imperfect instrument. It must be accomplished by a careful systematic training of the mind through practice in thinking and producing these sounds. Rote singing will never accomplish this. A musician in the common acceptance of the term is not necessary for this work. The most favorable time for this important work is the first year of school life. There is a way of approaching the study of these sounds which will secure tuneful singing. When these facts are fully appreciated, there will be a change in the manner of teaching music in schools and we shall begin at the foundation instead of at the top to build.

Our prejudices are often the greatest barriers to our progress. There are people who are very ready to give an adverse opinion upon any proposition that does not come within the scope of their personal comprehension of the subject. They do not see the principle involved, consequently it must be "all nonsense." This has been very forcibly illustrated by the manner in which some have received the idea of teaching time, or I should say of indicating to
the mind the strength and duration of sounds in music by means of a time language. It is safe in all matters of education involving psychological principles in teaching, to reserve our opinions until we have thoroughly investigated the subject. I cannot better illustrate the views taken of this subject by persons trained in different ways than by repeating a conversation I had with a gentleman upon this subject within the last few days. This gentleman is one of the most prominent educators in the West, a man who recognizes educational principles very quickly. After visiting the lowest prımary grades and witnessing the proficiency of the children five years of age in singing any interval in any key, he said, "I see your principle there Mr. Holt, I see your unit and the relation of its parts. I see how by the characteristic quality of each part in relation to the whole you work out the entire problem of intervals in music. That is all very plain to me, but I do not see the same thing in your time language. I admit that it ought to be possible to apply the same principle and make the study of time as simple as you have made the study of tune. If you say the language accomplishes this I am ready to accept it, because I know you are governed by educational principles in your work, but I do not yet see the application of the principle." I assured him that it was there and that I could enable him to see it clearly in fifteen minutes. He said, "I am ready, go ahead," and our conversation ran as follows:

In the first place we must go back to the very beginning and find our unit or object of thought to present to the mind. "Very true, what is it?" As in the study of tune, it is an invisible thing. It is a group of pulsations or accents that vary in strength or intensity. This difference in strength is the important factor. Now there are just two senses through which we can reach the brain with this idea. They are the senses of hearing and physical touch. I then gave him a clear idea of two, three and four part measures by giving him the right number of pinches in groups, each pinch corresponding in strength to the strength of tone or accent which goes with each part of the measure. I then gave him an illustration of the same thing through the sense of hearing. He said, "All right, it is clear so far." Now we will take the group of four accents or a four part measure. We have a name for each one of those accents. Tä is the name of the principle or primary accent and To is the name of the medium strong or secondary accent and $T \bar{a}$ and $T \bar{e}$ are the names of the
weak accents. "That is all very beautiful and very systematic so far, but where is the application of the principle?" But wait a moment, do not be in too much of a hurry as we are just getting ready. Now you place the tip of your tongue against the roof of your mouth just back of your teeth. When you give the syllable Tä which is the name of your strong accent press the tongue firmly and give the name with an explosion of the breath; do not use the voice but aspirate the syllable, then when you name the first weak accent T \bar{a} just touch the tip of your tongue to the roof of the mouth very lightly and the others in like manner. Do you see that I have transferred the effect of those pinches or physical touch or pressure, to the tip of the tongue and that the two senses of touch and hearing are combined and concentrated in the giving of the language? That you have only to sing the sounds of an exercise in strength as indicated by the language, and you are singing in time? Do you see that Tä, Ta, Te, for instance names the strength of the three accents in a three part measure and that if this idea is clearly established in the mind that $3-2,3-4$ or $3-8$ time are all one thing and that the fractional naming of these different kinds of notes has nothing whatever to do with the naming of the concepts which they represent. Do you see that the old way of learning the fractional names of these notes and attempting to measure their values by set motions of the hand called "beating time" is bringing in an immense amount of rubbish which stands between the mind and the real objects of thought and must therefore be a hindrance to the pupil's progress? "That is enough Mr. Holt, it is all clear to me now and I see that it is wonderful in its simplicity." All true educators will see the principle involved as this gentleman saw it when it is explained to them. How long will it take the musicians to recognize these fundamental truths?

THE EDUCATIONAL ADVANTAGES OF THE STUDY OF LATIN.

W. R. Whittle.

That many of our educators approve of dropping the ancient languages from the schools of popular education, that the leading college of the country has made it possible to drop either Latin or Greek from the necessary requirements for admission, are facts which cannot be disregarded. But are not we who labor in the schools of secondary education liable to be unduly influenced by the seemingly popular opinion and with little or no thought allow Latin to be dropped from the regular courses of study in our high schools?

In my short experience in high school work I have had, to my mind, no more important question to settle, in regard to the courses of study, than the one question, "What place ought to be given to Latin?" Shall it be a required study and how much time ought to be devoted to it? I refer of course to the student who does not have in view a college course, and perhaps, no more extended course than that offered by the high school. No question has so often been asked me, in my school work, as-"Is it best that my boy or girl shall take up the study of Latin?"

It is the purpose of this paper to present, in a very brief way, some of the reasons why I believe Latin has and rightly has an important place in our high school curriculum.

In the first place I believe the object of education is found by studying the derivation and etymological meaning of the word itself,-the educo of the immature mind. I believe that in teaching the languages as well as the sciences, mental growih or discipline should be the goal towards which we should direct our efforts. This by no means implies that the best methods of teaching are not to be desired, on the contrary, it necessitates the use of the best methods.

I am aware that some of our leading educators say, aim at the acquiring, the possession and the discipline will take care of itselfthat is, have a useful end in view, as for instance, the acquiring of a modern language, French, and trust the discipline to take care of itself. I take the ground that mental growth or discipline is the useful end, and the question will naturally follow, "What studies will best lead to this end?"

The uneducated parent says give us something more practical as, for instance, more arithmetic, while the leaders of the new departure say-since Latin is no longer a spoken language, and the knowledge of it is not necessary to become acquainted with the literature of the times, the real object of the study of language is no longer apparent in the case of Latin, therefore, the dead language should be displaced by the modern. I would not detract, if I could, from the value of, at least, one of the modern languages in the schools of popular education, neither do I wish to underrate the idea of utility, rather would I say, other things being equal, let the student pursue the study of that language which he will the most use.

One of the objects of the study of any language is undoubtedly linguistic culture and it seems to me that Latin, owing to its peculiar forms, strange constructions and arrangements, differing so widely from the English, which we have come to use almost automatically, gives the student more linguistic discipline than does the study of any modern language. Another object of the study of Latin is its historical value; it will lead to a better knowledge of the literature and history of one of the most important people in the world's history. It is claimed by some that it would be far better to put a more extended course in English in the place of Latin.

That too little attention is given to our own English language and its literature is undoubtedly true and it would seem to me, that if Latin must be displaced more English rather than more French or German should take its place. But I think it is true that some knowledge of Latin is necessary to the successful and thorough study of our own language and its literature. The student who attempts to make a special study of English with no knowledge of Latin will realize sooner or later that he has made a mistake.

While pursuing the study of Latin under a competent teacher the student is not only acquiring a knowledge of Latin, he is also cultivating his English. One of the most helpful exercises towards the correct use of English is the rendering of Latin into good idiomatic English, though it might be here said that too often is it the case, that through the carelessness or incompetency of the teacher the student falls into habits which diminish rather than increase the power which he ought to possess over his own language, but this is the fault of the teacher, not of the study itself.

It is claimed that the study of English or of any modern language will furnish as much linguistic discipline as will the study of Latin
or at least as much as the student will profit by, that it should not be studied for its listorical value, and that as a means to a better understanding of English, the value to the ordinary student is too slight to warrant the waste of so much time. Then I would say Latin should be studied because of its value as a means to great mental discipline.

In making this claim I do not forget that some able educators, who have had long experience as teachers, say that this is a forced argument for a fast declining cause, that as a means to this end it is no better than a modern language. But my limited means of observation has lead me to the belief that the study of Latin does possess in a marked degree means to greater mental growth than do the modern languages.

The popular cry is, that Latin is not practical, that the youth should study something that will be of some benefit to him in after years, something that he can use in every day life. It seems to me that they who make this cry forget that, that study which causes the most thought, that which best develops and draws out the reasoning faculties of the mind, that that study, which best fits the youth for citizenship, for noble men and women, that that study, which best fits the youth to go out into the world and successfully compete with his fellow men, is the most practical.

I would not maintain that the object of the school should be to make business men and women, but I do believe that as one object it ought to supplement natural ability and thus lay a foundation on which a successful business life may be built.

We live in an age of competition, in an age of electricity ; everything goes with a snap. The young man who enters upon a professional life must be equipped with accurate judgment, his mental powers must be ready to act quickly and accurately, he must be able to make comparisons and draw correct, and at the same time rapid conclusions, or he will be obliged to step down and out, thus making way for some one who is capable of fulfilling the demands of the times. Not only is this true of the professional man but most assuredly is it true of the business man.

We often hear it said that the boy from the grammar school is better fitted for business than the one from the high school. I do not believe it is true, neither do I believe that a college education unfits men for a business life. If it does then there must be some-
thing wrong somewhere. Mental training must count for something even in business life.

Now, then, what I would claim is that Latin is one of the studies, and one of the best for preparing the youth for life work. Some one has well said that, "A student can do nothing in Latin with his mind sprawling." It requires that concentration of thought which must lead to mental growth. Whether the task is to translate Latin into English or English into Latin, it calls into activity more than one of the mental faculties. It not only cultivates the linguistic powers but it broadens and deepens the mind in many other ways. The student not only derives much benefit from the individual preparation of the lesson either by direct study of the lesson, or by preparation for sight reading, but the teacher has in his power the opportunity of training the student both logically and rhetorically, of directing him into ways that will strengthen the memory and lead to quick and correct modes of thought, of developing his judgment and the power of drawing accurate comparisens and logical conclusions. It may be said that this is the field of the more advanced school, the college, yet I think it belongs to the secondary school as well, though, of course, in a less degree and ought to serve to direct the teacher in his methods of instruction.

My observation also leads me to the belief that it is possible to get more "solid work" from a class in Latin than in French. I would not maintain, that simply because a study is hard is a reason why it is beneficial and should be pursued, but it is solid, hard work that helps to make the solid, strong man.

The fact that a certain business man studied Latin for four years or even longer, and the fact that he can or can not now read easy Latin matters little. If, while he was studying it, he did honest, faithful work and was directed in his study by a competent and faithful teacher, the mental training thus acquired is worth just as much to him.

In conclusion then I would claim that Latin has a place in our secondary schools as an instrument rather than as an accomplishment, that as such it has no equal among modern languages and but few if any superiors even among the sciences.

PLACE AND WORK OF THE SEMINARY IN OUR SYSTEM OF EDUCATION.

J. H. Parsons.

The word seminary as here used is so well understood that it needs no definition. Instinctively as one hears the word there comes before his mental vision an institution of learning where young people of both sexes are gathered for intellectal culture. It will be the aim of this paper, first, to show that the place occupied by the seminary is essentially different from that of other schools, and that its work is second in importance to that of no school of whatever grade, and second, to call attention to that wherein the seminary at present fails of having attained the full measure of success that is hers, and modestly to suggest how the desired end may be approximated.

The place of the seminary differs from that of the high school, since the latter is necessarily local in its character, and completes the education of the youth who have been led up to this point through successive grades. It differs from that of the college since it is of a lower grade and deals with younger students. It differs from all other schools in the fact that it takes its students into a more intimate relationship and exerts a greater influence upon their after lives.

The students of the high school come from the immediate vicinity of the school-house and are under the direct supervision of parents or guardians. The students of the seminary are gathered from the farm and the village, from the hillside and the valley. Removed, in a measure, from the influence of home and its surroundings, his school must not only furnish him with instructors and teachers, it must also be his friend and advisor. Holding as it does this intimate relation with its students the seminary is directly responsible for the physical and moral as well as the intellectual well being of its students.

Time was when physical development was regarded as the chief end of education ; and, as a natural consequence the attention of educators was almost wholly turned in that direction. But this state of things is changed, and all recognize the fact that a well developed mind is a more valuable possession than a muscular body. Indeed the danger, at present, is not that too much, but that too little attention shall be given to physical culture. It is not necessary to
develop an Ajax or an Achilles, but it is essential that the student possess a vigorous and healthy body, for without this, the highest intellectual development is impossible.

Few of the schools are doing enough in this direction. In view of the fact that the tendency has been toward weakness rather than strength, has not the time come when systematic work should be undertaken in this department of education? I am aware that in certain institutions much attention is given to physical culture, that to such an extent has this been true, that it has served as the subject of many a well-worn joke, especially relished by those who have no sympathy with college sports. But there is here no plea for base ball, foot ball or rowing. They need none. The problem that confronts educators to-day is not how best to train and equip nine or eleven men, but rather how the students as a whole shall have the benefit of proper physical exercise. Many students need no encouragement in this direction, but it is those who, as Dr. Peabody has remarked, take their exercise by proxy that need to be stimulated to individual exertion.

The seminary, as well as the college, should have its gymnasium, where systematic exercise should be required of all students throughout that season of the year when out-of-door exercise is impracticable. As early in the season as possible, it is best that out-of-door exercise be practiced, and some means of recreation needs to be devised that shall meet the wants of those who take no interest in ordinary sports, and particularly for the young women. It is not often that a young man is injured by close application, but for a young lady seriously to impair her health is not uncommon. I would encourage such students to leave, for a portion of each day, the narrow limits of their rooms, and enjoy the pure air of the outside world, by introducing into our courses of study more of those branches that bring the student into direct contact with nature. I would have more botany, taught less from books in recitation rooms, and more in open field from flower and plant and shrub; more of geology learned from direct contact with mother earth. I would awaken an interest in entomology and ornithology, and encourage walks into field and forest for original investigation. I would have the student become familiar with the wonderful operations of nature by which we are constantly surrounded, and in so doing acquire a vigorous body and a clear head. I am aware that all these changes cannot be effected at once, but it is high time that we were aroused
to the physical needs of students. And any improvement in this direction is sure to bring about better results in the class room. It is impossible to separate the intellectual and moral education of the student, for by daily contact with his fellows, by the management of each teacher in the recitation-room, by the very atmosphere that pervades the place, his ideas of justice and of right are being shaped. It is then of the utmost importance that the influences of the seminary be in the right direction. Within the last decade great improvement has been made in class-room instruction, but perfection has by no means yet been attained. Institutions of learning are few where the student is given a Latin grammar and expected to commit it to memory or where he is allowed to declaim his geometry, but the idea is still too prevalent that education consists in learning a given number of facts.

While the seminary occupies a distinct place in our school system, the character of the work it does will depend almost wholly upon its teachers. To a greater degree is this true of the seminary than of any other class of schools, since nowhere else does the teacher exert so potent and far-reaching an influence upon the student. In the eyes of the boy from the farm the teacher is a great man. His opinions are accepted as necessarily correct. His advice is followed in regard to the choice of studies. His ideas are respected and copied. And it will be found, that as the teachers are, so to a great extent will those be who go forth from the school. Are the teachers men and women of broad and liberal views? so are the graduates. Are they narrow and conservative? the graduates are the same. If this be true, it behooves the school to be such as it desires those to become, who go from its halls and are to represent it in the years to come. The utmost care should then be exercised in the selection of teachers, and very different qualities are required of the teacher of the seminary than are necessary in other schools. One who would be called a successful teacher in a high school might here prove a failure. Not only must the teacher have a good intellect, he must also have a sympathetic nature. Heart culture as well as brain development is imperatively demanded. The tendency at present to employ specialists, must not be carried to excess. If a teacher of mathematics be desired it is not enough to know that he took first rank in that department for that may be the only qualification that he possesses for the position. Nor must a teacher of French be sought chiefly because his accent is faultless. It is by no means
certain that he will prove the best teacher of a study who has found least difficulties therein. The average student is not so brilliant that he does not at times find hard places, perplexing questions and he needs sympathy and direction from one who has himself been perplexed. And there is always to be considered the fact, that while teaching is going on in algebra or rhetoric or Latin, the student is learning from his instructor lessons of far greater importance.

In view of this fact the most essential qualification for the teacher of the seminary is character. No brilliancy of intellect, no accuracy of scholarship can atone for the absence of purity. And to him alone who holds correct views in regard to life, should be committed the important duty of shaping the lives of others.

Not only must the morals of the teacher be above reproach, it is also essential that he be a man of broad and liberal culture. The highest and best work of the teacher is to inspire, to arouse in the mind of the student a desire for knowledge, to imbue his soul with a purpose to be a greater and a better man. He is best fitted to awaken in others a thirst for knowledge who has himself drunk long draughts at her fount.

The teacher of the seminary must not grow old. Though gray locks adorn his brow, his heart may still be young. There are those that seem born old, while others are ever young and fresh as a flower in springtime. As added years steal over him he must never allow himself to forget that he was once a boy. He must keep his heart young by an active sympathy with the young life about him. The teacher must fail to gain the best results who does not hold a large place in the heart of the student. Young people as well as they who are older can not easily be driven, but they are ever willing to be led. This fact should be constantly borne in mind by those who have the direction of our institutions of learning.

I have no confidence in a system of school government that presupposes all students to be children and treats them as such; that thinks the first thing necessary in founding an institution of learning is to manufacture a page of rules and prohibitions. Treat a boy as if he were a rogue and the chances are that he will become one. Hedge him about with restrictions and he will seek to evade them as naturally as the condemned man would turn from his dank prison cell to the pure air of the outside world. The time has come when the idea that students in a seminary are different from other people and must be governed by a set of rules prepared to fit their peculiar condition should be consigned to oblivion.

Let the student feel that he is trusted and it will do much toward making him worthy of confidence. Treat him as a man and impress upon him the fact that he is an essential part of the school ; that its reputation depends upon his character and scholarship; that good manners, sound morals and accurate scholarship, not the keeping of a set of rules, are the ends sought, and manly qualities will be developed as naturally as flowers unfold in the sunlight. He will love the school and work to bring others to enjoy its advantages.

Do you say that this method sounds well in theory but will not work in practice? I answer that it is being successfully tried in some of the foremost institutions in New England, and the result has been, and is to develop those qualities that constitute successful manhood. Since the future of the youth entrusted to its keeping is so largely dependent upon the seminary, there is need of the utmost care, that its influence be such, that coming within its circle, the boy, rough, awkward, uncouth it may be, shall be developed into a man; not with a mind crammed with the product of other men's thought, but a man who has ideas of his own, a man that thinks, and who, when the time comes, is not afraid to express his opinions.

Having no proper conception of the value of a course of study the young man is naturally desirous of becoming settled in life and the shortest course is often the most attractive. If he can supplement a common school education with six months at a business college or two years at a normal school, he has an idea that he will be liberally educated, thoroughly equipped for the work of life. It is the duty of the seminary to correct these views, to exemplify the advantages of an extended course of study, to encourage the student to go further in the pursuit of knowledge; to enter broader fields than any to which she can invite him.

The idea above others that needs to be urged upon the student is the value of a course of study, not for the money to be gained therefrom, nor for the fame and position it may bring, but rather as a means of growth; for what it aids the man to become, for all the possibilities of development and of usefulness that it enables him to realize. The teacher may well take as his motto the words of Holmes:

[^1]
CIVICS.

(Abstract) L. G. Jordan.
The greatest national progress and the most permanent national character have always been produced by some direct education in the line of citizenship. Three of the best illustrations of the civic virtues which history affords us are found in the Hebrew, the Roman, and the American patriot of the Revolutionary period. These were not incidental products, but natural results of persistent training in the things that pertain to citizenship.

The civic forms and practices adopted by the New England colonies were largely derived from their Teuton ancesters The folkmote became the primordial cell of every Anglo-Saxon body politic. All thoughtiul political writers have held it to be one of the best schools for forming the faculties of men.

But these conditions are now in a great degree changed. The town meeting has lost much of its primitive vigor and its educational effects. The introduction of caucus methods and the delegation of authority to a few have taken all real participation in public affairs out of the hands of the majority of the people.

Again the remarkable influx of foreign population, much of which is either ignorant of the very elements of citizenship or wholly unAmerican in its habits and sympathies, has so diluted the civic virtues of our fathers that little of the ancient flavor remains.

Moral considerations and the public safety alike demand that some organized effort be made to improve these conditions. The press, the pulpit, social and civil organizations must do more in this direction. The schools also must do more. No other institution among us can furnish that systematic instruction in the necessary subjects, or that training and drill which is an important element in the final result.

Without attempting to present a definite plan for the study of civics in the higher institutions, I wish to offer a few suggestions as to what may be done in most schools without interfering with our already crowded courses.

1. The obligations of citizenship should be impressed upon the minds of all pupils. This should be done as much as possible by the ordinary discipline of the school. Obedience to rightful authority, respect for law, and a certain responsibility in regard to its
enforcement, a suitable regard for the rights of others, and a recognition of the need of performing certain duties, or giving up certain privileges for the common good, should be emphasized as directly bearing upon good citizenship. The management of the schnol will also give opportunities to bring forward the need and benefits of government in general, and in the particular place where the school is situated; the cost and value of our civil institutions; and our responsibility in view of these advantages. Some public event, as the execution of the anarchists at Chicago, the resignation of the President of France, or the death of our own Governor, will furnish opportunities for impressive lessons on these subjects.
2. The pupil ought to get a thorough knowledge of the different forms of government and the practical workings of each in its various departments. The general forms of government and their divisions may be taught in connection with geography. Personations of governments or representations of historical or imaginary scenes connected with them, are interesting and profitable exercises. In connection with history, the pupil's own town should be thoroughly studied, and a practical knowledge of its government obtained. The holding of a town-meeting, or organizing a city government are valuable school exercises. The county, State, and national governments may be represented and studied in the same way in their proper connections.
3. Some knowledge of economics should be given in all schools. Banking, taxation, money, \&c., should be studied in connection with arithmetic. The postal and military systems and other kindred subjects should receive due attention. Memorial Day, Washington's birthday and other anniversaries should be made the occasion of valuable lessons on some of these topics. In all these directions the instructions should be practical and objective as far as possible. Trials by jury, organization of city governments, holding town meetings and sessions of Legislature, State and national, are of great practical value and may of ten take the place of declamations and other general exercises.

CONTENTS.

I OF REPORT.
PAGE.
Introductory 5
Common Schools 5
Statistical Summaries 6
Analysis of Statistics 10

1. Attendance 11
2. Length of Schools 11
3. Number and Character of Schools 12
4. Text-Books and Appliances 12
5. Teachers 13
6. School Districts and School Houses. 14
7. School Supervision 15
8. Resources and Expenditures 16
9. Summary 17
Free High Schools 19
Comparative Statement 19
Normal Schools 22
Reports of Principals 23
Farmington 23
Castine 24
Gorham 27
Madawaska Training School 29
Maine Central Institute 30
Lee Normal Academy 31
Finances 32
Educational Associations 36
I. State Pedagogical Society 36
II. County Associations 38
Miscellaneous Topics 40
Temperance Instruction 40
Compulsory Attendance 48
Courses of Study 52
Conclusion 57
What can be done? 57
Recommendations. 58
II OF APPENDIX.PAGE.
Common School Statistics 2
Androscoggin County 2
Aroostook 6 4
Cumberland 12
Franklin 16
Hancock 20
Kennebec 24
Knox 28
Lincoln 30
Oxford 32
Penobscot 36
Piscataquis \quad " 40
Sagadahoc 42
Somerset 44
Waldo 48
Washington 52
Yolk 56
Summary 60
Special Common School Statistics 63
Comparative Statements 65
Apportionment of State School Money 67
Androscoggin County 67
Aroostook 67
Cumberland 68
Franklin 68
Hancock 68
Kennebec 69
Knox 6 69
Lincoln 69
Oxford 70
Penobscot 70
Piscataquis 71
Sagadahoc 71
Somerset 71
Waldo 72
Washington 72
York 73
Free High School Statistics 76
Lessons on Alcohol 84
PAGE.
Papers of Pedagogical Society 97
Mission of the Teacher 97
Study of Language 114
Scientific Temperance Teaching 123
Temperance Instruction in Public Schools 132
Grammar School Arithmetic 136
Professional Reading 142
Science Teaching in Common Schools 145
Educational Science in Teaching Music 153
Advantages of Study of Latin 163
The Seminary in our System of Education 167
Civics 172

[^0]: *A common clay tobacco pipe makes a very good pipette. Fill the bowl with water and close with the thumb. No water will run from the stem so long as the thumb is pressed down firmly. By varying the pressure, the water may be made to full in drops or in a stream as desired.

[^1]: "Build thee more stately mansions, O my soul, As the swift seasons roll; Leave thy low-vaulted past; Let each new temple nobler than the last, Shut thee from heaven with a dome more vast, Till thou at length art free; Leaving thine out-grown shell by life's unresting sea."

